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SELF MAPS OF PROJECTIVE SPACES
BY

C. A. McGIBBON1

Abstract. The classical projective «-spaces (real, complex, and quaternionic) are

studied in terms of their self maps, from a homotopy point of view. Self maps of

iterated suspensions of these spaces are also considered. The goal in both cases is to

classify, up to homology, all such maps. This goal is achieved in the stable case.

Some partial results are obtained in the unstable case. The results from both cases

are used to compute the genus groups and the stable genus groups of the classical

projective spaces. Applications to other spaces are also given.

1. Summary. Let P" denote a projective «-space (either real, complex, or quater-

nionic). This paper deals with the classification, up to homology, of self maps

/: P" -» P"   and   g: 2*P" -* 2*P".

Here HkP" denotes the zc-fold suspension of P". We shall assume that k is large with

respect to « in order to make the second classification a stable one.

It is clear that these two problems are related. Indeed for any space X and self

maps /, i = l,...,m, one can use the track addition of maps on 1kX to form a

linear combination of /i-fold suspensions

nxzkfx + ---+nmzkfm.zkx^zkx.

Under what conditions can every self map of ^kX be described, up to homology, in

this manner? The following result answers this question for the classical projective

spaces. In its statement, two maps are called homologous if they induce the same

homomorphism in integral homology.

Theorem 1. If k is large with respect to n, then every self map of 2,kP" is

homologous to a linear combination of k-fold suspensions, if and only if

(i) P" = RP" andn¥=3 or 1, or

(u)Pn = CPnforalln,or

(iii) P" = HP" and n< 4.    □

This theorem is a corollary of some of the results that we obtain in the next two

sections. In §2, the unstable classification problem is considered. There the quater-

nionic case receives special attention. Unfortunately, the classification of self maps
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326 CA. McGIBBON

of HP" is still an open problem. Feder and Gitler [11] have conjectured a

classification in terms of certain congruences. We describe their conjecture and

prove some special cases of it.

In §3 we solve the stable classification problem for all three families of projective

spaces. In other words, we classify those endomorphisms of H^(P";Z) that are

induced by maps 2*P" -» S*/"1, where k is sufficiently large. In doing so we treat

the complex and quaternionic cases simultaneously. These two cases have more in

common than Theorem 1 would suggest. In both cases such an endomorphism

corresponds to a sequence of « integers. The set of all sequences so induced forms a

subgroup of finite index in Z". We describe this subgroup in some detail. The key

tool in our description is Theorem 3.6, which describes a group isomorphism

between this subgroup and the appropriate F-theory of P".

§4 is devoted to applications. The first application is to classify those integers «

for which every stable self map of P" has a nonzero Lefschetz number (and hence a

fixed point).

We then recall the notion of the genus of a nilpotent homotopy type. We compute

genus group G(P") and stable genus group GS(P") for all cases in which these

groups can be defined.

We also consider the Lie group SU(n). Zabrodsky has given a lower bound on the

order of G(SU(n)) [32, p. 152], which appears to be sharp. We use our results on

GS(CP"X ) to give a new proof of his estimate.

The last application concerns the order of the identity map in the iterated loop

space of the connective cover iïkS2"~x(2n — 1), localized at a single prime p. We

use our results on self maps of STP00, to prove a theorem of Neisendorfer and

Selick [21]. This theorem states that for the loop space in question, the identity map

does not have finite order if k < 2« — 3.

I would like to thank J. Eric Brosius, Chuck Weibel, and Joe Neisendorfer for

their help with various parts of this paper.

2. The unstable problem. Most of the results in this section deal with the

classification of self maps of quaternionic projective «-space. However, let us first

review what is known in the real and complex cases.

Theorem 2.1. For each integer « > 1,

r_       —     i      fZ if n is odd,
[RP",RP"]^\rrn     J    .[ Z/2     if « is even.

This classification is faithfully represented in homology; for each X in Z (if n is odd) or

in Z/2 (if n is even) there is a self map f such that f^x = Xx for all x E H^RP"; Z).

Theorem 2.2. For all n> 1, [CP",CPn] ~ Z. Moreover, to each integer X, there

corresponds a self map which, for all k, induces multiplication by Xk on H2k(CP"; Z).
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Both of these theorems can be proved using first principles in algebraic topology

and so their proofs are omitted. We now turn to the quaternionic case where the

complete answer is still unknown.

Since 77*HP" =* Z[u]/u"+x where u is a generator in dimension 4, a self map of

HP" is determined, up to homology, by its degree in this dimension. This prompts

the following

Definition. An integer À will be called «-realizable if there is a self map of HP"

with degree X in dimension 4.

The homology classification of self maps of HP" thus amounts to a characteriza-

tion of such integers. Using complex and quaternionic F-theory, Feder and Gitler

[11] showed that an «-realizable integer must satisfy the following integrality

conditions.

Theorem 2.3. For k> 1, let Ck denote the congruence

V,        -2.-r, JW/2    if k is odd,
/=0 {(2k)! if k is even.

If X is n-realizable, then X is a solution to each of the congruences Cx, C2,..., Cn.    ■

Feder and Gitler conjectured in [11] that these conditions are also sufficient (i.e.,

that any common solution to C,, C2,...,C„ is «-realizable). To date this conjecture

has been verified only in the four cases; « = 1,2,3 and oo [4,16,30]. The last case is

especially interesting. It was shown in [11] that if A is a solution to Ck for all k, then

X equals zero or an odd square. Sullivan had shown previously these integers are

oo-realizable.

There are two results in this paper which concern the Feder-Gitler conjecture. In

the next section (Theorem 3.5) we show that each common solution À corresponds to

a self map of 2*HP" of the appropriate form. The following result may also be

regarded as supporting evidence. Incidently, this next result gives us many examples

of «-realizable integers which are not oo-realizable.

Proposition 2.4. (i) Assume that (X, p) = 1 for each prime p =c 2«. Then the

following three statements are equivalent:

(a) X is a solution to Cx, C2,...,C„.

(b) X is n-realizable.

(c) X = x2 mod p for each odd prime p < 2« and X = 1 mod 8 if n > 2.

