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ALGEBRAS GENERATED BY A SUBNORMAL OPERATOR
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ROBERT F. OLIN AND JAMES E. THOMSON1

Abstract. We use the notion of generalized Toeplitz operators to obtain some basic

results concerning the C*-algebra generated by a subnormal operator. We apply

these results to problems concerning the intersection of C*(S) with rationally closed

algebras generated by S. In particular, we prove that C*(S) n %(S) = {/(S):

/G R(06¡ij{S)(S))}. The spectral inclusion property for generalized Toeplitz opera-

tors with symbols in P°°(p) + C(o(N)) is also considered.

Throughout this paper S will be a subnormal operator on a separable Hubert

space % with minimal normal extension N on DC. The scalar spectral measure for N

will be denoted by ju. and P denotes the projection of DC onto %. For/in L°°(/t) let Tf

denote the operator on % defined by

Tfx = Pf(N)x

for each x in DC. For obvious reasons Tf is called a generalized Toeplitz operator. As

in the classical case, where S is a unilateral shift and N is the bilateral shift, we shall

be concerned with various problems that arise from the correspondence / G <3d -> Tf

as "35 varies over different subalgebras of Lx(n). (Consult [10] for an excellent

account of the classical case.) In particular, our first algebra will be the continuous

functions on the spectrum of N. Using this algebra, we will obtain some basic

information concerning the C*-algebra generated by a subnormal operator. We will

apply these structure theorems to some problems concerning the intersection of this

C* -algebra with other algebras generated by 5. Before we proceed, we need to

introduce some notation.

If ® is a Banach algebra with identity and b E <$, then r%(//) denotes the

spectrum of b. If % is a separable Hubert space and % = '¡S>(%), the algebra of

bounded operators on DC, then o(T) will denote the spectrum of T E iô(DC). The

compact operators on DC are denoted by 6(DC) and ae(T) denotes the essential

spectrum of T, i.e., the spectrum of Fin the Calkin algebra 6ii(DC)/C(DC). The norm

of T in the Calkin algebra will be denoted by || TII e. If % is also a C*-algebra, then

C*(b) designates the C*-algebra generated by b and the identity. If K is a compact

subset of the complex plane, C, then C(K) represents the complex-valued continu-

ous functions on K.
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Returning now to the generalized Toeplitz operators, we take our first subalgebra

% to be C(spt ¡u) = C(o(N)), where spt ¡x denotes the support of ju. Let x(z) = z for

z E C. Using the Gelfand theory, we have that C*(7V) is isometrically *-isomorphic

to C(o(N)), denoted C*(N) = C(a(N)), under the map T that sends N to X-

Furthermore, for all x, y in % and for all nonnegative integers/; and m we have

(S*pSmx,y)= (Smx,Spy) = (Nmx,Npy)= (PN*pNmx, y).

Thus, it follows that F-,,7^™ = F-,x™. A simple application of the Stone-Weierstrass

theorem now shows that

{Ty.fEC(o(N))} EC*(S).

Let 6 denote the induced map from C*(N) into C*(S). (Specifically, 6(f(N)) = 7}

for all/ E C(a(N)).)

Using the work of Bunce [7], we shall exhibit a diagram that represents the

cornerstone for the rest of the work in this paper. The commutator ideal of C*(S),

denoted 7, is the closed ideal generated by all elements of the form ,47? — BA, where

A, BE C*(S). It follows from [7] that

under the Gelfand map. (It is easy to show that the ideal 7 in Corollary 11, [7], is the

commutator ideal. Since the quotient of C*(S) with D {<p~'(0): <p a character} is

abelian, it follows from an argument similar to that in [14, pp. 210-211] that 7 is

contained in this character ideal, because this character ideal is closed. Conversely, if

T E C*(S) and T G I, then there exists a character \p on C*(S)/I such that

y¡/(T + I) 7^0. Clearly then there exists a character <p on C*(S) such that <p(T) ¥= 0.)

If it denotes the quotient map from C*(S) to C*(S)/I then we have induced a map

t: C(a(N)) -* C(oa(S)) that makes the following diagram commute.

