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GENERATION OF FINITE GROUPS OF LIE TYPE
BY
GARY M. SEITZ!

ABSTRACT. Let p be an odd prime and G a finite group of Lie type in characteristic
other than p. Fix an elementary abelian p-subgroup of Aut(G). It is shown that in
most cases G is generated by the centralizers of the maximal subgroups of E. Results
are established concerning the notions of layer generation and balance, and the
strongly p-embedded subgroups of Aut(G) are determined.

1. Introduction. Let p be an odd prime, G a finite group, and E < Aut(G).
Suppose that E is an elementary abelian p-group and set CA(E) = (C,(F): F
maximal in E). A very useful tool in the study of finite groups is the basic
generation result: CJ(E) = G, provided the order of G is relatively prime to p. The
order restriction on G is essential. For example, if G = S, , is the symmetric group
on 2p letters and E a Sylow p-subgroup of G, then CJ(E) < G. In this paper we
consider the case of G a finite group of Lie type and we show that generation usually
holds. In addition, we prove results concerning the notions of layer generation,
balance, and we determine the strongly p-embedded subgroups of Aut(G).

Let G = G(q) be a finite simple group of Lie type defined over a field of
characteristic r, and let E < Aut(G) = Y be an elementary abelian p-group with
r % p, a prime. In order to state more useful results we consider multipliers and
therefore introduce the following notation. Let G denote an image of the universal
covermg group of G (see [25] and (13.1), (13. 3) of [23]) and let G < Y be such that
G/Z(G) G and Y/Z(G)=Y. Now let E be a p-subgroup of Y such that
EZ(G)/Z(G) = E. We will prove the following results.

THEOREM 1. Assume that E is contained in the subgroup of Aut(G) generated by
inner and diagonal automorphisms. Then either C(?(E ) = G or one of the following
holds:

(i) p = 3 and G = PSp(n,2), PSU(n,2), or O%(n,2), e = (-1)"/2.

(i) p = 3 and G = G(2), F,(2), E4(2), 2E4(2), E;(2), or E(2).

(ili) p = 3 and G = PSL(3%,4), 2F,(2), Fy(4), E4(4) or E¢(4).

(iv) p = 5 and G =*F,(2)..

Moreover, in each of the cases (i)—(iv) there exists a triple (G, E, p) for which
CUE)<G.
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THEOREM 2. Let G, be the subgroup of Aut(G) generated by inner and diagonal
automorphisms of G. Assume that E < G,. Then either Cg(f )= G, or one of the
following holds:

(i) Ife € E — G\, then e induces a field automorphism on G and the pair (0" (C;(e)),
E N G)) satisfies one of the conditions (1), (ii), or (iv) of Theorem 1.

(i) p = 5 and GE = Aut(Sz(2%)).

(i) p = 3 and GE = Aut(L,(8)).

(iv) p = 3 and GE = D,(2){0), D,(4){0), O¥(Aut(D,®8))), *Dy(2){c), where in
each case o is a graph automorphism of order 3.

In each of the cases (i)—(iv), there exists a triple (G, E, p) for which Cg(E) <G.

An immediate corollary to Theorems 1 and 2 is the following,.
THEOREM 3. If p =T or if r > 2, then CAE) = G

The above results can be used to obtain results on “layer generation” and
“balance”. With the above notation let CX(E) = (0" (C;(F)): F maximal in E ). As
we will see in §2, 0"(CG~(F)) = E(Cs(F)), if g=4.

THEOREM 4 (LAYER GENERATION). If E = Z, X Z . then one of the following holds:
(i) CQ(E) < G

(i) C&(E) =

Gi)p|qg—1, G L(g9),E<G ] (as in Theorem 2), and E is nonabelian.
v)plg+1, 6= U(q) E<G, and E is nonabelian.

THEOREM 5 (BALANCE). If E=Z,X Z , then M ,_;=0,(Cs(e)) = 1 and one of
the following holds:

() N ,cp=0,(Cx(e)) = 1, whenever G < X < Aut(G).

(i) p | q—1,G=L,q), E< G, (asin Theorem 2), and E is nonabelian.

(i)yplg+1,G= Up(q), < G,, and E is nonabelian.

THEOREM 6. Assume p =7 and (p,| W|) = l where W is the Weyl group of the
associated algebraic group of G. Then Cg(E )=

THEOREM 7. Let p be an arbitrary prime and assume that X < Aut(G) is a proper
strongly p-embedded subgroup of GX. If m,(X) =2, then X normalizes a Sylow
p-subgroup of G and one of the following holds:

D) p =3 and G = Ly(4);

(ii) p = 5and G = Sz(2°) or *F,(2)’; or

(iii) G = Ly(q), Uy(q), Sz(q), or G,(q)', and q is a power of p.

Much of the paper is concerned with the proof of Theorem 1, which is carried out
in §§4 and 5. Theorem 2 is proved in §6 and the remaining results are proved in §7.
A considerable amount of work is involved in describing examples where generation
fails to hold. This contributes substantially to the length of the paper.

In many cases it is easy to prove that generation holds. For example, if E
normalizes a proper r-subgroup of G, then G = Cé(E )= Cg(E‘ ) (see (2.3)). Also
when m (E) = 3 and p does not divide the order of the Weyl group of the overlying
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algebraic group, then, inductively, the situation is well behaved (see (2.3), (2.5), (2.6),
and (2.7)(iv)). The more difficult cases are when p is small or when p is large with
m (E) = 2. When generation fails to hold the group E typically has large p-rank,
though not necessarily equal to the p-rank of G.

We make the following additional remarks concerning the proof of Theorem 1.
The classical groups are handled using the standard module together with elementary
facts on generation. For the exceptional groups we use more machinery. We
introduce the algebraic group, G, giving rise to G in order to get information on
centralizers. In fact, we pass to a universal group where centralizers are better
behaved. In §3 we use G to prove the existence of certain subgroups of G that
contain E. The tool for this is Lang’s theorem, and as a result we obtain many of the
embeddings that Stensholt gets in [26]. However we need a bit more than his results
give. The generation is then proved by using induction and classification theorems of
Aschbacher [2] and Timmesfeld [27].

For the most part our notation is standard. E,. denotes the elementary abelian
group of order p”. For X a group, let E(X) denote the join of all quasisimple
subnormal subgroups of X. We also make use of the following abuse of notation. Let
G be a group with X C Gand Y, Z < G. By XY N Z we mean the set of Y-conjugates
of X contained in Z. The term Chevalley group refers to a group of Lie type
generated by its root subgroups.

The author would like to thank R. Lyons for many helpful suggestions.

2. Notation and preliminary lemmas. We will use the following notation. Let
G = G(q) be a simple Chevalley group (normal or twisted) defined over a field F, of
characteristic r, and let G be the overlying algebraic group defined over the algebralc
closure, K, of F.. Then G = O (G,) for ¢ an endomorphism of G satisfying
| G,|< oo. Fix a prime p # r and a subgroup E = E,., forn>1, of G,. So E is in
the subgroup of Aut(G) generated by inner and diagonal automorphisms.

As centralizers are better behaved in universal covering groups we introduce the
following groups. G denotes the universal covering group of G (see [25]). Then o
induces an endomorphism of G, again called o, and G, = G, is a central extension of
G. Let E, denote the Sylow p-subgroup of the preimage in G of E. Notice that E,
may not be abelian and E, need not be in G, = G,.

If Y acts on a group X let CY(Y) = (Cy(Y;): Y, maximal in Y) and Cy(Y) =
(O"(Cy(Y))): Y, maximal in Y). Set D= CJ(E) and D, = CJ(E,). The first
observation is

(2.1) (i) Dy = G, implies D = G.

(i1) G5 (Ey) = G implies CH(E) = G

PRrOOF. This follows easily by taking homomorphic images.

In view of (2.1) we work primarily with G,. The (B, N)-pair notation for G, will
be standard. Let B, be a fixed Borel subgroup of G, with B, = UH,,, where H, is a
Cartan subgroup and U = O/(B,). The image of B, in G is B. Notice that
U = UZ(G,)/Z(G,). Z denotes a root system for G, so U = [ ,5+ U,, a product
of root subgroups. Let Il = {«,,...,a,} be a fundamental set of roots for X, let
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Nyo/Hy = W, the Weyl group of G,, and choose fundamental reflections
5; €U, U, ) fori=1,...,nin the usual way.

In the group G we use similar notation, getting subgroups 1§, ﬂ, U, N, Ua, etc. The
root system 3 may differ from that of 3 and we will not always assume that B, < B
or that B is g-invariant. Similarly, for G.

If P is a parabolic subgroup of G, with B, < P < G, we define the opposite
parabolic subgroup, P,, as follows. Write P = O(P)L, where L is the Levi factor of
P and O(P) is a product of root subgroups for positive roots. Then P, = O(P,)L,
where O(P)) is the product of those root subgroups U,, such that U_, < O/(P).

(2.2) Let By < P < G, be a proper parabolic subgroup of G, and let P, be the
opposite parabolic subgroup. Then G, = (O(P), O,(P,)).

PRrOOF. Say P = (B, s, ,...,s; ). Then P = O(P)L where

L=Hy U, o0 i=1iy,...,0,).

Moreover O,(P) is the product of those root subgroups U, < U such that the
coefficient of «; in a is positive for some i€ {1,...,n} — {i,...,i;}. Also
P, = O,(P,)L with O(P,) the product of the root subgroups U_, for roots a« € =
with U, < O,(P).

Let X=(O(P),O(P,)). Then L < N(X) and, for i € {1,...,n} — {i},....i;},
(U.o)SX<NX)AsGy=(U.,:i=1,...,n), wehave X < G, and so X = G,,.

(2.3) Let Y be a noncyclic elementary abelian p-subgroup in Aut(G,) and suppose
Y normalizes a proper parabolic subgroup of G,. Then C;(Y) = G,. In particular
C(?“(Y) = G,.

PROOF. Suppose Y normalizes P, = B,. Then C;(Y)= O/(F,). By (2.2) it will
suffice to show that, for some g € P,, Y8 normalizes P,, where P, is opposite to P,.
For then C;(Y®)= G, and we have the result. Consider GY < Aut(G,). Let
P = P,/Z(G,),s0 Y < N(P).Now N(P) N GY = O(P)L, where L N G is the Levi
factor, L, of P and L is the extension of L by certain combinations of diagonal, field,
and graph automorphisms of G. It is easily verified that L stabilizes P, /Z(G,). Since
p ¥ r we have Y conjugate in P to a subgroup of L, as needed.

Next we give several general results on centralizers of semisimple elements. What
is involved is the statement of known results about centralizers in the algebraic
group and the restrictions to the finite groups.

(2.4) (i) Let x be a semisimple element in G. Then Ci(x) = Ca(x)".

(ii) Let x € G be semisimple. Then C(x)/Cx(x)" is isomorphic to a subgroup of
Z(G).

(iii) Let x € G be semisimple and suppose x has finite order with (x|,
1. Then C{x) = Ce{x)°.

PROOF. (1) and (i1) follow from (4.4) on p. 204 of [22], while (iii) follows from (4.5)
(again p. 204 of [22]).

(2.5) Let x € G, (or, x € G with (| x|, ]| Z(G) |) = 1) be semisimple. Then Cj3(x)
(respectively, Cs(x)) is the central product of E(Cs(x)) (respectively, E(Cg(x))) and
a torus. Also, G (x) (respectively, C;(x)) contains a normal subgroup, X, where X
is a central product of Chevalley groups (normal or twisted) with an abelian

Z2(G))) =
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r’-subgroup. Cg (x) (respectively, Cg(x)) normalizes each of the factors of X and
induces inner and diagonal automorphisms on each factor. In particular, 0" (X) =
0" (Cg (x).

PRrROOF. Consider Cz(x), (respectively Cs(x),) and apply (2.4).

(2.6) Let x and X be as in (2.5).

(i) 0,(Cp (X)) < Z(Cg (%)) (respectively O,(Cy(x)) < Z(Co(x))).

(i) O"(X) is a central product of Chevalley groups each defined over some
extension field of F,.

PROOF. (i) is clear from (2.5). For (ii) assume that L is a component of Cg(x)
(respectively C;(x)) and let {L = L,,...,L,} be the orbit of L under (o). Then

o = 8 normalizes each of L,,...,L,. It will suffice if we can show that O"'(L;) is a
Chevalley group (norma] or tw1sted) defined over F «. Suppose Y = Y? for a root
subgroup, Y, of G with Y < L. It will suffice, in thlS case, to show | Y;|= g*. Say
Y= Ug where a € 3 and g€ G. Then gdg ' e N(U ) N G9. As G is defined over
F, Gs is defmed over F« and there is a conjugate 7 of & with 7 € N(U ) and
|(U) |= q We have g8g" € Gr, say gdg™' = yr for y € G. Then y € N(U,), so
y acts on U as multiplication by a scalar. It now follows from (11.2) of [23] that
| U, N C(y7)|= g%, and so | Ys|=q*, as needed. If no such Y exists, then
G = F(K), Sp(4, K), or G,(K ) and 62 fixes a root subgroup of L. Here o2 is a field
automorphism of G, with Goz defined over F, and ¢ a graph automorphism of éoz.
Argue as above with 82 and o2, and the result follows.

(2.7) (1) E, and E normalize maximal tori of Gand G, respectively.

(i) Ifpi| W| , then E, is contained in a maximal torus of G. Similarly for E < G.

(i) If (p, | Z(G) )=Tlandif E> F=Z, X Z, then F is contained in a maximal
torus of G.

(iv) If E contains a subgroup F = E » for m > 1 with F in a maximal torus of G,
then some maximal subgroup of F is contained in a proper parabolic subgroup of
G,.

(v) If « € 2 is a long root and g € G such that U° = U3, then (U$#), is a long
root subgroup of G,,.

ProOF. Consider E < G. The reference for (i), (ii) and (iii) is Springer-Steinberg
[22]. Namely, (i) is a consequence of (5.17), (ii) follows from (i), and (iii) follows
from (5.1). To get (iv) assume that F is as given with F' < H. Then F normalizes each
root subgroup U for « € =, inducing a cyclic group on U (as H induces a
1-dimensional torus on U,). So there is a root « € ™ and hyperplane F, < F with
F, < C;(U,). Then Fy< C({U.,)) and C5(F,) contains a nontrivial component.
Since ¢ normalizes Cz(F,), Cs(Fy), contains a nontrivial r-subgroup, say I. Then
Fy < C4(I) which is contained in a proper parabolic subgroup of G, (Borel-Tits [6]).
(v) follows from Lang’s theorem ((10.1) of [23]) and the fact that NG*(IZ,‘) is
connected.

The next result contains the application of the work of Aschbacher [2] and
Timmesfeld [27].

(2.8) Assume G =2F,(q) and (p, q) # (3,2). Let V be the center of a long root
subgroup of G, with V' < D. Set X = (V% N D,). Then one of the following holds:
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(1) U(r, E,) # {1} and D, = G,,.

(1) X/Z(X) is a direct product of groups of Lie type each defined over F,, and
each component of X is generated by conjugates of V. If X, is a component of X,
then V¢ N X, consists of the centers of long root subgroups of X, (or possibly short
root subgroups if X, /Z(X,) = PSp(4,2"), F,(2), or G,(3")).

(iii) » = 3,| V|= 3, and setting X = X/0,(X), X/Z(X) is as in (ii).

(iv) r = 2, | V|= 2, and setting X = X/0;(X), E(X/Z(X)) is a central product
Y,---Y,where, fori=1,...,k, ¥, & X and Y, is either a Chevalley group over F,
(as in (ii)) or E(Y;) is one of the following: PSO * (n,2), PSO™ (n,3), A,, Fy,, Fy,
F;,. Also, X/E(X) is solvable.

PrROOF. Suppose (i) is false. By (2.3) we have H(r, E;) = {1}. In particular
O(X)=1. Let O_(X) be the solvable radical of X and set Y = O, (X)V,, where
V, € V¢ N X. For g € G, arbitrary, (V;, V) is either an r-group or isomorphic to
SL(2, q) (see (12.1) of [3]). Suppose | V', |> 3. Then (V|, V'?') is an r-group for each
y € Y, and we conclude that V; < O(Y) (see [1]). But O(O, (X)) < O(X) =1 and
hence [V}, O..(X)] = 1. We then conclude that O_(X) = Z(X) forq =| V, |> 3.

Next suppose that ¢ = 2 or 3. Then V| centralizes any chief factor of Y having
order prime to 6. If s is a prime, then O, (Y) is the intersection of the centralizers in
Y of all s-chief factors of Y. Therefore V, < M O, (Y) = Y,, where the intersection
is taken over all primes greater than 3. If X, = O,,3,(¥, N O, (X)) and R € Syl ,(X,),
then X = X,Ny(R). Since p # 2,3, this contradicts (r, E;) = {1} unless R = 1.
Therefore R = 1 and X, = O5(X) or O,(X) according to whether g =2 or 3. In
addition, V, centralizes O, (X)/X, for each ¥V, € ¥“ N X, and so X centralizes
Ooo( X)/XO _ _

Let Y=X/Z(X) if |V|>3. If |V|=2 or 3, then set Y = X/Z(X), where
X = X/04(X) or X/O,(X), respectively. Let I = F*(Y), so that I = E(Y) (by the
above). Write I = I, - - - I, a central product of components. For V', € V¢ N X, V,
permutes {/},...,I,}, and the above property of V, forces V', < N(I;) forj = 1,... k.
Therefore, I; < Y forj = 1,... k.

Fixj = 1,...,k and choose ¥, € ¥'“ N X such that [1,, ;] # 1. Let V, denote the
image of ¥ in Y and set J = [;V|. Then J” = J' = [, = F*(J). If q is even we can
apply Theorem 1 of [27] to determine the structure of J. If ¢ is odd apply (4.2) of
[29] to see that for j €J with K = (V,,V/)=SL,(q), the class K’ satisfies
Hypothesis & in [2]. Therefore, Theorem 1 of [2] applies and yields the structure of /;
(we note that D,(2) should be included in Theorem 1 of [2], but this is not a
possibility here due to the fact that K = SL,(q)).

We conclude from the above that either /; is a group of Lie type in characteristic r
and V* consists of elements of long root subgroups of J (possibly short root
subgroups if I, is isomorphic to PSp(2n,2%), F,(2"), or Gy(3")) or ¢ = 2 and one of
the following holds:

(i)J =07 (n,2") and v € V* is a transvection;

(i)J =0 "(n,s),s=3or5 andv € 17,# is a reflection;

(iii) J = S, and v € V}¥ is a transposition; or

) J = A, J,, 5, E;, o1 Fy,.



FINITE GROUPS OF LIE TYPE 357

If g = 2, then for v € V¥, r’ is a class such that for v,, v, € v’, |v,0,|=1,2,3,
or 4. So by the main results of Fischer [11] and Timmesfeld [27] we see that the cases
J, and O* (n, 5) do not occur. At this stage we may assume that J is a group of Lie
type in characteristic » and the elements of V;* are long root elements of J (possibly
short root elements in the three exceptional cases).

We claim that V, is contained in the center of a root subgroup of J. This is trivial
if | ¥, |= r or if J has Lie rank 1. So suppose | ¥, |> r and J has Lie rank at least 2.
Since |V, |>r, Y = X/Z(X) and ¥, <J® = J,, a component of X. If the claim is
false, then there exist elements a, b € V;* and centers of long root subgroups,
U, # U, of J,, such thata € U, and b € U,. Fix g € J, such that (U,, Uf)= SL,(q,),
where g, =| U, |. As (a, a®) is not an r-group, (V,, Vf)= SL,(q), and so (b, b®) is
not an r-group. Also, 0" (Cs({a, a8))) = 0" (Cs({V}, VE))) = O™ (Cs({(b, b%))); in
each case the centralizer has the form O"(L), where L is a Levi factor of Cy(V)).
Similarly, E = 07(C,((U, UF ))) = 07(G,((b, b5))) = 07(C,((Uy, UF ))). But
(U, Ugy= 0"(C,(E)) = (U,, U§). Since [a,b] =1, we must have U, =U,, a
contradiction.

Finally, we must prove that I7| is the center of a long root subgroup of J. If not,
then the previous paragraph implies the existence of a group U > V, with U the
center of a long root subgroup of J. Choose j € J such that (U, U’)= SL,(q,),
where ¢| ¢, and ¢, =| U|. If r = 2, then we see that for a € V}¥, there exists j, € J
such that | aa’' |= g, + 1. But this contradicts the fact that (¥}, V) is an r-group or
SL,(q) for each g € G. Suppose r is odd. Then Dickson’s theorem ((2.8.4) of [30])
implies that for suitable j, € J either (¥, V{')=SL(2,q,) or ¢, =9 and
(V,, V{"y= SLy(5). This is a contradiction.

(29) Let E<F<G with F an abelian p-group, and let F, be the Sylow
p-subgroup of the preimage in G, of F.

(a) CA(F) < CY(E) and CJ(F,) < CQ(Ey).

(b) C(F) < C}(E) and C}(Fy) < C5(Ey).

PRrOOF. Let F, be maximal in F. Then either E < F| or E N F, is maximal in E. In
either case Cy(F)) < C;(E N F,) < C;(E,) for some maximal subgroup E, of E.
The lemma follows.

(2.10) Let X = X, - -+ X, < G, be a product of pairwise commuting groups of Lie
type each defined over a field of characteristic r. Let Y < X be an elementary
abelian p-group and (p,|Z(X)|) = 1. Suppose that Y projects onto a cyclic
subgroup, Y;, of X,/Z(X;), fori =1,...,k. Then

@Xx< CGOO(Y).

(b) If r divides | Cy(Y;) | for some i € {1,...,k}, then C;(Y) = G,

PRrOOF. (a) follows by looking at suitable hyperplanes of Y—namely, the kernels of
the projection maps. (b) follows from (2.3) and (3.12) of [6].

(2. 11) Suppose E=Z7,XZ, and EO is contained in the maximal torus H of G,
where B= UH is a Borel subgroup of Gand U = B (unipotent radical). Then there
exist at least three maximal subgroups of E, with nontrivial centralizers in U.

PROOF. Suppose false. Then clearly E, centralizes no element of U* and we may
then write E, = E|E, where, for i = 1,2, E, contains E, N Z(G,) as a subgroup of
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index p and no element of E, — (E, U E,) centralizes an element of U*. Let
A, ={a€E 3 E < C(U )}. As E; induces Z, on each root subgroup U fora € 3
we have £ = A, U A,, a disjoint union. Also A # @ % A, for otherwise E, < C(G)
fori=1or2. Fmally we observe that A, = A, fori= 1,2.

We clalm thata € A, and B € A, 1mplles[ ) UB] = 1. Otherwise « + B € 2 and

[ UB] (this follows from the commutator relations). Now fix e € E,

Z(G) Then e is trivial on U nontrivial on UB, and hence nontrivial on U
Consequently a + 8 & A,. Similarly « + 8 & A,, a contradiction. This proves the
claim.

Let G,=(U: a€4,) for i=1,2. Then [G.G,1=1, GG, =G, and
G‘I N Gz < Z(G). But this gives a direct decomposition of the simple group G / Z(G),
which is impossible.

(2.12) Let T be any maximal torus of G with T = T°. Then G, = O’ (G )7,

PRrROOF. The following is based on a suggestion of G. Lustlg Let 7: G — G be the
natural surjection and regard o as an endomorphism of G. Let T be the preimage in
G of Tand let Z = Z(G). Then T is connected (see (3.2) and (8.2) of [25]). Write
X=GX Zf" for the central product of G and 7 (amalgamation with respect to Z).
Then o induces an endomorphism of X, via (g, 1)° = ( g°, 1°). Also X = X° and
there is a well-defined homomorphism (of algebraic groups) given by (£, )0 = (g).
Then ker(8) = {(1, t) reT }. Now ker(0) T is connected, so Lang’s theorem

([18] or (10.1) of [23]) 1mp11es that (X,)8 =

Next we note that (G yr = 0’(G ) (see (3 2) of [25] and (12.4) of [23]) Hence
(T )7r =T,NO0"(G,). Let g€ G, — 0"(G,) and suppose that (g, )8 = g with
(8., ) € X,. Then, for some z € Z, g7 = g,z and 1° = 1z. As the cosets gO'(G )
vary, so does the element z € Z. It follows that | T, /(T, N 0"(G,))|=| G,/0"(G,)|,
proving the lemma.

(2.13) Let G, = G? be a quasisimple algebraic group over K and ¢ an
endomorphism of G, with | (G,), | finite. Let G, be the universal covering group of
G, with Z < Z(G,) and G,/Z = G|. View o as an endomorphism of G, (see (9.16)
of [23]). Let X = {g € G,: g° = gz for some z € Z}. Then Xis a group, X = (G,),Z,
and X/(G,), =Z.

