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CLASSIFICATION OF ORIENTED EQUIVARIANT

SPHERICAL FIBRATIONS

BY

STEFAN WANER

Abstract. Classifying spaces for oriented equivariant spherical fibrations are con-

structed, and the notion of an equivariant SF-fibration is introduced. It is shown

that equivariant SF-fibrations are naturally oriented in RO( G (-graded equivariant

singular cohomology.

Introduction. This paper is intended as a sequel to [Wl], and much of the material

there will be assumed here (with reference). The purpose of this note is to complete

the classification theory for equivariant fibrations by constructing explicit classifying

spaces for various categories of oriented equivariant spherical fibrations.

Equivariant spherical fibrations (with linear fibrewise action) are peculiar, in that

two distinct fibers may look like the spheres, Sy and Sw, of unrelated representa-

tions—even if the base space in question is connected. Thus, given a generalized

7?0(G)-graded equivariant cohomology theory E¡, there is no natural grading in

which one might expect to find an orientation class. In order to "define the problem

away", one notes that E^(S°) is not concentrated in dimension zero, and proceeds

according to the ideas of Wirthmuller [W7].

Let E be an 7\0(G)-graded cohomology theory with products (in the sense of

Wirthmuller). Let a E RO(G) and let p: X -» B be a G-spherical fibration with

Thorn complex TX. Then an element ju G EG(TX) is an F-orientation of p in

dimension a if, for each fiber Sv* in X, the restriction of jti to Sv*, which lies in

Eff(Sl/<) with Hx the isotropy subgroup of p(Sv<), is a generator of this free

E£*(S°)-module.

It may easily be seen that if a is an actual representation V, the existence of such a

class implies that EG(SW) = EG(S°) for any fiber Sw over a stationary point in B.

Thus the existence of an orientation implies, in general, that the cohomology theory

E fails to distinguish among representations of a given dimension.

On the other hand, when B has connected fixed-point sets, all the fibers in X must

look like S v for some fixed G-module V (in a sense to be made precise below). We

then refer to p as a F-dimensional fibration, and look for orientations in dimension

F G RO(G). This leads to a more restricted notion of orientation, and the mathe-

matics is correspondingly less cumbersome. There is also a natural notion of an

equivariant SF-fibration in this context, and we show in §3 that such fibrations
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possess natural orientations in ordinary 7\G(G)-graded equivariant cohomology with

Burnside coefficients.

Although the treatment will deal with the general (//-dimensional) case, we shall

specialize to the K-dimensional case at each stage when this is of interest. In §1,

generalized ^J-structures [M2], of which orientations will emerge as a special case,

are classified. The theory or oriented fibrations is then discussed in §2, and the main

results are obtained in §3.

I am very grateful to Professors May and McClure for their helpful suggestions,

and for the many interesting discussions we had on the subject.

1. Generalized bar constructions and ^-structures. In this section, we continue the

classification theory developed in [Wl] to include ^-structures which, in turn, will be

seen to include equivariant orientations. The analogous nonequivariant theory on

which this will be based is due to May, [Ml, §§10-11]. All the notations and

definitions of [Wl] will be assumed here.

Let (G6!), F) denote an equivariant category of fibers with distinguished object set

A [Wl, 1.1.1] and assume that we are given a fixed G-space Z, a right 6B-graph % and

inclusions iy: Yy — HyGtl(Fy, Z) (y G A) such that z = uy<EA iy is an inclusion of

right éf-graphs. (See [Wl, §2] for a discussion of graphs, the monoid 6? associated

with an equivariant category of fibers and the associated equivariant bar construc-

tions. The notation 77% denotes the category of unbased 77-spaces for 77 < G.)

Definition 1.1. A ^-structure 0 on a G'J-space it: E -> B [Wl, 1.1] is a G-map 0:

E — Z such that 6 ° xp: Fy -» Z is in Y for every map xp: Fy -> E arising from a map

in P(E)  [Wl, 1.3] by restriction to the preimage of the identity coset of G/Hy.