C*(N)      s     C(o(N))

r*( <\\       ^-
C*(S)      -      -_L-lsC(aa(5))

A well-known fact about subnormal operators is that oa(S) C o(N). It follows easily

then that r(x'xp) is tne restriction of x'x''to °a(S) f°r a^ nonnegative integers / and

p. Applications of the Stone-Weierstrass and Tietze extension theorems yield that t

is the restriction map from C(o(N)) onto C(aa(S)). Using the properties of the maps

in the commutative diagram above, we have the following theorem. (If /is a function

on K and LE K then/| L denotes the restriction of /to L.)

Theorem 1. With the notation as above, C*(S)/I and C(oa(S)) are isometrically

isomorphic C*-algebras with an isomorphism that sends Tf+ I to f\oa(S) for each

f E C(o(N)). Furthermore TfE I if and only if f\ oa(S) is zero.

Theorem 1 describes the C*-algebra, C*(S), modulo the commutator ideal. The

following proposition describes the commutator ideal.
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Proposition 1. Let T E C*(S) and let I denote the commutator ideal of C*(S).

The following statements are equivalent.

a. TE I.

b. For every X E oa(S) and for every sequence {xy} of unit vectors in % such that

\\(S - X)x„\\ -> 0, it follows that Tx„ -* 0.

c. For every X E oa(S) and for some sequence {xn} of unit vectors in DC such that

\\(S - X)x„ || -> 0, it follows that Txn -> 0.

Proof. Let X E oa(S) and let {xy} be a sequence of vectors in % with \\x„ II = 1

and ||(S — X)xn \\ -* 0. An easy computation now shows that

(1) (p(S,S*)-p(X,X))xn^0

for any polynomialp(w, w) in two noncommuting variables.

Suppose now that tp is a character on C*(S) with <p(S) = X. Then [7] implies

X E oa(S). Using (1), we then have

(2) (r-<p(r))x„-o

by the continuity of <p. Hence if F G 7, then <p(T) = 0 and we have the conclusion

of statement b. Clearly b implies c. Furthermore, if statement c is valid, then (2)

implies <p(T) = 0 for all characters <p on C*(S). Hence TEL

In general, the problem of calculating the approximate point spectrum of a

subnormal operator is difficult. Consult [13] for some general results on this

problem. In our applications of Theorem 1 we will need to know that "peak points"

are always in the approximate point spectrum of S. This can be made precise in the

following way.

Proposition 2. Let S be a subnormal operator on DC with minimal normal extension

N on DC. Suppose X E o(N) is such that there exists / G C(a(N)) with the following

properties.

a.f(X)= land\f(w)\< 1 for w Eo(S)\{X},

b.f(N)%E%.

Then X E oa(S).

Proof. Using the methods in the proof of Theorem 1 in [17], we can choose a

separating vector for the von Neumann algebra generated by N that belongs to DC.

Hence we can assume, without loss of generality, that N = A, ® N2 on DC = L2(¡jl) ®

DC2; Nx is multiplication by x on L2(/t), and that DC D H2(¡i), the closure of the

polynomials in F2(/x). Hence/(A) is multiplication by /on L2(n).

Let A(A, r) denote the open disc centered at X of radius r. Raise / to a high

enough power, say p, so that the supremum norm of f outside A(A, r) is less than \.

Let g = 2fp and let e > 0. Since X E o(N) and o(N) = spt ju, there exists a positive

integer m such that the L2(¡i) norm of gmXts(\,ry denoted llgmXA(\,r)H2. is bigger

than 1 and that the supremum norm of gm outside A(A, r) is less than e. (Note that

m and p depend on r.) Let
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Then q G DC, II?Il = 1, and

||(5 - X)q( =/ \(z- X)q\2 dn+( \(z - X)q\2 d»
Jà(X,r)no(N) Ja(N)\A(\,r)

^r2 + e2(4\\N\\2)\\^\\.

The proof is finished if we choose r and e sufficiently small.

In a wide class of examples (for example, if we assume 5 is &-multicyclic [4]), the

ideal 7 in Theorem 1 is precisely 6(DC).

Corollary 1. Let S be an irreducible subnormal operator with S*S — SS* E 6(DC).