(ii) For each « < oo and even integer X, some power of X is n-realizable.    D

If two self maps of HP" induce the same homomorphism in homology does it

follow that they are homotopic? Marcum and Randall [15] answered this question in

the negative. For « = 3,4 and 5 they found an essential self map of HP" which

induces the zero map in homology. There are good reasons to suspect that these

maps are not isolated exceptions. Therefore, with regard to a homotopy classifica-

tion of self maps of HP" it appears that the next result is the best general result we

are likely to get.
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Theorem 2.5. For n < oo, two self maps of HP" induce the same homomorphism in

homology if and only if they are stably homotopic.    D

Proof of Proposition 2.4. In (i), the implication (a) => (c) follows from a glance

at the congruences Ck. If X satisfies the conditions of (c) then by Rector [22], for

each p < 2« there is a self map of HP^ with degree X in dimension 4. By restriction

we thus obtain self maps of HP^, with degree X for all primes < 2«. At primes

p > 2«, T\P"p) has the homotopy type of the 4«-skeleton of K(Z(p),4) and so X is

«-realizable at these primes also. These maps on the various localizations agree on

the rational homotopy type. Therefore by the Pullback Theorem [12, p. 82] the

implication (c) => (b) is proved. The remaining step, (b) => (a), is, of course, Theorem

2.3.

To prove (ii), assume that / is a self map of P" x = HP"1 with degree X in

dimension 4. Let y represent the attaching map for the 4«-cell in P". Then /extends

to a self map of P" if and only/#y is a multiple of y in 774n_,P"_1. We claim that

/#(y) = X"y + g, where g is a class with finite order. To see this, consider the long

exact sequence of homotopy groups for the fibration y. The fiber is S3 and so

7r4„_,P"_1 « Z ® ir4n_2S3. The first summand is generated by y and the second

summand is a finite group. The coefficient X" can be verified by rationalizing P"~l.

This process kills off the torsion and shows that/0 extends to a self map of Pfa. The

coefficient in question then equals the degree of the extension in dimension 4«. By a

cohomology calculation, this degree must be X".

Since the class g has finite order, there is a suspended class on S4 whose image

under the composition -n*S4 = tr^Px -* w^P"-1 is g. In particular, this implies that

f#{g) — Xg. Iff(k) denotes the /<-fold iterate off, it then follows by induction on k

that

f¿k)(y)=X"ky + Xk~x   2 A'("_1)g-

i=0

A simple number theory exercise now shows that k can be chosen so that the

coefficient on g is a multiple of the order of g. By the above remarks it follows that

for this value of k, Xk is «-realizable.    ■

Proof of Theorem 2.5. By the Cellular Approximation Theorem, it suffices to

consider two maps /, g: P" -* Px which agree in homology. Clearly / and g are

stably homotopic iff F00/ = E™g in [P", g(P°°)]. J. Becker showed in [6] that BSp is

a retract of Q(PCC) and I showed in [17, Proposition 3.3] that the infinite suspension

F00: P00 -> Q(P°°) factors through BSp. Since KSp(P") is torsion free, the result

follows.    ■

3. The stable classification. We shall consider the real projective «-spaces first. The

cases « = 3 and 7 are exceptional because then RP" is reducible after two suspen-

sions. The proof of this for « = 3 is standard. For « = 7, this was proved by Rees

[23], using the results of Milgram and Rees [18].

Notice that the following theorem is a bit sharper than Theorem l(i).
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Theorem 3.1. 7/« ^ 3 or 1, then each self map ofï.kRP" is homologous to a k-fold

suspension. However, when « = 3 or 1 and k> 1, the idempotents associated with the

splitting 2*RP" — Sk+" V 2*RP"~' are not homologous to linear combinations of

k-fold suspensions.    D

From a stable point of view, the complex and quaternionic projective spaces have

many features in common. Our notation will attempt to reflect these similarities.

Henceforth let F = C or H and let d denote the dimension of F over R.

Let us first review some basics: The projective space FP"~] may be regarded as

the orbit space of a free left action of the unit sphere in F on Sdn~ '. Let

Fyy.Sd"-x -> FP"-X

denote the quotient map of this action. It is well known that the map Fy„ can be

regarded as the attaching map for the zi«-cell in a CW decomposition of FP°°.

The following numbers will play an important role in our calculations.

Theorem 3.2. Let | Fy„ | denote the order of the image of Fyn is the stable homotopy

group <nsdn_xFP"~x. Then for « > 1

|Cy„|=«!

a«<7

| H    1= J(2n)! if n is even,

1    Ynl     |(2n)!/2     if n is odd.    D

For « = 2, these orders are of course classical [31]. The other orders may be

known to the experts but I have been unable to find them stated in the literature.

Given a self map g of 2kFP", let 0(g) = (8x(g),...,8n(g)) where 8¡(g) denotes

the degree in homology of g* in dimension k + di.

Definition. D(n, F) = {8(g) \ g: ^kFP" *» , and k > dn}.

The letter D is meant to suggest degrees. Clearly D(n, F) may be identified with

the image of the homomorphism

lim[2kX, 2**]^* Hom(H^X, 77*x)

in the special case X=FP". Since Hom(H*FP", H^FP") ~ Z", we may view

D(n, F) as a subgroup of Z". Notice that the group structure on D(n, F), which is

induced by the stable track addition of maps, is compatible with the usual vector

addition in Z".

Here are some basic properties of the groups D(n, F).

Theorem 3.3. (i) For each « > 1, there is an epimorphism D(n + 1, F) -* D(n, F)

which is induced by the restriction of self maps.

(ii) If (0,... ,0, Xm,... ,Xn) E D(n, F), then | Fym | divides A, for i s* m. Among

such classes, the case Xm = \ Fym \ occurs in D(n, F).

(iii) The index of D(n, F) in Z" is ü7=, | Fy, | .    D
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The first part of this theorem is rather surprising when F = H. Compare it to the

unstable situation described in Theorem 2.3 and Proposition 2.4.

The next result describes some special elements in D(n, F).

Theorem 3.4. (i) The group D(n, F) has a basis {Fvq \q= 1,...,«} where Cvq =

(q,q2,...,q")and

Ht, ^\{l2,q\---,qln) ifqisodd,

Vq      \(2q2,2q4,...,2q2n)     ifqiseven.

(ii) Let FLn denote the smallest positive integer X such that (X, 0,... ,0) E D(n, F).

Then CLn = l.c.m.(l,2,...,«) and

\L„- Hjkl 1,2,...,«   .    D
(*-l)!(*-l)!

Since the basis just described for £>(«, C) can be realized by self maps of CP", (ii)

of Theorem 1 follows at once.

The next result describes some features of D(«,H) which are related to the

problem studied in §2.

Theorem 3.5. (i) The vector (X, X2,...,X") is in D(n,H) if and only if the integer X

is a solution to each of the congruences Cx, C2,...,Cn described in Theorem 2.3.