A G'iF-map of ^-structures is a G'7-map f:E-> E', consistent with the given

^-structures up to equivariant homotopy (as in [M2, 10.1]), so that 6'fis G-homotopic

to 0 through ^(-structures.

eG'J(7?, ^1) will denote the set of equivalence classes of such structures over a

given G-space B, with respect to G'7-maps of ^-structures. Thus the equivalence

relation is generated by the G^F-maps of '^-structures, and not by fibrewise homo-

topy equivalence in general.

To deal with gammafication [Wl, 1.2.3], we make the following definition.

Definition 1.2. Let (G§, F) be T-complete in the full subcategory 2 of %, and

let ^ be a sub-right 6?-graph of H%C», Z) = uyeA Hy%(Fy, Z). Then the pair

(% Z) will be said to be admissible if ^ G S (that is, each Yy E 2) and the

following are valid for G?7-quasifibrations 77: E — B in 2 with ^-structure 0: E -> Z:

(i) Ttt: TE - B admits a ^-structure 6: TE -> Z;

(ii) r;: E -> TE is a CJ-map of ^-structures over B\

(iii) T takes G°7-maps of ^-structures to G?F-maps of ^-structures.

(Equivariant quasifibrations are defined in [W2, §2], while GÍF-quasif¡bradons are

described in [Wl, 1.2]. Compare the above definition with that in [M2, 10.2].)

Examples of '^-structures 1.3. (See [M2, 10.3, 4} for the nonequivariant case.)

(i) Let G'íand CS' be equivariant categories of fibers and let/ G?-* G?' be a

functor of equivariant categories of fibers over G%. Then y induces a morphism of



ORIENTED EQUIVARIANT SPHERICAL FIBRATIONS 315

monoids 6E -» &'. Fix a G-action y' in CS', and take ^ in Definition 1.1 to be &yy,,

so that Z = Fy,, the chosen object in CS'. A ^-structure on a Cf-fibration then

determines a C§' map to B X F,, where 73 is the base space. (We are assuming that

A' C A in order to avoid the problem of verifying that ^y E HyGlT(Fy, Z) for

y G A.) Thus a ^-structure determines a C¥' trivialization of a given G?F-fibration.

In particular, when G'S' is the subcategory of C5containing only those fibers of CS

with trivial action, and y is the forgetful functor, then a ^-structure on a G5-fibration

is a trivialization of the associated nonequivariant fibration.

(ii) Let C§ be an equivariant category of fibers, and let /: ÇB -> 6£ represent a

morphism of A-monoids. Recall the gammafication functor which turns G-

quasifibrations into G-fibrations, and let Z = TB(h.,9>,'5), the total space of the

universal G'í-fibration with reduced structure monoid ®. (Here, 'S denotes the

A-graph determined by GbJ as in [Wl]. Note that we must assume that the reduced

category remains T-complete in the sense of [Wl], as it should be for any "reason-

able" choice of <S.) Now let Yy = P(TB(A, <$>, <$))y, where P(-)y is the principali-

zation functor described in [Wl]. Clearly Yy C HyGll(Fy, Z), and a ^-structure on a

Gf-fibration <n: E -* B determines a commutative diagram

E      -     TB(t,%,<»)

77 I i

B      -*     B(A,<&,6)

and hence a reduction of the structural monoid from & to %.

Examples of admissible structures 1.4. Consider the category (Gf %, F) of

[Wl, 1.1.2], with F compact and Fy E Hy% whenever y G A. (Recall that % is the

category of spaces with the homotopy type of a CW complex, while K% denotes the

TC-equivariant analogue, for K < G.) Let Z E G% and let Yy be a union of any set

of components of HyGll(Fy, Z) such that % = HyEA Yy is invariant under the action

of &. Then (^), Z) is an admissible pair for the category GS%. (The proof is a

straightforward adaptation of the corresponding proof in [M2, 10.5], the machinery

for the equivariant case having already been developed in [Wl, W2] and [W3].)