Then I = 6(%) andoa(S) = oe(S). Forf, g E C(a(N)) we have

a. T is compact if and only iff\ oe(S) = 0,

b. Il7^||e= II /| (^(S)!!^, where \\Tf\\e denotes the norm of -n(Tf) in the Calkin

algebra and II f\ oe(S)\\ x denotes the supremum norm of fon ae(S),

c. Tyg — TjT% is a compact operator,

d. oe(Tf) = f(oe(S)).

Proof. Since S is an irreducible operator and C*(S) contains a nonzero compact

operator (namely S*S - SS*), then [1, Corollary 2, p. 18] implies C(DC) C C*(S).

Furthermore, C*(5)/6(DC) is abelian, which implies ß(DC) D 7.

Now 7 is a nonzero closed two-sided ideal in C(DC), so [1, Corollary 1, p. 18]

implies that 7 = 6(%). Hence we also have aa(S) = oe(S) by an application of the

Gelfand theory and the proof of Theorem 1. Part a of the corollary also follows from

Theorem 1 and the fact 7 = 6(%).

Similarly, since 7 = ß(DC) and oa(S) = oe(S), part b follows from Theorem 1 and

the definition of the norm on C(oe(S)).

Now 7/(7}7;) = 7/(7})7/(rg). Since w(FA) = r(h) for all h E C(o(N)), we have

■n(Tfg - T/Tg) = r(fg) - r(f)r(g) = 0

because t is multiplicative. This establishes part c of the corollary.

By the isomorphism in Theorem 1, we have that

°C*(S)/e{%)(Tf) =f(°e(S))-

Part d is established if one uses [10, Theorem 4.28].

Remarks. In an earlier draft of this paper, the universal diagram used in Theorem

1 appeared only in the proof of Corollary 2. After receiving the preprint [2], we

realized the general context of Theorem 1 and Corollary 1.

In the context of [2] the subnormal operator S is multiplication by z on L2(G), the

square integrable (with respect to planar measure) analytic functions on G. Here G is

a bounded open connected subset of C. By the proof of Lemma 6 in [20], one has

that the commutant of 5 consists of those multiplication operators, M^, where xp is a

bounded analytic function on G. It then follows easily that 5 is irreducible because

G is connected. Using [5, Theorem 5.1], we see that S has a compact self-commutator

and, hence, S satisfies the hypothesis of Corollary 1.

The authors of [2] also characterize ae(S). Using the notation of [2], we let o2_rG

denote those points in dG which are removable with respect to L2(G). Axler,
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Conway and McDonald show that ae(S) equals d2_e(S), the set 3G\32_rG. We

digress and indicate another proof of this result.

The easy part of the proof is to show oe(S) C d2_eG. The proof of this contain-

ment given in [2] also establishes that the index of 5 — X is — 1 whenever S — X is

Fredholm and X E G.

Now let X G oe(S). We want to show X G d2_e(S). Without loss of generality we

may assume X E 3G. Hence index (S — X) = -1. Therefore there exists an open

neighborhood V0 of X such that index (S — r) = -1 for all t G F0 (consult [10,

Theorem 5.36 and Lemma 5.34]). Using [22], we choose a neighborhood F, C F0 for

X such that for each w E Vx there exists a Kw in the kernel of S* — w with the

property that the map w -> KK is coanalytic. We claim that (1, Kx)¥= 0. Once this is

established then there exists a neighborhood V2 E F, of X in which we may define

the coanalytic function <p(w) on F2 by <p(w)(Kw, 1)= 1. Let Kw = <p(w)Kw. Then

the map w -» Kw for w E V2 is coanalytic; hence, for any fixed/in L2(G) the map

w -» (/, Kw) is analytic on V2. Furthermore, for all w E G f) F2 one can verify that

for each/G L2(G) one has </, Kw) = f(w). (Use a Taylor series expansion of/

about w and remember that Kw±.  range(S — w) and that (1, Kw)= 1.) Hence

A G a2_/7.
We need to show ( 1, Kx ) ¥= 0 to finish the argument. Suppose to the contrary that