(ii) The vectors just described generate D(n, H) if and only if n < 4.    Ü

The first part of this theorem may be regarded as the stable verification of Feder

and Gitler's conjecture. However we do not claim that the maps in (i) can necessarily

be desuspended to HP". (See Theorem 2.3 and the remarks which follow it.) The

second part of Theorem 3.5 completes the proof of Theorem 1.

The proofs of these last three theorems exploit the close relationship between the

group D(n, F) and the appropriate F-theory of FP". To see the connection, recall

that there are homotopy equivalences

Q(CP°°) =* BUX F'

by G. Segal [25], and

g(HP°°) ^ BSp XF"

by J. Becker [6], where Q(   ) = limß"2"(   ). In these splittings, the spaces F' and

F" have finite homotopy groups.

Let G = U, or Sp, for F = C, or H, respectively. V. Snaith [27] has shown that in

each of the above splittings, there is a splitting map

t: BG -> Q(FPX)

which is an 77-map with respect to the Whitney sum on the domain and the loop

multiplication on the range.

Theorem 3.6. There are group isomorphisms

KU(CP")^D(n,C)
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and

KSp(HP")^D(n,H)

given by x -> 8 (adjoint r ° fx) where fy. FP" -» BG classifies x and the cellular

approximation theorem has been used, but not mentioned, to factor the indicated adjoint

through the standard inclusion.    D

This completes the statement of results in this section.

Proof of Theorem 3.1. Let P" denote real projective «-space and assume that

« ^ 3 or 7. By Theorem 2.1 it suffices to show that each self map of 2*P" induces

either the identity or the zero map in Z/2-cohomology. Perhaps the easiest way to

show this, when « is not of the form 2r — 1, is to use the Steenrod squares. In this

case each nonzero class xm E Hk+m(I,kPn; Z/2) is linked by the Steenrod algebra to

the bottom class xx in the following sense; there is a sequence of classes xx =

yx, y2,...,ys = xm such that either Sq'y¡ = yj+x or Sq'yi+X = y¡ for each i and some /

which depends on z. (This assertion can be verified using the formulas in [29, p. 5].)

Hence for these values of «, Theorem 3.1 is a consequence of the action of &(2) on

77*(P"; Z/2) and naturality.

Now assume that « = 2r — 1 where r > 3. Consider the commutative diagram

Y (
çin + k—l . Tçkpn— 1 ykpn

i\í J, /„_, 1/

gn+k-l Z>        S'F"-1 ->        2*P"

in which the rows are cofibration sequences. The attaching map y is essential,

although the Steenrod squares now fail to detect this. That y is essential follows from

results of James [13] and Atiyah [5] on truncated projective spaces and from Adams'

solution to the vector fields on spheres problem [1].

To show that /* has the required form it suffices to show that the (mod 2)

reduction of X equals the eigenvalue of f*__x. This tentative equality will remain

unchanged if we replace the maps involved by their g-fold iterates, for any positive

integer q. With this in mind, we note that the group [2*P"_1, S^P"-1] is finite. A

simple counting argument then shows that some iterate of /„_, is an idempotent.

However the only idempotents in this group are the identity map and the trivial

map. Indeed, any other idempotent would split off a nontrivial retract of 2*P"-1.

This in turn would contradict the description, given above, of the action of the

Steenrod algebra on H*(1kP"-x;Z/2).

Without loss of generality we may therefore assume that/„_, is either the identity

or the constant map. The wrresponding parity of X now follows using the fact that y

is essential of order 2.    ■

Proof of Theorem 3.6. In this proof, let P" = CP" or HP" and let G = U or Sp,

accordingly. Let tr: Q(P°°) -* BG denote a left inverse for the splitting map t. Since

the fiber of it has the rational homotopy type of a point, the composition t ° it

induces the identity in rational homology.
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Let $ denote the composite homomorphism,

[2*Pn,2*Pn] ->[2*P",2*P°°] ->[P",ô(P")],

which is induced by the usual inclusions P" ^ Px and ñ*2*(P°°) -> Q(PX), and by

the adjoint operator. Since k is assumed to be large, the cellular approximation

theorem and the suspension theorem imply that $ is an isomorphism.

For g E [2AP", 2*P"], the assignment g -» it ° $(g) induces an inverse to the

homomorphism defined in Theorem 3.6. To see this, notice that 4>(g) and

t ° TT o 3>(g) induce the same map in rational homology. The space Q(PX) has the

rational homotopy type of a product of Eilenberg-MacLane spaces and so these two

maps are rationally homotopic. This implies g and O"1 ° t ° it ° <E>(g) are also

rationally homotopic. Since 77*(P";Z) is torsion free, the two maps represent the

same element in D(n, F). This proves Theorem 3.6.

Proofs of Theorems 3.2-3.4. We shall first consider the stable orders | y„ | of the

attaching maps for complex and quaternionic projective spaces. The notation Fyn

will be used only when there is a distinction to be made between the two cases.

The unstable order of yn (i.e., the order of yn in ^¡¡„-\P"X) is infinite when « > 1.

This can be verified using the long exact sequence of homotopy groups induced by

the fibration y. However, for k > 1, the /c-fold suspension 2*y„ E •ndn+k_x'2kPn~x is

easily seen to have finite order. By the suspension theorem, this finite order is fixed

once k > d(n — 2) + 1.

Lower bounds for | yn | can be obtained using the Adams e-invariant [2,10]. In

particular, the values ec(Cyn) = {1/«!} and ec(Hy„) = (2/(2«)!} in Q/Z can be

established using the Chern character of the appropriate Hopf bundle. This implies

that | Cy„ |> n\ and | Hy„ \> (2«)!/2. For « even, we can increase this lower bound

on | Hy„ | by a factor of 2, since the image of K.Sp(Siq) in K(Siq) has index 2.

The next result shows that sharp upper bounds on | yn | can be realized after just

one suspension!

Proposition 3.7. The order o/2Fy„ E w^SFP"-1 is at most «! for F = C and at

most (2n)\ for F = H.

Proof. Since there is a map CP00 -» HP°° which is surjective in homology, it

suffices to show that for each « there is a map 52"+l -» 2CP00 with degree «! in

dimension 2« + 1. Take the map /: QS3 -» CP00 which classifies a 2-dimensional

generator. A simple calculation shows that, for each «,/„ has degree «! in dimension

2«. Now suspend once. The composition

v s2n+] =ms3^2cp°°
n=l

is the required map.    ■

This leaves one case unproved in Theorem 3.2; that of | Hy„ | , « odd. We shall

return to this case after we have established the connection between these orders and

the index of D(n, F) in Z".