PROOF. Let X = {g € G,: g° = gz for some z € Z}. Clearly X is a subgroup
containing Z and (G,),. The map x — x~'x° is a homomorphism from X into Z. By
Lang’s theorem the map is surjective, so X /(G,), = Z.

(2.14) Let notation be as above and assume that G, is a simple group.
Let 7 be the natural surjection from G, to G,. Then (G,), = X" and |(G)),:
07((G)y) |=1(2), ]

Proor. Clearly X7 = (G,),. Now set X, = (G,),Z. Then X,/(G,), =Z/Z,, so
| X/X,|=|Z,]| . As X, is the preimage under 7 of 0"((G),), the result follows.

(2.15) Let G, be as in (2.14). Then (G,), is the group 0"((G)),) together with all
diagonal automorphisms. Moreover (G,),/0"((G,),) is isomorphic to an image of
Z of order equal to | Z, | . (G,), is a universal covering group of 0" (G)),)-

ProoF. For the last statement see 12.8 of [23]. For the second statement use (2.14)
and (12.6) of [23]. The first statement follows from (12.3) and (11.6) of [23].
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The following is useful in inductive situations and for various generalizations of
the main theorems.
(2.16) Let X = X, - - - X, be a central product of quasisimple groups and let E be

an elementary abelian p-group acting on X. For each i =1,...,n assume that
CR(E,;) = X,, where E, is the stabilizer in E of X,. Then C3(E) = X.
PROOF. We may assume that E is transitive on {X),...,X,}, so E; = E; for each

i, j and we set F = E,. Clearly we may also assume n > 1. Let I be a maximal
subgroup of E with F < I. Write X = Y, - - - Y,, where each Y; is the product of the
components of X in a fixed /-orbit. Inductively, ¥, = C?,’(I Yfori=1,...,k.

Fix e € E — I and let J be any maximal subgroup of I. Then for y € Cy(J), we
have [17- y' an element of Cy(J{e)). Do this for each maximal subgroup of I and
conclude that CY(E) covers Cy ,z(x(€), so contains Cy(e)’. Now this happens for
each e € E — I. It follows that CJ(E) = X, as required.

Throughout this paper we will use the following labeling of Dynkin diagrams.

TABLE (2.17)

n-1 n
b O——O -+ O——0

1 3 4 5 n-1 n
En O— ,O‘__A,?_O e e OO ln=6,1,8
@)

6 2

3. Subgroups of Chevalley groups. In this section we prove some results on
generation of classical groups that will be used in §4. Also we establish the existence
of certain subgroups of some exceptional groups of Lie type. These subgroups are
similar to ones produced by Stensholt in [26]. However our methods are different,
and yield a bit of additional information that we require in §5.

Let W be an F -space with a nondegenerate alternating or hermitian bilinear form,
or quadratic form in case W is an orthogonal space. Say X is a subspace of W with
W= X® X" . Define 9( X) to be the group of isometries of W generated by those
root subgroups trivial on X . For convenience there will be two cases where we vary
from this definition, namely, the case when W is a unitary space with dim(X) = 1
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and W an orthogonal space with dim( X) = 2. In the first case we let $( X) be the
group of all isometries of W that are trivial on X~ . So §(X) = Z, .- In the second
case §( X) will be the subgroup of SO(W) that is trivial on X* . So here §( X) = Z, .1
depending on whether X is anisotropic or not.

(3.1) Assume W = W, L W, L W, and that W, contains nonzero isotropic (singular
if W is an orthogonal space) vectors. Then either

(@) $(W) = (SO, L Wy), $(W; L W3)), or

(i) J(W) = SO (6,2) = Ag and ($(W, L W,), $(W, L W,)y=A4,.

PROOF. Set X = (J(W, L W,), (W, L W,)). It is easy to see that X is transitive
on each (W) orbit of V. Also we may assume W, # 0 7 W,. The idea is to show
that X is flag-transitive in the sense of [21]. Once this is achieved we will be done by
applying the main theorem of [21].

Suppose W; contains an isotropic (singular) 1-space W, and write W, = W, L W,
where WO is a nondegenerate 2-space containing W,. Let P be the stabilizer in $(W)
of W,. Then P is a parabolic subgroup of §(W) and the transitivity of X implies that
G = PX. Also P = O(P)LH, where L =$(W, LW, L W,) and H is a Cartan
subgroup of $(W) normalizing L. We may take O(P)H < B < P, where B is a
Borel subgroup of $(W).

In view of the main theorem of [21] it will suffice to show BX = §(W), and for
this we only need P = B(P N X). However, inductively we have
L=9%W, LW,LW,)=($W, LW,), (W, L W,)) or L =A4; and
9w, L W), $(W, L W,)y= A,. In either case we have P = B(P N X). So we may
now assume that W;, and by symmetry W, contains no isotropic (singular) 1-spaces.

In particular W is not a symplectic space. If W is a unitary space, then
dim(W,) = dim(W;) = 1. In this case let W, be an isotropic 1-space in W, L W, and
P the stabilizer in $(W') of W,. Then P = O P)$(W,)H and we have P = B(X N P)
for a Borel subgroup of §(W). As above this gives the result.

Now we may assume W is an orthogonal space. Write W, = W, L WJ’, where W,
is a 2-space containing a singular 1-space. Let Wj = W’ L W, and consider the
decomposition W = W, L W, L W;. By the above arguments we may assume that
Wj contains no singular 1-space. So dim(W,) and dim(Wj) are each at most 2.

If dim(W,) = 1, then W, = (v) for some nonisotropic vector, v, of W. Therefore
X contains $(W; L Wj) which is of index 2 in Cy,,(v) and X is transitive on v*).
But then X has index at most 2 in $(W), proving X = $(W). So we may assume
dim(W,) = 2, and similarly dim(W#;) = 2.

If g is odd we may write W, = W,, L W,, with dim(W,,) = dim(W,,) = 1. Then
argue as above, using the fact that (W, L W, L W;) < X by induction. So assume
q is even. Let W, be a singular 1-space in W; and P the stabilizer in $(W) of W,,.
Then P = O(P)LH, where O(P)H is contained in a Borel subgroup B < P and
L=9%Ww L W) But X=94W)XIyW;)=2Z,, XZ,, and we have
L= (L0 BY%W,)X3(W;). So BX =9(W) and we use [21] to complete the
proof.

(3.2) Let V' = ¥, L V, be an F_-space with a nondegenerate alternating or hermitian
form, or a quadratic form. Assume dim(V,) = dim(V,) = 2, that dim(V,) = 4 if V'is
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an orthogonal space, dim(¥V,) = 3 if V is orthogonal and ¢ = 3, and dim(},) = 4 if
V is an orthogonal space and g is even. Let X = Sp(V), SU(V), or O=(V),
whichever is appropriate, and let / < X be a subgroup containing Cy(V;) and
C(V,), but not stabilizing {V|, ¥,}. Then one of the following holds:

OHI=X

(il) X = SU4, 2); or

(iii) X = 0% (8,2).

PROOF. Suppose X = SU(4,2) or 0" (8,2). Let A = Cy(V,). If X = 07(8,2), we
may assume A = O7(4,2). There exists g € I such that 4% € N,(A), and, for such a
group A%, choose an element ¢ € 48 — N(A) with ¢ a transvection or reflection (in
case ¢ is odd and X = O~ (V)). Then set V, = [(4, c),V]. We have V; <V, and
dim(V,) = dim(V,) + 1.

Suppose rad(¥,) # 0. Then rad(},), being A-invariant, is contained in ¥, and
Vo = V, L rad(V,). As rad(¥,) = O there is a 2-space V; of ¥, such that rad(V;) = 0
and rad(V,) < V;. If V is an orthogonal space with g even and if rad(V;) is
nonsingular, then choose ¥V, so that V; contains no singular 1-spaces. Then
I=A4X9%V,;) and we will show that §(V, L ¥V3) <I. To see this let P be the
stabilizer in $(V, L V;) of rad(¥;) and P, = Cp(rad(}})). For the moment exclude
the case where V is orthogonal and g is even. Then P, = O(P)O"(A) and acts
irreducibly on O,(P)/O(Z(P,)) (see §3 of [10]). Since ¢ € N(P,) but c & N(A) we
have (A4, c) covering O,(P)mod O(Z(P,)). The results in §3 of [10] imply that
O(Z(P,)) = ®(O,(P)), unless X is a symplectic group in characteristic 2. In the
latter case O(P) is indecomposable as an 4-module, unless X = Sp(4,2), where the
result is easy to check. So we may now assume that (4, ¢)= P, and so P, < I. Also
I= Cy(V)) = Cy(V}) N Cyx(V5) and P, together with this last group generates a
group containing (¥, L V;). To complete this case consider the decomposition
V, LV, L (V3 N V,) and apply (3.1) to conclude that 9(V) < I.So X = I.

Now suppose that V' is orthogonal and g is even. If rad(V}) is singular the
same arguments work, once we note that I contains a transvection that stabilizes
V, but not rad(V,). So suppose rad(V,) 1is nonsingular. Then
(A, c)< Py = C(rad(Vy)) N $(V, L V3) = Sp(k, q), where k = dim(V;). We note
that (A, c)= P,. To see this note that ¥, N V{ is a hyperplane in V), so |4 N A¢|
can be computed. Then count the number of elements in A4¢ and conclude from [17]
that P, = (A4, c). Also I contains $(V;) =Z_,, and we have I = (P, $(V3))=
§(V, L V;). At this point we can choose a transvection ¢’ € I such that ¢’ & N(A)
and rad(};) is singular, where Vj =[(4,c’),V]. Namely, first write V =
V, LV, LV, where V, = V, N V;". Let c, be a transvection in C(V,) with [V, ¢,] =
vy + v,, where v; € V5, v, € V,, and 0 # v, is singular. Let g € §(V, L V;) with
v$ € V. Then ¢’ = ¢f is such a transvection. Now argue as above to get the result.

Next we suppose rad(¥,) = 0. Then X is neither a symplectic space nor an
orthogonal space with ¢ even. If ¥ is an orthogonal space with ¢ = 3, let U be a
nondegenerate 3-space of ¥, with U = ¥, N V,. Otherwise let U be a nondegenerate
2-space of ¥V, with U= ¥, N V,. Unless V is orthogonal and dim(¥,) = 2 we may
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assume that U contains an isotropic l-space. Inductively we may assume U = V.
Indeed, write V=V, L U L (V, N U") and apply (3.1).

Next we write V, = V| L V', where V|’ has dimension at least 2 if V' is a unitary
space and at least 4 if V' is an orthogonal space. Further, choose V|’ so that
V" LV, =[V,c]. Now consider the decomposition V' = V| L V]" L ¥, and apply
induction together with (3.1). We conclude that one of the following occurs: I = X,
Vi =0,0or X =SU(n,2) and V| is a 2-space. In the latter case, we can replace ¥
by a proper nondegenerate 3-space of V| containing V|’, if n = 6. Here, (3.1) and
induction yield I = X. So from now on we may assume that either X = SU(5,2) or
Vi=0and X =SU@4,q),q>2,07(6,9),q9>3,0r 0" (7,3).

Suppose X = SU(5,2). Then 4 = SU(3,2). The space ¥, N V| is c-invariant,
while [V, c] < V,. It follows that V', N ¥V is a 2-space in Cy (c), hence nondegenerate.
As A N A stabilizes V, N Vi, A N A= §; X Z;. Thus, (A, AY=|AA|= 12| A4].
We claim that (4, ¢)= SU(4,2). As (A4, )< $(V,), (A, c)< SU(4,2). Elementary
order considerations show that either the claim holds or (4, c) has index 10 in
9(V,) = PSp(4,3), so in the latter case (A4, c) would be contained in a proper
parabolic subgroup of PSp(4, 3). Checking orders we have a contradiction. Therefore,
9(Vy) < I. Choose g € 9(V,) such that V = ¥V, + V§. Then $(V§) < I and by (3.1)
1= (3(V,), $(V§))= 9(V). From now on we assume V| = 0.

Suppose X = SU(4, q) with g > 2. As above it will suffice to show that (V) < I
But this follows from a check of subgroups of SU(3, q) (see [5] and [14]). Now
suppose X =0~ (6,9) with ¢>3 or X=0"(7,3). Here 9(V,) = PSp(4, q),
Vo=V, Vi), and ¥V, NV is a 3-space stabilized by the involution c. Set
L= {(A,c), so that |L|=|4A°|=|A|-|4: A N A°|. Computing the possible
choices for 4 N A (which stabilizes the hyperplane V, N V| of V), we have
| $(Vy){c): L|< 3q* Apply the theorem of [17] to conclude that L = §(V;){c).

If X = 0" (6, q) with g > 3, then choose g € $(U) such that V, N U = V§ N U.
Then I = (%(¥,), g, ¢), and arguing as above we have I = X. This leaves the case
X=0"(7,3). Let (v,)=V,N U and choose g € J(U) such that {v,, v§) is
nondegenerate but contains isotropic vectors. Then (3.1) and induction yield
$((Vy, vy, v§)) < I. A further application of (3.1) shows that X = I.

Let G, = Gy(gq) be an exceptional Chevalley group (notation as in §2). We will
produce certain subgroups L of G,. These subgroups are described below in Table
(3.3). Here L, = O"(L), C = C;(L,y), and F = L/LyC. In all cases each compo-
nent, X, of L, is normal in L, and L/C;(X) induces inner and diagonal automor-
phisms of X.

To prove the existence of L we consider G, = = G, and argue as follows. We choose
a certain o-invariant subgroup L of G, which usually is generated by root subgroups
of G. Then we produce an element w of the Weyl group of G such that W stabilizes
L. By Lang’s theorem ([18] or (10.1) of [23]) wo and o are conjugate in G.
Consequently G, contains a G-conjugate of LW, and this is the appropriate
subgroup L. Recall that root diagrams are labeled as in Table (2.17).

Choose a o-invariant Borel subgroup, B, of G so that the (B N ) -structure of G is
obtained in the usual way from that of G.So Hy = T, for T = T° a maximal torus
in B, and ¢ acts on the root subgroups of 3.4 = U in the usual way.
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TABLE (3.3)
Gy Lo/Z(Ly) C Z(Ly) F
E¢(q) L3(qg X Lyq) X Ly(q) Zpg-1y X Z3.g-1y Za.g-1y X Z3.q-1) Z3.g-1)
Ly(q”) X Us(q) Z3.q2-1y (3.q>—1) Za 22—
Eq(q) 204(4) X Ly(q*) Zo.g-1y Zog-1 Za.g-1
Es(q) a+1 Z3.q+1) Z3,4+1)
Us(9) X Us(q) Z3.q+ 1 Z3.g+1) Z3.q+1)
Eg(q)  D4(q) X Dy(q) Z(Z.q—l) X Z(Z.q—l) Z(Z,q—l) X Z(z.q—l) Z(Z‘q—l) X Z(Z.q—l)
*Dy(q) X°Dy(q) 1 I 1
Ls(q) X Ls(q) Zs.q-1 Zis.q4-1 Z(s.q-1
Us(q) X Us(q) Zis.q+1y Zs.q+1) Z5.9+1)
Ly(q) XZEe(tl) Z3.q-1y Z3,q4-1 Z3.4-1)
Us(q) X“Eq(q) ) Z3.q+1y Z3.4+1) Z3.9+1)
PSO™(12,q) X Ly(q") Zp 40—y Zag-1 Zo.g-1
L9(¢l) Z(S,q— 1) n» n»
-1 -1
"= ¥ q ) "= .4 )
B.q-1) (G.a—1)
Uy(q) Z(J,q+|) Z,, va
n=(9,q+l n:(9,q+l
B,qt+1) (B,g+1)
2Es(q) Us(q) X Us(q) X Us(q) Za.g+1y X Zagvy Zagr1y X Zagvny Za.g+ny
Fi(q)  Liy(q) X Ly(q) Z3.0-1y Z3.q-1) Z3.4-1)
Us(q) X Uy(q) Zaq+n Z3.q+1y Z3.q+1)
Gy(q) Liq) Z3.4-1 Z3.4-1 1
Us(q) Zi3,q+1) Za.q+1) !
Dy(q) Li(q) Z, X Z, Zi3g-1 Z3.4-1)
Us(q) Zi X Zgy Zi3,q+1) Z3.4+1)
3D«t(‘l) Ly(q) Zig2+q+1) Za.q-1) Z3.4-1
Us(q) (g2—q+1) Z3.q+1) Zag+n

Let 7 = {a,,...,a,} be a fundamental system of roots for W. For the cases E,
E,, Eg we label the Dynkin diagram as follows:

00,0500
]

a

Q05004005006 07 Olg

a

In all cases —s will denote the positive root of highest height (with respect to 7).
Listed below are various other fundamental systems for E, E,, Eg:

Eg m
E;, =
KL
Ty
s

Te

asagta,as,
s
Qg0 0,040,
a;
SO 05040y,
ay
Q50,051 1,0,
a3
Q040515050
a,
0050, 00500, IS,
a,

wheret = a, + a3 + 2a, + ay

+4as + 3ag + 20, + ag

wheret = a; + a, + 203 + 2a, + ay

where 1} = —(a; + 2a, + 205 + 3a, + 2a5 + ag)
and 7, = 2a; + 2, + 33 + 4a, + 3a5 + 204 +
where t = a; + 2a, + 2a; + 4a,

wheret = a, + a3 + 2a, + 205 + 204 + 2a; + a4
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Ty SO0, 000,05, Wheret = a) + 2a, + 2a3 + 3a, + 2a5 + a
t
Ty 110,000,015, Wheret, = a; + a; + -+ +ag, and
ay t, = —(ay ta; + 20, + 205 + 204 + 20, + ag)

Since the Weyl group is transitive on the set of all fundamental systems of roots, we
may choose w, € Wsuch that 7" = =7, i = 1,...,8. Fori > 1, w, necessarily preserves
the labeling of the Dynkin diagram. Setting w, = (5,5,5,)°*°****2, we also have this
fori=1.

Let G, = 6(q) Then G = E, (K ) and o is a field automorphlsm Let
X, = (U.op Ui, )y Xo =(U.0, U.y, ), and Xy = (U.,,, U.,). Then
X, =X,=X,=SL3,K) and [X,, X,] =[X,, X;] =[X,, X;] = 1. We note that
X, X, = X, X X,. This can be seen by viewing E (K ) < E,(K), then considering
X, X, as a subgroup of SL(7, K) < E,;(K). Conjugation within the Weyl group of
G, yields X, X; ~ X, X; ~ X; X, = X, X X,. On the other hand, we claim that
Z(X,X,X;) = Z, X Z; if r #+ 3. From the above we see that either this holds or
Z=ZX\X,X,) =2, X Zy X Z3. 1 the latter holds con51der CZ(U ) = Z,. Then

Z, also centralizes U_a ; hence Zo < C((U.,|i= L6)) = Z(G) However,
| Zy|= 9, whereas | Z(G)|= 3. This proves the claim and gives the group L, for the
first case in Eg(g). Namely, set L, = (X),(X,),(X3),. Let (z;)= Z(X,) for
i = 1,2,3. Notation may be chosen such that z,z,z; = 1. For each i = 1,2,3 we
apply Lang’s theorem ((10.1) of [23]) to obtain an element a; € X; such that
a! = a,z,. Then a° = a, where a = a,a,a;. Also a € N(L,) (each a, € N((X)),))
and a & L,Z( X, X, X,) precisely if 3| ¢ — 1. Let L = Ly(a), Ly, or L, according to
g =1, -1, or 0 (mod 3). Then L is the first of the groups for Es(q).

The element w, € W is an involution and it is clear that X' = X,, while
X' = X,, and w, induces a graph automorphism on the Dynkin diagram of X;. Let
g = w,o. Then g~ ¢ by Lang’s theorem ((10.1) of [23]). We may take a coset
representative of w, in (G,),, so g*> € 0’H and another application of Lang’s
theorem yields (X,),2 = SL(3, ¢*) for i = 1,2,3. Therefore, (X, X,), = SL(3, q°).
From the action of g on X; we have (X3)g = SU(3, q) (see [23, (11.2) and (11.6))).
Let LO = (X, X;),(X;),. Since Xf = X, we have Z(Ly) = Zg o). If
(3,g>—1)=1, set L=1L,, and if 3|q* — 1 set L = Ly(xy), where x € X, X,,
y € X;, x8 = xz,z,, and y® = yz;. Then L < G = F¢(q) and we have the other

subgroup for E(q).
The above set-up can be used to describe the required subgroups for F4(q) and

2E¢(q). Let 7 be the graph automorphism of G, defined with respect to B, H, N, etc.
Let X = X, X, X, and note that we may take w € G, = F(K). Consequently,
F,(q) = (G, ), contains conjugates of X, N X, and X, N X,. Now  centralizes Xj, so
2] = z;5. As 1 =(z,z,23)" = z,z,z, we must have z{ = z, and z] = z,. So Z(X), =
(z3). Since [X;, 7] =1, (X;), or (X;), is contained in X, N X, or X N X,
respectively. Also ((X,X;),), = SL(3, q) and ((X,X,),), = SU(3, q). This gives the
subgroups L, for F,(¢q) and the usual argument gives L = L, or Ly(a), completing
the case of F,(q). For G, =?E¢(q) note that 76 ~ w,70 so G, contains a conjugate of
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X The element w,7o stabilizes each X; and (X;)

W‘fﬂ

wro = SU(3, ¢). From here the
usual argument shows that L = X, _ is the required subgroup.
Next, let G, = Ey(q) and G = Ey(K). We produce central products X = X, X,

and Y = Y,Y, as follows. Let

A

X, = (U.apy Uiy UsnyoUs,)

and
X = <0:¢x7a U:ux7 U:tl’ Ut12>a

where ¢, = 2, + 20(2 + 3a3 + 4a, + 3as + 2a¢ + a; and hH=at a3 + 2a, +
2a5+ 20+ ay. Let ¥, = (U, |1<i<4yand ¥, = (U. o, U. ), U.oy, Usy).

From the commutator relations we have [X,, X,] = [¥,, ¥,] = 1. Each of X, and
X, is a perfect central extension of D,(K) and each of Y, and Y, is a perfect central
extension of Ls(g). An easy computation shows that Z(X|) = Z(X,)=1 or
Z, X Z,, according to whether or not r = 5. Similarly, Z(Y,) = Z(Yz) =1 or Z,
according to whether or not r = 2. From the action of ¢ on X X, X, and on
Y = Y Y we obtain the required subgroup L (L = X, or Y,) with
Ly/Z(Ly) = Dy(q) X Dy(q) or Ls(q) X Ls(g).

From the action of w, and w; on = we see that X;** = X, fori = 1,2 and ¥} = Y,
for i = 1,2. Moreover, w, induces a triality graph automorphism on the Dynkin
diagram of X, and X,, while w; induces the involutory graph automorphism on the
Dynkin diagram of Y, and Y,. So considering w,0 and wso we obtain the groups L
with L,/Z(L,) =°D,(q) X°D,(q) and U(q) X Us(q). We can also restrict to
E(K)< ES(K ) and obtain the first assertion for E,(q). Namely, look at X, X Xj,
with X, = (U, ay) X (U+, 2 <U+,2) use the element w,0, and argue as usual

Next, set Z, = <U:a|9 o U.q,)and Z, = (UH,R, U.,). Then [Z,, Z,] =
is a perfect central extensmn of E(K) (in fact the universal group) and
Z, = SL(3, K). The argument used for the case E,(K) and the fact that 3} | Z(G)l
imply that Z(Z,) = Z(Z,). Letting L, = (Z,),(Z,), we have
Lo/Z(Ly) = E¢(q) X Ly(q) and Z(L,) = Z; ,_,,. Fix z € Z(Z,Z,)* and choose
a € Z,and b € Z, with a° = az and b° = bz™'. This is possible by Lang’s theorem.
Then o centralizes ab and L = Ly(ab) satisfies the conditions for the appropriate
subgroup of Eg(q).

Let g = wso. The usual arguments show that L = (Z,Z,), is the twisted version of
the previous example. Namely O”(L) = L, satisfies L,/Z(L,) =?E(q) X Uy(q). A
variation of this example leads to the second group for E,(q). Namely, use g = w,o
(acting on E,(K)). As w, induces an involutory graph automorphism of Z,, we see
that (Z,), is the covering group of 2E¢(q). Also, if we set T = {h(x)|x(a;) = 1 for
i #7},then [Z,T] =1 and T is a 1-dimensional torus. Now Z(Z,) < T and since
oy? = —s, ginverts T. Thus, T, = Z_,, and L = (Z,T), is the desired group.

To complete E,(q), let V|, = (U:az, 0“,,-~-,0M,> and V, = (Uial,l?ﬂ).
Argue as usual to get L = (V}},),, , as indicated in Table (3.3).

