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GENERATION OF FINITE GROUPS OF LIE TYPE

BY

GARY M. SEITZ1

Abstract. Let p be an odd prime and G a finite group of Lie type in characteristic

other than p. Fix an elementary abelian/»-subgroup of Aut(G). It is shown that in

most cases G is generated by the centralizers of the maximal subgroups of E. Results

are established concerning the notions of layer generation and balance, and the

strongly p-embedded subgroups of Aut(G) are determined.

1. Introduction. Let p be an odd prime, G a finite group, and E *Z Aut(G).

Suppose that E is an elementary abelian /»-group and set C£(E) = (CG(F): F

maximal in E). A very useful tool in the study of finite groups is the basic

generation result: C£(E) = G, provided the order of G is relatively prime to p. The

order restriction on G is essential. For example, if G — S2p is the symmetric group

on 2p letters and E a Sylow /^-subgroup of G, then C£(E) < G. In this paper we

consider the case of G a finite group of Lie type and we show that generation usually

holds. In addition, we prove results concerning the notions of layer generation,

balance, and we determine the strongly/»-embedded subgroups of Aut(G).

Let G = G(q) be a finite simple group of Lie type defined over a field of

characteristic r, and let E < Aut(G) = Y be an elementary abelian /»-group with

r =/= p, a prime. In order to state more useful results we consider multipliers and

therefore introduce the following notation. Let G denote an image of the universal

covering group of G (see [25] and (13.1), (13.3) of [23]) and let G < Y be such that

G/Z(G) = G and Y/Z(G) = Y. Now let £ be a /»-subgroup of Y such that

ÉZ(G)/Z(G) = E. We will prove the following results.

Theorem 1. Assume that E is contained in the subgroup of Aut(G) generated by

inner and diagonal automorphisms. Then either C$(E) = G or one of the following

holds:

(i)p = 3 and G = PSp(n,2)', PSU(n,2), or 0\n,2)\ e = (-1)"/2.

(ii)/» = 3 and G s G2(2)\ F4(2), £6(2), 2E6(2), E7(2), or E8(2).

(m)p = 3 and G s PSL(3k,4), 2F4(2)', F4(4), E6(4) or £8(4).

(W)p = 5 andG=2F4(2)'.

Moreover, in each of the cases (i)-(iv) there exists a triple (G, E, p) for which

CS(É)<G.
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Theorem 2. Let G, be the subgroup of Aut(G) generated by inner and diagonal

automorphisms of G. Assume that E 4 G,. Then either C<?(£) = G, or one of the

following holds:

(i)Ife G E — G,, then e induces a field automorphism on G and the pair (Or (CG(e)),

E n G, ) satisfies one of the conditions (i), (ii), or (iv) of Theorem 1.

(ii)/» = 5 and GE = Aut(5z(25)).

(hi)/; = 3 and GE s Aut(L2(8)).

(iv) /> = 3 and GE s Z>4(2)(a>, £>4(4)<a>, 6>3'(Aut(£>4(8))), 3Z»4(2)(a>, where in

each case o is a graph automorphism of order 3.

In each of the cases (i)-(iv), there exists a triple (G, Ë, p) for which C<?(£) < G.

An immediate corollary to Theorems 1 and 2 is the following.

Theorem 3. If p »7 or if r> 2, then C<2(£) = G.

The above results can be used to obtain results on "layer generation" and

"balance". With the above notation let C¿(É) = (Or'(C¿(F)): F maximal in É). As

we will see in §2, Or'(CG(F)) = E(C¿(F)), if q > 4.

Theorem 4 (layer generation). // E = Z  X Z , then one of the following holds:

(i)Cr?(£)<G.

(ii) Q(£) = G.
(iii)p | q — 1, G = Lp(q), E < G, (as in Theorem 2), and E is nonabelian.

(iv) p | q + l, G = Up(q), E < G,, and E is nonabelian.

Theorem 5 (balance). If E ~ ZpX Z , then D ^^^(Ccríe)) = 1 a«<^ one of

the following holds:

(i) H e<EE*Op,(Cx(e)) = I, whenever G < X < Aut(G).

(ii)/> | ^ — 1, G s L (q), E < G, (ai /'« Theorem 2), awa* £ w nonabelian.

(iii) /? | o + 1, G s l/,(<7), £ < G,, a«i/ £ ù nonabelian.

Theorem 6. ^siwme /? > 7 a/7<¿ (p, \ W\) = 1, w/iere 1^ « r/ie IFey/ group of the

associated algebraic group of G. Then C¿(£) = G.