Remarks 1.5. (1) There is a based fiber variant of all of the above, the adaptation

being formal and the work having essentially been done in [M2 and Wl].

(2) Example 1.4 and its based variant includes the notion of orientation to be

given in §3 below. (We shall tend to work with based, rather than unbased, spherical

fibrations, the transition from one case to the other being purely formal.)

(3) As in [M2], we may further replace equivariant categories of fibers by

equivariant categories of bundle fibers, these being described in [Wl, 3.2], and

obtain corresponding results for the various categories of G-bundles. (In this case,

we replace the gamma construction by the identity transformation.)

We now give a classification theorem for G if-fibrations with ^-structure. For

convenience, we restrict attention to the category (CS%, F) mentioned above with

the understanding that the variants corresponding to ( 1 ) and (3) above are proved by

simple changes in notation.
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Theorem 1.6 (classification of equivariant ^-structures). Let (% Z) be an

admissible pair with <% a sub-&graph of 77%(f, Z). Then, for B G C¥, the set

eG^(B, <%) is naturally isomorphic to hGG)l(B, B(% â, 0)) (= G-homotopy classes of

G-maps)from B to B(% â, 0), the &graph 0 being as in [Wl, 2.2.2(iii)]).

We give an outline of the proof, the details in the steps involved being a

straightforward adaptation of the nonequivariant case in [M2, §11], as will be

indicated below.

There is a natural ^-structure on the GVt-quasifibration p: BCty, &, <3r) -»

B(% &, G). Thus Tp: TB(ty, â, <5) -» B(<%, &, 0) is a G^-fibration with ^-structure.

This allows us to define

xP:hG%(B, B(% &,B)) -+eGW(B,<%)

by pullback. To see why it respects G-homotopy classes, let h: B X 7 -> B(®}, &, 0)

be a G-homotopy. Then the following composite defines a GÍF-homotopy of GH-

structures:

f*TB(eH,â,<») X / -. h*TB(%,& ,9)^TB(6H,a,c») -Z.

(Here, the first arrow is obtained by the G-CHP (see [Wl, 1.2]).)

Define <i>: eGW(B,^i) - hGG)l(B, B(% &, 0)) as follows. Let 77: E -> B represent

an element of eG6J(B,6^), and consider the composite

DÛ

B^B('3>E,â,e)^B(6i>,â,e)

where e is a weak G-equivalence [Wl, 2.3.1], and g exists by the proof of [Wl, 2.3.6],

and is a right G-homotopy inverse of e. Let 4>([tr]) = [B6 ° g].

The proof that <f> and xp are inverses is now obtained by applying the proof in [M2,

11.1] verbatim, using the results of [Wl, §3] with only the following small change: In

the proof of Theorem 2.3.6(d) in [Wl], the map p in the diagram given there with A

replaced by ül» remains a weak G-equivalence, not because of Corollary 2.3.4, but

because it is a weak G-equivalence on each simplicial level, by the evident elabora-

tion of Lemma 2.3.3 there.

2. Equivariant spherical fibrations and stable homotopy theory. As hinted above,

equivariant orientations will emerge as ^-structures on stable and unstable spherical

G-fibrations. Here, we describe these fibrations with respect to certain equivariant

categories of fibers, and introduce the appropriate cohomological setting for the

theory of orientations.

It is technically convenient to have at our disposal a "large" ambient orthogonal

G-space.

Definition 2.1. By GR°°, we will mean the space R00 together with an ambient

orthogonal G-action such that the following are true:

(i) GR00 is the limit of its finite dimensional invariant subspaces.
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(ii) Every orthogonal G-module (including the trivial one) occurs infinitely often

(up to G-isomorphism).