We continue the analysis of Eg(q) Set D = (U+ an U Uiopoons 0:.,3, Uﬂ). Then D
is a perfect central extension of Ly(K) and checking the action of H we have
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Z(D) =1 or Z;, according to r = 3 or r # 3. The covering group of D is SL(9, K).
Let L = D, and L, = O"(L). If r # 3, then (2.13) implies that | L: L,|= 3. Also,
considering the action of ¢ on SL(9, K') we see that 3||g — 1, then L = L, X Z;. So
L satisfies the conditions in Table (3.3). To produce the twisted version of this
example let g = w,0 and argue in the usual manner.

To complete the analy31s of Eg(q) we must produce a central extension of
PSO~(12, q) X Ly(q*). LetJ, = (U ay-- U g,)and J, = (U.,,U. .y, where ¢ is
the root of highest height in the root system spanned by {ay,...,a;}. Then
Jy=Dy(K), J, = (U.,YX (U, ,), wy induces a graph automorphism of Jy, and wy
interchanges the components of J,. Therefore, (J,J,), , satisfies the necessary
conditions.

For the remaining cases let G = D,(K ), with Dynkin diagram

3

\OZ— o1

Oy

Set X, = (U ay +((,I+a2+a1+a4,) so that X, = SL(3, K). A direct check shows
that X, = Cy;( X)) is a 2-dimensional torus. Indeed

Ci( X)) = {h(X)3 x(ay) =1, x(e)) = §, x(a3) = &5, x(ey) = (§l§2)—]}'
As in previous cases we have Z(X,)< X, and from here consideration of
L =(X,X,), gives the first assertion about D,(q). Now let g = 55,5, and argue
with go to get the second assertion. The results for G,(q) are obtained by observing
that the graph automorphism of order 3 of G centralizes X .- Similarly for *D,(q), but
here one must first check the action of go on X,. But this is a straightforward
computation. All entries in Table (3.3) have now been accounted for.

For later use we point out that in most of the situations of Table (3.3) the
components are generaed by long root subgroups of G,. In the notation of Table
(33)letL,/Z(Ly) = C, - - - C, where the C; are as indicated in column 2 of Table
(3.3). Then each C, is a component of L,/Z(L,) except when C; = L,(2), L,(3), or
U;(2). Here we say C, is a solvable component. In the case U, (q), which has root
system of type BC,, we will call the long root subgroups those that are nonabelian of
order ¢*. We have the following:

(3.4) Let (G, Ly) be from Table (3.3). Except for the following cases, each C; is
generated by the images in L,/Z(L,) of long root subgroups of G,. In each case the
indicated component (solvable component) is the only one so generated:

(E(,(CI)’ L3(‘12) X U3(q),U3(q)), (FA(‘I)ﬁU;s(‘I) X U3(51)’U3(4))~
(Fi(q). Ly(q) X Ly(q). Ls(q)). (E;.°Dy(q) X Ly(4°).*Dy(q)).
(Es(q). PSO=(12.q) X Ly(q?), PSO~(12,9)).

PRrOOF. In each case L, = 0" (L) where L = L, L is a subgroup of G generated
by certain root subgroups, and w (possibly w = 1) is an element of the Weyl group
of G,. In each case where w stabilizes a component Y of L, w also stabilizes a long
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root subgroup of L and we easily have Ywa generated by long root subgroups. The
exceptional cases listed are the ones where w has a nontrivial orbit on the components
of L.

(3.5) Let G= E6(K ), 7 the field automorphlsm k - k9 and 6 the graph
automorphism of G (defmed with respect to B=B",H=H" etc.).

(i) If 3| g — 1, then N contains a Sylow 3-subgroup of G..

@) If 3|g+ 1, then G, contains a subgroup Y with Y/Fi(Y) = O*(W) =
07(6,2) and Fit(Y) is isomorp}}lc to the direct product of 6 copies of Z .. Y
contains a Sylow 3-subgroup of G .

PrOOF. The statements concerning Sylow 3-subgroups will follow from the order
formulas for G and G 85 respectlvely (see (5.1) for example) Now 1 acts on N and
N= H(N ),. Also W = W=N /H 07(6,2). Since H is isomorphic to the direct
product of 6 copies of Z,_, = F,* we have (i).

For (ii) let 7,0 act on N. Now 7 centralizes N /ﬁ and @ induces the graph
automorphism on N /I-? Let g € N with gH the long word in the fundamental
reflections generatmg N /H Then for each a € 2, Ugo . It follows that gé
centralizes N /H and g6 inverts H. By Lang’s theorem 76 ~ g10 and by the above
H 40 1 the direct product of 6 copies of Z,,.So G,y contains a conjugate Y, of N
and letting Y /Fit(Y,) = O*(Y,/Fiu(Y,)) we have the desired group Y. (To check
that N, covers N/H use Lang’s theorem once again.)

4. Classical groups. In this section we take G to be a classical group. Accordingly,
let G, = SL(V), Sp(V), SU(V'), or O(V')', where V is the appropriate module. This
is in accordance with the notation in §2, except for the orthogonal group in odd
characteristic. If G = PSO ™ (n, q) with g odd, then the group G, of §2 may be an
extension of SO~ (n, q) by a group of order 2. But as p > 2 this does not affect
generation. We omit the case of an orthogonal space of odd dimension and even
characteristic, for we identify such groups with symplectic groups.

We must make one additional change of notation regarding the group E,. We
want G, E, to act on V. This certainly happens if E, < G, (as in the symplectic and
orthogonal groups). But for G, = SL(V) or SU(V) this need not occur and we
redefine the group E, as follows. Recall that we have E < Nz(G) = PGL(V) or
PGU(V). Let E, be the Sylow p-subgroup of the preimage in GL(V') or SU(V) of E.
This change of notation does not affect generation.

Throughout this section we will assume dim(V) = 8, if V' is an orthogonal space.

To describe the cases where generation fails we make the following definition.
Suppose p=3, ¢=2, and G, =SL(V). Let V=V, LV, L ..-- LV, with
V,= C,(E,) and V, = V;fofor i = 1,...,k. We say this decomposition is admissible
if dim(¥,) < 0, 1, 2 according to whether V is symplectic, unitary, or orthogonal, and
dim(V}) = --- =dim(V,) = 1 or 2 according to whether V is unitary or not. Note
that k = 2.

(4.1) Assume Ej is abelian. Then precisely one of the following holds:
(1) Dy = G,
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(i) p=3,9=12, G, = SL(V) and V contains an admissible decomposition. For
any admissible decomposition V' = C, (E,) L V|, L --- L V,, we have D, < I and
E, < E,, where [ is the stabilizer in G, E, of {C(E,), V},...,V,} and E, = O5(1).

(iii) p =3, ¢=12, G, =Sp(2n,2) and D, = O%(2n,2), where ¢ = (-1)". More
precisely, V" has an admissible decomposition V' =V, L --- L V,, and for any such
decomposition D, preserves the quadratic form which has value 1 on each vector in
vE fori=1,...,k.

In particular, either D, = G, or E; is elementary. Moreover, examples exist for
each of (i), (ii) and (iii).

The proof of (4.1) will be carried out in a series of steps. We assume G, to be a
counterexample of minimal order. By (2.3) we may assume that E,, is contained in no
proper parabolic subgroup of G,E,. A proper parabolic subgroup of G,E; is the
stabilizer of a particular proper subspace, isotropic subspace, or singular subspace of
V, according to whether G, = SL(V'), Sp(V) or SU(V'), or O “ (V). So E, stabilizes
no such subspace. Since E, is not cyclic E, does not act irreducibly on V, and
consequently G, = SL(V'). We will study Ej-invariant decompositions of V.

Write V=C(E)®V, ®---DV,, with each V, irreducible E-invariant
subspace of V. If W < V with W N W* =0, let { (W) be the group generated by all
root subgroups of G, contained in C(W*). Except for certain small cases
(W) = 9(W) as defined in §3.

(4.2) We may assume that

O V=CJEH)LV, L -+ LV,.

(il) C}(E,) has dimension at most 0, 1,2 depending on whether G, is symplectic,
unitary, or orthogonal.

(iii) dim(¥}) = --- = dim(V}).

(iv) If V is decomposed as in (i), then $ (C,(E,) L V,) < D, fori = 1,... k.

ProOF. Clearly V,® ---®V, =[V, Ej] and so V, ® --- ®V, = C,(E))*. As
remarked above, V, is not isotropic (singular if V' is an orthogonal space). If
rad(V,) # 0 then G, = SO~ (n, q)’ for g a power of 2, and V, is a 1-space. But here
E, must centralize V|, whereas V, £ C,(E,)). So in all cases rad(V,) =0 and
consequently E, acts on (C,(E;) L V)" . If necessary rechoose V, so V, is an
irreducible E-invariant subgroup of (C,(E,) L V)" . Continue in this way to get
().

To get (ii) just notice that C,(E,) contains no isotropic (singular) 1-space. For
i = 1,...,k, E, induces a cyclic group of order exp(E;) on V,. This determines
dim(¥,) uniquely. So (iii) holds. To see (iv) note that, for i=1,....k, E,
induces a cyclic group of order exp(E,) on C(E;) L V, and that ®(E,) < C(G,) <
C(4(C(Ey) L V). So ®(E()C(C\(Ey) L V,) is a maximal subgroup of E,
centralizing § (C,(E,) L V,). The result follows.

43)k=12.

PROOF. Suppose k > 2. First assume that either ¢ >2, p >3, or E; is not
elementary. In each of these cases we will show D, = G,, by induction. Let
W, = ClE) LV, L - LV, and W, = Cp(E)) LV, L - LV,
Inductively, § (W)), $ (W) < D, (here § (W,) = $(W,) as defined in §3) and by (3.1)
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applied to the decomposition V =V, L (W, N W,) L ¥V, we conclude that either
G, = SO" (6,2) or W, N W, contains no isotropic (singular) 1-space. The former is
out as dim(¥) = 8 in the orthogonal cases. Therefore W, N W, contains no isotropic
(singular) 1-space. This is impossible for ¥ a symplectic space. If V' is unitary then
dim(W, N W,) = 1, forcing C,(E,) =0, k = 3, and dim(V}) = 1 for i = 1,2,3. If
V is orthogonal then dim(W, N W,) < 2, forcing dim(}') < 8, a contradiction.

Suppose then that G, = SU(3, q). The proof of (4.2)(iv) shows that $(V, L ;)
and $(V, L V;) are each in D,. So by the results of [S] and [14], ¢ =2 and p = 3,
which is against our assumption.

To complete the proof of (4.3) we now assume g = 2, p = 3, and E, elementary
abelian. As above we are done by (3.1) if $(W,) and $(W,) are each in D, (we are
reduced to G, = SU(3,2), where an easy check gives the result). Suppose then that
$(W,) <€ D,. As E, is elementary each V¥, is isomorphic to Z, X Z,. If G, is
symplectic or orthogonal, then each V; is a 2-space over F,, while if V' is unitary each
V,is a 1-space over F,. So the decomposition is admissible. Let / be the stabilizer in
GyE, of {Cy(Ey), V..., V,}. Then E; < Oy(I) = E,, with E| elementary abelian.

We are assuming D, < G,,. Let F be a hyperplane of E,. We will show that either
Co(F)<Ior that (4.1)(iii) holds. In the course of the proof it will become evident
how to construct examples where (4 1)(ii) or (4.1)(iii) holds. For i =1,...,k let
F,= Cp(V;) and V CV(F) So V; Cy(Ey) LV, and C;(F) acts on V for
i=1,...,k. In addition, V, is the sum of C ,,(EO) and certain of the subspaces in
{Vl,..., Vk}. Let I, be the normalizer in I of V.. It will suffice to show that either
(4.1)(iii) holds or, for each i = 1,...,k, C(F)|p < L;|;.

Fix i € {1,...,k}. Reorder, if necessary, so that i = 1 and
V,=C/(Ey)LV,L -+ LV, where 1 <m <k. First suppose m = 1. If F > F,,
then C;(F) normalizes [17,, F1=V, and Cyp(F)= Cy(E,) so we easily have
Cs(F)|p, <1,y This also holds if F = F, except if G, = O(V), dim(C(E,)) = 2
and C,(E,) contains nonzero singular vectors. But in this case
Co(F) = Ce(F) = 9( 17,) = SO~ (4,2) = A. From here we obtain D, = G, using
induction and (3.1) applied to the decomposition

V=V L (CUE) L) LKL - LV,).

So from now on assume m = 2.
Suppose F = F, so that $(V,) < CoF) < Do. If k>m+ 1 set

w,=V,LV,, L -~ LV,_, and Wy=V,L1V,,,L - LV, Inductively,
Co(F)p, 1| 1mp11es§(W,) &(Wz) < D,, so, by (3.1), DO = G,. So now suppose
k=m+1. As F, acts on V, =V, ,, as a cyclic group we necessarily have

E, = Z, X Z,. At this stage a check of the action of E, on V shows that for some
proper subgroup, X, of E,, C;(X) contains an element g € 1 with V§ == V,. Then
D, = (}(V ), }(V )¥)= G, by (3.1). This is a contradiction, so we now have F > F,.
This implies that Cg(F) acts on V,, Fj=Vv,L --- LV, and on
Cp(F)=Cy(Ep). If m=2, then an easy check of the group of isometries of
vV, LV, (Sp4,2), GU2,2), or 0% (4,2)) shows that Co(F) |y, <1I,|p. So we now
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suppose m = 3. We note that if E, = E|, then order considerations show that m < 2,
so here (4.1)(ii) holds.

Suppose G, is unitary. Then assuming C; (F) |y, £ 1, |p,, F must have an eigen-
spaceon V; L --- LV, of dimension at least 3, say V', L --- L V. Then consider
decompositions of V of the form V = U, L (V, LV, L V;) L U,, where U, and U,
are each sums of some of the subspaces {C,(E),V,,...,V,}. By minimality of G,
and the fact that §(V, L V, L V;) < C(F) we conclude
that, for i = 1,2, D, contains (U, L V, LV, L V), unless V=U LV, LV, LV,
So by (3.1) we are done except in the case k = 4 and C,(E;) = 1. Here we can write
E, = F X E, =7, X Z,, where E, is trivial on V| L V, L V; and fixed-point-free on
V,. It is then easy to produce a maximal subgroup E; of E, inducing scalars on
Vy L V,. Therefore C; (E;) contains an element g interchanging V5 and V,, while
stabilizing V, L V,. So

Dy = (3(V, LV, L 1), $(V, LV, L 1))
=5V, LV, L 1), 9V, LV, L 1))

and (3.1) yields a contradiction. So G is not a unitary group.

In the other cases $(V, L V, L V;) = Sp(6,2) or SO (6,2). Now
Sp(6,2) = SO7(6,2) = PSU(4,2) = PSp(4,3) and from here we check that in either
case C(F) N §(V, L V, L V,) contains GU(3,2). We then argue as in the preceding
paragraph with a decomposition V = U, L (V, L V, L V;) L U,. Set
W.=UdlV LV, LVfori=12

In the orthogonal case apply (3.1), induction, and use the fact that C(F) N
(v, LV, L Vy) < Clw (Ey). We reduce to the case kK =3 or 4. In
the latter case §(V, LV, L V;)<D, by induction and a direct calculation
produces a hyperplane X of E, and element g € C(X) N I with {V |, V,, V;, V,}¢ =
(V. V., V3. V,} and Vg # V,. As before this leads to D, = G,. If k = 3, then as
dim(V) = 8 we necessarily have dim(C(E,)) = 2 and E, = Z; X Z;. Inductively,
§(V, LV, L V)< D, Also there is an element e € Ej with C(e) permuting
{C,(Ey). V). V5. V3} and moving C(E,). Then (3.1) implies that D, = G,

Now suppose that G = Sp(2n,2). Suppose W, W, <V. Then by induction
Ciw(Ep) = Sp(W,) or O * (W,), where the form is described as in (4.1)(iii). By (3.1)
we then have D, = O‘(2n,2), where ¢ = (-1)". But O%(2n,2) is maximal in G,
(indeed G, is 2-transitive on the cosets of 0%(2n,2)), so Dy = G, or Dy = 0°(2n,2).
Thus we again reduce to the situation of k =3 or 4. Also, C,(E;) = 0 in the
symplectic case, so G, = Sp(6,2) or Sp(8,2). In the latter case we argue as before, so
we are left with G, = Sp(6,2), a group of order 2° - 3*-5 - 7.

Here C;(F)=GU(3,2) and F, = 1. Viewing E; < L(V) X $(V,) X §(V;) we
easily have (§(V)) X $(V,) X $(V,), GU(3,2)) = Z < D,. Checking a Sylow
2-subgroup of Z (which must contain Q, and an Eg) we have | Z | divisible by 2°3*.
A Sylow 3-subgroup of Z has the following orbits on V' *:

0,={v:v, € V* i=1.23},

0,={v,+v:i#*j,0,€V* v eEV*
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and
0, = {v, + v, + v;:0, € V¥, v, € V}* v, € ViF}.

These have sizes 9, 27, 27 respectively. Suppose D, is transitive on V*. Then D, is
transitive on the transvections of G, and as D, contains transvections, G, = D, a
contradiction. So D, is not transitive on ¥*. Since elements of order 7 in G, are
fixed-point-free on V* this implies 7| D, |. Suppose 5 | | Dy|. An element of order
5 in G, fixes just 3 elements in V'*, the nonzero vectors of a nondegenerate 2-
space. Therefore either O, U O, or O, U O, is an orbit of Dy on V¥*. Let g € D,,
|g|=5and vf = v,. If O, U O, is an orbit of D,, then g acts on (0, U 0,) N vy =
(v, V55, V5%, 0, + V5%, 0, + V5*, 15® + V5¥}. But this set contains 22 elements so g
fixes an additional element of this set. This is a contradiction. Therefore if 5 || D, |
the orbits of D, are O, U O; and O,. But this just says that D, preserves the
quadratic form taking the value 1 on V* U V,* U V;*. That is D, < 07(6,2) and
has order divisible by 2°-3*-5. Consequently D, = 07(6,2). So now suppose
5t|Dy|. Then D, is a {2,3}-group. No 2-local subgroup of Sp(6,2) has order
divisible by 3%, so D, is 3-local, but not 2-local. Easy arguments show that F(D,)
must contain an elementary abelian subgroup of order 33, and this is not consistent
with D, = GU(3,2). Thus D, < I.

We have now completed the proof of (4.3) except for the construction of examples
where (4.1)(iii) holds. Just argue as follows. Write V=V, L --- LV, with k=3
and set (x;)= O5(9(V})). Let Ey = (x,x5', x,X,X3, x;; i =4). Then |E,|=3*""!
and maximal subgroups of E, have order 3*~2. Given any such maximal subgroup,
say F, there cannot exist a 4-set {i, j, /, m} of {1,...,k} with F, = 13 =F =F,. For
this contradicts | F| . The above arguments then imply that C; (F) < O%(2k, 2) with
e = (-1)k. By choice of X, (4.1)(i) fails, so we must have D, = O*(2k,2). This
completes the proof of (4.3).

(4.4) k > 2.

PROOF. Suppose k = 2 and notice that this implies £, has rank 2. The proof here
will follow from (3.2) once certain small cases are handled. If G, = SU(3, ¢), then
dim(C,(E,)) = dim(¥;) = dim(¥,) = 1 and the result follows from the results of
[S] and [14] (recall, G simple implies G, & SU(3,2)). Also the case of Sp(4,2) is
easily checked. Suppose C,(E,) # 0. Then minimality of G, implies
$(V, L V) < Dy, so by (3.1) and (4.2)(iv) we are done. So assume C,(E,) = 0.

Let (e;)= Cg(V;) for i = 1,2. Recall that from (4.2)(iv) we have §(V;) < D, for
i = 1,2. We first note that E can be embedded in a maximal torus of G. To see this
choose e € E; with E; = (e,)(e). Then e, € C5(e), so e, can be embedded in a
o-invariant maximal torus of Cg(e) = C4(e)°, which is a maximal torus of G. Now
pass to G to get the assertion. From (2.11) we have the existence of an element
f € E—({€,)U (&,)) such that O"(C4(f)) # 1. If fy € E,, with f; = f, then Q =
07(Co o)) # 1, although O7(C(fy) N ($(V}) X § (V) = 1.

Assume ( p, q) # (3,2). Then Q = §;, so Q does not stabilize {V'}, ¥,} and we can
apply (3.2) to conclude D, = G, except for a minor adjustment needed in case G, is
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an orthogonal group. Namely, (3.2) is stated for X = O~ (V), rather than for
G, = $(V). This was done to ease the proof of that result. In our situation consider
O" (V)Y =G, 20" (V)=X. E,=Q(P) for P€ESyl(G,), so the Frattini
argument gives X = Gy N, (E,). Now Ny(E,) < Ny(D,), so DyNy(E,) is a subgroup
of X properly containing Cy(V,) and Cy(V,). So (3.2) implies
X = DyNy(E,) < Ny(D,), and hence D, = G,,.

Finally, assume (p,q) = (3,2). Here G, = SU(6,2), E, = Z, X Z,, and
G = SL(6, K). If f € E, and | f|= 9, then f has three distinct eigenvalues on K ® V
and so Ca(f)=SL(2,K) X SL2,K)X SL(2,K). So Q= 0"(CGO(f)) = S, and
the earlier argument shows that D, = G,. This completes the proof of (4.4).

At this point the proof of (4.1) is complete and to complete the proof of Theorem
1 for G a classical group we must consider the case where E|, is nonabelian. To this
end we assume that Theorem 1 holds for groups of order less than | G| .

We assume E; nonabelian. Then Ej = Z, and we may write E, = E| E, E;, where
E, is 1 or extraspecial of exponent p, E, = Z(E,), and E; = 1 or E; is nonabelian
with a maximal cyclic subgroup. Since p is odd, G, = SL(n, q) or SU(n, q). The
main result is the following.

(4.5) One of the following holds:

(1) D, = G,.

(ii) Gy = SL(3*,4) and p = 3.

(ii1)) G, = SU(n,2) and p = 3.

In cases (ii) and (iii) there is a group F, < G, such that Fy, = Z(G,), F,/Z(G,) is
an elementary abelian 3-group and C((;’O( Fy) < Ng (Fp)-

We will prove (4.5) in several steps. Assume the result false and let G be a minimal
counterexample.

(4.6) E acts irreducibly on V.

PROOF. Suppose false and let V| be a proper E-invariant subspace of V' with V|
irreducible. By (2.3), G, = SL(n,q) and rad(V,) =0. Then V=V, LV is
Ey-invariant. Continue in this way, obtaining V=1V, L --- L V,, with each V,
Ey-invariant and irreducible. As each V; is a faithful module for E, E; we have
dim(V,) = k,p“, where |E,: E,|=p**. We may assume g >2, for otherwise
Z(Gy) = Z,, p =3, and (iii)) holds. Suppose k > 2. By minimality
gy L - LV, _))and $(V, L --- L V,) (notation as before) are each in D,, so
we have D, = G, by (3.1). Therefore we assume k = 2.

Let (z)= Q,(Z(E,)) and let g be the element of GU(}V') that is trivial on ¥, and
induces z on V,. Then [Ej, g] = 1, | g|= p, and we may assume g € E (see (2.9)).
Let e be an element of order p in E E; — Z(E,) and set F = (e)X (g). Now
consider C(; (F). Notice that ¢ # 2, ¢ # 3 (as p|¢q + 1), and ¢ = 4 implies p = 5.
Since E, centralizes F modulo Z(G,) we can apply induction, (2.6), and (2.16) to
conclude that C; (F) < D,. Suppose that C; (F) stabilizes {V}, V,}. As ¢ = 4, (2.6)
implies that C; (F') has no subgroup of index 2 and so (¢ (F) acts on V; and on V.
But checking the eigenspaces of e on V' we see that 0"(CGo(e)) does not fix V; and
V,. This is a contradiction. Therefore C¢ (F) does not stabilize {V}, V, }, neither does
D,, and by (3.2) we have D, = G,,. This proves (4.6).
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In view of (4.6) we now have E, irreducible on V, and consequently E, is cyclic.
From the representation theory of E, we have dim(}) = p“ or p** !, where | E|\E;:
Z(E,E;)|= p*® (use the fact that Ef < Z(G,)). In fact, dim(}') = p* if and only if
E, is diagonalizable on V. In view of these facts we now assume g >4 if
G, = SL(n, q) and g = 4if G, = SU(n, q).

(4.7) (i) dim(V') = p;

(ii) [E,, Gyl = 1; and

(iii) E,E, = E, or E;, with | E, Ey: Z(E,E;) |= p>.

PROOF. Suppose dim(¥') = p2. Choose e € E|E; — Z(E,E;) with |e|= p. From
the representation theory of E, we see that (e) induces a multiple of the regular
representation on V. Write V=V, ® --- ®V,, where {V,...,V,} is the collection
of eigenspaces of e. Choose f of order p such that (e, f) is extraspecial of order p’.
Redefining E,, if necessary, we may assume f € E, and write E| E; = (e, f )E, with
[Ce. £y, Es] = 1.