Theorem 7. Leí /» be an arbitrary prime and assume that X < Aut(G) is a proper

strongly p-embedded subgroup of GX. If mp(X) > 2, then X normalizes a Sylow

p-subgroup of G and one of the following holds:

(i) p = 3 and G = L3(4);

(ii) p = 5andG = Sz(25) or 2£4(2)'; or

(iii) G s L2(q), U3(q), Sz(q), or 2G2(q)', and q is a power of p.

Much of the paper is concerned with the proof of Theorem 1, which is carried out

in §§4 and 5. Theorem 2 is proved in §6 and the remaining results are proved in §7.

A considerable amount of work is involved in describing examples where generation

fails to hold. This contributes substantially to the length of the paper.

In many cases it is easy to prove that generation holds. For example, if £

normalizes a proper r-subgroup of G, then G = CG(Ë) = C¿(É) (see (2.3)). Also

when mp(E) > 3 and/7 does not divide the order of the Weyl group of the overlying
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algebraic group, then, inductively, the situation is well behaved (see (2.3), (2.5), (2.6),

and (2.7)(iv)). The more difficult cases are when p is small or when p is large with

m ( £ ) = 2. When generation fails to hold the group £ typically has large //--rank,

though not necessarily equal to the /»-rank of G.

We make the following additional remarks concerning the proof of Theorem 1.

The classical groups are handled using the standard module together with elementary

facts on generation. For the exceptional groups we use more machinery. We

introduce the algebraic group, G, giving rise to G in order to get information on

centralizers. In fact, we pass to a universal group where centralizers are better

behaved. In §3 we use G to prove the existence of certain subgroups of G that

contain £. The tool for this is Lang's theorem, and as a result we obtain many of the

embeddings that Stensholt gets in [26]. However we need a bit more than his results

give. The generation is then proved by using induction and classification theorems of

Aschbacher [2] and Timmesfeld [27].

For the most part our notation is standard. Epn denotes the elementary abelian

group of order p". For X a group, let E(X) denote the join of all quasisimple

subnormal subgroups of X. We also make use of the following abuse of notation. Let

G be a group with X Q G and Y, Z *£ G. By XY D Z we mean the set of Y-conjugates

of X contained in Z. The term Chevalley group refers to a group of Lie type

generated by its root subgroups.

The author would like to thank R. Lyons for many helpful suggestions.

2. Notation and preliminary lemmas. We will use the following notation. Let

G = G(q) be a simple Chevalley group (normal or twisted) defined over a field F^ of

characteristic r, and let G be the overlying algebraic group defined over the algebraic

closure, K, of Fr. Then G — Or(Ga) for a an endomorphism of G satisfying

| Ga | < oo. Fix a prime p ¥^ r and a subgroup £ s £ „, for n > 1, of G„. So £ is in

the subgroup of Aut(G) generated by inner and diagonal automorphisms.

As centralizers are better behaved in universal covering groups we introduce the

following groups. G denotes the universal covering group of G (see [25]). Then a

induces an endomorphism of G, again called o, and G0 = G„ is a central extension of

G. Let £0 denote the Sylow //--subgroup of the preimage in G of £. Notice that £0

may not be abelian and £0 need not be in Ga = GQ.

If Y acts on a group X let CX(Y) = (CX(YX): Yx maximal in 7> and Crx(Y) =

{Or'(Cx(Y\)): F, maximal in Y>. Set D = C<?(£) and D0= C<?o(£0). The first

observation is

(2.1) (i) D0 = G0 implies D = G.

(ii) C¿o(£0) = G0 implies C¿(E) = G.

Proof. This follows easily by taking homomorphic images.

In view of (2.1) we work primarily with G0. The (B, JV)-pair notation for G0 will

be standard. Let B0 be a fixed Borel subgroup of G0 with B0 = UH0, where H0 is a

Cartan subgroup and U = Or(B0). The image of B0 in G is B. Notice that

U = UZ(G0)/Z(G0). 2 denotes a root system for G0, so U = nae2:+ ^4> a product

of root subgroups. Let II = {a,,...,a„} be a fundamental set of roots for 2, let
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N0/H0 = W, the Weyl group of G0, and choose fundamental reflections

s, G (í/a_, í/_a ) for /' = 1,... ,n in the usual way.

In the group G we use similar notation, getting subgroups B, H, Û, Ñ, Ûa, etc. The

root system 2 may differ from that of 2 and we will not always assume that B0 < Ê

or that B is a-invariant. Similarly, for G.

If P is a parabolic subgroup of G0 with B0< P < G0 we define the opposite

parabolic subgroup, £,, as follows. Write P = Or(P)L, where L is the Levi factor of

P and Or(P) is a product of root subgroups for positive roots. Then £, = 6\(£,)£,

where Or(P\) is the product of those root subgroups Ua, such that U_a < Or(P).