1 belongs to the range of S - X. It follows then that (z — A)-' G L2a(G). It follows

easily then that for every r > 0 there exists a compact set Br C A(A, r) \ G such that

m(Br) > 0. Here m denotes Lebesgue measure on C. Using [11, Chapter II, Theo-

rems 1.9 and 11.6 and p. 29], we have that there exist a point zr E Br and a

continuous function / on the Riemann sphere that is analytic on (C U {oo})\Br,

satisfying f(zr) = 1 and |/(w)|< 1 for w ¥= zr. Using Proposition 2, we now have

that zr E oa(S). It follows then that A G oa(S) because oa(S) is a closed set. Hence,

X E ae(S) by [18, Proposition 2.15]. This contradicts our assumption that X G oe(S).

Recall that the Banach space of bounded operators on a Hubert space DC, denoted

©(DC), is the dual space of the trace class operators (with the trace class norm). If

TE "$(DC) and K is a compact set containing o(T), then 6A(T, K) denotes the

weak-star closed algebra generated by {r(T): r a rational function with poles off A"}.

In particular, if K is the polynomially convex hull [11] of o(T), then 6X(T, K)is the

weak-star closed algebra generated by T and the identity, denoted &(T). When S is

a subnormal operator, then &(S) = GllS(S), where GI)S(S) is the weakly closed algebra

generated by S [17].

Using the same methods as the proof of [9, Theorem 2.1], one can show for a

subnormal operator S that <3l(S, K) = {/(S): / G 7?°°(/x, K)}. Here jti is the scalar

spectral measure for the minimal normal extension N of S and R°°(p, K) denotes

the weak-star closure in L°°(fi) of the rational functions with poles off K. (Since

K D o(S) D o(N), then K D spt jti. Hence these rational functions are bounded on

spt ju. Of course, the weak-star topology on L°°(/i) referred to here is that inherited

as the dual of Lx(p).) In the particular case where K is the polynomially convex hull

of o(S), R°°(ri, K) is the weak-star closure of the polynomials, which we will denote

byi-(u).
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In the next part of the paper we will establish the following theorem.

Theorem 2. Let S be a subnormal operator. Then

C*(S) nft(SJ) = {f(S):fERx(p.,K) n C(sptju)}.

When S is a normal operator, then this theorem is obvious if one uses the Gelfand

theory and the characterization of tfl(S, K) given in the previous paragraph. The

result is also suggested by the diagram used in the proof of Theorem 1. (The diagram

is the starting point for the proof of Theorem 2.)

The proof of Theorem 2 will rely on the results about 7\°°(¡tx, K) presented in [8].

In particular we will need an intrinsic characterization of the function algebra

Rœ(fi, K) n C(spt ¡i). This characterization is easy to understand in the polynomial

case.

We will discuss the implications of Theorem 2 when K is chosen to be the

polynomially convex hull of o(S). With this choice of K we have 61(5, k) = %(S)

= {f(S)\ f E P°°(m)}. Using the notation of [19], we have P°°(p) = L°°(p - fi) ®

H°°(int K, fi). Let F denote the compact set K U spt(/x — fi). It follows easily by the

results in [17, 19] that F= o%(S)(S). We let R(L) denote the algebra obtained by

taking the uniform closure of rational functions with poles off the compact set L.

Using Theorem 2, we then have the following.

Corollary 2. Let S be a subnormal operator. Then

C*(S)n'll,(S)={f(S):fER(o,ms)(S))}.

Proof. All that needs to be verified is that P°°(ii) n C(spt/i) = R(F). This,

however, follows easily from [19] or [8, Chapter XIII, Theorem 1 and Chapter X,

Theorem 6],

We will now discuss some of the results in [8] concerning Rx(ß, K) that are

pertinent to our work here. Let K be a compact subset of the plane and /x a nonzero

measure on K. The envelope of /x with respect to the algebra R(K), denoted

E(fi, K), is the set of points xGC possessing a complex representing measure nx

for the algebra R(K), that is absolutely continuous with respect to ju, and satisfies

fjtx({x}) = 0. The set of bounded Borel functions on C with compact support and

zero mE, K) almost everywhere is denoted B(E(fi, K)). (The restriction of planar

Lebesgue measure m to E(p, K) is denoted mEi K). We note that E(fi, K) is a

countable union of compact sets; hence, it is a Borel set.)