We now begin the proof of Theorem 3.3. The surjection D(n + 1, F) -> £>(«, F)

in (i) is a consequence of Theorem 3.6 and the corresponding result in F-theory.
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Let g: 2*P" -» 2*P" be a map with 8fg) = 0 for i < m. Using the maps 4> and w

that were defined in the proof of Theorem 3.6, let g = 5>_1 °T«ito $(&)■ Notice

that 8¡(g) = 8¡(g). Now g is null homotopic on 1kPm~ ' and so it factors:

g: 2*P" -> 2*P"/Pm~' _> 2*P".

This shows that in Hk+dm, the image of g#, is generated by spherical class. A

standard diagram chase shows that in this dimension the order of the cokemel of the

Hurewicz homomorphism is | ym \ . Hence | ym | divides 8m(g).

Take a basis for D(n, F). This basis forms an « X «-matrix whose determinant

equals the index of D(n, F) in Z". Using row operations, this matrix can be made

upper triangular. The rows in this triangular array correspond to the maps just

considered in (ii). Thus we have shown that II "=, | Fy, | is a lower bound for the

index in question.

Consider the alleged basis for D(n, F) which is described in Theorem 3.4. The

vectors (q,q2,...,q"),q= 1,2,..., are in D(«,C) since they can be realized by self

maps of CP". An easy application of the Vandermonde determinant shows that

det

1,1.1

2,4,...,2"

«,«2,...,«"

=  II*!-
k=\

A priori, this determinant would give us an upper bound on the index of D(n, C) in

Z". Since it equals the lower bound already established, the complex cases of

Theorems 3.3(iii) and 3.4(i) are proved.

We shall now establish a basis for D(n,H). As mentioned earlier, the vectors

(q2, q4,... ,q2"), for q odd, can be realized by the restrictions of self maps of HPX

first constructed by Sullivan. For q even, the vectors (2q2,2q4,.. .,2q2") can be

realized as stable maps which factor through 2*CP2"+I. In more detail, the fiber

bundle

CP2 HP"

has a transfer [3], which can be realized by a stable map f: I,kHP" -» 2*CP2n+1.

The composition ~Lkp ° f induces multiplication by 2 on H^kHP". The vectors in

question are then realized by the composition Hkp ° 2*/° ?, where / is the ap-

propriate self map of CP2"+1. Again using the Vandermonde determinant it follows

that

det

H«,

Hu,

Hü„

= n
k=l

(2k)\

e(k)
where e

(*>=(?

if A: is odd,
if k is even.

Since this upper bound on the index of D(n,H) in Z" equals the lower bound

established earlier, the proofs of Theorems 3.2, 3.3(iii) and 3.4(i) are complete.
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To finish the proofs of Theorems 3.3 and 3.4 we shall use another model for the

groups D(n, F).

Proposition 3.8. There is an embedding D(n, F) -* Q[x]/I which, in terms of the

basis described in Theorem 3.4(i), is given by

(X,...,X") -^eXx- 1   forF=C,I= (xn+x),

and

(X2,...,X2")^cosh(Xx)- 1   forF=HandI=(x2n+x).    D

The analytic functions in this result are, of course, regarded in terms of their

Maclaurin series. By abuse of notation we shall not distinguish between these power

series and their images in Q[jc]/7.

Perhaps the most elementary way to verify this result is to consider the derivatives

of the functions involved. Since

:(eXx~l) = X"
; = 0dx

and

d2m
— (cosh(Ax) - 1)

it is clear D(n,C) can be identified with the Z-linear span in Q[x]/7 of {eXx — 1 |

X = 1,2,...,«} and that £>(«,H) corresponds to the subgroup of Q[jc]/7 which is

generated by cosh(Ax) — 1 (if X is odd) and by 2 cosh(Ax) — 2 (if À is even).

The reason for introducing these models of D(n, F) is that they provide us with

some useful identities. Consider first the complex case. Since ekx = (ex)k, it follows

from the binomial theorem that

m

(ex-l)m=  2 (-l)m~kC)(ekx-l).

k=\

The left side of this identity evidently corresponds to a class in D(n, C). If

d'
:(ex-lY

dx'
,       ¿=1,2,...,

x = 0

it is straightforward to see that X, = 0 for z < «z and that Xm = m\. Moreover,

repeated use of the chain rule shows that m\ divides the integer A, if i > m. Since

this is true for each m «£ «, Theorem 3.3(h) follows in the complex case.

The facts just cited imply that the functions (ex — l)m, m = 1,2,...,«, provide us

with another basis for D(n, C). In view of this, consider the identity

00   f-ll'-1
x= I LJ1     {e'-iy.

i=i     '

This identity may be verified by showing directly that both sides satisfy the

conditions/(0) = 0 and/'(.x) = 1. In Theorem 3.4(h) we seek the smallest positive À

such that (X,0,...,0) E D(n,C). The answer can be described in terms of the
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identity just given. It is the smallest positive integer X such that when both sides of

this identity are multiplied by X, the first « coefficients on the left side are integers.

Clearly this number is l.c.m. ( 1,2,..., « ).

The proofs in the quaternionic case are similar, but the corresponding identities

are more complicated. We claim that for each m > 1 there is an identity,

m

(2cosh(;c) — 2)m =  2 ak(2cosh(kx) — 2),
k=\

in which each of the coefficients ak are integers. Moreover if m is odd, then ak is

even for each even k.

To see this, let gk = 2cosh(/bc) — 2 for each k > 0. The basic addition formulas

for the hyperbolic cosine imply the equation

gkg\ =gk+\ + Sk-\ ~2g¿-2g,

for each k > 1. The required identity can now be proved using induction on m; start

with

(gi)2 = g2-4g,,

multiply both sides by g,, and use the above equation to simplify the right-hand

side. By working (mod 2), one sees immediately that the a2ks are even when m is

odd.

Thus we conclude that in D(n, H) there are classes which correspond, by Proposi-

tion 3.8, to the functions (2 cosh(x) — 2)m if m is even, and 5(2cosh(x) — 2)mifmis

odd. By computing the derivatives of these functions, we see that they correspond to

classes of the form (0,... ,0, Xm,... ,Xn) where | Hym | equals Am and divides X, for

i > m. A determinant calculation and Theorem 3.3(iii) shows that these classes form

a basis for D(n,H).