(2.2) Let B0 < £ < G0 be a proper parabolic subgroup of G0 and let £, be the

opposite parabolic subgroup. Then G0 = (Or(P), Or(/*,)).

Proof. Say £ = (£0, i,v... ,s¡k). Then £ = Or(£)£ where

L = H0(U±ar.i = i„...,ik>.

Moreover Or(£) is the product of those root subgroups Ua*z U such that the

coefficient of a, in a is positive for some i G {1,...,«}— {/,,...,/t}. Also

£, = Or(P^)L with Ov(£,) the product of the root subgroups t/_a for roots a G 2

with l/a < Or(P).

Let * = <Or(£),Or(£,)>. Then L^N(X) and, for / G {1,...,«} - {ix,...,ik},

(U±a.)< X< N(X). As G0 = (i/±ai: / = 1_h), wehave JT < G0 and so A'= G0.

(2.3) Let Y be a noncyclic elementary abelian //--subgroup in Aut(G0) and suppose

Y normalizes a proper parabolic subgroup of G0. Then C¿o(Y) = G0. In particular

Q°„(y) = Go-
Proof. Suppose Y normalizes £0 3* £0. Then C¿o(Y) » Or(£0)- BY (2-2) il wil1

suffice to show that, for some g G P0, Yg normalizes £,, where £, is opposite to P0.

For then C¿(Yg) = G0 and we have the result. Consider GY<Aut(G0). Let

P = P0/Z(G0), so Y < N(P). Now N(P) D G Y = Or(P)L, where L n G is the Levi

factor, L, of P and £ is the extension of L by certain combinations of diagonal, field,

and graph automorphisms of G. It is easily verified that £ stabilizes Pi/Z(G0). Since

p =£ r we have Y conjugate in £ to a subgroup of L, as needed.

Next we give several general results on centralizers of semisimple elements. What

is involved is the statement of known results about centralizers in the algebraic

group and the restrictions to the finite groups.

(2.4) (i) Let x be a semisimple element in G. Then C¿(x) = C¿(x)°.

(ii) Let x G G be semisimple. Then CG(x)/CGix)0 is isomorphic to a subgroup of

Z(G).

(iii) Let x G G be semisimple and suppose x has finite order with (| x \, | Z(G) |) =

1. Then C¿ix) = C^xf.

Proof, (i) and (ii) follow from (4.4) on p. 204 of [22], while (iii) follows from (4.5)

(again p. 204 of [22]).

(2.5) Let x G G0 (or, x E G with (| x \, \ Z(G) |) = 1) be semisimple. Then C¿(x)

(respectively, C¿ix)) is the central product of E(C¿(x)) (respectively, E(CGix))) and

a torus. Also, Cc(x) (respectively, Cc(x)) contains a normal subgroup, X, where X

is a central product of Chevalley groups (normal or twisted) with an abelian
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r'-subgroup. Cc(x) (respectively, CG(x)) normalizes each of the factors of X and

induces inner and diagonal automorphisms on each factor. In particular, Or(X) =

Or\CCo(x)).

Proof. Consider C¿(x)a (respectively C^O),,) ar>d aPpby (2.4).

(2.6) Let x and X be as in (2.5).

(i) Or,(CCo(x)) < Z(CGo(x)) (respectively Or,(CG(x)) < Z(CG(x))).

(ii) Or(X) is a central product of Chevalley groups each defined over some

extension field of F .

Proof, (i) is clear from (2.5). For (ii) assume that £ is a component of C¿(x)

(respectively C¿Xx)) and let {£ = Lv...,Lk) be the orbit of £ under (a). Then

ok = 5 normalizes each of £,,... ,Lk. It will suffice if we can show that O''(Ls) is a

Chevalley group (normal or twisted) defined over Fqk. Suppose Y = Ys for a root

subgroup, Y, of G with Y < £. It will suffice, in this case, to show | Ys \= qk. Say

Y = U£, where a G 2 and g G G. Then gôg'1 G N(Ûa) il Gô. As G„ is defined over

F^, Gs is defined over F?* and there is a conjugate t of 5 with t G N(Ua) and

I (^»)t l= ?*• We have gôg"' G Gt, say gôg'[ — yr fox y G G. Then j' G N¿(Ua), so

y acts on Ûa as multiplication by a scalar. It now follows from (11.2) of [23] that

| Ua n C(yr) | = qk, and so |Ys|=fl*, as needed. If no such Y exists, then

G = F4(K), Sp(4, K), or G2(K) and ô2 fixes a root subgroup of £. Here a2 is a field

automorphism of G, with G02 defined over F and a a graph automorphism of Gai.