We shall use the space GR00 in two ways: to select a collection of distinguished

fibers for our description of equivariant spherical fibrations and to give us indexing

sets for our description of G-spectra (see [W2, §3]).

The notation V< GR°° will be understood to mean that Fis a finite dimensional

invariant subspace.

Definition 2.2. An equivariant spherical fibration of dimension V < GR00 is an

equivariant based fibration 77: E -» B such that, for each b E B, -n'x(b) has the

based Gfc-homotopy type of S v, the one-point compactification of V.

Examples 2.3. (i) Let B be G-connected, meaning that, for each 77 < G, 73" is

connected. Then any equivariant spherical fibration in the sense of [Wl] has

dimension V for some V < GW.

(ii) More generally, let G' be some finite group which acts on a given spherical

fibration 77 consistently with G, and assume that the action of G' is transitive on the

components of the fixed-point sets of B. Then 77 is a F-dimensional spherical

fibration for some V. (For example, we may take 73 to be S K with tangent bundle 77,

and G' = Z2 with the natural action.)

Of course, there is a similar definition for orthogonal G-vector bundles of

dimension V.

The above fibrations may be described by means of an equivariant category of

fibers as follows.

Construction 2.4. Construct an equivariant category CS(V) of fibers as follows.

The distinguished objects of G^(V) are the projections py: GXH Sy -» G/Hy,

where {Hy}yeK is a complete set of representatives of conjugacy classes of closed

subgroups of G. We then form the associated category of based fibers as in [Wl,

3.3.4]. Thus the objects of C5(V) are G-maps p: P -» Q with nondegenerate

G-sections, such that Q is a transitive G-space, and there is a fibrewise section

preserving G-homotopy equivalence p -» p for some y G A. The morphisms of

CS(V) are the fibrewise (section preserving) G-maps which restrict to a based

equivariant equivalence on each fiber, with respect to the action of the appropriate

subgroup on the domain.

By the results in [Wl], a G<S( V)-fibration corresponds exactly to an equivariant

spherical fibration of dimension V.

Similarly, we may define a category of equivariant bundle fibers (GO(V)%, V) as

in [Wl, 3.3.2] by taking, as our distinguished objects, the projections p : G XH V ->

G/Hy. A GO(F)iB-fibration is then a (G, 0(F))-vector bundle in the sense of "[LI],

that is, an orthogonal G-vector bundle of dimension V.

Any discussion of equivariant spherical fibrations of vector bundles is incomplete

without mention of possible analogues of SF-fibrations and SO-bundles. These

ought to arise when the structural monoid & has a reduction to an appropriate

submonoid Í&, as in Example 1.3(h). It is tempting to choose % to be the largest

submonoid for which transition to the nonequivariant case results in an ST^-fibration.

This is, however, only one of several possibilities.
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(i) SF-fibrations with G-action. Here, we construct ÍB by considering only those

maps /: G XHSV -> G XKSy in Gf(K) for which the map /: Sy -» 5^ given by

/= /•//, where /'(«) = [e, v] and /-[g, w] = gw, has degree 1 as a map of spheres. To

check that this defines a submonoid, let/: GX^S^GX^S^and/': GX^S^

G X L Sv be in <$>. Write /[e, j] = [g, |i(j)] and /'[e, j] = [g\ jt'(s)]. Then f~¿J(s)

= gg»(*) = g(g>')g~'(gM(-0) = gf'g~lf, whose degree is clearly 1.

(ii) SF-fibrations with oriented G-action. Many authors prefer, in addition, to insist

that the action of G itself must be orientation preserving. This amounts to a

consideration of only those objects in the submonoid defined in (i) for which the

action is orientation preserving. Examples include (G, SO(n))-vector bundles in the

sense of [LI]. (An interesting criterion for such bundles has been suggested by torn

Dieck; one requires that the fibrewise /zth exterior power of a given (G, 0(n))-vector

bundle be equivalent to the trivial line bundle 73 X R, where 73 is the base space.)