The set of functions of the form

z" 1
g(z) = J g*(x)^yzr^dm(x)

with g* in B(E(\i, K)) is denoted ^(ju, K). One knows that/!(",, AT) is an algebra of

continuous functions on C. Each function in A(p, K) is zero at infinity, analytic on

the interior of E(¡x, K), denoted int E(p, K), and analytic in a neighborhood of

infinity.
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The algebra associated to the measure p and the compact set K, denoted A(fi, K),

is the closure of the algebra A(¡i, K) with respect to uniform convergence on the

compact set E(n, K)~ U(spt jit). Here L denotes the closure of the set L. The

important results that we will need are the following.

^)oR^.K)(x) = E(^K)-U(sptp).

(4) The maximal ideal space of A(p:, K ) is E(¡x, K )   U (spt ju).

(5) The set of nonpeak points of A(¡i, K) is precisely the set E(fi, K).

(6) Every function/in Rx(p, K) is a pointwise limit, ¡jl almost everywhere, of a

sequence {/„}f of functions belonging to A(p, K) and satisfying ll/Jlspt/1 < ll/ll^.

Here II g II L denotes the supremum norm of a function g on a set L, and 11/11^

denotes the L°°(n) norm off.

(7) If h is a continuous function on spt ¡i, then

inf       \\h-f\l=      inf      ||/z-/1|sp„.
f<ER°°(p,K) fSA(p,K)

Hence, 7?°°(m, K) n C(spt/t) = Ä(p., K).
All these results may be found in Chapters 10 and 11 in [8], It probably should be

mentioned that R(E(p., K)~ U(spt jti)) Ç A(\i, K) and strict containment may oc-

cur. (The algebras are the same when K is chosen to be the polynomially convex hull

of spt ¡l.)

We will also need the following function theoretic fact about R^di, K).

Proposition 3. Let ß be a measure and K a compact subset of C containing spt ju.

Let L be a compact subset of E(n, K) and let U = ((spt ju) U E(p, K)~ )\L. Let i

denote the restriction map from 7?°°(jti, K) to 7?0O(ju{y, K). Then i is an isometric

isomorphism that is also a weak-star homeomorphism.

The following concept will be useful to us in the rest of the paper. If z0 G C, let

A(z0, l/n) = {z G C: | z — z0 |< l/n} for each positive integer n. If ¡x is a measure

and/is a bounded jut- measurable function then the essential range of /at z0 is the set

Proof of Proposition 3. Using the terminology in [8], we may assume that the

residual part of ¡i is zero. (Equivalently, in the language used in [9], we may assume

that R°°(ii, K) has no L00 summand.) We shall show first that < is an isometry.

Let r E Rx(ii, K) and choose points A„ G E(p, K) such that |r(A„)|-> IIr\\¡¡.

That this choice is possible follows from Theorem 2, Chapter IV and Theorem 2,

Chapter I in [8]. Fix n and let vn be a representing measure for A(p, K) at Xn that is

carried by the peak points [11, Chapter II, Theorem 11.6]. By Lemma 12, Chapter 11

in [8], the restriction map from Ax(ii + j>n, K) to Rx(n) is an onto isometric

isomorphism. Here A°°(ij. + vn, K) is the weak-star closure of A(p, K)in Lx(ii + vn).

We claim that for some peak point z„, the essential range of r at z„ with respect to

vn (hence, with respect to n + vn) contains a point xn with | xn \>\ r(Xn) \. If not,

then \r(w)\<\r(Xn)\ for almost all w (with respect to vn). Hence |r(A„)| =

| /rdvn |<| r(Xn) \, a contradiction.
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Let /, G A(n, K) be a peak function at z„. Then for all positive integers m, we

have

\\fnmrt+v>V(K)\-

Noting that II /„"VX/J^,.,, -* ° as m -> oo, we can easily verify that for sufficiently

large m,

\\fnmrlu>\r(X„)\

because of the isometry from^°°(/x 4- vn, K) onto 7\°°(/i, K). Hence,

\V\Vu>V(Xn)\.

Since this is true for all n, we have shown that t is an isometry.