If G, = SL(V), then (e, f) reducible on V implies (e, f) normalizes a parabolic
subgroup of G,. So (2.3) implies that C¢({e, f)) = G,. Then induction, (2.6), and
(2.16) imply that G, = C{ (e, f)) < D,. So we now assume G, = SU(V'). Now ( f)
transitively permutes {V,,...,V,} and an easy computation shows that
v=vl.--- 1V,

Choose g € E, — Z(E,). Then (e, g) is abelian of rank 2. The inductive argument
of the last paragraph will work once we show C¢((e, g)) = G,. For this first
consider (e, g) acting on ¥, L V,. We have §(V)) X $(V;) < C;({e, g)). The
element g has p eigenvalues on ¥V and dim(V, L V;)=2p. It follows that
07(C(g)) N $(V, L V,) does not stabilize {V,, V,}. Consequently
$(V, L ¥y) < C((e, g)) by (3.2). Similarly, §(V, L V)) < C; (e, g)) for each i .
Now, repeated use of (3.1) gives G, = C;({e, g)). We have now proved that
dim(V') = p, so (i) holds. Since E|E; is absolutely irreducible on V, (ii) follows.
Also, (iii) follows from (i).

In view of (4.7)(iii) we alter our notation, if necessary, so that E; = E| E,, where
[E,,Gy] = 1,| E,: Z(E,)|= p? and E, acts irreducibly on V.

(48) E\E; = E,.

PROOF. Assume G, = SL(p, q) or SU(p,q) and E E; # E;. Then
E\E; = E, = (e, f), where |e|=|f|=p. Recall that ¢=4 and g>4 if
G, = SL(n,q). Asp|q— 1orp|q+ 1according to G, = SL(V') or SU(V') we can
diagonalize e and f. Write V= W, ® --- @ W,, where W, = (v,) is the eigenspace
for eigenvalue &' ' of e. Here a is an element of order p in Ff (Fq’% in the unitary
case), and f may be chosen so that v/ = v, fori = 1,...,p — 1. We get a basis of
eigenvectors for f by setting w; = v, + --- +v,and w; = we | fori=2,...,p. Then
w/ =a " tw,.

Now C;(e) and C;(f) stabilize the eigenspaces of e and f, respectively. So
G (), C5(f) consists of all diagonal matrices in G, with respect to the ordered
bases {v},...,0,}, {w,,...,w,}. Choose h € C; (e) having eigenvalues B,v,6,...,8
in the basis {v,,..‘,vp} and k € CGO( f) with eigenvalues ¢, 7,...,n in the basis
{w,,...,w,}. These elements must be chosen so that By87 7% = en?~' = 1.
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Consider the basis {v,,...,v,_,w} of V" and check that in this ordered basis &, k
are given by the following matrices:
B
y
8
h = )
p—8& y—-6 0 . . . 0 &/
1
—(e—n
1 p( )
k =
1
—(e—n
n )
£

Notice that & and k each stabilize V, = (v, vy, w;) and V} = (03 — 04,...,03 = 1,),
and V=V,®V, unless p=2 (modr) and V, NV, = (v;+---+v,). In the
unitary case [W,, W;] = 0if i # jand [V}, V] = 0

Let X be the subgroup of G, generated by all such elements 4, k above, and let X,
and X, denote the restrictions of X to V;, and V), respectively. Then X, contains all
matrices of the form

1

,B 0 0 n 0 ; (8 - 7’)
0 Y 0 and 1 ,
B—8 y—8 & 0 7 ;(8 - 77)
0 0 €
where 8y87 2 = en” ! = 1. Considering the action of the elements h above we see

that an X, -invariant subspace is necessarily a sum of the spaces (v,),(v,),
(v3 + -+ +v,). Now consider the action of all possible elements k, with k as above.
We conclude that either X, is irreducible on ¥}, or (v; + --- +v,) is invariant. In
the latter case either p = 2 (mod r) or ¢ = 7 for all elements k above, this forcing
p=gq— lorp =g+ 1, depending on whether G, = SL(V') or SU(V).

Suppose X, is irreducible on ¥}, and consider the image X, of X, in PGL(3, q)
(respectively PGU(3, q)). Using the results of Bloom [5] and Hartley [14] we show
that YO = PSL(3, q) (respectively PSU(3, ¢)). This involves checking the group )?0
against the lists of groups presented in [5] and [14]. The following facts are useful in
such a check. Let I be the group of all elements 4 above, restricted to V. Then
I=Z,.\ XZ,: and has image in PGL(3, q) (PGU(3, q)) isomorphic to
(Z,=1 X 2, 1)/ 2, If p =3, I consists of matrices of determinant 1, while if p > 3,
I N PSL(3,q) (I N PSUQ3, q)) has index at most 3. Choosing h € I with |h|=p
and h not scalar on ¥, we have I < C x( h). Comparing this with centralizers in the
various proper subgroups of PSL(3, q) (PSU(3, q)), most cases are eliminated. Also
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one should recall that Xj, is irreducible on ¥;, that k € I only when & is scalar on ¥,
and that when p = 3 we may take 4 = & and conclude that Cx(e) contains a
subgroup 1somorphlc to I, for any e € E, — Z(E)).

Once we have X(, = PSL(@3,q) (PSU(3, q)) we conclude that X’ contains
(C(V)) N N(V,)). This is because X induces a group of scalar matrices on V. Now
the same argument can be carried out with (v,, v;, w, ) replacing ¥, where i # j and
i, j < p — 1. Itis now fairly easy to see that D, = G,. If G, = SU( p, q) this follows
from repeated use of (3.1). For SL( p, ¢) one can use (B, N)-pairs.

Next suppose p =2 (mod r). Here r is odd and ¥, NV, = (v; + -+ +1,). On
Vo/{v;3 + -+ +v,) X, contains all matrices of the form

B O l(n-!-e n—¢&
(0 y) ™4 aln—e n+£)’

where y = 87! and 5? 'e = 1. Considering subgroups of PSL(2, q) we conclude

that either ¢ = 1 = 2 p or X, induces on V;,/(v; + -+ - +u,) a subgroup of GL(2, q)
(respectively GU(2, q)), containing SL(2, g). Excluding the case ¢ * 1 = 2p and
using the fact that g is odd, we conclude X{*’ contains a subgroup Y = SL(2, ¢) and
that there exists ¥, < ¥, such that ¥, is Y-invariant and V, = V, © (};, N V) (an
orthogonal decomposition in the unitary case). As X® centralizes V/V;, C,,(Z(Y))
is a complement to ¥, in V, and so Y is generated by groups of transvections in G,
(centers of long root subgroups). So by McLaughlin [19] or Wagner [28] we have
D, = G,.

We are left with the case p =2 (mod r) and ¢ + 1 = 2p, and the case p = g = 1.
In the first case G, is unitary, r = 3, and g¢ = 32" for some integer b, while in the
second case we have r = 2. In either case, let ¥V, = (v,, vy, w,, w,) and let Y be the
subgroup of D, generated by all elements 4|, h, k|, k, where h,, h are diagonal
(1,-1,...,-1) and (y"', v,1,...,1) in the ordered basis {vl,...,vp}, and k,, k are
the same, but in the ordered basis {w,...,w,}.

For y # 1, each of h, h have fixed space in V, of dimension 2. Indeed, A
centralizes (v; + -+ +v,, a?vy; +---+a? Y} and k centralizes (w,
+tw, a 2w3 + - +a‘”’ Dw, ). Usmg these facts one checks that Y is
1rredu01b1e on VO In fact, if D is the subgroup of Y generated by those h, k for
which | y|= p, then D is absolutely irreducible on V, (consider eigenspaces of &, k).
Now, Y centralizes a (p — 4)-subspace of V, so V' = ¥, ® V,, with Y trivial on V.
The sum is orthogonal in case G, is a unitary group. We identify Y with its
restriction to ¥, and note that by McLaughlin [19] and Wagner [28] we may assume
that Y does not contain a full group of transvections.

First suppose that p = ¢ = 1. Here we apply the result of Mwene [20] to get a
contradiction, although a couple of remarks are in order. Firstly, for the SU(4, q)
case, we cannot simply apply Mwene’s main theorem on subgroups of SL(4, ¢?),
because that result only gives the maximal subgroups of SL(4, g?). However, the
proof in [20] actually describes all subgroups of SL(4, ¢2). Secondly, in checking Y
against the proper subgroups of SL(4, q) (resp. SL(r, ¢?)), our previous remarks are
sufficient to rule out all but one possibility—the case where Y preserves a
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nondegenerate symplectic form on ¥,. So, suppose Y fixes such a form, [ , ].
Then pv, =w, + --- +w, implies that 0 = [wy + -+ +w,, pv;, —w; — w,] = [w;
+ o tw o]+ [wy o Hw,w ]+ [wy - - 4w, wy]. Checking eigenspaces
of the elements k above, we see that wy + - - - + w, must be orthogonal (under [, ]) to
(wi,wy), and so [wy+ -+ +w, 0] =0. This implies wy + --- +w, € (v}, v;
+ o Fu, avy+ oo +a”?7 Dy ) which s false. So Y fixes no such form, and
the case p = g + 1 is out.

Suppose g + 1 =2p. Choose h as above with [h|= g + 1 and write h = h,h ,,
where [h,|=2, |h,|=p, and [hy, h,] = 1. Similarly, for k = k,k,. Then
D = <(h, k,) and previous remarks show that C,(D) < Z(I)=Z,, where
I = SU(4, q). Since the Sylow p-subgroups of I are abelian, this immediately implies
O(D)=1.

Let s 5 p be prime. We claim O(Y) < Z(/) = Z,. Suppose otherwise, and let J
be minimal normal in Y with J < O(Y). As D is absolutely irreducible, s # r and
one of [J, h,] or [J, k,] is nontrivial. By symmetry, we assume the former. If s # 2,
then [J, h,J(h,) isAa Frobenius group and standard arguments from representation
theory imply dim(}}) = p, a contradiction. The same argument can be used when
s = 2, unless J is extraspecial. In the latter case, set J, = [J, h,] N C(h,). Then
Jo < Z(1) and (h ) is fixed-point-free on J,/Z(I). But h, normalizes no such
2-group in C,(h,). This proves the claim, from which it follows that F*(Y) = E(Y)
or E(Y)Z(I).

The group C,(h,) satisfies C;(h,) = SL(2, q) > SL(2, q), with h in one of the
factors and h, inducing an outer diagonal automorphism on this factor. From earlier
assumptions, neither factor is contained in Y. Therefore, (h,)< O,(Cy(h,)).

The restriction ¢ + 1 =2p forces PSU(4, q) to have sectional 2-rank 4. In
particular, E(Y) is the product of at most 2 components and if there are two, then
they are each of sectional 2-rank 2. Each of 4, and k, must stabilize each component
of Y, inducing a nontrivial automorphism on at least one component. From the
above paragraph we conclude the components of Y are normalized by (4, k).

By Gorenstein-Harada [31], the components of Y have known structures. Also, we
have (h,)< O,(Cy(h;)) and similarly for k,. It follows (use [3] and Table lkof [29])
that each component of D is of Lie type in odd characteristic. Since dim(V,)) = 4,
the Sylow s-subgroups of Y are abelian for all primes s # 3. Assume that J is a
component of Y and of Lie type in characteristic s > 3. By the above, J = SL(2, s°)
or PSL(2, s¢). As PSL(2, s°) contains a Frobenius group of order 1s‘(s¢ — 1), and
since dim( 170) = 4, we must have s < 9. However, p | |J| and s # 3. This forces
s =5 = p, and contradicts the facts (h,)< O,(Cy(h,)) and (k,)< O,(Cy(k,)).

At this point we have established that the components of Y are of Lie type in
characteristic 3. Each of A, and k, induce inner automorphisms on E(Y). For
otherwise, a field automorphism is induced and we obtain a contradiction, as before,
by considering certain Frobenius groups. Therefore h,, k, € E(Y). If Y has two
components, X, and X,, then each has the form SL(2,3¢) or PSL(2,3¢) and each
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has order divisible by p. As X, centralizes a Sylow 3-subgroup, R, of X;, R X X, is
in a proper parabolic subgroup of I. One checks that this forces R to consist of
transvections and X, = SL(2,3°) = SL(2,q) is generated by full groups of
transvections. This is a contradiction. Thus, E(Y') is quasisimple.

Suppose E(Y)/Z(E(Y)) = PSL(2,3°). Since h, € E(Y), p | 3¢ = 1 and this forces
q| 3¢ (use primitive divisors). As C(h,) N YZ(I) = Z(I) X {h,)X <h,), and since
YZ(I)/Z(I) < Aut(PSL(2,3°)), some element of (h,, h,) induces an involutory
field automorphism of E(Y). As (h p>< 0,(C y(h,)), this element cannot be 4,.
Hence both h, and h h, induce field automorphisms. The containment E(Y) <
SU(4, q), forces 3° = ¢2, so E(Y) = SL(2, ¢q*) or PSL(2,q*). Now, E(C/(h,)) =
SU(3, q), with natural action on {v,)* N¥,. We may write J = OP(E(Y) N C(h,))
and J = (h,, h;}, for some j € J. Then J = SL(2, q) or PSL(2, q). But A, is trivial
on a 2-space of (v,)* NV, so J is trivial on a l-space. It then follows that
J = SL(2, q) and is generated by full groups of transvections. This is a contradic-
tion.

The proper parabolic subgroups of I have at most one noncyclic composition
factor and this is isomorphic to PSL(2,q) or to PSL(2,¢*). It follows that
E(Y)/Z(E(Y)) = PSL(3,3°), PSU(3, 3°), PSL(4,3°), PSU(4,3°), or G,(3°) withe a
power of 2. Since 4, € E(Y), an order argument shows that either a|e or E(Y)is a
4-dimensional symplectic or unitary group with a|2e. As E(Y) < I, we use addi-
tional order arguments to conclude E(Y)/Z(E(Y))=PSU(3,q), PSp(4,q), or
PSp(4,/7). In the first two cases, let j be an involution in E(Y) — Z(I) with
J(Z(E(Y))) 2 central. Then Cgy(j) contains an SL(2, q¢) component with center
(j). This component is necessarily one of C;(j) (asj ~ h, in I'), hence generated by
full groups of transvections. We are assuming this false, so these cases are out. For
the last case one argues that in Aut(PSp(4, /7)) the centralizer of an element of
order p is cyclic of order 2p. As (hj, h,)< C(h,), there is some involution
h € (hy, h,) N C(E(Y)). But then C,(j) has a section isomorphic to PSp(4,/q),
whereas E(C,;(j)) = SU(3, q) or SL(2, q) X SL(2, q). This is a contradiction, com-
pleting the proof of (4.8).

(49) E\E; + E,.

PrROOF. Suppose E,E; = E, and write E; = (e, f) with |[e|=p and |f|=p".
Recall that G, 2 SL(3,4). Let 1 # a be an eigenvalue of e on V and let V; = (v,) be
the eigenspace of e with corresponding eigenvalue o' ~'. First suppose that p” | g — 1|
(p"|g+1 in the unitary case). Then f is diagonalizable with eigenvalues
B, Ba,...,Ba? !, where B has order p” in the multiplicative group of the underlying
field (F, or F2). So there is a scalar transformation z on ¥ such that | fz|= p and fz
has distinct eigenvalues. Replacing E; by (e, fz) we reduce to (4.8). So from now on
we may assume p"tq — 1 (p"tq + 1 in the unitary case).

This forces ( f) to act irreducibly on V. In an appropriate extension field, f
has the eigenvalues above, so f& G,. Now GL(p,q) = G,Z{f) (GU(p,q) =
GoZ{f)), where Z= Z(GL(p,q)) (Z(GU(p,q))). So H=C(f)N GL(p.q)
(respectively, H = C(f) N GU(p, q)) is contained in [ = N(D,). Indeed,
(H N Go)Z( [ )< DyZ( [ )< N(D,). We may assume I % SL(p, q) (I  SU(p, 9)).
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Now H is cyclic of order g”» — 1 (¢” + 1), so I is transitive on 1-spaces of V if
Gy = SL(p.q).

Let W= C(e) N GL(p, q) (respectively C(e) N GU(p, q)) and W, = O,(W).
We claim that W < I. To see this first note that W, = (Z,.-1)? and has index p in a
Sylow p-subgroup of GL(p, q) (GU(p, q)). In fact W\{f)=Z,. wrZ, is a Sylow
p-subgroup of Gy(f). As W < G,ZW,, it suffices to show W, < I. Let W0 W, N
G, so W < D,. Suppose W, € Syl (D,). Since O,(Z(G,)) < W, we can apply easy
transfer and fusion arguments to get D, = D, X O,(Z(G,)) for some subgroup D,.
Since f normalizes W, but no proper subgroup of W, not containing O,(Z(G,)) we
must have W, N O”(D,) = 1. That is Dy = O,(D,)W,. Let s be a prime such that
s|qP — 1 (resp. s|g*” — 1) but str*“—1 for r*<gq (resp. r*<g?). Let S €
Syl,(H). Then S <Gy, so S< D, and a Frattini argument shows that S is
normalized by a conjugate of W;. But N(S) has p-rank 2, so m (W) < 2. Since
m (W,) = p — 1, this is a contradiction unless p = 3. But p = 3 is eliminated by
con51dermg the lists in Hartley [14] and Bloom [5]. So we now assume p > 3 and
Wy & Syl (D). If W, < W, € Syl A Dy), then there exists g € W, with e = ez for
some | # z € Z(G,). We may choosc z such that e#/ = e. Now take h € W, — W,
such that |fh|= p. Then (e, fh) is extraspecial of exponent p, fh € G,, and
gh € C;(e) < Dy.Sogfh € I, and since g, f € I, h € I. But W, = (W, h) implies
that W, < I as claimed.

Suppose G, = SL( p, q). Let K be the subgroup of W that is trivial on (v,,...,v,).
Then [V, K]= (v,). Let 4 = (v,,v,). As I is transitive on l-spaces, for each
1-space (v )< 4, there is a subgroup K& < I such that [K*, V] = (v). Let X be the
subgroup of / generated by all such K& Then X |, contains all diagonal matrices in
the basis {v,, v,}. It follows that X |, contains all matrices of form (! ?) for x € F,,
where the matrices are taken with respect to either the ordered basis {v, v,} or the
ordered basis {v,, v,}. In either case one can then argue that X contains a full group
of transvections. Therefore D, = G, by McLaughlin [19].

We are left with the case G, = SU( p, q). The argument is similar to the above. As
before let K be the subgroup of W centralizing (v,,...,v,). Suppose that, for some
g €1, rad({v,, v§)) = 0 and vf & vy . Set A = (v, vf). Then X = (K, K¥) acts
on 4 and on A1 . As X centralizes V/4 and V= A L A* we conclude that X is
trivial on A+ . Now K is transitive on the isotropic 1-spaces of 4 (since for each
element 1 # k € K, k stabilizes only the spaces (v,) and C,(K), neither of which is
isotropic), so it follows that X |, = SL(2, ¢). So I contains a group of transvections
and 1> G, by Wagner [28]. This is a contradiction. So now suppose that
v € 07 = (v,,... ,vp) whenever rad((v,, v¥)) = 0and g € I.

Recall that C(f) = H < I, and it is irreducible. It is then possible to choose g € 1
such that v§ & (v,) andv & vy . Consequently rad({v,, v§)) # 0. Sovf = Bv, + a
for some 0+ a € (v,,...,v,). Choose i=>2 such that (a,v,)+ 0, and set

A = (v, 0§, v;). Then rad(A) = 0. Now C(e) contains a subgroup I, isomorphic to
Z, X 2,y X Z,y such that I is faithful and diagonalizable on A and stabilizes
A" . Using the results of Hartley [14] and Bloom [5] we conclude that X = ( H,, K#)
contains SL(2, ¢) (and generated by groups of transvections). As before the results

of Wagner [28] imply G, < I. This is a contradiction, proving (4.9).
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The proof of (4.5) will be complete once we show that for G, = SL(3%,4) and
SU(n,2) there is a 3-group E;, < G, such that C(?O( Ey) < Ng(E,). For G, = SU(n,2)
this follows from (4.1). So suppose G, = SL(3*, 4). Let E, be an extraspecial 3-group
of order 32" ! and of exponent 3. Then we can consider E, < G,. If V is the module
affording this representation, then each e € E, — Z(E;) has 3 distinct eigenspaces
on V of dimension 3*~!. Using this and the fact that C () 1s absolutely irreducible
on each of these eigenspaces, we conclude that CGOO( Ey) < N;(E,). This completes
the proof of (4.5).

5. Exceptional groups of Lie type. In this section G will denote either an
exceptional group of Lie type or one of the groups G,(2) or 2F,(2)’. Notation will be
as in §2. Namely, G is a simple algebraic group with G = 0”(G, ). By (2.15), G, is G
together with all diagonal automorphisms of G. We take E < G, and define G, E,,
G,, etc. as in §2. By (2.15) | G,: G| divides | Z(G)|. So except for the cases p = 3,
G = E¢(q) or *E¢(q), with 3| g — 1 or 3|q + 1, respectively, we necessarily have
E, < G,. We will prove

(5.1) With the above notation one of the following holds:

@) CGOO( Ey)) = G,.

(ii) p = 3 and G = Gy(2), Fy2), F(4), E(2), E(4), *E(2), Eo(2), Eg(2), or Eg(4).
If G = G,(2), then D, normalizes a Sylow 3-subgroup of G. In the other cases an
example E, exists such that C2(Ey) < Ny (Ey).

(ili) p = 5, G =%F,(2), and CGOO( Ey) < Ng(Ey).

(iv) p = 3, G =?F,(2) and for E, = Z; X Z; we have CJ(E,) = Aut(Ly(3)). On
the other hand if G, =*F,(2), then CZ(E,) = G,.

In this section we will prove (5.1). So assume (5.1) false and let G be a
counterexample of minimal order. Let ®,(x) denote the cyclotomic polynomial with
roots the primitive complex dth roots of 1. Then set ¢, = ®,(g). The group G and
the order of G, is given in the following table.

TABLE (5.2)

G | G|
Gy(q) 9°0s 030397
’Dy(q) 99 1,0 05929
’Fy(q) 99 1P P93P
Fy(q) 97 L PP P399
’E¢(q) 9P 159 129 10Ps P PAPIP5P'
Eq(q) 9P 1, PP PePs PaPIPIPS
EL(q) 90 159149 129 10PsPsP 1 Pe Ps P1PIPHP|
Ey(q) q l20*P30‘1’24‘P20‘P 18P 159 ,4q>2, 2‘P2|0‘P9‘P§<P7 ‘Pg (Pg ‘P:‘P?Pgﬁ

We will say p is associated with ¢, if x is minimal subject to p | ¢,. Notice that if x
is even, then @, divides ¢*/% + 1. Also if p is associated with @_, then p > x. The
next several lemmas deal with the easiest cases. These are the cases where the p-rank
of G, is 1, where (2.3) applies, or where induction is easily applied. In effect, we
reduce to the case where p is a small prime divisor of ¢ * 1.
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(5.3) Suppose p is associated with g,. None of the following can occur: G = G,(q)
and x = 3,6; G =°Dy(q) and x = 12; G =2F,(¢q) and x = 6,12; G = F,(q) and
x =8,12; G =2E,(q) and x = 12,18; G = E¢(q) and x =9,12; G = E,(q) and
x = 14,18; G = E¢(q) and x = 15, 20, 24, or 30.

PrOOF. This follows from (2.7)(ii) and (2.7)(iv). It is necessary to check that
Pt W| , and then check that p does not divide the order of any maximal parabolic
of G.

(5.4) Suppose p is associated with . None of the following can occur: G =2E(q)
and x = 8,10; G = E¢(g) and x = 4,5,8; G = E,(¢q) and x = 3,4,5,7,8,9,10, 12;
G = Ey(g)and x = 7,9,14,18.

PrOOF. The idea is as follows. Say, for example, that G =2E((q) and x = 8 or 10.
From (5.2) we conclude that a Sylow p-subgroup of G, has order dividing ¢* + 1 or
q®> + 1, respectively. Also G, contains SO~(8,q) and SU(6,q) and order
considerations show that a Sylow p-subgroup of G, is contained in one of these
subgroups. As each of the subgroups is contained in a proper parabolic subgroup of
G,, we are done by (2.3).

The same argument works for the other cases. Let E, < P € Syl (G,). Below are
the triples (G, I, ¢,) where P € Syl (/) and I is involved in a proper parabolic
subgroup of G,,.