(iii) Equivariant SF-fibrations. As the terminology suggests, this is the variant

preferred by the author. We shall say that a G^K^fibration is SF(V) if there is a

reduction of the structural monoid which includes only those maps/: G XHSV ->

G X^ S^in C¡)(V) for which the associated map/given in (i) is stably 77-homotopic

to the identity. This is equivalent to the requirement that fK have degree 1 for each

closed subgroup K < H (see [Dl]), or to the requirement that / have equivariant

(stable) degree 1 G A(H), the Burnside ring of 77, as formulated by torn Dieck in

[Dl]. The geometry of SF(V) fibrations over suitable base spaces is given as follows.

Let p: E — B be a F-dimensional equivariant spherical fibration. Assume that we

are given an open cover of 73 by invariant tubes of the form G X HU, where U C 73 is

77-invariant, together with fibrewise G-homotopy trivializations of the form

(GX„<7)XS^     ->      E

1 1 p

GXHU ^      73

where G acts diagonally on (GXHU) X Sv. Let x E &(G XHU) n &'(G XH,U')

for two such trivializations # and &', and write x = &[g, u] = #'[g', «']■ Consider

the following composite:

Ty.Sv^(GXHU)XSv^E^(GXH.U') X Sv^Sv

where tx(s) = ([g, u], s), tr(lg, w], s) = s and where #'"' is a fibrewise G-homotopy

inverse of &'. Then Tx is Gj.-equivariant. If the system of local trivializations is such

that each Tx is stably G^-homotopic to the identity, then p is ST^K^oriented by this

system.

Let p: E -> B be K-dimensional, and suppose that its fibrewise suspension by

some G-module W is SF(V ® W). Then we shall say that p is a F-dimensional SF-

fibration. The theory in [W6] shows that S F and SF(V) coincide for large V, and
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that the obstruction to an SF reduction over 73 lies in Bredon cohomology,

7/¿(73; A*), with coefficients in the Burnside ring units (see [W6]).

Remarks 2.5. (i) We do not require that the action of G be orientation preserving

as in (ii) above.

(ü) Hauschild (private correspondence) has suggested calling a G-spherical fibra-

tion oriented if its restriction to each fixed-set is oriented. This is weaker than the SF

condition, and there are examples of non-SF Z4-fibrations with oriented fixed-sets.

The key to this discrepancy is the fact that 77¿(-; A*) does not split into a product

whose factors are Z2-cohomology of the fixed-sets. This is discussed more fully in

[W6].
(iii) SF- and 5F(F)-fibrations provide us with (the only) examples of fibrations

with orientations in ordinary (ÄO(G)-graded) equivariant cohomology with Burn-

side coefficients. (This theory was developed by the author in the case of finite

groups [W5], and by Lewis, May and McClure in the case of general compact Lie

groups G [LMMW].) The connection between SF(V) orientations and equivariant

singular cohomology leads one to the correct notion of equivariant orientability for

G-manifolds. The theory of such manifolds is developed in [W6].

We now consider equivariant fibrations of nonequivariant dimension some n.

These are G-fibrations in the classical sense; the preimage of a point x has the

G^-homotopy type of S" with some orthogonal Gx action and the covering homotopy

property is satisfied equivariantly. There are also the corresponding notions of

G-vector bundles of dimension n.

As in the case of K-dimensional fibrations, we may describe //-dimensional

fibrations by means of an appropriate category of fibers.

Construction 2.6. Define a category G$v of fibers as follows (here, V is a

G-invariant subspace of GR00 of dimension n): For each closed subgroup H < G,

choose a set of «-dimensional 77-invariant subspaces of GRX ® V, including a

representative of each equivalence class of /7-modules. Let A" be an indexing set,

and let Av = U(H)eii, A". Here, xp denotes the set of conjugacy classes of subgroups

of G.

For each y G Av, let Sv-> denote, as usual, the one-point compactification of V.