Let F be a closed subset of R°°(ii, K) and let Bx and 7?2 be closed balls of the

same radius with centers at the origins of 7?°°(ju, K) and R^diy, K), respectively.

Noting that i is weak-star continuous, Bx is weak-star compact, and i(F) D B2 =

i(F D Bx), we see that i(F) is weak-star closed by the Krein-Smulian theorem. This

shows that i has closed range and is hence onto; and it also shows that t-1 is

continuous.

We are now ready to prove Theorem 2. Since 7?°°(/x, K) n C(spt ¡j.) = A(¡i, K), it

suffices to establish the following equivalent version of Theorem 2.

Theorem 2'. Let S be a subnormal operator. Then

C*(S) n<6l(S,K) = {f(S):fEÄ(li,K)}.

Proof. Let / G Ä(ß, K). Then / G C(o(N)) and f(S) = 7} (notation as in Theo-

rem 1). Hencef(S) E C*(S) n &(S, K).

Conversely, suppose T E C*(S) C\ 6J{.(S, K). Then by Theorem 1 there exist

g E C(K) (take any continuous extension of g restricted to oa(S)) and h E 7?°°(ju, K)

such that T = Th and Tg_h E I. We shall show h E Ä(p, K).

First we show that the essential range of g — h is {0} at each peak point for

A(fi, K). Let z0 be a peak point with/a peaking function. Suppose A is a nonzero

number belonging to the essential range of g — h at z0. Then A belongs to the

essential range of f(g — h) at z0 for every positive integer n. Since g — h =

(g - gOo)) -(h- g(z0)), we may assume g(z0) = 0.

Let e > 0. Then for sufficiently large n we have

6 >\\f"g\\f:(ii.KV"u(sptn).

Hence e > \\Tf,,g\\ for large n. Now, by assumption, for every n, \ X |< ll/"/z|lM so

that

AI <T II T

The last inequality follows from the fact that fh E Rœ(n, K) and [16, Theorem

2.3]. Consequently, for every n, there exists A„ G aa(Tph) with | A„ \>\ X \. Choose a

sequence of unit vectors {xn} in DC such that

\\(Trh-Xn)x„\\<l
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Then

(8) \\Tlh-g)rxH\\ >\\Thf„xn\\ - \\Tgrx„\\ >\X\ - ¿ - e.

Now define a sequence {yy} of unit vectors in DC by setting

f"(S)xn

y"    \\f(s)xnW

Since || f(S)x„ II < 1 (recall || / II < 1) we have

\\Th-gyn\\>\X\-},-e.

We will now show that IKS' - z0)yn II -» 0. Since z0 G oa(S) (this follows by Proposi-

tion 2), we will then have  II rA_g.yn II -» 0 because of Proposition  1. The last

inequality will then imply A = 0, which contradicts our assumption.

Let E denote the spectral measure for N. Then for any positive number r

11(5 - z0)yn\\2 =\\(N- z0)yn\\2 = / \z- z0\2 d{E(z)y„, y„)

I      A        ^■(»M'k-xol'f,. ...* )d(E(z)xn,xn).
\ ||/"(5)jc„ir /

A | -l/n - s

Jo(N)^A(z0.r) \  || /"(5")JC„

Now by inequality (8) we have

\\f(S)xn\\> \\T„-g\\       '

so we may assume that the sequence (II /"(S)jc„ ||} is bounded below. Now choose r

so small so that the first integral in the last equality is small. Then choose n

sufficiently large so that ll/"llo(/v)XAu0,r) ^s arbitrarily small (hence, the second

integral can be made small for large n).

Let e > 0. Since the essential range of (g — h) at every point

z G ((spt/x) UE(p, K))\E(n, K) is zero, for every such point z there exists a

positive integer N(z) such that essential range of (g — h) on A(z, 1/A(z)) is

contained in A(0, e). Hence there exists an open set U(e) containing the peak points

of A(¡x, K) such that II g — A|| < e. Now by Proposition 3 and the results listed

from [8] earlier, we have

e>\\g-h\lu>    inf     llg-^IL
feR^fiu.K)

=      inf      ||g — /lUptMt/    (Proposition 3 implies/I (¡x,,, K) = A(p, K))
f<EA(p,K)

>     inf      ||g-/||F,
feA(p,K)

where F is the closure of the peak points for A(fi, K). Therefore g restricted to F

belongs to the uniformly closed algebra {f\F: f E A(p, K)}.