TABLE
G 1 P
Eq(q) Le(q) ®s
E¢(q) SO+(10»Q)I Py Py
E.(q) E¢(q) P35 Pas Pos P2
E,(q) SO+(12»Q)I Ps> Pgs Pro
E;(q) L,(q) (2
Ey(q) E.(q) P75 Pgs Prgs Pig

(5.5) Suppose p is associated with ¢, or ¢, and that G has Lie rank at least 4. In
addition, assume p # 3 if G =2E(q) or Fy(q), p # 5 if G =E4(q) and 5|q + 1,
p#*3,5if G=E\(qg), and p # 3,57 if G= E,(q) or Eg(q). Then C(?“(EO) = G,.

PrROOF. Let s be the positive root of highest height in £ and set J, = (U. ).
Choose conjugates Jy,...,J; of J; = SL(2, g) with kK maximal such that [J;, /] = 1
for i # j. This can be done so that each J; is generated by a pair of opposite root
subgroups of G, for roots in 2. Then H, normalizes J, - - - J,. One checks that k = 4
if G=F(q), *E{(q), Es(q), k=7 if G=E,(q), and k =8 if G = Eyq). If
G = F(q). E,(q), or Eiq), then O(H,)<J, - --J,. In the other cases
J, - - JO(Hy) =J, - --J.H,, where H = O(Hy) N C(J, - --J;). So in all cases
there is a subgroup H, < Hywith I =J, - - - JO(Hy) = (J, - --J,) X H,.

From order considerations, keeping in mind the prime restrictions, we see that /
contains a Sylow p-subgroup of G,, so we may assume E, < I. Considering the
projection of E, into J, - --J, we can apply (2.10) and get I < CGOO( E,). In addition,
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for each i = 1,...,k, E, acts on G, = E(Cg(J;)). Using §4 and induction we have
G, < CQ(E,) fori=1,...,k. An easy check gives G, = (G,;: i = 1,...,k), proving
the result.

(5.6) Suppose that p is associated with ¢, and one of the following holds:
G=E(q) and x=3; G=E;(q) and x =6; G = Eg(q) and x = 3,4 or 6;
G =’E(q) and x = 6. Then D, = G,

Proor. First assume x = 3. If G = E(q), then from Table (3.3) we see that G
contains a central product X, X, X; of three copies of SL(3, q). If G = Eg(q), set
Xy = (U.g,U.,), where s € 2" is the positive root of highest height. Then
X, = SL(3, q) and X, is centralized by (U. ,,,...,U. )= E¢(q). So for G = E¢(q)
or E¢(q), G, contains a central product X = X, - - - X, of copies of SL(3, q), where
k = 3 or 4 respectively. Now (5.2) implies that X contains a Sylow p-subgroup of G,
so we may assume E, < X. A Sylow p-subgroup of X is abelian of rank k, and there
is a subgroup E, = Z, X Z, such that E, < C(E)) and E| < X X,. By (2.3) we have

= C¢(E,) (since E, centrahzes a unipotent element of X;'). By (2.5), (2.6)(ii),
and elther minimality of G or the results of §4 we have C;(E,) < CG(EO) This
proves the result.

Essentially the same argument works for the other cases, but there are minor
changes required. For x = 4, G = E¢(q) and Table (3.3) shows that G, contains a
central product of two copies of D,(q). Then G, contains a central product, X, of
four copies of 07(4, )’ = L,(q*). From (5.2) one checks that a Sylow p-subgroup of
X is also one for G, unless p = 5, in which case a Sylow 5-subgroup of X is of index
5 in one for G,. Suppose this occurs. The arguments used in the verification of Table
(3.3) suffice to show that SU(5, ¢*) < Eq(q). Namely, use the groups Y, and Y, (of
§3) together with the fundamental system

ap a7 g 1 0y Oy O3

1

‘s

where = a; + a, + 2a; + 3a, + 3a5 + 2a4 + a;. By orders we may take
E, < SU(5, %) and it follows that E,, is conjugate to a subgroup of X. So in all cases
we may take E, < X and argue as before. The only difficulty is the possiblilty that
g =2, p =35, and with E, as before, there is some x € E, such that Co (%) contains
a component of type Sz(2°) or 2F,(2)’. The former case is out by (2.5). The latter
case is also impossible, since in order to get an 2F,(2)’ component of Co (%), Cé(x)
would have to contain an F,(K) component. But this cannot happen since the
components of C2(x) all have root systems being a subset of the root system of type
E,.

For x = 6 again use Table (3.3) to conclude that 2E¢(g) contains a central
extension of Uy(q) X Us(q) X Us(q), E;(q) a central extension of 3D,(q) X Ly(q*),
and Eg(q) a central extension of *D,(q) X°D,(¢q). We may assume that E, is
contained in the appropriate central product (again by (5.2)). Now 3D,(g) contains a
central extension of L,(g) X L,(¢’). So if m,(*D,(¢)) = 1, this would force E, to
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centralize a nontrivial r-subgroup, whence (2.3) gives the result. So we may assume
m (°Dy(q)) = 2 and choose a suitable E, as before.

In the next two results the contradiction is reached by combining the results of
Table (3.3), (2.8), and the centralizer information in G.

(5.7) Let p be associated with ¢.. In each of the following cases we have
C((,’“(E ) =Gy G=Fy(q) and x =4; G="E((q) and x =3,4; G = E,(q) and

=6, G ="D,(q)and x = 1,2, butp # 3; G = E4(q) and x =

PrROOF. Suppose false. First we point out the existence of a large subgroup, X, of
G. These are presented as triples (G, ¢, X/Z(X)) and are as follows: (i)
(Fy(q), @4, PSO(9, q)); (ii) CEe(q), 93, Fo(q)); (ii)) (PE¢(q), @4, PSO (10, q)'); (iv)
(Eg(q). 96 Fi(@)); (V) CDy(9), @) 0T 93, Go(q)); (Vi) (Eg(q), @5, PSO™ (16, ). In
cases (1), (111), and (vi) the existence of X follows from consideration of the extended
Dynkin diagram of G. In the other cases X is obtained from the centralizer of a
graph automorphism of G,. In all cases X is generated by long root subgroups of G,.
Moreover from (5.2) we check that X contains a Sylow p-subgroup of G,, so we take
E, < X. We note that m ( E;) = 2. By minimality of G and by results of §4 we have
X < CJ(E,). Let D, = CG"((EO).

Let V be a long root subgroup of G, with V' < X < D,. Set I = (V'“ N D,). Then
Dy < N (I) = X and the structure of / is given in (2.8). We may assume (2.8)(i)
does not hold. Let I =1 if q>3 and I =1/041) or 1/0,(I) if g=2 or 3,
respectively. Write I =1, - --I,, a central product as given in (2.8). As
X=(V“nN X) we may take X <I,. If k> 1, then some r-local subgroup of G,
involves X, against U(r, E,) = 1. Soi = 1 and I = I,. As X < [ it follows that lisa
central extension of a group of Lie type defined over F,. Comparing orders we have
X =1 In this comparison use the fact that ||, <| Gy |, and the ex1stence of
primitive divisors. (A prime divisor s of r¢ — 1 is a pnmmve divisor if st r? — 1 for
b < a. Such divisors exist except when r¢ = 2° or r¢ = r? with r a Mersenne prime.)

Now D, < N(I), so D, acts on X =1, and as no parabolic subgroup of G,
contains a section isomorphic to X/Z(X) we conclude that X = (O’ (D‘°°’)). We
will show this to be impossible. Say G = F,(q) with ¢ even. Then the Frattini
argument shows that E, is normalized by an element of Aut(G,) lying in the coset of
a graph automorphism. But no such automorphism can normalize D,,. Say G = F,(q)
with ¢ odd. Here we use the embedding of SO™(4, q) X SO~ (4, q) < PSO(9, q) to
conclude that E, centralizes a klein group C < G, with C contained in a parabolic
subgroup of G,. Then (2.3) gives CO(C) = G,. Now use induction and the results of
§4 to conclude D, = G,. For G = 2E «(q) we have E;, < J where J = L,(q) X Ly(q?%)
or F,(q), according to whether we are in case (ii) or (iii)). We then have J </, and
order considerations contradict X = (0"(D,)))™. ‘

If G = E/(q), use Table (3.3) to get a subgroup J such that
J/Z(J) = Ly(q*) X Uy(q). By orders we may take E, <J and thus J < D,. But
then Li(g?) X Uy(q) < X= F,(q), whereas a consideration of the parabolics of
F,(q) shows this to be impossible. Similarly, if G =’D,(q), then G, contains a
subgroup isomorphic to SLz(q) o SL,(q?). But then E is in such a subgroup and 50
contains  L,(q) X Ly(q ). However G,(q) contains no such subgroup, so
(07(D§™)) # X.
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Finally, suppose G = Ey(q), p is associated with ¢® — 1 and X = PSO™ (16, q)..
Let M be the natural module for Y = 0" (16, q), choose e € E§, and regard e € Y.
Then e acts on M and we set Y, = O"(Cy(e)). Write M = M, ® M,, a sum of
(e)-invariant 8-spaces of M. One checks that Y, =1, 0O7(8,q), or SL(2, qa*)
depending on the action of e on M, and M,. However, by (3.3), G, contains a central
extension of O7(12, q)’ X Uy(q). So G, contains a central extension of
07(8,g9) X 0% (4,q) X Uy(q), and some element, e, of E, — Z(G,) centralizes a
subgroup isomorphic to SO* (4, q) X Us(q). Moreover, each of the factors of the
subgroup is generated by conjugates of ¥, so Cj(e) contains SO* (4, q) X Uy(q),
contradicting X = I. This completes the proof of (5.7).

(5.8) Let p be associated with ¢,. Then none of the following occur: G = G,(q),
p>3,and x = 1,2; G = E¢(q) and x = 5,10, 12; G = Fy(q), and x = 3,6.

PROOF. As in the proof of (5.7) we produce a certain subgroup X of G. However
this time X will be a central product of two quasisimple Chevalley groups. The
triples (G, ¢,, X/Z(X)) are as follows: (F,(q), 3, Ls(q) X L;3(q)),
(Fy(9), 96> Us(9) X Us(9)), (Es(q), @5, Ls(q) X Ls(9)), (Eg(9), 10, Us(9) X Us(q)),
(Eg(@), 912,°Dy(q) X°Dy(q)), (Gx(q), @ 0F 9, L(q) X Ly(q)). The existence of X
follows from Table (3.3) in all but the first and last cases. In the first case let
X = X,X,, where X; = (U.,,,U.q4,) and X, = (U.,,U.;). In the last case let
X = X, X,, where X, =(U.,,) and X, = (U.,). (In each case s denotes the
positive root of highest height in 2.) Using Table (5.2) we check that X contains a
Sylow p-subgroup of G,, so we may take E, < X.

First we claim that each component of X has p-rank 1, so that E, = Z, X Z,. This
is clear from the theory of linear groups except for the case where

X =3D,(q) X*D,(q). Suppose m,(*Dy(q)) > 1. Here the argument of (5.6) applies.
Namely, E, < C(E,) with E, = Z X Z, and E, in one of the components of X.
From here induction, the main results of §4, and (2.3) give a contradiction to
CG (E,) < G,. This proves the claim and we write E = E| X E,, where E, = E N X;
and X,, X, are the components of X. Clearly X < CG (EO)

Next we set I = (V% N D,) for V a long root subgroup of G,. We will determine
the structure of I as in (5.7). We have X < D, < N; (I) and either by (3.4) or by
construction, at least one of the components of X is generated by conjugates of V.
We use (2.8) to obtain the structure of 1. Set I = I if ¢ >3, [ = 1/0,(1) if ¢ = 3,
and I = I/0y(I)if ¢ = 2. Now X < D, < Ng (1) and at least one of the components
of X'is actually contained in /. By (2.3) and (2 8) the structure of I / Z(I) is known
and I =1, - --I,, a central product, with I, = (V! for some ¥, € V¢ and I, is
either a Chevalley group over F,, or ¢ = 2 and E(I)) is described in (2.8)(iv). Since
m,(Eqy) = m,(Gy) = 2 and I/I(r E,) = {1}, we must have X < N(I)fort =1,...,k.
As X=X, X induces a group of inner automorphisms on each I, and since
HU(r, E;) = {1} (by (2.3)) we conclude that k < 2. Indeed, if k > 2, then there exists
i € {1,...,k} such that pt|7|, and for this i, [X, )= 1. Now let J = IX and
J = IX, IX/0)(I), or 1X/0y(1I), depending on whether ¢ >3, ¢ =3, or ¢ = 2.
Then either J # I, or J = IL where [I, L] = 1. In the second case we must have
k=m (I) =m (L) = 1. This can be seen by using the facts that m ,(G,) = 2 and
U(r, EO) ={1}. Consequemly E, N L # 1, and we conclude that L is the image of
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one of the components of X. Write J = J,J, a central product, with E( J)) quasisimple,
and E(Jz) quasisimple or J2 = 1. Also we have X = (X N J,)(X N J2) and X = X"
Thus I’ contains root elements. If ¢ = 2, this rules out all exceptional cases of
(2.8)(iv) other than the Fischer groups F,,, Fy;, F,,. Each of | F);| and | F,,| is
divisible by 23, whereas 231| G, |. So these cases are out. If J,/Z(J) = F,,, then
order arguments force G, = Eg(2) and JX =X, | X F,,. By [6] some parabolic of G,
contains a Sylow r-subgroup of X, in its unipotent radical and F,, in its Levi factor.
Consideration of the nilpotence class of the Sylow r-subgroup of X, and order
considerations lead to a contradiction. Therefore, J = J,J, with each of J,, J, a
central extension of a Chevalley group over F,.

We claim that J = X and we indicate by example how this is proved. Say
G = Ey(q) and p is associated with @5. Then X/Z(X) = Ly(q) X Ls(q). Suppose
that X < J,. Checking orders of Chevalley groups defined over F, we conclude that
J, must be an extension of L,y(g). This implies that some p-local subgroup of G, and
hence some parabolic subgroup of G, involves L(q). The parabolic subgroup is
necessarily the maximal parabolic of E¢(q) that involves E,(g). Repeating this we
see that some proper parabolic subgroup of E,(g) must involve Lg(g). This is
impossible (compare orders). So we may assume X, <J, and X, <J,. Say J, > X,.
Considering possible choices for J, we can argue as above. For example if J, involves

L¢(q), then some proper parabolic subgroup of G, involves Ls(g) X Ls(g) and we
argue as above to get a contradiction. Thus J = X as claimed. The other cases are
similar, but there is one troublesome point when G = Eg(q) and p is associated with
®,0- Namely, we must rule out the case J/Z(J) = PSU(10, q). Suppose that this
occurs. Then J has a parabolic subgroup involving Ly(q*) and containing an
element e € E*. It follows that e is in a parabolic subgroup, P, of E4(q) involving
either E,(q) or D,(q). We claim that C; (e) contains a conjugate of V. In the E,(q)
case this follows from the fact that Z(O"(P)) is a long root subgroup. For the D,(q)
case use (17.14)(ii) of [3] to see that the Levi factor of P acts on O(P) as on the
natural module for O* (14, q) and root groups correspond to singular 1-spaces.
Considering the action of e on the usual module, we have the claim. On the other
hand C,(e) contains no conjugate of ¥, and this contradicts the definition of J. So in
all cases we have the claim that J = X.

By (2.7)(iii) and (2.11) we may take E, < H and find e € E,— (E, U E,) such
that Cp;(e) # 1. It follows that L, = O"(CGO(e)) is a nontrivial central product of
Chevalley groups defined over extension fields of F, (see (2.6)). Since U(r, E,) = {1},
E, N E(Ly) # 1. In particular E(L,) # 1 and E(L;) induces a group of inner
automorphisms on X. But U(r, E,) = {1} implies E(L,) <J and so E(L,) < X, X,.
However C(e) N X, )72 is an r’-group, so this is a contradiction.

At this point we have dealt with all cases except those for which either p is “small”
or G, has Lie rank 2.

(5.9) Let G = F,(q) or *E¢(q). If G =2E¢(q) and p = 3, then suppose p|q — 1.
One of the following holds:

(i) D, = G,.

(ii) p = 3, G, = F,(2) or F,(4), and for suitable choice of E,, CO(EO) < N (Ey)
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PROOF. By Table (5.2) and the results of (5.3)—(5.8), the only cases to consider are
p =5]|q+ 1 with G =2E¢(q) and p = 3| ¢ = 1. First consider the case p = 5. Then
G =2E,(q) and from the extended Dynkin diagram of G we find a subgroup, X, of
G with X a central extension of PSO(10,q) and X generated by long root
subgroups. Considering the action of H on X we then find a subgroup H, < X with
[H, X]=1 and H, of order divisible by (¢ + 1)/(3,¢q + 1). From order
considerations we may take E, < H;X. One then argues that E, < O,(H,) X F,
where F is the direct product of 5 copies of O,(Z,.,) and F acts on the usual
module for 07(10, q) respecting a decomposition into five pairwise orthogonal,
anisotropic 2-spaces. Hence there is a subgroup E, <F with E, < C(E)),
E, =Z,X Z,, and E, centralizes a proper r-subgroup of X. So C5(E)) = G, by
(2.3). Then minimality of G together with (2.16) and the results of §4 imply
G, = Cg(E,) < Dy. So from now on we may assume p = 3.

Suppose G = F,(q). From Table (3.3) we have a subgroup L < G, such that there
exists Ly < L with | L: Ly|= 3 and L, = L,L,, the central product of two copies of
SL(3, q) or SU(3, q), according to 3|g— 1 or 3|g+ 1. If 3| g — 1, then we may
take L, = (U. o, U.o,) and Ly = (U.,,U., ) where s is the positive root of
highest height. Now suppose G —2E6(q) and 3| g — 1. We regard Fy(q) <2E6(q)
and write *Eg(q) = (U.4, U. o, U.., +¢,,4) where U, < U U, < U etc.
Here we have a subgroup L > L such that L contains L0 L L, as a normal
subgroup of index 3, where L, = (U. ay +,,4) SLG, q 2). Then L, <L,
L,=L,NnL,and[L,, L] =1 Let(z)=Z(L) = Z(L).

Suppose g # 2,4 and G, = F,(g). We may assume that z € E, (use (2.9)(a)). We
claim that there exist 3-elements x, € L, and y, € L, such that |x,y |=3,
x, )y €Ly, — Z(Ly), and x,y, € C(E,). If E;N Ly# Z(L,), then just choose
x,y, € Ey — (z). Suppose E; N L, = (z). Then E, = (z)X (z') forz’ € L — L.
Choose x, € L,, y, € L, each of order 3 such that z’ centralizes x, and y, mod
({(z)). Then z’ centralizes one of x,, y;, x,y;, or x,y;' and the claim follows. If
E, < C(x,) or if E; < C(y,), then set E, = (x,, z), respectively (y,, z). Then E,
centralizes a component of L, so C;(E,) = G, by (2.3). By induction, (2.16),
(2.6)(ii), (2.5), and §4 we have D, = G,. So suppose neither x, nor y, is centralized
by E,.

Let E, = (z, x,y,). Then E, < C(E,) and if E, normalizes a proper r-subgroup
of G,, we can argue as above. Suppose this is not the case. Then 3|q + 1,
L, =L, = SU(3, q) and relabeling, if necessary, x, is in a conjugate, C, of (U.;),
where s is the root of highest height and where C < L,. Then E, < N(C)' = C X I,
where I = Sp(6, q). Considering elementary abelian 3-subgroups of Sp(6, q) we
argue that there exist conjugates C,, C,, and C; of C such that
E, < CXC X G X G. We claim that I < Cg(E)). This will follow from (3.1)
once we show that the copies of Sp(4, g) in I corresponding to C, X C, and C, X C;
are in Cg (E,). Say, for example, I, is the copy of Sp(4, q) with C, X G, <, and
(1o, G]1 = 1. Then C, X G, < C[(E)) and by (3.2) either I, = Ci(E)) or C[(E))
normalizes C; X C,. A direct check shows the latter to be 1mpossnble Thus
Iy < C;(E,) and we conclude that I < C;(E,). We may now assume that
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C; = (U.a), for @ = a; + 2a; + 2a,. By symmetry I=E(Cs(G)) < Ci(E)). A
check with root systems shows that (I, I)= G, so G, = C;(E,) and we argue as
before that G, = D,. Now suppose G =2E¢(q) with 3| g — 1 and ¢ > 4. Then we
may take E, <L <L, so by the above minimality of G and §4 we conclude
C(‘;’O( E,) = (L, F,(q))= G,. So for these cases (i) holds.

Next suppose that ¢ =2 and G = F,(2). We will exhibit an elementary abelian
subgroup, F, for which generation fails. Write O,(L,) = (x;, x, ) and
Oy(L,) = {y1, y,)» so that {x;, x,)=(y,, y,) is extraspecial of order 3. Then
L; = O4(L,)Q, where Q, = Q, for i = 1,2. Finally, L = L, (e), where |e|= 3. To
see that e exists just observe that L contains a Sylow 3-subgroup of F,(2) and that
F,(2) contains a direct product of four copies of S; (each generated by long root
subgroups). So F,(2) has 3-rank at least 4, whereas L, has 3-rank 3. We may assume
that e € C(x;) N C(y,), so setting Z(L,) = (z) we let F = (z, e, x,, y,). By (3.4)
and the structure of SU(3,2) we may assume that the involution in Q, is a root
involution of G, and that x, is a product of two root involutions. This is true for
each x € (x;, z)— (z). So for each such x, C;(x) = (x)X Sp(6,2). Let F, be
maximal in F. If x € F, for x € (x,, z)— (z), then C(F,) < (x)X Sp(6,2) and we
have C; (F;) < N(F) (see (4.1) and the proof of (4.3)). From the work of Burgoyne
[7] we have L = C;(z) and we can argue that L is normalized by a graph
automorphism of G,, which necessarily interchanges L, and L,. Consequently, if F,
contains an element of (y,,z)— (z) we again get C;(F)) < N(F). So we may
assume that F, contains z and an element g = x|y{ for i = =1, j = =1. Then
Co(F)) < Gg(2) N G5 (8) = Cr(8). But Cy(g) < O5(L)e) and it is easy to see
that C,(g) < N(F). So (ii) holds.

Suppose ¢ = 4 and G = F,(4) or *E¢(4). Write L, = L,L, with L, = L, = SL(3,4)
and L, = L,L, with L, < L, = SL(3,16). Let J € Syl,(L) and set J,=J N L, for
i = 1,2. Then J, = J, is extraspecial of order 3’ and as J has 3-rank 4 (as for F,(2))
we may write J = J,J,{e) with {e)= 3. Set (z)= Z(J) = Z(J,) = Z(J,) and note
that J € Syl3(1:). By (2.9) we may assume z € E,. Suppose that a € E;, with
a €J,— (z). Then E; < C;(a). Now a € J where J is generated by two opposite
root subgroups of G, so Cg(a) = (a)X I where I =Sp(6, q) if G= Fy(q) and
I = SU(6,4) or 0°(8,4) if G =2E¢(4). Now argue that E, normalizes an r-subgroup
of I (one can argue as in (4.2)). So in this case (i) holds by (2.3). Now assume that E
contains no such element, a, or any conjugate of such an element.

By Burgoyne [7] each a € Ef is conjugate to z and C;(a)=C;(z) =L
(respectively L). For F,(4) we will produce a subgroup E; for which (ii) holds, and
for 2E4(4) we will show that (i) holds. First consider G = F,(4). As before write
J, =(x,, x,) and J, = (y,, »,), where [x,x,]=2z and [y, y] =z"". Set
Ey =<z, x,y,, x,0,). If e € E; — (z), then C;(e) N C;(z) = C,(e) is solvable.
By Burgoyne [7] it follows that z ~ e. So E§’ is fused in G,,.

From the construction of L one can show that there exists e € J — J,J, such that
x{=x,,y{ =y, X5 = x,x,, and y; = y, y,. Let F be a hyperplane of E, with z € F.
As N, (E,) is transitive on (E,/{z))¥, in order to show C; (F) < N; (E,) it will be
enough to show C; ((z, x,y,)) < N; (E). But

CGO(<Z’ x,p)) = Clx ) = (X, 101, 2, X 5, €) < NGO(EO)’
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as needed. Now let F be an arbitrary hyperplane in E,. Say z8 € F. Then E, < LS.
If F<L§, then F is L§-conjugate to (z%,(x,y,)¥), so C;(F) is L§-conjugate to
Cr(xy )% and as Cp(x,,)8/(z58,(x,y,)*) is abelian, we have C; (F) < N(E,).

We claim that Nj; (E,) is transitive on Eg*. We already have N, (E,) transitive on
(Eo/{z))* and it follows that E, — (z) is fused in Nj; ( E,).