We shall take as the distinguished objects of G^v the projections

py.GXHSv^G/Hy

for y G AHy-< and Vy the corresponding subspace of GR00. We then take G§v to be the

corresponding equivariant category of based fibers as in [Wl, 3.3.4]. Thus the objects

of CSy are G-projections p: P -> Q as in Construction 2.4, equivalent to some py,

and the morphisms are the section preserving fiber homotopy equivalences.

Similarly, we may define a category of equivariant bundle fibers GOv6Jo as in [Wl,

3.2.2] by taking our distinguished objects to be the projections^: G X H Vy -> G/Hy.

A GOKiB-fibration is then an orthogonal «-dimensional G-vector bundle in the sense

of [LI].

We now consider the classifying spaces for the various types of fibrations

described above, and show how to pass to the stable case. (The construction of the
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classifying space associated with an equivariant category of fibers is described in

[Wl, 2.2.2], so that we need only recall it here.)

Firstly, in the case of K-dimensional spherical fibrations, we take &(V) to be the

A(F)-graph associated with the category C¡f(V). (Here, A(V) is the (discrete) space

A of Construction 2.4.) Thus, &(V) = uyy,G'$(V)(py, py,). Also, let 8(V) denote

the <£(K)-space uyG/Hy, as usual. Then the space B(A(V), <£(V), 0(F)) classifies

Gf(F)-fibrations. For brevity, denote this space by BcF(d)(V), BG0(d)(V) or

BcSF(d)(V), as the case may be.

Similarly, one may construct the classifying spaces 73(AK, &y, Qv) in the case of

«-dimensional spherical fibrations, and we denote these by BCF(V), BgO(V) and so

on.

Stabilization now proceeds as follows: Let A = F, O, F(d), O(d) or SF(d). Then

define

7ic^ = colim BGA(V),

taken over G-invariant V < GR00.

Remarks 2.7. (i) The space BCF differs radically from BGF(d) in general; the

former classifies stable equivalence classes of spherical G-fibrations (77 and 77' are

stably equivalent if they become equivalent after addition of (possibly different)

trivial fibrations to each), while the latter classifies stable classes of spherical

G-fibrations with dimension some V < GR00.

(ii) The space BcO(d) gives us a new version of equivariant TC-theory:

Let KG(d)(X) = [X+, BG0(d)]G ("reduced equivariant TC-theory with

dimension"); KG(d)(X) = [X+, BG0(d) X RO(G)]G ("unreduced equivariant K-

theory with dimension").

The latter is readily seen to coincide with the Grothendieck group of virtual

classes of G-vector bundles with dimension V for some V< GRX. By Example

2.3(i), it follows that KG(d) and KG coincide on G-connected spaces, so that, in

particular, KG(d)(*) s KG(*) = RO(G).

(iii) The inclusion of classifying spaces induces a monomorphism o: KG(d)(X) -»

KG(X) for every finite G-CW complex X, and the cokernel is classified by the

universal space corresponding to a reduction of the structural monoid as in Example

1.3(a).
To conclude this section, we describe the cohomological setting in which equi-

variant orientations take place.

Definition 2.8. An equivariant 7\G(G)-graded spectrum is a collection of based

G-spaces E(V), indexed on V < GR00, together with (based) structure G-maps

0: 1WE(V) ^E(V+ W)    forV±W,

whose adjoints, ö: E(V) -> TLWE(V + W), are G-homeomorphisms. We also require

that the following diagrams commute for each triple W, V, Z of mutually orthogonal

f.d. sub-G-modules of GR00:
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2z2H/£'(u)      2-»°       LZE(V+W)

I = la

2Z+XVE(V)      ^     E(Z+V+W)

?.Z^WE(V)      -     E(Z+W+V)

IT I

2WI,ZE(V)      -»      E(W+Z+V)

where T denotes the twist map.