The proof of Theorem 3.4(h) in the quaternionic case uses the identity

x2 - y (  1t* (k-l)\(k-l)l k
-y-  1 (-U   -7¿fyTx-(2cosh(x) - 2) ,

which is straightforward, but tedious, to verify. Here one seeks the smallest positive

integer X such that when both sides of the above identity are multiplied by X, the

resulting coefficients on (2cosh(x) — 2)*, k even, and on ¿(2cosh(;c) — 2)k, k odd,

are integers for k < «. The answer is the least common multiple described in the

statement of this theorem.    ■

Proof of Theorem 3.5. The first part requires a closer look at the proof of

Theorem 3.6. The retraction used there, it: Ö(HP°°) -» BSp, is the canonical exten-

sion of the map HP00 -» BSp, which classifies 77 - 1 E KSp(T\Px) [27, Theorem

3.2]. Here H denotes the canonical symplectic line bundle over HP00 (i.e., the Hopf

bundle). Let 77„ denote the restriction of this bundle to HP". If /is a self map of

HP", it follows that the homomorphism n ° $: [2*HP", 2*HP"] - KSp(HP")

takes 2*/to/*(#„- 1).

At this point it is more convenient to use complex F-theory. The image of

KSp(HPn) - F(HP") is spanned by the classes z,2z2, z3,2z4,.. .,(z"+1 = 0),
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where z denotes the image of 77„ 1. Feder and Gitler showed that if/has degree X

in dimension 4, then

7 24      •-« 7-f 360 z   +....

The congruences {C^.}" arise from the requirement that the indicated coefficients are

integers.

Thus we have shown that if (À, X2,... ,X") E D(n, H) and ifX is «-realizable then

the corresponding class in complex F-theory is given by the right side of the above

formula. The proof of (i) will follow once we show that the extra requirement "X is

«-realizable" can be omitted.

Rationalize the spaces HP", BSp and BU. This has the effect of tensoring the

sequence

D(n,H)^KSp(HPn) -» F(HP")

with the rationals. Since every integer is «-realizable on HP(U), the preceding formula

is valid for every vector of the form (X, X2,...,X") in 7)(«,H) ® Q. Among these

vectors, those which live in D(n,H) are precisely those whose image is integral in

F(HP") ® Q. This completes the proof of (i).

The proof of (ii) requires a little arithmetic. As was mentioned earlier, the

integrality conditions of Theorem 2.3 are known to imply «-realizability for « < 4.

Here then are some «-realizable integers:

«= 1,       X= 1;

« = 2,       X= 1,9,24;

« = 3,       X= 1,9,16,25,40.

We leave it to the reader to show that 7)(«,H) is generated by vectors of the form

(X, X2,... ,X") for the values of « and X just given.

Suppose that vectors of this form generate D(n,W) for « 3= 4. Then by Theorems

3.2 and 3.3(h), the vector (0,0,360, ?,...,?) can be written as a linear combination of

them. This implies the existence of equations

m m

2a,X, = Ö,        2a,X3 = 360
i i

and
m

2a,(X]-X,) = 360,
i

for some set of solutions {XJf to C2, C3 and Q, and integers ax,...,am. But for

these solutions it is easy to check that either v2(X¡) > 5 or v2(\x, — 1) > 3, where

v2(q) denotes the highest power of 2 which divides q. In either event, this implies

that v2(X) — X,) » 4. This is a contradiction since /»2(360) = 3.    ■

4. Applications. Our first application deals with fixed points. In view of the

Lefschetz fixed point theorem [28, p. 195], those spaces for which every self map has

a nonzero  Lefschetz number (and hence a fixed point) are of some interest.
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Projective spaces, and their suspensions, provide a rich source of such spaces. Using

the results in §2, it follows that every self map of P" has a nonzero Lefschetz number

if and only if « is even in the real and complex cases or « > 2 in the quaternionic

case.

In the following result assume that k is large with respect to «. We use Theorem

3.4 to prove this rather amusing stable result.

Theorem 4.1. Each self map o/2*FP" has a nonzero Lefschetz number if and only if

« is even and F = R, C orH, or « is odd, F = H, and p2 — p divides 2«, for some odd

prime p.    D

The next three applications involve the notion of the genus set of homotopy type.

Recall from [12] that for a nilpotent space A'of finite type, the genus set G(X) is the

set of homotopy types Y such that:

(i) Y is nilpotent,

(ii) Y has finite type, and

(iii) Y(p) ~ A(/)) for all primes//.

Before describing our results, we recall that the space RP2" is not nilpotent [28, p.

420], Therefore this space is excluded from the following remarks about G(P").

In general, the only structure on G(X) appears to be that of a filtered set;

FnG(X) = {Y E G(X)\ Y has the same «-type as X}. However when A is a

projective space or the stable suspension of one, it is possible to give G(X) the

structure of a filtered abelian group.

In this case the group operation is defined as follows; if Yx and Y2 are in G(X),

then their sum Yx + Y2 is represented by a pullback of maps:

Y2

1/2

Both maps here are required to be equivalences at each prime divisor of a certain

integer / = t(X). For any other prime//, either/, or/2 is to be an equivalence at p.

It is not obvious that this group operation is well-defined. That is is well-defined is

one of the many remarkable features of a theorem due to Zabrodsky [33], which

relates the self maps of certain spaces to their genus. We use this theorem, stated as

Theorem 4.6, and the results of §2 to prove the following one.

Theorem 4.2. For 1 =£ « < oo,

(i) G(RP2"+1) = 1 and G(RP2") is not defined,

(ii)G(CP")= 1,
(iii) G(HP") ^ Z/2 ® ■ ■ ■ ©Z/2, where the number of factors equals the number of

primes p such that 2 < p *£ 2« — 1.    D

Here we write G(A') = 1 if A is the only member of its genus. The quaternionic

result was suggested by Rector's calculation of G(HP°°) [22], and is probably a

simple consequence of his result. However we think that the reader may be amused

at our use of Zabrodsky's machine in proving (iii).
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Since localization commutes with suspension, there is an obvious inclusion G( X)

-> G(2A). For a space X, define its stable genus GS(X) = lim G(2*A).

Theorem 4.3. For 1 ̂  « < oo, GS(RP") = 1. For F = C or H,

G5(FP")-n (Z/|FyJ)*/±l.    D
«i=i

In this theorem, | Fym | refers to the stable orders that were computed in Theorem

3.2 and (Z/q)* denotes the group of units in the ring of integers mod q. The

filtration on the genus set, which was mentioned earlier, plays an important role in

the proof of Theorem 4.3. We show that GS(FP") is isomorphic to the graded group

associated with this filtration.

The next result involves the Lie group SU(n). The connection between this group

and projective spaces is the following: there is a well known embedding i: 2CP"-1

-> SU(n) which takes 7Y:),2CP"~1 isomorphically onto the module of primitives

PH^SU(n) [29, p. 39]. Moreover James has shown that there is a left inverse

r: 2°°5i/(«) -» 2°°(2CP"~1) for 2°°(z) [14, p. 50].