It will suffice to show that U* is fused in N;(E,), where U = (z, x,y,). Let
P ={z,x,, y|, X5, 5, €) € Syl3(G). One checks that U< P, Cp,(U)/U is elemen-
tary of order 3°, and U = Cx(U). Let z8 € U — (z). Then Cx(U) has index 3 in a
Sylow 3-subgroup of C;(z#) and it follows that N (U)/C,(U) contains SL(2, 3).
Also, C;(U) = C(U) = Cp(U). If w, is the long word in W, then w, induces a
graph automorphism on L, and on L,, so notation may be chosen so that wj, inverts
U, w, € N(E,), and w, centralizes E,/U. It follows that E,/U = C(w,) N Cz(U)/U
and so E; < Ng(U). This proves the claim. So if F is any hyperplane of E,,, letting
z8 € F, then we may take g € N(E;). This gives F < E, < L§ so by the above
Co(F) < N(E,). Therefore (ii) holds and the case of Fy(q) is complete.

Finally, consider E¢(4). By previous arguments we may take E, < L < L and
assume that each element of E§ is conjugate to z and that E, normalizes no proper
r-subgroup. Say z € E, and set Dy = C3(E,). By §4 L, < Dy, so L, < D, N F(q).
This holds for each element of Ef*. Now L, is generated by short root subgroups of
F,(q), but as ¢ = 4 we can apply (2.8) to get the structure of ( L")y = X, Since
z € L,< X, we have E, < X. Analysis of the possible choices for X and using
U(r, E,) = {1} leads to X = F,(q). But then D, = (F,(q), L,)= G,, so (i) holds.
This completes the proof of (5.9).

(5.10) Let G = Eq4(q), or E¢(q) and p = 3|q + 1. Then one of the following
holds:

(i) D, = G,.

() p=3, G=Es2), E44), or E¢(2), and there exists E, such that
C(Ey) < Ny ().

ProOOF. By Table (5.2) together with (5.3)-(5.8) either G =2E4(gq)andp = 3|q + 1
or G=Es(q) and p=3 or 5 with p|g= 1. First assume that p|g+ 1 and
G = E¢(q). Then G, = (U. ) X I, where s is the positive root of highest height and
I, = SL(6, q). So Gy = X, where X = SL(2,q) X (SL(2,q)wrZ,;). If p =5, then X
contains a Sylow 5-subgroup of G, so we may take E, < X and argue as in (5.5) to
get Dy = G,. Suppose p = 3. By Table (5.2) we may assume E, < F,(q) < E¢(q)
and E, < L, where L is the second group listed in Table (3.3) for the group E¢(g). In
fact, from the proof of (3.3) we may assume that F,(¢) N L is the second group
listed for Fy(q). If ¢ > 2, use (5.9), (4.1), and (4.5) to get D, = (L, F,(q)) and then
apply (2.8) to obtain (L, F(q))= G,. Suppose g = 2. Here we choose
Ey < LyN Fy2) < Ly N Fy(4) as it was constructed in the F,(4) case of (5.9)(ii). The
same arguments show that D, < N; ( E); hence (ii) holds.

If p=5]g— 1 we again may take E, < (U.,)X [,. Then E, projects to an
abelian subgroup of I, = SL(6, q). Consequently E, acts reducibly on the usual
module for SL(6, ) and H(r, E;) # {1}. So here (2.3) implies that (i) holds. At this
point we may take p = 3. If G = E(q), then 3|gq — 1 and if G =2E(q), then
3|g + 1
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By (3.3) G, contains a subgroup L such that L contains a normal subgroup, L, of
index 3 and L, = L,L, L,, a central product of three copies of SL(3, g) or SU(3, q)
depending on whether G, = E(q) or *E¢(q). Also Z(L,) = Z(L) = Z, X Z,. We
write (x, ) Z(L;). Then x; # 1 for i = 1,2,3 and we may choose notation so that
x, = x,x;' and z = x,x, generates Z(G,). By Table (5.2) a Sylow 3- subgroup of L
has index 9 in a Sylow 3-subgroup of Gy,. Here G, denotes the preimage in G of G,.
We claim that Ng (L) contains a Sylow 3-subgroup of G,. To see this we go back
to the proof of Table (3.3), where L was constructed. We had X;, X,, X; commuting
copies of SL(3, K) with centers (z,),(z,),(z;), respectively. For each i we
constructed a; € X, with a? = a,z,. Then a,a;' € Gy, — G, and a,a;' € N(L). Also
there was an element g € G, interchanging X, and X,, while normalizing X;.
Similarly, we can construct g’ € G, interchanging X, and Xj;, normalizing X,. So G,
contains a 3-element x transitive on { X,, X,, X;}. Then L{x, a,a;')= L contains a
Sylow 3-subgroup of G, and L < L. We may assume E, < L.

It is possible that E, < C(x,), but we may assume z € E; by (2.5), so
[x,, E;] < {(z)< E,. A slight extension of (2.9) allows us to take x, € E;,. We may
assume that there exists y € E, with [x,, y] = 1 and y &€ (x,, z). To see this argue
as follows. If E, N Cp(x,) > {(x,, z), just choose y in the intersection. Otherwise,
E,={(x,,z, y) for any y € E, — (x|, z). But then y is transitive on { X, X, X3},
HU(r, E;) # {1}, and by (2.3), (i) holds.

Suppose ¢ > 4 if G = E¢(q) and ¢ > 2if G =2E,(q). Then L, < D,. Let V be a
long root subgroup of G, and set I = (V“ N D). By (3.4) Ly<Iand by 2.8) [isa
central product of finite groups of Lie type each defined over F,. Using order
arguments we conclude that / = L. Also, L, = 0" (Co (x1))-

Since Cg(x,) is connected we can embed (x,) X (y) in a maximal torus T, of G.
Let 7, < B,, where B is a Borel subgroup of G and let U be the unipotent radical
of B,. Then U, is the product of 36 root subgroups and since L, = O" (C(,O(x,)) we
see that x, centralizes precisely 9 of these root subgroups. So some element of
(x,, y)— {x,) must centralize at least 9 root subgroups of U, and we may take this
element to be y. Using this information together with basic properties of the root
system of type E, we have the following possibilities for the Dynkin diagram of
E(C4(y)): A, UA,UA,, AU Ay, A U A, As, D,, Ds. As in the proof of (2.6) we
see that the components of C; () are central extensions of some of the following
groups: Li(q), 2<i <5, U(q) 2<i<5, Ly(q’), U(q’), Us(q), Ds(q), *Ds(q),
2D,(q), Dy(q), >Dy(q). Moreover, ¢° divides the order of E(Cs(»)).

Let J be a component of Cj;(y) and let F = Ny (J). Suppose we knew that for
any such J, J = C,O(F ). Then (2.16) implies that E(Cg(y)) < D,. However, this
contradicts the fact that L, = I = E(D,). Therefore, there is some component J
with J # CP(F). By (4.1), (4.5) and induction we conclude that F/Cg(J) is not
contained in the subgroup of Aut(J) generated by inner and diagonal
automorphisms. To handle the remaining cases we appeal to (6.1), (6.3), (6.4) and
(6.5) of the next section. The proof of (6.1) does not require Theorem 1. The proofs
of (6.3), (6.4) and (6.5) make use of Theorem 1, but since we are in a minimal
situation these applications are valid. Therefore, we conclude that J = C( F), which
is a contradiction.
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Suppose G =2E,(2). Then G, has Sylow 3-subgroup of order 3'°. Let s be the
positive root of highest height. Then I = E(C; ((U..))) = SU(6, 2). Now I contains
an elementary abelian subgroup, F,, of order 3° which is normal of index 9 in a
Sylow 3-subgroup of I. Set (v)= O4;((U.;)) and E; = (v) X F,. We claim that
CO(Ey) < Ng(E,). Let E, be a hyperplane in E, with v¢ € E, for some g € G,.
Then Ey< G(E) < Cgv) =2y X SU(6,2). So E, projects to E(Cg(v)) as an
elementary abelian subgroup of order 3°. No proper parabolic subgroup of SU(6, 2)
contains such a subgroup. By (4.1) and the proof of (4.2), G (E,) < N(E,).

Now suppose E, is a hyperplane of E, containing no G,-conjugate of v. Then
E, = (v)X E, and E, projects to F; in I. Let M be the natural module for SU(6, 2)
and let {v,,...,vs} be an orthonormal basis for M. We may asume F is diagonal in
the basis and F, = (x,)X -+ X {xs), where (v,)x; = av;, (v;;,)x; = a”'v;;,, and
(v)x; =v; if j#i,i+ 1. Here « €F, is an element of order 3. Each x; is
G,-conjugate to v, so for each i either vx; or v™'x; is an element of E,. Say vx, € E.
If v™'x, € E,, then x,x, € E,. However, we have x,x, ~ x, in /, a contradiction. So
vx, € E,. Similarly, vx; € E|. Then (vx,)(vx,)(vx;) = x,x,x; € E, and again we
have E, N v% s @. This is a contradiction. So D, < N(E,).

Finally, we consider G = E4(4). Let L = L(x). We claim that there exists
e € L — L with | e|= 3. To see this consider the natural embedding of G, in E,(4).
The group N of the Tits’ system for E,(4) splits over the split torus, T. To see this
just observe that the long word in the fundamental generators of the Weyl group of
E,(4) inverts T. The splitting of N over T forces a similar splitting in G, and this
guarantees the existence of e.

We may assume X7 =X, and X; = X;. So E(C,(e)) = PSL(3,4). Let
(b, c) € Syl;(E(C,(e))) and set E, = (x,, x, b, c). We fix a hyperplane, F, of E,
and claim that CGO(F ) < N;(E,). Clearly, we may assume z € F.

Suppose, x; € F. As N;(E,) is transitive on (E,/{x,, x,))*, we may assume
F={z,x,b)=(x,, x5, b). Then

Co(F)<GCox)) =L

Write b = b,b,b; and ¢ = c,c,c;, Where b, ¢, €L, for i =1,2,3, and let V =
(X, X3, by, by, by, €)= C; (b). Then Cg(F) = C;(b) = ¥(d) ford € L — L,. Now
e normalizes V(d) and we consider V{e, d)/{x;, x,). The group V/{x,, x,) is
elementary abelian and d normalizes V/{x,, x,) N C(e) = (b, c, x|, x,) /{X}, X3).
On the other hand, ([d, ¢;]){x;)= (b;, x;), for i =1,2,3 and this implies that
[d,c] < (b, x|, x,)= F. We conclude that F = C;(F) = C,(b). In particular,
E, 2 Ci(b) = Co(F).

Viewing C;(b) N Cg(x,) first as a subgroup of L and then as a subgroup of
Cg(b), we conclude from [7] that b ~ x, in G,. Let U = (z, x,, b) and D = N;(U)
N C(U/(z)) Then D is a 3-group of index 3 in a Sylow 3-subgroup of
Co({x),2)/{z)) and in a Sylow 3-subgroup of C;((b, z)/(z)). It follows that
O%(Ng(U)) induces SL(2,3) on U/(z).

We have C;(U) = (U, by, b,, ¢, d). Also,

(c1, 3 3 2)(eY= (ery cfa i 2)(e), (b by, by, 2(e)= (b, b5, b, 2)(e),
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and both groups are isomorphic to Z, X (Z;wr Z;). Set b, = [b,, e] and ¢, = [¢,, e].
Then D = Cg (U){e, c¢y). We will use the fact that (z, b, b,) is the unique hyper-
plane of (z, b|, b,, b;) that contains z and is normalized by e.

Now D/C;(U) acts on U =Z; X Zy X Z; as the group of transvections in
SL(3,3) w1th fixed direction (namely (z)). Hence, O?(N, LU)/C(U) is
isomorphic to O%*(P), for P a parabolic subgroup of SL(3,3). In pamcular
o* (Ng (U)). is transitive on (D /G (U))*. Consider the action of D on C; U)/U
=(b >>< (b, Y X (&)X (dY, where bars denote images modulo U. Then ¢, induces
a transvection on this elementary group having centralizer (b,, b,, ¢) and commuta-
tor space in (b,, b,). This commutator space is normalized by e, so earlier remarks
imply that [C;(U)/ U, {¢cy)] = (by). We must have e inducing a transvection on
G (U)/U, and since [by,e] = b,, we conclude that [C;(U)/U,(e)] = (by),
as well. It follows that [D,C;(U)] U/U = (by) < O%(N;(U)). Moreover,
O?(N(U)) normalizes Z(D/U) N C;(U)/U = (by, ¢). Therefore, 0% (N (U)) <
C({by, c,U)/U), s0 O*(Ng(U)) < N(E,). Consequently, there is an element g €
N(E,) such that x, € F&. By the previous case, C; (F*) > N(E,); whence C; (F) <
N(E,). This proves the claim. Therefore, (ii) holds and the proof of (5.10) is
complete.

(5.11) Suppose G = E,(q) or Eg(q). Then one of the following holds:

(i) Dy = G,

(ii)g=2andp = 3.

(ii1) g = 4, p = 3, and G, = Egx(4).

Moreover, if p = 3 and G, = E,(2), E¢2), or E¢4), then there is an elementary
abelian 3-subgroup E, < G, such that CJ(E,) < N; (E,).

PROOF. Since pt|Z(G,)|, E, = E is elementary abelian. By Table (5.2) and
(5.3)-(5.8) we need only consider the cases p = 3,5,7 and p|q = 1. Regard

= E,(q) < E4(q) = G, in the obvious way. Let J = (U, ;) for s the positive root
of highest height in G, = E4(q). Then I = E(C; (J)).

Suppose p = 7. Then Table (5.2) implies that JI contains a Sylow p-subgroup of
G,. If p| ¢ — 1 then a Sylow p-subgroup of I is contained in a parabolic subgroup of
I with a section of type L,(g). So here (2.3) gives (i). Suppose p | g + 1. By Table
(3.3) and (3.4) E4(q) contains a central extension of Uy(g) = X with X generated by
root subgroups of Eg(q). Then X contains a conjugate, J& of J such that
Cy(JE) = 07(GU(T, q)). So I= O"(GU(7,q)) and has Sylow 7-subgroups
isomorphic to 0;(Z,,,)wrZ,. Let S € Syl,(/) or S & Syl;(JI), according to
G, = E;(q) or Ei(q), and let S, be the unique subgroup of S with S, the direct
product of 7 (respectively, 8) copies of O;(Z, ). By (2.3) and the argument used to
prove (4.2) we may assume that E;, < S,. On the other hand, I contains the direct
product, J; X --- XJ;, of seven conjugates of J. Therefore, we may assume
E,<J, - --J, (respectively, JJ, - - -J;) and argue as in (5.5) to get (i).

Suppose G, = E;(q) and p| g — 1. Here p = 3 or 5 and a Sylow p-subgroup of G,
is contained in a conjugate of the parabolic subgroup of G, having an E((q) section.
So U(r, E,) # {1} and (i) holds by (2.3).

Next suppose G, = E;(q) and p|q + 1, where p = 3 or 5. If p =5, then let J,
and L = O%(GU(7, q)) be as in the case p = 7. By orders we may assume that
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E, <J,L, and arguing as before we have E, conjugate to a subgroup of J, - - - J;,
where the product is a commuting product of conjugates of J;. Once again argue as
in (5.5) to get (i). Suppose p = 3. By Table (3.3) G, contains a subgroup R such that
E(R) is the covering group of 2E4(q) and R/E(R) = Z(R) = Z,. Then R contains a
Sylow 3-subgroup of G,, so we may take E, < R. Also E, = E is elementary abelian.
Recall the subgroup L discussed in (5.10) and regard E, < N; (L). By (2.9) we may
take z € E,, where (z)=Z(L). Assume q>2. Let e € E,— (z) and set
= (e, z). By (2.16), (2.6)(i), (2.5), (4.1) and results of this section,
0’(CG (1)) < D, for each 1€ Ef. By (5.10) and (34) E(R) <], where
1= (VGO N D,) and V is a root subgroup of G,. Then, assuming (i) fails, (2.8) and a
check yield E(R) =1 = O"(E(D,)). We then must have 0’(CGO(t)) < E(R) for
each t € Ef. Now argue (see (2.7)(ii) and (2.11) for example) that ¢t € E; — (z)
may be chosen with O"(Cg(1)) # 1. Then H(r, E|) # {1}, C¢(E,) = G, by (2.3),
and we have a contradiction. This completes G, = E,(q) except forg = 2,p = 3.

Suppose G, = Eg(q) and p = 5. By Table (3.3) G, contains a subgroup Y such
that E(Y) is the central product of two copies of SL(5, q) or SU(5, ¢), according to
S5|g—1or5|g+1 Also Y/E(Y) = Zs and, by Table (5.2), Y contains a Sylow
5-subgroup of G,. We take E, < Y, and let J and I be as before. Since a Sylow
S5-subgroup of IJ has index 5 in one for G,, we may assume IJ contains a
hyperplane, say F, of E,. Suppose F contains Fy = Zs X Zs. As in (5.10) there are
commuting G,-conjugates Ji,...,J; of J such that F,<JJ, - --J; =J, Clearly

= CJ’O (Fy), so by (2.16), (4.1), and the results of this section, we have J; < D,. But,
also, (4.1) implies E(Y) < D,. We can now use (2.8) to argue that D, = G,. So
suppose F = Z,, that is E, = Z; X Zs. By (2.9) we may assume z € E,;,, where
(z)= Z(Y). From the structure of SL(5, q) and SU(S5, q) it is clear that E; acts on
an elementary abelian subgroup of E(Y) of order 57. It follows that E, can be
embedded in an elementary subgroup of order 5°. So using (2.9) we reduce to the
previous case, and obtain D, = G,. From now on we have p = 3.

Let G, = E4(q) and use Table (3.3) to get a subgroup L, < G, such that
E(L,) = AyB,, a central product, where 4, = SL(3, q) or SU(3, q), B, = E((q) or
2E6(q) and in each case the choice is determined by whether ¢ = 1 or -1 (mod 3).
Also Z(L,) = (z)=2Z, and L,/E(L,) = Z,. By Table (5.2) L, contains a Sylow
3-subgroup of G, so we may take E, < L,. There is an element x; € B, such that
| x,|= 3 and E(Cy(x)) = A4,A4,4;, a central product of three Gg-conjugates of 4,
(see Table (3.3)). We set 4 = A, A, A, A, and choose notation so that x, € 4,. Then
Z(A) = (2)X (x,).

We also have N, (A4) containing a subgroup A > A with A/A = Z, X Z, and A
normalizing each A4;. Finally, there is a 3-elemente, € N, (A) such that 4 = 4° and
e, permutes {A4,, A2, A5} as the 3-cycle (1,2, 3). By orders A(e,) contains a Sylow
3-subgroup of G,, so we choose E, < A(e,).

First suppose ¢ > 4. If E, <A, then let E, = (z, x,). If Ey £ A, let E, = (z, e},
where e is any element in E, — A. Then E, < C(E,). In either case it is clear that E,
centralizes a proper r-subgroup of G,, so (2.3) gives C;(E,) = G,. But the
assumption g > 4 together with (4.1), (4.5), and the results of this section give
Ce{E)) < Dy. So (i) holds in this case.
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Suppose, now, that g = 4, p = 3, and G, = E4(4). We will produce a subgroup E,
such that (iii) holds. Retain the above notation. Thus E(L,) = SL(3,4) - 56(4) Set
X, = X! and x; = x5. Then x,x,x; = 1, s0 x; = x;'x;' and we may assume that
z=x,x;". Set S € Syl;(A(e,)) with e, € S, and write S, = S N A4, for i = 0, 1,2,3.
Then S; = (a,, b;), where [a;, b;] = x, for i = 1,2, 3, [a,, by] = z, and e, stabilizes
{a,, a,, a;} and {b,, b,, b;}. We now set E, = (z, x,, aya,a,as, b,b,bs, byb7'b,)
and observe that E,, is elementary of order 3°. We will show that Cgo( Ey) < N;(Ey).

Let F be a hyperplane in E; and assume z € F. First, suppose x, € F. Then
Co{F) < Cs(x)) N C4(2) = Cy (x,) = A. Calculation within A yields C;(F) <
Ng (Ey). Suppose F does not contain x,, so that E, = F X (x,). Using the results of
[7] one checks that (b b, b, x,Y* is fused in B, = E,(4). Let (x)= F N {bbybs, x,).
Then E, < C; (x) ~ C, (x,) and

CG”(F) < CG(,(<Z* x)) = A2

for some g € B,. Since x, & F, F projects onto a Sylow 3-subgroup of 4,/Z(A4,),
and it follows that C; (F) < (A(g,))*, whereg, € A N B,.

Let Q = (z, x|, a,a,a,, b,b,bs). As in the E(4) case, we have (Q/(z))* fused in
Np(Q). So we may take g € Ng(Q) such that xf = x and Q < (4,4,4,)%. We
claim that C; (F) is contained in a Sylow 3- subgoup, Y, of (A{g,)>)8. It will suffice
to show that G, 4, A‘)x(F) is a 3-group, where F is the projection of F N A% to
(A, A, 45)*%. However, C, 4 4((X\. 2, 4,)) is a 3-group for any ¢, € Q — (x,, z) and
F N Q8> (x§, z). This proves the claim.

Suppose Y = Y, (e) for some e € F, where Y,=Y N 4% If y € C,(F), then
y = e'y, for some y, € Y. So

Ey = Ed* = ((e)(Ey N Y))"" = (e)"(Ey N Yp)" = (e)(E, N ¥,) = E,

and y € N;; (E,). Suppose no such element, e, exists. Then F < Y. The projection
of E, to B, is nonabelian, so the projection of F to B, is nonabelian. This forces
Cy(F) < Y,. In particular, E, < Y, and so C,(F) < N(E,). We have now shown
that C; (F) < N; (E,), whenever F is a hyperplane of E, containing z.

If Fis a hyperplane of E, with E, = F(z), then F contains x,z’ = x, for some i.
As A < C(x) we use [7] to conclude that x ~ z. So C; (x) ~ C5(z) and 4 < Cg(x).
In view of the embedding of E, in 4 we can argue as above that C(F) < N(E,).
This completes the proof that CGOU( Ey) < Ng (E,) for this case.

We are left with the cases G, = E;(2) or Eg(2) and p = 3. Let s be the positive
root of highest height and J = (U. ;)= S;. Then C; (05(J)) = O5(J) X E(C;(J))
and E(C; (/) = 0% (12,2) or E,(2), according to whether G, = E,(2) or Eg(2). In
the former case E(C(J)) contains J, X --- XJ, a direct product of 6 G,-conjugates
of J. To see this just consider the direct product of three copies of O (4,2) in
01 (12,2). If G, = E42) let J, be a conjugate of J in E(Cg(J)). Then G, contains
J X J, X - XJg or J X Jy X J; X - XJg, depending on ‘whether G, = E;(2) or
Eg2). Let Oy(J) =(x) and OyJ) = (x,) for i=1,...,6 (i=0,...,6 if
Gy = E(2)).
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We claim that CJ(E,) < Ng(E,), where E, = (x, X;,...,Xs) or
(X, Xg, X5 --,X¢y, depending on whether G, = E;(2) or Eg2). First suppose
G, = E,(2). Let F be maximal in E, with x € F. Then by (4.1) we have
Co(F) =G (F)N Co(x) < Ng(Ep). Now suppose E, = (x)X F. As above we
may assume (x,)< F for i =1,2. So x"x;, x"x, € F for m,n € {1,-1} and
a€F for a=xx, or x;x;'. Now C(a)N E(Cs(J) = {a)X 07(10,2), so
Cy(a) N C(J) = {a)>x 07(10,2). From Burgoyne [7] we conclude that C;(a) =
(a)yXJ X 07(10,2). Again we use (4.1) to argue that C;(F) < N;(E,). So
Cc(;)o( Ey) < Ng(Ep).

Now suppose G, = Eg4(2). Here we argue as above. First let F be maximal in E,
with x € F. Then G5 (F) < Co(x) = (x)X E,(2), so from the above paragraph we
conclude that C; (F) < Ng(E,). To complete the proof argue as above, using [7] to
show that E(C;(a)) = 07(14,q). This yields cgo( E,) < N;(E,) and completes the
proof of (5.11).

(5.12) Let G = G,(q). Then one of the following holds:

(i) Dy = G,.

(ii) g = 2, p = 3, G, = Aut(PSU(3,3)) and D, normalizes a Sylow 3-subgroup of
G,, for any proper 3-subgroup, E,, of G,,.

PROOF. By (5.3), (5.8), and Table (5.2) we may assume p = 3. From Table (3.3) we
see that G, contains a subgroup L with L = SL(3, q) or SU(3, q), according to
whether 3| g — 1 or 3| ¢ + 1. Then L contains a Sylow 3-subgroup of G,, and we
take E, < L. If 3| ¢ — 1, then L = SL(3, q) has just one class of elementary groups
of order 3" > 3. They are isomorphic to Z, X Z; and are conjugate to a subgroup of
H. So (i) holds by (2.3).