Now let r E A(p, K) be chosen such that r | F = g \ F. Let e > 0 and choose an

open set G D F such that II r — g || G < e. Choose an open set U such that

||g-A|L<e
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and such that spl(¡iu) C G. Then ||r - h\\    < 2e. Hence | r(X) — h(X) |< 2e for ail

À G E(nv, K) = E(ji, K). Since e is arbitrary h E A(n, K).

Let 5 be a pure subnormal operator on DC with minimal normal extension A on DC.

(An operator T is pure if it has no nonzero reducing subspace on which it is normal.)

In his thesis, G. Keough [15] has considered the problem of when o(f(N)) E o(Tf),

i.e., spectral inclusion, holds when/varies over different subalgebras of Lx. We shall

address ourselves to this problem when the symbols of the generalized Toeplitz

operators belong to the algebra P°°(ju) 4- C(a(A)). We note that this space of

functions is a norm closed subalgebra of F°°(/i). Consult [8, Chapter 12, Theorem 2]

or [12, §26, Theorem 26.4 and the second example].

Theorem 3. Let S be a pure subnormal operator. If oa(S') = o(N)then

a.a(Th) D o(h(N))forallh E P°°(n) + C(o(N));

b- WTh\\e= \\h\\x(= \\h(N)\\)forallhEP°°(n)+ C(o(N)).
Hence the map h -> Th is an isometry on P°°(/i) + C(o(N)) and Th is not compact

unless h = 0.

In [15] it is shown that o(Th) D o(h(N)) for all h E C(o(N)) if and only if

oa(S) = o(N). Combining this fact with Theorem 3, we have the proof of the

following

Corollary 3. Let S be a pure subnormal operator. The following are equivalent.

a.aa(S) = o(N).

b.o(Th) D o(h(N))forallh G P°°(u) + C(o(N)).

c. a(Th) D a(h(N))forallh E C(a(N)).

Proof of Theorem 3. Since S is pure, there is no L°° summand to P°°(ili). If we

establish the theorem for the antisymmetric case then routine arguments yield the

general case. (Consult [9] for this nomenclature.) Thus we assume that P°°(jtt) =

HX(G), G a simply connected open subset of the plane (consult [19] for the

properties of G).

Let h E Px(fi) + C(o(N)). We shall show that ae(Th) D a(h(N)) from which a

and b follow immediately. Noting that o(h(N)) equals the union of the essential

ranges of h |Gno(/V) and h |ac, we shall establish the inclusion above for each of these

essential ranges. We first deal with h\a(X/)nG. Since oe(Th) is closed, it is sufficient to

show that h(z) E oe(Th) for each z in o(N) D G.

Fix a point z() in a(N) C\ G. Since z0 G oa(S) and 5 is pure, there exists an

orthonormal sequence {xn} of vectors such that lim 11(5 — z0)xj| = 0. As in the

proof of Theorem 2, one can show that

lim||(/z(A)-/z(z0)K|| = 0,

because h is continuous at z0. Hence,

hm||(rA-/z(zo)K||=0.

Thus h(z0) E ae(Th).

We now deal with the essential range of h |ac. Let a denote harmonic measure for

a fixed point in G. Since P°°(/u) = H°°(G), it follows that fidG « a. Let A belong to
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the essential range of h |3C. Then there exists a sequence {£„} of Borel subsets of dG

with p.(En) > 0 and lim a(En) = 0 (hence, lim p(En) = 0) such that | h - X \< I on

En. We shall construct a sequence of vectors {xy} in % such that xn -» 0 weakly,

1 < IIjc„|| < 2 and 11(7; - A)x„l| - 0. That implies that X E ae(Th) and thus will
complete the proof of Theorem 3.

As in the beginning of the proof of Proposition 2, we can assume, without loss of

generality, that N = Nx ® N2 on DC = L2(n) ® DC2; the scalar spectral measure for

A2 is absolutely continuous with respect to ¡i; and that DC D 772(jti), the closure of

the polynomials in L2(ft). We also assume that ¡i is a probability measure.