Theorem 4.4. There is an epimorphism G(SU(n)) -* GS(CP"~X). With respect to

Zabrodsky's description of the genera of these spaces in terms of their self maps

(Theorem 4.6 and Corollary 4.7), this epimorphism is included by the operation which

sends each self map f of SU(n) to the self map r ° 2°°(/° i) ofZxCPn~x.    D

This epimorphism and the previous theorem imply the following estimate which is

stated in terms of the Euler <|>-function

n-l

|G(5£/(n))|>  II   [<?(m\)/2].
m=\

This lower bound was first proved by Zabrodsky in [33, p. 152]. There he conjec-

tured that this estimate is in fact an equality. This conjecture, if true, would imply a

connection between CP"~' and SU(n) that goes far beyond the one cited above.

Our final application concerns the 2« — 1 connective cover of the sphere S2""1.

Denote this space by S2"~x(2n — 1) and assume that it has been localized at a

prime p. One can then ask, for what values of k does the identity map on the /c-fold

loop space QkS2n~x{2n — 1) have finite order? Here the order of the identity map

means the smallest positive integer m such that the power map x -> xm is null

homotopic.

It is known, for example, if p is an odd prime and k > 2« — 2, then the order of

identity map on QkS2"~x(2n — 1) is exactly//"'. Various cases of this remarkable

fact were discovered by Selick [26], Cohen, Moore and Neisendorfer [7], and

Neisendorfer [20]. This geometric fact implies the celebrated result that p"~x

annihilates the //-primary torsion in w^S2"-1 which is also due to the four authors

just named.

On the other hand, Neisendorfer and Selick have shown that if 0 < k < 2« — 3,

then the corresponding identity map does not have finite order [21]. We will give a

slightly different proof of their result. To prove it we use Postnikov approximations

of 52n_1<2« - 1> and the results of Theorem 3.4.
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Theorem 4.5. Let X denote a space of type S2"~ '(2«,... ,2« + 2«z) localized at a

prime p. Assume that pi < m + 2 and that 0 < k < 2« — 3. Then, in the group

[tlkX, tlkX], the homotopy class of the identity map has order not less than pf    D

This completes our list of applications.

Proof of Theorem 4.1. For the real projecitve spaces, the proof is an immediate

consequence of Theorems 2.1 and 3.1. In the other two cases, consider the homomor-

phism

£: D(n,F) ^Z

given by

(xx,x2,...,xn)^ix,.
1=1

Clearly there is a self map of 2/cFP" with Lefschetz number zero if and only if £ is

surjective.

For « even, it suffices to check the image of £ on the basis for D(n, F) given in

Theorem 3.4(i). In this case £ is not surjective; its cokernel has order > 2.

For « odd and F = C, £ is surjective as can be seen by considering the vector

(-1,1,...,(-1)").
In the last remaining case (F= H, « odd) suppose that £ is not surjective. By

Theorem 3.4(i), it follows that there is a prime// which divides « and also t(vq) for

q = 2,...,«. For these values of q,

q   — 1

up to a factor of 2. This implies that for all q relatively prime to p, q2" = 1 mod(p).

Since q could be chosen to generate the group of units in Z/p, it follows that p — 1

divides 2«. This argument can easily be reversed and so the proof of Theorem 4.1 is

complete.

Proof of Theorem 4.2. In (i) let Pk denote RP* and assume that Y represents a

homotopy type in the genus of P2n+X. It follows that i^T - 7r*P2"+'. Let/,: P1 -^ Y

represent a generator of ttxY. If « = 0, then/, is a homotopy equivalence. If « » 1,

there is an extension f2: P2 -> Y which induces an isomorphism on fundamental

groups. Since tryY = 0 for 1 < q < 2« + 1, there is no obstruction to extending f2 to

a map/: p2n+x -> Y. Since the Z/2-cohomology rings of Y and p2n+l are isomor-

phic, it follows that / induces a Z/2-cohomology isomorphism. This implies that in

integral homology/has odd degree in dimension 2« + 1. If this degree is not ±1,

we will consider the composition

p2n+\ ^,p2n+\ \y  r2/i+l"^' y

where p pinches to a point the boundary of an embedded 2« + 1-ball. Let y E

H2n+X(Y;Z) be a generator. A standard diagram chase shows that 2y is spherical.

Therefore the class gEir2n+xY may be chosen so that the above composition

induces  an  integral  homology  isomorphism.  By  Dror's  generalization  of  the
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Whitehead theorem to nilpotent spaces, [9], we have a homotopy equivalence

between TandP2"+l.

The proof that G(CP") = 1 is very similiar to the one just given and will be

omitted.

Now let P" denote quaternionic projective «-space. For any space X, let X(l,... ,m)

denote the Postnikov approximation whose homotopy groups are naturally isomor-

phic to those of X up through dimension «z, and are zero beyond this dimension.

By the results of Mimura and Toda [19], the spaces P" and P"(l,...,4«) are

//-universal for each prime//. Hence if X denotes either space, then YE G(X) if and

only if for each prime p there is a map /: Y -> X which is an equivalence at p. This

implies that the genus sets of P" and P"(l,... ,4«) are isomorphic. The isomorphism

between them is induced by the operation Y -» 7(1,... ,4«). Restriction to the

4«-skeleton induces the required inverse.

To compute G(HP") we shall use the space P"(l,... ,4«), the maps in Proposition

2.4(i), and a theorem of Zabrodsky. This theorem requires some special hypotheses

and definitions which we shall now describe.

Let A be a simply connected space of finite type with only finitely many nonzero

homotopy groups. Assume that its rationalization X0 is an 77-space and let «, < « 2

< •••<«, denote those dimensions « for which nn X0 ¥= 0. For each self map / of X,

define

d¡(f) = determinant f0)#: ir„X0 *=    for z = 1,...,/.

For any integer / s* 2, define

&(X,t)= (/£[ A-, X)\f(p):Xíp)=>Xíp) Up divides t).

Theorem 4.6 (Zabrodsky [32]). For X just described, there is a positive integer t

which depends on X and an exact sequence

&(X,t)i((Z/t)*/±l)'^G(X)^0,

where d(f) = (dx(f ),...,d,(f)).    ■

By abuse of notation, dff) denotes also the image of dff) in the group

(Z/t)*/±l.
We need to know something about the number t. Zabrodsky defines it as follows.