Now suppose 3|g+ 1 and ¢ >2. Again Ey=Z, X Z; and Z(L) <E,. So
L <D, Fore € E,— Z(L), e is contained in (U ;) < L for some g € G, where s
is the positive (long) root of highest height (to see this check the action of e on the
usual module for SU(3, q)). Then E; acts on E(C;((U.,)%)) = (U.q, )%
Consequently (U%, )< D,, and usual arguments (e.g. apply (2.8)) show that
Gy = (L,{U. 4)%). Again (i) holds.

For g = 2, just note that G,(g) = Aut(U;(3)), so (ii) holds. This proves (5.12).

(5.13) Let G, =3D,(q). Then D, = G,,.

PrOOF. By (5.3), (5.7) and Table (5.2) we may assume that p is associated with ®,
or @, or that p = 3. Assume g # 2. By Table (3.3) G, contains a subgroup L with
the following properties: O?(L) = SL(3,q) if 3|q — 1 or if p is associated with
q®> — 1; 0¥(L) = SU(3, q) if 3| ¢ + 1 orif p is associated with ¢° — 1; L = O*(L)C
where C =¢%+ g+ 1 or g> — g + 1 depending on whether O%(L) = SL(3, q) or
SU@B3,q);[L,C]=1land LN C=Z(L).

Suppose p is associated with ¢> —1 or ¢® — 1. Then L contains a Sylow
p-subgroup of G, and we take E, < L. Then E, =Z, X Z, and
E, = (E,N E(L)) X (E, N C). At this point we can argue as in (5.8) to conclude
D, = G,.

Suppose, then, that p = 3. Again using Table (3.3) we see that L < L with
L/L = Z,. Then L contains a Sylow 3-subgroup of G, and we take E, < L. Also G,
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contains (U . ,,) X (U. ), for s the positive root of highest height, and this group is
isomorphic to SL(2, q) > SL(2, ¢*). Thus a Sylow 3-subgroup of G, contains a group
isomorphic to Oy( Z,.1) X O(Z ). 1t follows f_rom these facts that G, has 3-rank
2and E; = (z, y) for (z)= Z(L). In particular L < D,.

Let I =(V°N D,), where V is a root subgroup for a long root. Then
O*(L) <1< D,. Using (2.8) together with the fact that I < D, < N(I), we have
I =0%*(L). So O*(L) < D, and hence D, < N({z)). Also (2.7) and (2.11) imply
that we may choose y such that K= E(Ci(y)) # 1. Then K, < D, < N({z)).
Consequently, (2.3) implies the result, unless S; = O*(K,) £ C(z). However, from
Burgoyne [7] we see that 0% (K,) = S, is impossible.

The remaining case is ¢ = 2. We have G, = L = SU(3,2) and
Gy = X = Ly(2) X Ly(8). Let Sy = O4(L). Then S, has index 3 in a Sylow 3-subgroup
S of Gyand S <N;(L). Fors € S — S, S = Sy(s) and since S has exponent 9,
|s|=9. Thus E;<S, and G, contains one class of subgroups isomorphic to
Zy; X Z;. We may take E; < X N L so that {( X, L)< D,. Moreover, E, < L implies
that E, — (z) is fused, so L,(8) = E(C;(e)) < D, for each e € E; — (z). One can
now use (2.8) to conclude that D, = G,,.

(5.14) Let G, =*F,(q)'". Then one of the following holds:

(1) g > 2 and D, = G,.

(i) g=2,p =5, Ey = Zs X Zs, and CJ(E,) < N; (Ep).

(i) g=2,p=3, E,=2Z, X Z;, and CGOO(EO) = L,(3)(y), where v is the graph
automorphism of L,(3). In this case if we set G, =%F,(2), then CGO.( Ey)) =G,.

PROOF. By (5.3) we may assume that p is associated with @, ®,, or ®,. Suppose
the latter holds and ¢ # 2. Then G, contains a subgroup X = (X, X X,){t), where
X, =X|, X,=85z(q), and t*=1. By (5.2) we may take E,< X, X X, and
Ey = Q,(P) for P € Syl (G). Clearly (X, X X,){t)< D,. However the arguments
used in (5.8) do not work here because of the lack of root involutions. We proceed as
follows.

Let S, € Syl,( X)) and set S, = S}. Choose 1 # x € €(S)). Then S, < C; (x) so
x 1is 2-central in G, (see e.g. (18.6) of [3]). Now Cp(x)=>S, X X, and
G (x) = O?(P) for P a maximal parabolic subgroup of G,. The structure of G (x)
is given explicitly in §10 of [12]. We check that if Cp(x)> S, X X,, then
Cp(x) =S, - O)(PY, and it is easy to check that this group and X, generate G,,. So
suppose Cp (x) = §; X X,. Let § = (S, X §,)(1). Clearly Z(S,) X Z(S,) is weakly
closed in S, and hence S, X S, = C;(Z(S,)Z(S,)) is characteristic in S. By the
Krull-Schmidt theorem (p. 120 of [16]) the pair {S,Z(S,), Z(S,)S,} is characteristic
in S, and taking squares, we conclude that {Z(S,), Z(S,)} is characteristic in S.
From this and the above we see that S € Syl,(D,). Also Corollary 4 of [13] shows
that Z(S,)Z(S,) is strongly closed in S. But now consider Cy y(?) = Sz(q). By
(18.6) of [3] ¢ is G-conjugate to an involution in Z(S,). Applying Sylow’s theorem in
Coft) to (ey=E N Cy x(t) we see that Y= 0%(C,(e)) = Sz(g). But then
t € Y<D, and ¢ is a square in D,. This contradicts the fact that Z(S,)Z(S,) is
strongly closed in S. So D, = G, in this case.

If g =2 and p = 5, then E, = Os( X, X,) (notation as above) and E;, € Syl;(G,).
If E; = Os(X,), then C; (E,;) = E,; X X;, where {i, j} = {1,2}. Also it is easy to use
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the above arguments to check that N (E,) is transitive on Eg*. It follows that
Co(Ey) < N(E,) and (ii) holds.

We now suppose p|g = 1. If p| ¢ — 1, then by (5.2) E§ < H for some g € G, and
so (i) holds by (2.3). So, assume p|q + 1. Suppose p > 3. Then by (5.2) we may
assume

Ey < (UaigyX (U2s2y=SL(2,q) X SL(2, q).

This implies E, < C(E,) where E, =Z, X Z,. If x € E¥, then by [7]
Co(x) = SUG, q). By (4.1) it will suffice to show that G, = CGOO(E 1)- That is, we
may now assume p = 3.

Next we will show that it suffices to look at the case ¢ = 2. First note that 2F,(2) is
a subgroup of 2Fy(q). Choose Ey< (U.,)X (U*2)= X. With the natural
embedding of Y =2F,(2) < G, we may take E, <?F,(2)". Each involution in *F,(2) is
in 2F,(2)" (see 18.6 of [3]). Since the Weyl group of *F,(2) and G, are the same, we
may consider the Weyl group of G as a subgroup of Y. Let I = (X, Y)< D,. Then
I contains all subgroups (U..,) of G, for U, ~ U, . From the commutator relations
(see §10 of [12]) we see that if B is any root with (U. g)= Sz(q), then Q({j) < I.
For such a root B we have I N (U.g)= (Q(U.g))=(U.pg), forg>2.S0 I = G,
and it suffices to look at the case g = 2.

Now G, =2F,(2), E,=Z, X Z,, and by Burgoyne [7] each e € Ef satisfies
C(e) N?Fy(2) = SU(3,2). We then have Cg(€) a subgroup of index 2 in SU(3,2).
Write E, = (a) X (b). In G, =2F,(2) there is just one class of such subgroups and it
follows that G, = X; X X, = §; X §;, with {(a)= O5(X,) and (b)= O5(X,). So
Cg(a) contains an involution, #,, that inverts b. Let § = O5(C (b)). We now have
Ng ((b)) an extension of S by a semidihedral group of order 16, and Ng((b)) an
extension of S by Dg. Let T be a Sylow 2-subgroup of N; ((b)), with ¢, € T. Then
Ey = {Ey, E\} where E, = (b,c) and EyE, =S. T contains a klein group
T, = (t,) X (t,) with the following properties: ¢, inverts c, ¢, centralizes c, ¢, inverts
a, and t, inverts b. So Ty = Ny (E;) = Np(E,) and T = Ty(j), where j is an
involution with t/ = ¢, and @’ = c.

Let P, = Ng(Ey) and P, = N; (E,). Looking at P, N C(a) and P, N C(b) we
easily have P, being the semidirect product of E, with GL(2, 3). Similarly for P,. Set
X = (P,, P,). Then X = X’ and we claim that X = L,(3).

The claim is proved by first giving a (B, N)-pair in X. Let
Y=PyN P =S8(t,t,)= ST,. Y will be a Borel subgroup of X and T; a Cartan
subgroup. F is 2-transitive on the cosets of Y, so there is an involution j, € Np(T;)
such that P, = Y U Y}, Y. Similarly P, = Y U Y}, Y, where we may take j, = jj. Now
S = (a){b){c) and we then have

JoSih = Jolay(b){e)jy = ((a){b))" joji{c)”
C (a, b)jyji(b, ¢)C SjoJiS.

This implies j,Yj, C Yj, ;Y. To get additional relations observe that since j,
normalizes T, j, must permute the proper subgroups of E, that are T-invariant,
namely (a) and (b). As j, & N({b)), j, interchanges (a) and (b). Similarly j,
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interchanges (b) and {c). Thus,

JoSiido = JoEe{ )1 o = EoJolc)irio = EoJosi{b)Jo
= EyjosrJoka) C SjoJiJoS-

At this point the additional relations are obtained by proving that (j,, j,)=S,.
Now (jj, j;» induces S; on (¢, t,) and { ji,, j,;>=< {Jj,, j) as a subgroup of index 2.
From the known information on centralizers of elements of order 3 and 5 we see that
if {Jjy, j1)=& S5, then (Jj, j) is dihedral of order divisible by 24, and an element of
order 4 centralizes (¢,, t,). To see that this is impossible argue as follows. We may
take X; = (U.,,) and X, = (Ui%**). Then we have (1, t,)~ (U,, U;>*?), and
using (18.6)(ii) of [3] together with the relations in §10 of [12], we see that C({ty, t3))
is elementary abelian. So (jj, j;)=S; and X = L,(3) by Theorem 2 of [15]. Thus
X{j)= Aut(L,(3)).

From the structure of Aut(L,(3)) we see that C;(e) < X(j) for each e € Ef.
Also CY(E,) is a maximal parabolic subgroup of X. Indeed C(E,) = Ny(E,).
Since Cy,;y(b) > Cy(b) we have CG(EO) = CG (E)) = X(J)-So Dy = X(j) for this
choice of E,. Now, in G, = 2F4(2) there is just one class of subgroups of type
Zy X Z5. 50 CGO( Ey) = Aut(L4(3)) for any such subgroup E; < G,

If D, = CGO,(Eo) for E, as above, then we easily see that D, is transitive on
elements of order 3 in D, and D, is strongly 3-embedded in G,. So |G: D, |=1
(mod 27). But with D, < D, this is impossible. The proof of (5.14) is now complete.

With the results of this section we have now completed the proof of Theorem 1.

6. Automorphisms and Theorem 2. In this section we deal with the case G simple,
E < Aut(G), E = E,» with n > 1, but E not contained in the subgroup of Aut(G)
generated by inner and diagonal automorphisms of G. Since p is odd this usually
means that some element of E induces a field automorphism of G. Let G, = G, and
let G, be the inverse image in G of Gc,. Then G,/Z(G),) is isomorphic to G extended
by all diagonal automorphisms of G. Let G, be the extension of G, by field
automorphisms of G,,.

We first assume that E is contained in G,/Z(G,). There is a p-subgroup E; < G,
such that E,Z(G,)/Z(G,) = E. Set D, = C2(E,) and D = CJ(E). Then D, = G,
implies that D = G. Note that the only cases not included under the above
restriction on E, is G = Dy(q) or *Dy(q).

(6.1) Suppose E, < G,, but E, £ G,.

(1) If p = 7, then D, = G,,.

(ii) Suppose m,(E)>2 and D, < G,. For e € E0 —(Ey N Gy) set L= Cg(e)
and E, = E, N G Then there exists e such that C)(E,) < L. So the pair (L, p) is
given in Theorem 1.

(iii) If m,(E) =2, either Dy =Gy, or p=5 and G = $2(2°), or p =13 and
G = L,(8).

PROOF. Suppose D, < G,. By Lang’s theorem [18] each element in £, — (E; N G,)
induces a field automorphism on G,. Set E, = E, N G,. If m,(E) =2, then
Csle) < D, foreache € E, — E,. Suppose m ,( E) > 2. If (ii) fails, then C; (e) < D,
for each e € E, — E,. So in all cases we have C; (¢) < D, for eache € E;, — E|.
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First suppose that for e € E; — E|, G5 (e) = S;, A4, or Sz(2). Then Theorem 1 of
[8] implies that 0"(C;(e)) < D < C,(e) for each e € E, — E, (we are using the fact
that 0" (C4(e)) = Cs€)Z(Gy)/Z(Gy)). Since E is generated by such elements e, we
have 0" (C,(e)) < C4(E) for e € E, — E,. This contradicts (2.3).

Consider the three exceptional cases. If O7(Cy(e))=S,, then p=3 and
G = L,(8). If 0" (C;(e)) = Sz(2), then p = 5 and G = Sz(2%). For these cases (iii)
holds. Finally, assume O"(C;(e)) =A,. Here p =3 =r, against our standing
hypothesis. We have now proved (6.1).

The pairs (G, p) appearing in (i), (ii), and (iv) of Theorem 1 each give rise to
larger configurations where generation fails. These correspond to the situation of
(6.1)(1).

(6.2) Suppose (G,, E,, p) is one of the cases constructed in (4.1) or (5.1) where
generation fails, and suppose that the pair (G, p) satisfies (i), (ii), or (iv) of Theorem
1. Let G, = G,, G, = G,, and E, = Ey(7), where 7 is the field automorphism of
order p that o induces on G,,. Then Cgo( E,) < G,.

PrOOF. We are assuming that G, is one of the groups O~ (2n,2), Sp(2n,2),
SU(n,2), E¢(2), 2E4(2), Fy(2), E;(2), E4(2), Gy(2), or *F,(2)'. In the last case p = 5;
otherwise p = 3. Let E, be as constructed in the proof of (4.1) or (5.1). In each of
these cases it is clear from the definition of E, that G, contains a subgroup I such
that I is a t-invariant homocyclic p-group satisfying E, = £,(I) =[I, 7]. For
example, in many of these cases E, = Oy(J, X --- XJ,), where each J, = SL(2,2)
and each J, is generated by conjugates of long root subgroups. Here we take E, </
with I € Syl,(J, X - --J,), where J, < J, = SL(2,2*) and J; is generated by long root
subgroups of G,,.

For the moment exclude the configuration of (4.1)(iii). Then in each of the
remaining cases we showed that CGOO( Ey) < Ng(E,), and we claim that Cgo( E)) <
NG(Ey). To see this let F be a maximal subgroup of E,. If
F = E,, then clearly C(F)< N(E;). Suppose F#* E,, so F = F(et), where
F,=FNE, and e € E,. There exists g € I such that ¥ = er. Then C;(F) =
Co(Fi(et)) = Co(Fi(7))* = Co(F)* < Ng(E()* < N;(E;). This proves the
claim.

If (4.1)(iii) holds, then G, = Sp(2n, 2), G‘O = Sp(2n,8), and D, = O™ (2n,2). Here
embed D, in D, = O~ (2n,8), such that D] = D,. We can then choose I < D, and
use the above argument to get Cgﬂ( EO) < ﬁo.

(6.3) Suppose (6.1)(ii) holds with the pair (L, p) given in Theorem 1(iii). Then
D, = G,.

PROOF. We have p =3 and L = SL(3%,4), 2F,2), Fy(4), Es(4), or Eg4). By
(6.1)(iii) we may take m (E) = 3. The case L =*F,(2) is out since L = Co(e) (see
(5.14)(ii1)). Let E, = E,; N G,.

First assume L = SL(3,4), so G, = SL(3, 64). By (4.1) we may write E, = (a, b)
where [a, b] = z and (z)= Z(G,). Write E, = E,{e) and choose e so that [a, e] = z.
Then T = C;(e) = SL(3,4) and a induces an outer automorphism of order 3 on T.
Then Cr(a) = Z,, as otherwise Cr(a) = Z; X L,(4) and E, normalizes a 2-group L,
contradicting (2.3). Thus, C; (F) = Cr(a) = Z,, where F = (a, e, z). Now letting a
vary we conclude that T < CGOO( E,). Next, let e vary to conclude that D, = G,,.



398 G. M. SEITZ

Suppose L = SL(3*,4) with k > 1. Let E, = E,(e) and choose a, b € E, such
that (a)Z(G,) # (b)Z(G,). Then consideration of the usual module for G, shows
that (a, b) normalizes a proper parabolic subgroup of G,. By (2.3) Co(a, b)) = G,.
Now (2.16), Theorem 1, (6.1), induction and the above paragraph yield D, = G,,.
Essentially the same argument works for the cases L = F,(4), E6(4), or Eg(4).
Namely, choose (a, b)< E, with (a)Z(G,) # (b)Z(G,) and use [7] to conclude
that (a, b) stabilizes a proper parabolic subgroup of G,. Then proceed as before.
This proves (6.3).

We will have completed the proof of Theorem 2 once we deal with the case
E, < G,. This requires the existence of a graph automorphism of order 3, so
Gy = Dy(q) or 3D4(‘I)~

(6.4) Suppose G, =’D,(q) and E, § G,. Then either CJ(E,) = G, or q =2,
p = 3 and there exists E, = Z, X Z; X Z such that C2(Ey) < G,.

PrOOF. First suppose ¢ > 2 and note that E; < G,(7), where 1 denotes the graph
automorphism of D,(q*), restricted to G,. Then G,(q) = Cg (7). By Table (3.3)
Cg (7) contains a group L = SL(3, q) or SU(3, q), accordingto3|g — lor3|g + L.

Let S € Syl,(L). By Table (5.2) S has index 3 in a Sylow 3-subgroup of G,, so
S§ X {7) has index 3 in a Sylow 3-subgroup of Gy(7). Therefore, we may assume
that E, < N(S X (1)) < N(Z(S X (1))) = N({x, 1)), where (x)= Z(L) = Z(S).
Since CofT) does not contain a Sylow 3-subgroup of G,, 7 ~ 7x’ fori = 0, 1,2. Now
apply Theorem 2 of [8] to conclude that G, = (0"(CGO('rx" N|i=0,1,2) So if
E, < C({x, 1)), then G, = Cgo( E,) by Theorem 1. Hence we may assume E, £ C(7).

By (2.9) we may assume x € E,. Suppose ¢ > 4. Then L < Dyso L < (V° N D,),
where V is a long root subgroup of G,. Using (2.8) and Table (5.2) we conclude that
E(Dy) = L, D, = G, or E(D,) = G,(q). Suppose E(D,) = G,(q). Then one checks
that 0" (DyE,) = Gy(q) X Z,, the Z, factor being generated by a conjugate of 7. By
(2.9) we may assume 7¢ N E, @, which is not the case. Suppose E(D,) = L. For
e € E, — (x) one can argue within G to conclude that O"(CGO(e)) # 1. But ¢ >4
implies O"(CGO(e)) < D, < N(L). Since L = E(Ng(L)), 0"(CGO(e)) < L. In
particular (e, x) centralizes a nontrivial r-subgroup of G. By (2.3), C;; (e, x)) = G,
while the above arguments applied to e, € (e, x) show C; (e, x)) < N(L). This is
a contradiction. Hence D, = G,,.

Next, suppose ¢ = 4. Then L = SL(3,4). If my(E,) = 2, then L = 0" (C(x)) < D,
and we argue as above to get D, = G,. Suppose m( E;) = 3. Then m4(E,) = 3 and
we write E, = (x, e, at) for some e € G, such that 7¢ # 7. Since S(7)= § X (1)
we may take a € S. Then e & S X (7). Now, C,(e) =Z; X L,(4) or Z,,. In
the former case, E, normalizes a proper 2-subgroup of G,, so (2.3) implies
Dy = G,. Assume C,(e) =Z,,. Then L = (C,(v): v € (e,ar)— (ar)), so L <
CC?“( E,) = D,. As above, either D, = G, or L < D,. So suppose L < D,. Let
y € (x, e)*. By [7] either 0" (C(y)) = L,(64) or y ~ x. In the former case we have
0"(C(y)) < D,, against L = E(D,). So (x,e)* is fused in G,. In particular,
E(Cg (e)) = SL(3,4). Since C(e) N C(x) contains 7-elements, x induces an outer
automorphism on E(C; (e)) and we can then argue that E(Cg(e)) < Dy < N(L), a
contradiction.
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Finally, let ¢ =2 and retain the above notation. Set E, = (x, a, 7), where
a €S —(x). ThenS g C;(x),as L = SU3,2),s0S < C;(F) for any hyperplane,
F, of E, with x € F. Suppose F is a hyperplane of E, with F N S = (ax’/) for
j=0,1, or 2. Then 7x' € F for some i=0,1,2, and 7~ 7x' implies that
Go (1) = Gy(2) = Au(U5(3)). Now S € Syl3(Co 7x')) and it follows that
Co(F) < N;(S). We have now proved Cgo( Ey) < Ng (S), s0 (6.4) is proved.

Similar arguments will be used for G, = D,(q).

(6.5) Suppose G = D,(q) and E, £ G,. Then one of the following holds:

(1) CGOO( Ey) = G,.

(i))g=2o0r4,p=23, and E, < D,(q){o) for o a graph automorphism (of order
3) of G,,.

(iii) ¢ = 8 and EG, = O (Aut(D,(8))).

Moreover if ¢ = 2, 4 or 8, there exists E, < Aut(G,) for which C((;’O( Ey) < Ng(Ep).

PROOF. Suppose E; contains an element in the coset of G, given by a field or
graph-field automorphism. Then we can argue as in (6.1) to get CGOO(EO) = G,,
except when ¢ = 8 and (iii) holds or E, N G, = 1. Suppose E; N G, = 1. Then
E, = Z; X Z, and by Lang’s theorem E,, contains both a field automorphism and a
graph-field automorphism of G,. Here C(?O( E,) = G, by Theorem 1 of [8]. Suppose
q = 8. Let o be a field automorphism of G, of order 3, T a graph automorphism of
order 3, and [0, 7] = 1. Then Cj; (0) N G5 (7) = G,(2) and we let E, be an elementary
subgroup of C; ({o, 7)) of order 9. Set E, = E (0, 7).

Let J = J, X J, X J; X J, with each J; generated by opposite root subgroups of
G,. We may assume that ¢ induces a field automorphism on each J; and that (1) is
transitive on {J,, J,, J;} while fixing J,. Let E, = (a, b) witha € J, and b € J,J,J;.
We claim CGOO( Ey) < N((b)). Let F be a hyperplane in E,. If b € F, then clearly
Co{F) < N({(b)), so suppose b & F. Since a, ab, ab™' are all conjugate in
Cs(0) N Cs (1) N N(E,), we may assume a € F. From here the claim is easily
checked.

From now on we assume E;, = E N G, is a hyperplane of E; and E, < G (1) for
7 a graph automorphism of G, such that |7|= 3. From Table (3.3) and its
verification we conclude that G, contains a subgroup X such that there exists L < X
with L = SL(@3, q) or SU(3, q), according to g =1,-1 (mod 3). Also,
Z=2(X)=Z,;y XZ,s and | X: LZ|= 3. Finally, X" = X .and L = Cy(7). By
Table (5.2) we may assume E; < X({7) and by (2.9) we may assume x € E,, where
{x)= Z(L). Assume q > 4. Then (4.1) implies L < CGOO( E,).

Suppose T € E,. Then E; < C;(7) = G,(q), and so E, is contained in a Sylow
3-subgroup of C; (7). Table (5.2) implies that L contains a Sylow 3-subgroup of
Cgf7), so assume E, < L. Therefore Z(X) < C(E,) < Cgo(EO). By (5.1)
Gy(q) = C;(7) < C3(E,) and so CZ(Ey) =(Cs(7), Z)= G, (use (2.8) and the
fact that Cg(7) is self-normalizing in G,). From now on assume E, contains no
conjugate of 7.