A G-spectrum E is said to be an equivariant ring spectrum (in the sense of Lewis

and May) if we are also given structure G-maps <i>: E(V) A E(W) -» E(V + W) for

V-L W, and e: Sv -* E(V) which define a G-homotopy associative and unital

structure. (If one prefers, one may pass to the stable category of Lewis and May,

define the smash product, E A E, and then define a spectrum as a pairing E A E -> E

in the stable category.)

Each equivariant ring spectrum determines a multiplicative 7?G(G)-graded

cohomology theory E^(-) by defining, for each based G-complex X,

EVG'W(X) = [VWX, E(V)]K,   with unit 1 = [e] E E°(S°).

Further, one may formally pass to an 7\0(7/)-graded 77-equivariant ring spectrum,

and hence cohomology theory, by defining

E(V) = colim QV'E(W),   over G-invariant W < GR00,

where V denotes the orthogonal complement of V in W.

Remarks 2.9. The following facts are immediate consequences of the definitions:

(i) E%(GXHX/G XH*) = E*(X) for any based 77-complex X;

(ii) E£(SV) is a free E^(S°)-module on a single generator, by the suspension

isomorphism, for any V < GR00.

3. Equivariant orientations. Let E be an equivariant commutative ring spectrum,

let G'Jbe one of the categories of fibers described in §2, let a G RO(G) and let 77 be

a GÍF-fibration.

Definition 3.1. An 7>orientation of 77 in dimension a is a class ju G EG(TY)

(where 77: Y -> 73) which restricts to a generator of the free E£(S0)-module E^(TX)

for each fiber X = ir~x(x) of 77. An orientation preserving map /: Y -» Y' of

fibrations is required to preserve this structure up to homotopy. (Compare the

definition in [Ml].)

We now show that orientations are special cases of ^-structures (cf. [M2, III.2] for

the nonequivariant case).

Proposition 3.2. Every E-orientation of -n in dimension a determines a ^-structure

on 77 in a natural way such that equivalences of ^-structures coincide with equivalences

of E-orientations in dimension a.
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Proof. Let A denote the indexing space for C§, as in §2, and take <?) C

uyeA(i2|/'£(a))"' to be the union of all components corresponding to generators of

E^(Sv-<) as an F£(S° )-module (for each y G A). To check that this is an 6?-algebra,

one verifies that composition with fibrewise G-homotopy equivalences sends genera-

tors to generators. Let Z = E(a). Then (6Ö, Z) is an admissible pair so that, by

Theorem 1.6, F-oriented equivariant spherical fibrations are classified by B(°l>), â, 0).

Remarks 3.3. (i) In order to handle K-dimensional SF-fibrations, we may, in the

case of orientations in dimension V E RO(G), be more restrictive. Let Styi(V) be the

disjoint union (over y G A) of the identity components of the spaces (QyE(V))Hy =

E(0)"i. We may then consider SF( V)-fibrations with ülJ(F)-structures. These corre-

spond to the classical notion of orientability in the nonequivariant case when E

arises from ordinary cohomology. The classifying space for these orientations is

B(S%V), S&(V), Q(V)), where S@.(V) is the (reduced) monoid for SF(F)-fibrations

and where &(V) is given in Construction 2.6. To check that S^(V) is an Sâ(V)-

graph, let r E (TlyE(V))H be in the identity component of E(0)H and let /:

GXKSV ^ GXHSvbeinS&(V). Write/[e, s} = [g, p(s)]. Then f(r)(s) = grn(s)

— (8rg~i)(grl)(sX where grg~] E E(0)K is in the identity component, and where

s h-> gp(s) is stably F-homotopic to the identity, by definition of S&(V).

(ii) In general, the existence of an orientation in the sense of Definition 3.1 for an

equivariant spherical fibration 77 implies strong restrictions on either 77 or the

spectrum F; if, for example, a = V and S w occurs as a fiber in 77, then we must have

EG(SV) = EG(SW). Thus the fibers of 77 must be indistinguishable under the theory

F. However, when ? ='S(V), this problem vanishes, and we naturally seek F-

orientations in dimension V.