First recall that the exponent of a finite abelian group G is the smallest positive

integer m such that mx = 0 for all x E G. Let

a = the exponent of the torsion subgroup of m¡X, and

bj = the exponent of the cokernel of the Hurewicz-Serre homomorphism tTj(X) -»

P77/A;Z)/torsion.

Assume that mn X = 0 for « > N. Then t = t( X; N ) is the least common multiple

of n% i Ojbj and the torsion primes of 77m( A; Z) and QHm( A"; Z), where m < N.

Now let X = P"(l,...,4n). We have /= 1 since X0 = F(Q,4). The isomorphism

■ïïjX =¡ TTj-xS3 forj < 4« and Serre's classical results on tt^S2 [29, p. 90] imply that
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we may take / = U.k=x p"' where thep,'s run through all primes < 2« — 1. A simple

application of the Euler «¿¡-function then shows that the order

i(z/<)v±iKn(i4).
Since [X, X] « [P", P"], the order of the subgroup d(&(X, t)) can be calculated

using Proposition 2.4(i). It equals the number of integers X between 0 and t such that

X = 1 mod 8 and OzÀ = x2mod p for each odd prime p < 2«. By the Chinese

remainder theorem this number is

\ä(s(x,t))\={h^-j)-

The order of the quotient G( X) is thus 2k as claimed. It is clear that this group has

exponent 2 since for any x E (Z/t)*, x2 is in the image of d.    ■

Proof of Theorem 4.3. In the stable category there is a dual version of Theorem

4.6. We shall use this dual version and the results of §3 to compute the stable genus

of a projective space.

Let F be a connected finite complex in the stable range (i.e., its dimension is less

than twice its connectivity). Let «,<«2< •••<«, denote those dimensions « for

which Hn(K; Q) ¥= 0. For a self map f of K let 8¡(f) denote the determinant of

fy.Hn(K;Q)^.

Corollary 4.7. For Kjust described there is a number t which depends on K and an

exact sequence

&(K,t)S-+((Z/t)*/±l)'^G(K)^0

where 8(f) = (8x(f ),...,8,(f)).    D

Proof. We may assume the suspension E: K -> Í22F is an A-equivalence where N

exceeds the dimension of F. It follows that the genus sets of F and S22F(1,.. .,7V)

are isomorphic, since both spaces are//-universal for all primes//. Apply Zabrodsky's

theorm to the latter space and notice that 8¡(f) = í7,(£22/).    ■

The above corollary is due to Davis [8], but the proof given here seems much

easier than his.

Let us apply Corollary 4.7 to an appropriate suspension of RP". In this case, / is a

multiple of 2 and / = 0 or 1. Theorem 2.1 provides us with enough self maps to

conclude that 8 is surjective and hence GS(RP") = 1.

The proof in the complex and quaternionic cases uses the ring structure on

D(n, F) which is induced by the composition of stable self maps. This ring structure

makes D(n, F) a subring of Z". In terms of coordinates, the multiplication in both

rings has the form

(ax,...,a„) ■ (bx,...,b„) = (axbx,...,aybn).
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Now fix « and F and let dm =|Fy„,| , m = 1,2,_We may assume that the

number / is a multiple of dxd2.. .dn. To simplify notation further, let

D= (D(n,F) ® Z/0*,

Z= (Z"®Z/t)*,and

C = Z/D.

Here, R* denotes the group of units in a commutative ring R.

It is not difficult to see the connection between the groups just defined and those

which occur in the statement of Corollary 4.7. The map 8 in (4.7) factors through D

and so GS(FP") is a quotient of C.

We shall now compute the cokernel C. For 1 < m < « + 1 let Zm = {(X,,... ,X„)

E Z | X, = 1 for i <m}, Dm = D n Zm, and Cm = ZJDm. Then C = C, D C2 D

• • • C„ D C„+x = 1. For each m < «, we have a short exact sequence

0 - DJDm+x -(Z/0* - Cm/Cm+, - 0.

For any divisor d of t, let

F(d) = Kerp: (Z/t)* -* (Z/d)*

where p denotes reduction mod d.

Lemma 4.8. Dm/Dm+X ̂  K(dm).

Proof. Let P" denote 2*FP" where k is large. If/: P" <-= represents a class in 7)m

it follows from Theorem 3.3 that 8m(f) = 1 mod dm. This implies that Dm/Dm+X is a

subgroup of K(dm).

On the other hand, if X is any integer such that X = 1 mod dm, it also follows from

Theorem 3.3 that there is a self map g of Pm such that 8¡(g) =1 for i < m and

SJg) = A.
Therefore if II denotes the set of primes which divide /, it suffices to show that any

ri-equivalence of Pm extends (up to homology) to a Il-equivalence of P". We shall

show this by considering one cell at a time.

Suppose g: Pm «-= is such an equivalence. By Theorem 3.3 we may assume that g

extends to some self map g of Pm+ '. Thus if y denotes the attaching map for the top

cell of pm+l it follows that g#(y) = Xy for some integer X = 8m+x(g). Since g is a

Il-equivalence and y has order dm+, it follows that (X, dm+,) = 1.

If (X, t) = 1, then g is the map we want. If this is not the case let X' = X + rdm+,

where r is the product of those primes which divide / but do not divide X • <7„1+1. It

follows that (X', t ) = 1. Since we can alter the degree of g on the top cell of Pm+ ' by

any multiple of dm+x, we see that g extends to a Il-equivalence of Pm+i. This

argument can be repeated on each cell of P" and so the lemma is proved.    ■

By combining Lemma 4.8 with the short exact sequence which preceded it, we

obtain another;

0->Cm+1-Cm-(Z/O*-0.

We shall show that this sequence is split exact. This amounts to identifying in Cm a

subgroup which is taken by tt isomorphically onto (Z/d  )*. To this end, let q be the
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largest integer which both divides / and is relatively prime to dm. Define

ZM = {(a,,-..,XJ EZJX, = 1 mod« for alii},

Dm(q) = D n Zm(q)    and    Cm(q) = Zm(q)/Dm(q).

Notice that Zm(q) - K(q) X ■■■ XK(q), (« - m + l)-times. Since (q, dm) = 1,

the reduction map p: (Z/t)* -» (Z/dm)* is still an epimorphism when restricted to

K(q). This implies that the restriction irq in the following diagram is also surjective:

C

,,t       N     (Z/dJ*

Cm(l) *q

The next lemma will enable us to determine the structure of the subgroup Cm(q).