The results in [9] (see (3.5)) imply that we may assume (7a)é € E,, where a # 1
and a € HN (U.,,). Also, using the Bruhat decomposition we see that
Cé(ra)® = PSL(3, K) (or see (4.3) of [9]) and then Cj; (1a)® = C5(7a)® = PGL(3, q)
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or PGU(3, q), according to ¢ = 1,~1 (mod 3). By (4.1) 0" (CZ(a))® < C(E,), so
Co(Eg) = (L,07(C;(7a))*). Now let I be the normal closure of L in CJ(E,) and
argue, using (2.8) (extended slightly to cover the case E, £ G,), that CGOO( E,) = G,.
This requires a check that embeddings such as PSL(3, q¢) < PSL(4, q) < D,(q) if
3]g— 1 and PSUQ3, q) < PSU4, q) < D,(q) if 3|q + 1 are impossible. For this
one can use representation theory (e.g. the tensor product theorem of Steinberg [24)).

We are left with the cases ¢ = 2, 4. Here we construct an example E,, for which (ii)
holds. Let a be an element of order 3 in (U, ,,) and x be as above. We may assume
(U.oy )< L= Cy(1). Let Eyy = (x,71a, y), where y =yy, with y, €L,
»EZ—-L, |y |=|y|=3, a" =ax, and 772 =1x"". Then E is elementary
abelian.

Let P = 0%(C,(1a)) = Ly(4) or Uy(2). Now (x)=[Ey,(a)] and a €
Ci(ma), so x € P. Also Cg(a) N G (1) = SLy(q) (as Cg (1) = Gy(q)). Thus
SLz(q) Co(ma) N Cg (a), and a mduces outer automorphism on P. Let {(a, y)N

= (x)X (') for some y' & L. Set E, = (x, y', ra). We claim that CQ(E,) <

(,(( Ey).

Let F be a hyperplane of E,. If F= (x, y'), then it is easy to see that
Co(F) < Ng(E,). Suppose F # (x, y'). If x € F, we again check that
Co(F) < N;(E,). So suppose x & F. Then F contains rax' for some i =0,1,2.
Now 7ax' ~ ta by an element of L normalizing E,. Therefore,
E,N G, < 03(CGO( tax')) and we easily see that Co(F) < N;(E,). This proves the
claim and completes the proof of (6.5).

We have now completed the proof of Theorem 2.

7. Additional results. In this section we will prove Theorems 3-7. Theorem 3 is an
immediate consequence of Theorems 1 and 2 so we concentrate on the notions of
“layer generation” and “balance”. Notation will be as in §2. Let G, be the group G
extended by all diagonal automorphisms of G. As in (2.1) we may prove Theorems 4
and 6 for the group G,.

(7.1) Assume Z, X Z, = E < G,. Then one of the following holds

(i) Co(Ey) < Go

(i) GG (Eo) = G-

(iii)p|g — 1, G, = SL(p, q), and E,, is nonabelian.

iv)p|g +1,G, = SU(p, q), and E is nonabelian.

PROOF. Suppose Co(Ey) = G,. Let e € Ey — Z(G,) and let Dy,...,D, be the
products of the (o )-orbits of components of CG‘(e). Let T = Z(Cg(e)) and for

i=1,...ksetL, = 0"((D,),). Then 0"(C;(e)) = - L, (see (2.5)).
Flrst suppose that E is abelian, so E, < Cg(e) for each e € E, — Z(G,). By (2.4),
Co(e) = DkT Choose f € E, — (e)Z(G(,)and consider Y = C(f) N Ca(e).

If 0= (Y N D,)° is not a maximal torus of D,, then (Y,°), contains an element of
order r, and (ii) follows from (2.3). So assume that Y,° is a maximal torus of D, for

each i = 1,...,k. Then Y° is a o-invariant maximal torus of G with E, < Y° We
conclude from (2.12) that (Cg(e)), = L, - - LY, and from (2.11) that C; (E,) # 1.
Then (Cg(e)), = LY, <L, L,C;(Ey) < Ng(C:(Ep)). Since e was arbi-

trary we have GO C (EO) < N(C( (Ey)) and (ii) holds.
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Suppose E, is nonabelian. Then p||Z(G,y)| and G = L,(q), U,(q), E«(q), or
2E¢(q)- In the first case p|(n, g — 1), in the second case p|(n,q + 1), and in the
other cases p = 3. If G = L,(q), then as in §4 we may assume E, acts on the usual
module for G, = SL(n, q). If E, acts reducibly, then E; is contained in a parabolic
subgroup of G, E, and (ii) follows from (2.3). If E; acts irreducibly, then elementary
arguments from representation theory yield n = p, and (ii) holds.

Next, suppose G, = SU(n, q). Then we may assume that E; is a subgroup of
GU(n, q). Let V be the usual module for GU(n, q); V is an F_2-space of dimension n.
Lete € E, — Z(G,) with |e|= p,and let f € E; — (e)Z(G,). If (z)= E; N Z(G,),
then we may assume e/ = ez. The eigenspaces of e on V are permuted transitively by
(f ) and each has dimension n/p. Let V..., V, be these eigenspaces. Using the fact
that 1 is an eigenvalue of e, an easy check gives V=V, L --- LV, If dim(}V') = p,
then (iv) holds. So suppose dim(¥V') > p; that is, dim(V;) > 1 for i = 1,...,p. Let
0 * v, € ¥, be an isotropic vector and (v,),...,{v,) the images of {v,) under
(f)- Then (v,,...,v,)=(v;) L --- L {v,) is an Ey-invariant isotropic subspace
of V. Therefore E, is contained in a proper parabolic subgroup of GU(n, ¢q) and (ii)
follows from (2.3).

Finally, we assume that either G, = E(q) with p = 3|q — 1 or G, =?E¢(q) and
p=3|q+ l.Lete, f€ E,with[e, f]# 1. Then f & Cg(e), although f € N(Cs(e)).
This is because Cz(e) = Cg(e”). By (2.3) we may assume that f normalizes no
proper r-subgroup of C;(e). Then considering the ( f)-orbits on components in
Cg(e) and then the action of o on these orbits we see that f must normalize each
component of C5(e). Also, if we choose e such that | e|= 3, then it is easy to see that
E(Cg(e)) # 1. Indeed, just embed e in a maximal torus of G and consider the action
of e on the unipotent radical of a Borel group. Let Y be a component of C4(e). Then
Y = Y/ and there is a root subgroup, ¥ < Y, with ¥ = V. To see this just consider
the isomorphism that f induces on Y. By (7.5) of Steinberg [23], f stabilizes a Borel
subgroup of Y, and we let V' be the center of the unipotent radical of the Borel
subgroup.

Now consider E;, as a subgroup of P= Na(V). P is a parabolic subgroup of G
with 15/13“ = SL(6, K)I, where I = I° is a one-dimensional torus centralizing the
SL(6, K) factor. By (5.16) of [22], E, stabilizes a maximal torus of P and we may
assume E, < Nx(I), where I is a torus of G with IP,/P,=I. So E, is in a Levi
factor of P and it follows that Cp(E,) contains a component. But C(f) N Cg(e)
does not contain a component. This is impossible. This completes the proof of (7.1).

THEOREM 4 (LAYER GENERATION). Let Z, X Z, = E < Aul(G). Then one of the
following holds:

(i) CO(Eq) < Go.

(ii) CZ{Eo) = Go-

(i)p|q— 1, Gy =SL(p, q), E < G|, and E,, is nonabelian.

iv)plg+ 1, Gy =SU(p, q), E< G, and E is nonabelian.

ProoF. By (7.1) we may assume E < G,, and we may also assume that
CGOO( Ey) = G,. First suppose that it is not the case that p = 3 and G = D,(q) or
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’D,(q). Then Lang’s theorem [18] implies that E — (E N G,) consists of field
automorphisms of G. As in the proof of (6.1) we use Theorem 1 of [8] to get
Ci(Ey) = 0"(CGO(e)) for each e € E, with eZ(G,) & G,. But then E, normalizes a
proper parabolic subgroup of G, and (2.3) gives (ii).

Suppose p = 3 and G = D,(q) or *Dy(q). Either E, N G, = Z; or G = D,(q) and
E N G, = 1. In the latter case the argument of the first paragraph of the proof of
(6.4) gives C¢ (Ey) = Gy. So suppose E, N G, = (e)=Z;. In addition we may
assume that Gy E, = Gy(7), for 7 a graph automorphism of G,. For otherwise use
the argument of the above paragraph.

Suppose f € E, — (e) and f induces a graph automorphism on G,. Then
Ci;(f) = Gy(q) and we consider C; (f) < G(K) = Y, where Y = Gf‘ Now embed
e in a maximal torus of Y and then consider the action of e on the unipotent radical
of a Borel subgroup of Y. It is easy to deduce that E(Cy(e)) # 1, so applying o to
this group and using (2.3), we again see that (ii) holds. From now on we assume that
E,, contains no conjugate of 7.

Suppose E; < C; (1) X (1)= G,(q) X Z;. C5(7) contains a subgroup, L, such
that L = SL(3, q) or SU(3, q) depending on whether ¢ = 1, -1 (mod 3). By order
considerations we see that L contains a Sylow 3-subgroup of C;(7) so we take
Ey< L X {1). As 7 & E,, the projection of E; to L contains a representative of
each class of elements of order 3 in L. However, it is easy to check that T ~ 7/ for
some element, /, of order 3 in L. This contradicts the above.

Suppose G, =3D,(q) or G, = D,(q) with ¢ > 4. Then the argument in the fourth
paragraph of the proof of (6.5) shows that G, = C¢(E,), proving (ii)). So now
assume G, = D,(q) with g = 2 or 4.

We use the notation in the proof of (6.5). Write E, = (e)X (Ta), where
Cg(ma) = PGU3,2) or PGL(3,4), depending on whether ¢ =2 or 4. If
e € 0*(C; (7a)), then e is 3-central in Cj;(7a). Since 7 € G, (,(7a), this would
imply that E, centralizes a conjugate of 7, which we have just seen to be impossible.
Therefore e & 0*(C;(7a)) and C;(1a) = 0% (C;(ra)){e). Each f€ E, — (e)
satisfies f ~ 1a, 50 C; (f) = 0%(Cy( f))(e), foreach f € E; — (e).

If we also have C; (e) = 0*(Cg(e)){e), then CJ(Ey) < N;(Ci(Ey)) = X, and
the result follows. So suppose C; (e) & X. Then C; (e) > O*(C, (€))e) and by [7)
we have e ~ x, where x is as in the proof of (6.5). Consider C; (e). This group can
be expressed Cg(e) = Z(u,d), where Z = 0%*(C;(e)) =SU(3,2) or SL(3,4),
depending on whether ¢ =2 or 4, Z{(u)= GU(3,2) or GL(3,4), |d|=3, and
Cole) = Z{u)x (d). Now ra acts on C; (e) and [ra, d] = e “1.Sod € N(E)) < X
and a Sylow 3-subgroup of X has index at most 3 in a Sylow 3-subgroup of G,.

We claim that X contains a Sylow 3-subgroup of G,. Suppose false. If
S € Syl4(Cy(e)) with S™ =S, then S € Syly(X), S = (x, x,)X{d), where
(x;,x,)=SNZ Let V be the natural module for G,. We may assume
dim(C,(d)) = 6 and Z acts irreducibly on C,(d), while centralizing [V, d]. It
follows that e is fixed-point-free on C,(d), but elements of (x,, x,) — (e) centralize
a 2-space of C(d). Now consider C; (ta) = PGU(3,2) or PGL(3,4). We have seen
that e & C; (7a)" and dim(C)(e)) = 2. Also C; (7a)’ acts irreducibly on ¥ and it is
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easy to see that each element of order 3 in C; (7a)’ centralizes just a 2-space in V. So
C(7a) contains a subgroup of order 27 of the form (e, /), with (e, j) extraspecial.
Apply Sylow’s theorem to X(ra) and conclude that (C; (€)' X (d)){a) contains a
conjugate of (e, j)X (ra). This forces (e, j)~ (x, x,) in Gy. Butdim(C,(e)) = 2
while dim(C,,(w)) = 4 for each w € (x,, x,)— (e). This is a contradiction. Thus X
contains a Sylow 3-subgroup of G,. Let § < Se Syl;(X). Then |S_: S|=3 and
from the above considerations we see that (e) is weakly closed in Z(S). So
S< Csle) and we now have Cg(e) < X. This contradicts the earlier assumption.
We have now proved Theorem 4.

Next, we will consider the notion of balance.

(7.2) Suppose Z, X Z, = E < G,. Then one of the following holds:

(i) CAE) < G.

(i) M ,0,(Cx(e)) =1 for any G < X < Aut(G), the intersection ranging over
e € E*,

(ii)) G = L,(q),p|q — 1, and Ej is nonabelian.

(iv) G = U(q), p|q + 1, and E, is nonabelian.

PROOF. Suppose that (i), (iii), and (iv) are false. Then Theorem 4 and (2.1) imply
that CZ(E) = G. So it will suffice to prove that if 1 # g € O0,(Cx(e)) for each
e € E* and some G < X < Aut(G), then CZ(E) < C;(g). Fix such an element g
with g of prime order, and e € E*.

Choose a p-element e, € G such that e, projects to the element e € G. Then
Y = Cg(e,) = E, - -+ E,T, where the product is a commuting product of the
connected torus T and the components s E,.. Ey (see (2.5)). Passing to G, let
Y = EI EkT Then CZ(e) normalizes Y and C‘(e)/Y is a finite p-group.

Let D,,...,D, be the orbit products of ¢ on {E,,...,E,} and set L, = 0"((D,),).
Then 0"(CG(e)) = -+ L, The element g permutes the components (solvable
components) L,,...,L, of Cg(e). Suppose [L,, g] # 1 for some i = 1,...,/. Since
g € 0,(Cx(e)), we have [L;, g] a p’-group. It follows that L, is a p’-group. This is
clear 1f LE# L, If LE= L, then[L,, g] = L, unless L, is a solvable component and
in this case the assumption p # 2, r gives the assertion. In particular, p}gq? — 1
unless L, is a Suzuki group.

The condition ptg? — 1 implies that Z(G,) has order prime to p and
E=E,=Z,XZ, So E;<Cg(e,) and it follows that [L;, E;] < L;. Also, if
f € E, — {e,), then f induces the product of an inner and diagonal automorphism
on L,. However, L, is a p’-group and p t g*> — 1. It follows that [L;, f] = [L,, E\) =
If L, is a Suzuki group, then ¢ is even and G = Sp(2n, K) or F(K). Thus Z(G) = l
and we can use the same argument to obtain [L,, E;] = 1.

Choose f € E* and consider L, < O"(C,( f)). f acts on each component of Cg(e)
and we claim that [ f, D,] = 1. Suppose D, is the product of n components of C,(e).
Then (6") is the stabilizer of each of these components and we take a component
I<D, Then I°°=1 and [0"(1,.), f] = 1. From (2.1) of [8] we conclude that
[1, f]1 = 1. The claim follows.

Since E, is abelian we choose f € E, — (e,) and embed f in a maximal torus, H,
of Cg(e,) = Cg(e)°. Then E, < H and we let H < B, where E < H is a maximal
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torus of G and B is a Borel subgroup of G. By (4.1) of [22] the components of Cz( f)
are generated by the root subgroups in G, that are centralized by f. It follows that
the normal closure of D, in C5(f)°, call it K,, is the product of a (o )-orbit of
components of C5( ). Set X, = 0"((K,),). Then [L,, g] # 1 implies [ X,, g] # 1.

Now rechoose the pair (L;, ), if necessary, so that | L, | is maximal subject to the
conditions that L, is a component (solvable component) of C;(e) with [L;, g] # 1.
We then have L, = X, < 0" (C;(f)). So Ng(L,) = Ci(e) = G, a contradiction. This
proves that [g, L;] = 1 for each component (solvable component), L,, of C;(e) and
for each e € E*. Therefore G = CZ(E) < C,;(g) which is impossible.

The next result handles case (i) of (7.2).

(7.3) Suppose Z, X Z,=E <G, and CGO(E) < G. Then one of the following
occurs:

(i) N .. 0,(Cyx(e)) = 1, forany G < X < Aut(G).

(ii) p = 3 and~G = L,(4).

PrOOF. Apply Theorem 1 to restrict the possibilities for G and p. In each case
|G,: G|=1lorp.LetY = N _, O0,(C;(e)). We will first show that ¥ = 1.

If G =%F,(2) with p = 5, then E € Syl;(G) and there is an element e € E* with
Csle) = Zs X D,,. This already implies Y = 1. So we now assume p = 3 and g = 2
or 4. We may then apply the results of [7]. There are only two possible configurations
where some element e € E* satisfies 0,,(C;(e)) # 1. The cases are G = PSL(3,4)
and G = E((4), and O;(Cg;(e)) = Z, in either case.

So supposing Y # 1 we must have Y = Z; and 0;.(C;(e)) = O5(Cg( f)) for each
fE€ E*. Also CIE) < Ny(Y), so by (2.3), E is contained in no proper parabolic
subgroup of G. For G = PSL(3*,4) this implies that the preimage of E in GL(3%,4)
acts irreducibly on the usual module for GL(3*,4). Then E = Z, X Z, implies
k = 1, and it is easy to see that Y = 1.

Suppose G = E4(4). By [7] we have E(C,(e)) =>D,(4) for each e € E*. Fix
e € E¥ and f € E — (e). Then use [7] to see that C(f) N E(Cg(e)) has even order.
So E is contained in a parabolic subgroup of G, and (2.3) implies that CX(E) = G,
against our hypothesis. Therefore Y = 1.

Set Y, = M, 0,(Caysy(€)) and suppose Y, # 1. By the above ¥, N G, = 1.
Considering the possibilities for G we see that Y, is quite restricted. For example if
G =2F,(2), then Aut(G) =?F,(2) and there are no involutions in Aut(G) — G. So
this case is out. In the remaining cases Au(G)/G, =1, Z,, Z, X Z,, Z,, or S; (the
latter possible only if G= D,(2)). So Y, =2,,2Z,, or Z, X Z,. Let y be an
involution in Y.

The possible actions of y on G are determined in §19 of [3]. Namely, y induces a
field automorphism, graph automorphism, graph-field automorphism, or
O,(C4(y)) # 1. This last case contradicts (2.3), so this does not occur. Choose
e € E* and let L,,...,L, be the components (solvable components) of C;(e). By
(2.3) U(r, E) = {1}, and it follows that 3 || L,| fori = 1,...,l. However (L, y)isa
3’-group for each i=1,...,I. Since r =2 we necessarily have [L,y]=1 for
i = 1,...,1. The conclusion is that CX(E) = CZ (,(E).

If G= PSL(3%,4), then as before we get kK = 1. So (ii) holds. We assume
now that G # PSL(3*,4). If G = PSU(n,2), then E < C,i(y) = Sp(n,2) or
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Sp(n — 1,2), so the preimage of E in GU(n, 2) is elementary abelian. Here (4.1) and
linear algebra show that the condition C3(E) = CZ (,(E) is impossible, Similarly
for G = 0*(n,2).

For the remaining cases use the tables in [7] to check that C(E) # CZ (,(E).

We now prove

THEOREM 5 (BALANCE). If Z, X Z, = E < Aut(G), then M ,,0,(Cx(e)) = 1 for
any G < X < G, and one of the following holds:

(D) N ,£10,(Cx(e)) = 1, forany G < X < Aut(G).

(i)p|q — 1,G=Ly(q), E< G, and E, is nonabelian.

(i) p| g + 1, G = U(q), E < G, and E,, is nonabelian.

PROOF. Suppose 1 # g € M |, 0,(Cypyg)y€))- First assume that either (7.2)(iii)
or (7.2)(iv) holds. Then E, is nonabelian and is absolutely irreducible on the usual
module for G,. It follows that g & G,. This together with (7.2) and (7.3) allow us
now to assume E € G,. Suppose each e € E — G, induces a field automorphism on
G. For e € E — G, p divides the order of C;(e) and it follows that p divides the
order of 0"(Cz(e)). Soge N |, 0,(Cpyygy(€)) implies [07(Cs(e)), g] = 1. Asin
the proof of (6.1) we apply Theorems 1 and 2 of [8]. It is necessary to look at the
cases G = L,(27), L,(3”), and Sz(27) individually, but this is straightforward. For
all the other cases we have O"(C,(e)) < C;(g) for each e € E— G, and so
0"(C,(e)) = 07(C,4(g)) for each e € E — G,. So E < C(0"(C4(g))) and looking
at E N G|, we contradict (2.1) of [8].

So we now suppose that some e € E — G, does not induce a field automorphism
on G. Then p =3, and G = D,(q) or 3D,(q). The above arguments allow us to
assume that E < G (1), where 7 is a graph automorphism of G with | 7|= 3. As in
the fourth paragraph of the proof of (6.5) we argue that for e € E — G|,
Cs(e) = G,(q), PGL(3, q), or PGU(3, q). The first case occurs if e is conjugate to 7,
and one of the other cases (according to ¢ = 1, —1 (mod 3)) otherwise. For ¢ > 2 and
e € EN G,, 0"(Cz(e)) = E(C4(e)) (see (2.5)). So under the assumption g > 2 we
argue as before (e.g. as in (7.2)) that [0"(Cg(e)), g] = 1 for each e € E¥*. Then
CL(E) < C4(g) and we have a contradiction if C;(E) = G. By Theorems 1, 2, and 4
we are reduced to the cases G = D,(2), D,(4), or *D,(2).

Choose e € E — G,. The possible choices (listed above) for C;(e) and the results
of [7] show that g &€ G,. Considering Aut(G) we see that | g|= 2, G = D,(4), and g
induces a field automorphism on G. Then [g, C;(e)] = Ci(e) (= G,(4) or Ly(4)), a
contradiction. This completes the proof of Theorem 5.

THEOREM 6. Suppose p =7 and ( p, | I7V_|) =1, where W is the Weyl group of the
associated algebraic group of G. Then C;(E,) = G,.

PrOOF. First suppose E < G,. Then (2.7) implies that E, is contained in a
maximal torus of G and Cgo(e) = Cg(e)® for each e € Eff. Choose
Z, X Z,=F < E,. By Theorems 4 and 1 we have C/(F) = G,. For f € F* each
component (solvable component) of 0"(CGO( f)) has Weyl group with order dividing
that of | W|. This is because such a component is obtained as the fixed point group
of o on a product of components of C4( f) and each of the components of C4( f) is
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generated by the root groups in a subsystem of £ (see (4.1) of [22]). So we can apply
induction to get O"( Co{ /) < CG(Ey). Then G, = C; (F) < C¢ (Ey).

Suppose E £ G,. Then E — (E N G,) consists of field automorphisms and the
arguments of (6.1) give the result.

Our last result determines the strongly p-embedded subgroups of Chevalley
groups. For this we drop the assumption p # 2, r.

THEOREM 7. Let p be an arbitrary prime and suppose X < Aut(G) is a proper,
strongly p-embedded subgroup of GX. Assume m (X) = 2. Then X is contained in the
normalizer of a Sylow p-subgroup of G and one of the following holds:

(1)p =3and G = Ly4).

(i) p = S and G = Sz(2%) or *F,(2).

(iii) G = L,(q), Uy(q), Sz(q), or *G,(q)', where q is a power of p.

PROOF. Assume X is strongly p-embedded in GX. Then X contains a Sylow
p-subgroup, P, of G. If p = 2, apply Bender [4] to get the result. If p = r, then either
G has Lie rank 1 (which gives (iii))) or G is generated by the proper parabolic
subgroups of G that contain P. As these groups are p-local subgroups, we have
G < H, a contradiction. So we may now assume p #* 2, r.

Forany Z, X Z, = E < X we have CX(E) < X. So Theorems 1 and 2 restrict the
possibilities for G. If p = 5, then (i) holds. So now assume p = 3 and q is a power of
2. If G has Lie rank at least 3, then from the Dynkin diagram it is easy to produce a
proper parabolic subgroup of G containing two commuting copies of L,(q). But
then there exists Z; X Z; = E < X N G with E in a proper parabolic subgroup of G
and C2(E) < G. This contradicts (2.3). Therefore G has Lie rank at most 2.

If G has Lie rank 1, then by Theorems 1 and 2, GH = Aut(Sz(2°)) or Aut(L,(8)),
so that (ii) or (iii) holds. Suppose G has Lie rank 2. Then m4(G) = 2 and there exists
ZyX Zy=E< XN G, satisfying CJ(E) < G. Theorem 1 now gives G = L4(4),
PSp(4,2), PSU(S,2), Gy(2), or 2F,(2). If G = G,(2), then G = U,(3) and (iii) holds.
If G=%F,() with X < G, then X = Aut(L,(3)) and X = (N (E):
Z, X Zy = E < P). On the other hand, choosing g €%F,(2) —2F,(2) with g € N(P),
we must have X# = X. But then C; (X) contains an involution in G, — G, whereas
G, — G contains no involution.

If G = PSU(5,2), a Borel subgroup of G has 3-rank 2. So this case is out by (2.3).
Thus G = L4(4) or PSp(4,2) = L,(9), and Theorem 7 is proved.
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