By analogy with May [Ml], we have the canonical projection

q:B(^,â,e) -+B(A,&,6)

which forgets the orientation.

The map q is not an equivariant quasifibration, although the homotopy type of the

fixed-point sets of its homotopy-theoretic fiber may be determined as follows.

Consider the map qH: B^, &, 0)" - 73(A, â, 0)H in the case of «-dimensional

spherical fibrations with F-orientations. One may compare it with a quasifibration

as follows.

Let 7? H be a complete set of representatives of equivalence classes of linear actions

of 77 on S", and denote the representative corresponding to y by Svi.

Proposition 3.4. There are weak equivalences f, f making the following diagram

commute:

II   73(yy,^,*)      L     B(^,&, 0)"

iuyqy lq"

u   B(*,Ay,*)      L     73(A,6B,0)"
ye/<„

Here, Ay is the monoid of H-equivariant homotopy equivalences on  Sy\   Yy C

(Q,vtE(o:))h consists of those maps giving rise to a generator as usual, and qy is the

natural quasifibration with quasifiber Y .
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Proof. The maps/and/are induced by choosing RH as a subset of A, and then

taking the natural inclusion

>V[gn,...,gi]*H>>>Y[g„X„l,...,g1X„l]eJi,

where g¡XHl: G XHSv-< -> G XHSv->; and e77 denotes the identity coset in G/77.

That / and / are weak equivalences follows from the fact that the spaces on the left

classify fibrations and oriented fibrations 77-equivariantly over base spaces with

trivial 77-action.

When we restrict to K-dimensional fibrations, the situation is much simpler, the

left-hand spaces reducing to q: B(Y(V), A(V), *) -^ B(*, A(V), *), where A(V) is the

monoid of 77-equivalences Sy -» Sv, and Y(V) E (tivE(V))H corresponds to units

of E°H(S°).

If we further restrict to SF(F)-fibrations in the sense of Remark 3.3(i), we may

use Proposition 3.4 to deduce the existence of canonical orientations for SF- and

SF( V)-fibrations in ordinary cohomology, as alluded to in Remark 2.5(iii).

Corollary 3.5. Let E be the spectrum for ordinary equivariant cohomology with

Burnside coefficients (thus (TlvE(V))H ~ A(H), the Burnside ring of 77), let a = V

and let G® be the category of fibers for S F(V)-fibrations. Then, with ty = S^V) (as

in Remark 3.5(i)), and 0 = 6(V), the map q is a weak G-equivalence.

Proof. By Proposition 3.4, it suffices to show that each Yy is contractible. But

here, Y is the component of (TivE(V))H-< corresponding to the unit in Ef,(S°) =

A(Hy), and is contractible since we are using ordinary cohomology.

Corollary 3.6. Every SF(V)-fibration has a V-dimensionalorientation in ordinary

equivariant cohomology with Burnside coefficients.

Of course, analogous results exist for SO(V)- and St/(F)-bundles, the proofs in

these cases being a notational variation of those above.

Finally, we consider passage to the stable case. In the case of F-dimensional

fibrations, denote the K-dimensional classifying space for F-oriented fibrations by

BG(F(V), E). The structure of the spectrum F then allows us to pass to the limit,

colim BG(F(V), E) = BG(F, E), and similarly for O(V), SF(V), SO(V) and so on.

In the case of fibrations without equivariant dimension, the notion of a stable class

of orientations in dimension o is meaningless in general, although in the special case

of cohomology theories which completely ignore differences among representations,

it is possible to formulate an ad hoc version of 73G( F, F ).

In [W6], the theory of G-orientations is applied to smooth " F-dimensional

manifolds", or manifolds whose tangent bundles admit K-dimensional structures.

Orientation and Thorn classes are also constructed there, and the relationship

between the geometry of special K-structures and equivariant algebraic functors is

explored.
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