Lemma 4.9. Let lj denote the least common multiple of q and dj. There is an

isomorphism

K(lm) X K(lm+X) X ■ ■ ■ XK(ln) ^ Djq)

which for j = m,...,n takes K(l/) into Dj.    D

Proof. This proof is similiar to the proof of Lemma 4.8. Using the notation

established there, assume that k> m and that/: Pk *~ is a Il-equivalence such that

fi(/) = (l,l,..., l)mod q. We shall first show that / extends, up to homology, to a

self map of P" with the same properties.

Let y denote the attaching map for the top cell of Pk + '. As in Lemma 4.8 we may

assume that /#y = Xy where (X, dk+x) = 1. In addition, the hypothesis on 8(f)

implies, by Theorem 3.3(h), that X = 1 modgcd(<7, dk+x). A simple counting argu-

ment shows that we may choose a coefficient c so that X' = X 4- cdk +, = 1 mod q.

Since every prime divisor of / divides either q or dk+x it follows that (X', t) = 1.

Hence / extends, up to homology, to a self map of Pk+X with degree X' on the top

cell. By induction / extends to a Il-equivalence/' of P" such that 8(f) = (!,!,...,I)

mod q.

It is clear from Theorem 3.2 that each dj divides dJ+x. This implies that l, and /

have the same prime divisors for j = m,...,n. It then follows from elementary

number theory (e.g., [24, Chapter 2]) that each of the kernels K(l¡) is cyclic.

For/ = m,...,« let a} be an integer whose (mod /) reduction generates K(lf) and

let f: P" *= be a map such that 8(fj) = (1,1,..., 1) mod lj and, in particular,

*u>={:, itj¡.
By Theorem 3.3(h) and the first part of this proof we know that such self maps of P"

exist. The classes 8( fm),... ,8(/„) generate in Dm(q) a subgroup which is evidently

isomorphic to K(lm)X ■ • • XK(ln). A simple filtration argument then shows that

the order of Dm(q) equals the order of this subgroup and the result follows.    ■
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From the description of Dm(q) just obtained it follows that there is an isomor-

phism

Cm(q) = Zjq)/Dm(q) - Qm X • • • XQn

where ß, — K(q)/K(lj) for j = m,...,n. This isomorphism when composed with

if- Cm(q) -> Cm takes Q, into C,. Since q and dm are relatively prime, lm = ^¿/m, and

Qm - (Z/dm)*. The map iTq: Cm(q) -» (Z/<7m)* thus takes an isomorphic copy of

emonto(Z/0*.
Since the maps tt and v are split surjective we can conclude that

Cm^(Z/dm)*XCm+x.

Since this is true for each «z we have

c- n (z/o*.
m=l

The Z/2 action of {±1} on the /rzth coordinate in Z passes to the quotient

Cm/Cm+, for each m, and so by Corollary 4.7,

GS(FP")^ J (Z/</m)V±l-    ■
m=l

Proof of Theorem 4.4. The proof centers on the following diagram:

S(2°°CP""',i)     i     [(Z/t)*/±l]"~x     -     GS(CP"~X)     -.     0

Î /i Î / î ///i

6(S£/(n),0        i     [(Z/í)V±l]""'     -     G(SU(n))      -    0

Here /I denotes the operation described in the statement of the theorem, 7 is the

identity, and I/A is the induced homomorphism on quotients.

There are some items in this diagram which need to be explained and justified.

Starting with the bottom row, let A be a space of type SU(n)(l,... ,N) where

dim SU(n) < A < oo. By an argument analogous to the one used in Theorem 4.3,

the genus sets of X and SU(n) are isomorphic. Moreover X satisfies the hypothesis

of Zabrodsky's Theorem 4.6. Let t = t( X, N) in the diagram. It is not difficult to see

that the image of d coincides with the subgroup d(&(X, t)). Therefore by Theorem

4.6, the bottom row is exact at the second and third terms.

How large is the number /? By Bott's calculations of TrJJ(n) we know that the

Hurewicz homomorphism fits into an exact sequence

0 - TT2k+xSU(n) ̂ PH2k+xSU(n) - Z/kl-* 0

for k = 1,...,« — 1. Therefore t must be a multiple of 112=j/c!. This was the only

assumption we placed on / in our calculation of GS^CP"-') in Theorem 4.3.

Therefore the top row is also exact at the second and third terms.

It remains to show that the first square commutes. Given a self map/of SU(n),

let P„(/) denote the restriction of/„, to the module of primitives, PH^SU(n). In the

following diagram the Hurewicz homomorphism « is a rational isomorphism.
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PH,SU(n)

Î«

T*St/(«)

Thus in dimension 2 k + 1, the degree of f# equals that of P*(/), for k = 1,...,« — 1.

We may regard the map A(f) as the composition

,     2*+1CP"-'2-*'2*Sl/(«) ^/2*5't7(«)^2/t + 1CP""1

where k is large and r ° 2*/ is homotopic to the identity. Therefore, since

i*H^ZCP"~x = PH^SU(n), it follows by the naturality of the suspension isomor-

phism that d( f) = 8A( f ).
It is now clear that the second square also commutes and that the quotient map

I/A is an epimorphism as claimed.    ■

Remark. Using ad hoc techniques I can construct enough self maps of SU(n) for

« *s 5 to conclude that G(SU(n)) =* G5(CP"_1) for these values of «. For larger

values of « the isomorphism question is still open.

Proof of Theorem 4.5. Assume that all spaces and maps have been localized at

p. We shall use the cofibration sequence

g i
Y _, <?2n—\ _, v2/i-3r1pffl + 2

where Y = 22n~4CPm+2/CP' and 0 < m < oo.

Let pe denote the order of the identity map on Tl2"~4X where X =

S2"~x(2n,... ,2« + 2m). The induced isomorphisms of track groups,

[y,s2"-']^[r,S2"-X(2n- 1>] ̂ [y, X]

imply that peg = 0 in the first group.

Apply the functor [ , S2"-1] to the above cofibration sequence. By exactness at

the group in the middle, it follows that pei = i*(h) for some map «: S2" CPm+2 -*

S2"~x. Notice that the composition i ° « is a self map of the sort studied in Theorem

3.4(h).
It is straightforward to see that there is a localized version of Theorem 3.4 in

which the numbers FLn are replaced by the highest power of p which divide them.

Since z ° « induces the vector (pe ,0,...,0) in the//-local version of D(m + 2, C), it

follows that//e is at least as large as the//-primary factor of l.c.m.(l,.. .,m + 2).

This completes the proof for the case k = 2« — 4 and m < oo. The case m = oo

follows at once. Moreover, since the order of the identity on TlkX is a nonincreasing

function of k, the remaining cases of Theorem 4.5 are immediate consequences of

the one just proved.    ■
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