Let^ G P°°(ct) satisfy

k(*)l=<

(This is an application of Szegö's theorem for 7/°°(a).) Then

/   \*„\2dii<\f      dp + f     dp<-L+\.
Jdc n¿JdG\E„ V(£„) n2

We also have

f   \t,\d¡x^(  h//„|24u=F

Let m be the conformai map of G onto D, the open unit disc, and extend <p to P°°(a)

via [19, Lemma 4.4]. Multiplying xpn by an appropriate power of tp, we may (and do)

assume that

2>[_\xPn\2dp.=Uf>l
JG

and

(tt/dp^l.
JG

It follows easily that xpn -» 0 weakly in L2(p); hence, they converge weakly to zero in

DC. We also have

\\(Th-X)xp,,\\2<\\(h(N)-X)xPn\\2

<l|A-À||co/ ü/dfi + \\\h -AIU f     dp + \f  ----dp^O
jg nL jsg\f„ nlJE„V\En)

as n -» oo. This finishes the proof.

If 5 is a pure subnormal operator with oe(S) = a(N) one might hope that more

than Theorem 3 is true, one might want o(h(N)) C o(Th) for all h E L°°(jti).

However, this can be false as seen by Example 6.2, Chapter III, [15]. (The subnormal

h(En)

z EdG\En,

z E E„.



310 R. F. OLIN AND J. E. THOMSON

operator in this example does not have a compact self-commutator.) If spectral

inclusion is valid, then for any compact operator K E iß (DC)

||rA + /c||>||/z(/v)||=l|7;||

for all h E F°°(jli). (Consult [15, Chapter IV, or 2.4].) This leads us to the weaker

question, if 5 is a pure subnormal with oe(S) = o(N) and S*S — SS* E G (DC), can

Th E Q(%) for a nonzero h E Lcc(ß)l The answer is yes.

Example. Let D denote the closed unit disc and let C be a nowhere dense compact

subset of D with positive area. We choose a sequence {Dy} of disjoint open discs in

D\C with each disc Dn having radius rn and center A„ such that

(9) int(Z>\ UD„) = 0,

and

(10) rn<d22-",

where dn = dist{A„, C}. Let K be the Swiss cheese D\UDn. Note int K = 0. Put

T = 37) U (U37)„) and let ds denote arc length on T. Since 2r„ < oo, we have

frds < oo. Let dp. be the sum of area measure restricted to C and ds. Let R2(ds)

(R2(dn)) be the L2 closure of R(K) with respect to ds (dn). Let 5, (S2) be

multiplication by z on R2(ds) (R2(dfi)). Hence S*S2 — S2S* is compact [4].

By Cauchy's theorem we have

f       dÍ-fds~í   di-fd* = *
JUdD„ ds JaD ds

for all rational functions / with poles off K; hence, Sx is pure because | dz/ds \ > 0

almost everywhere [3, Proposition 3.10]. Using Cauchy's theorem again, we have for

every rational function/with poles off K and for every z0 G C,

<">       l^o)l<¿/rf^<¿IIA

where Mx is a positive constant (independent of z0 G C). Hence if / is a rational

function with poles off K there exist positive constants M2 and M3 such that

(12) II/1U < M2||/1U < M3II/IU
(where all norms are taken in the indicated L2 space). Hence Sx and S2 are similar;

thus, S2 is pure [21]. It follows that o(S2) = oa(S2) = oe(S2) = o(N).

Using (11) and (12), we see there exists a positive constant M4 such that for each

z0 G C, there exists K2(¡ E R2(dfi) with || K!q II < M4 so that

(13) (f,Kj = f(z0)

for each / G R(K ). Let h be the characteristic function of C. Let g„ -> 0 weakly in

R2(dn). Then clearly (hgn)(z) = 0 for all z G C and by (13), we also have (hgn)(z)

-» 0 for all z G C. Since

|(/zg,,)(z)|<M4sup||gJ2,

it follows by the Lebesgue dominated convergence theorem that Th is compact.

277/-.,
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