Argue as above with 82 and o2, and the result follows.

(2.7) (i) £0 and £ normalize maximal tori of G and G, respectively.

(ii) If p \ | JF|, then £0 is contained in a maximal torus of G. Similarly for £ < G.

(iii) If (£, | Z(G) |) = 1 and if £ > F s z X Z^, then £is contained in a maximal

torus of G.

(iv) If £ contains a subgroup £ s £ „ for m > 1 with £ in a maximal torus of G,

then some maximal subgroup of £ is contained in a proper parabolic subgroup of

(v) If a G 2 is a long root and g G G such that Û£° = {//, then (t/„g)0 is a long

root subgroup of G0.

Proof. Consider £ < G. The reference for (i), (ii) and (iii) is Springer-Steinberg

[22]. Namely, (i) is a consequence of (5.17), (ii) follows from (i), and (iii) follows

from (5.1). To get (iv) assume that £ is as given with £ «s H. Then £ normalizes each

root subgroup Ua for a G 2, inducing a cyclic group on Ua (as H induces a

1-dimensional torus on Ua). So there is a root a G 2+ and hyperplane £0 < £ with

£0 < C¿(í/Q). Then £0 < C((U±a)) and C¿{£0) contains a nontrivial component.

Since a normalizes C¿(£0), C¿(£0)o contains a nontrivial r-subgroup, say £ Then

£0 < CG( / ) which is contained in a proper parabolic subgroup of G0 (Borel-Tits [6]).

(v) follows from Lang's theorem ((10.1) of [23]) and the fact that N¿(Ua) is

connected.

The next result contains the application of the work of Aschbacher [2] and

Timmesfeld [27].

(2.8) Assume G ^2F4(q)' and (p,q) ¥" (3,2). Let V be the center of a long root

subgroup of G0 with V < D0. Set X = (VGa D D0). Then one of the following holds:
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(i)H(r,£0)^{l}and£>0=G0.

(ii) X/Z(X) is a direct product of groups of Lie type each defined over F , and

each component of X is generated by conjugates of V. If A", is a component of X,

then Va n A, consists of the centers of long root subgroups of A", (or possibly short

root subgroups if A,/Z( A",) = PSp(4,2h), £4(2*), or G2(3_*)).

(iii) r = 3, | V\ = 3, and setting X= X/02(X), X/Z(X) isas in (ii).

(iv) r = 2, | V\= 2, and setting X = X/03(X), E(X/Z(X)) is a central product

Y, • • • Yk, where, for i = l,...,k, Yt• < A"and Y¡ is either a Chevalley group over F2

(as in (ii)) or E(Y¡) is one of the following: PSO± (n, 2)', PSO± (n, 3)', An, F22, £23,

£2'4. Also, X/E(X) is solvable.

Proof. Suppose (i) is false. By (2.3) we have H(r, £0) = {1}. In particular

Or(X) = 1. Let Ox(X) be the solvable radical of X and set Y = Ox(X)Vx, where

K, G Fc n A". For g G G0 arbitrary, (K,, Kf > is either an /--group or isomorphic to

SL(2, q) (see (12.1) of [3]). Suppose | V, |> 3. Then <K„ V{) is an r-group for each

y G Y, and we conclude that F, < Or(Y) (see [1]). But Or(Ox(X)) < 0,( A) = 1 and

hence [ F,, OJ A")] = 1. We then conclude that OJ A) = Z( A") for o = | Vx | > 3.

Next suppose that o — 2 or 3. Then K, centralizes any chief factor of Y having

order prime to 6. If s is a prime, then Os, ( Y) is the intersection of the centralizers in

Y of all s-chief factors of Y. Therefore K, *£ D s Os, S(Y) = Y0, where the intersection

is taken over all primes greater than 3. If A0 = O{23)(Y0 n Ox(X))andR G Sylr(A0),

then X — X0NX(R). Since //• ̂  2,3, this contradicts H(r, £0) = {1} unless £ = 1.

Therefore R = 1 and A0 = 03(A) or 02(X) according to whether q = 2 or 3. In

addition, Vx centralizes Ox(X)/X0 for each K, G Ve n A, and so A" centralizes

OJAVAo.
Let Y= X/Z(X) if | K|> 3. If | V\= 2 or 3, then set Y= X/Z(X), where

X= X/03(X) or X/02(X), respectively. Let / = £*(Y), so that / = £(Y) (by the

above). Write / = /, • • • Ik, a central product of components. For K, G Ve n A, K,

permutes {/,,... ,/^}, and the above property of F, forces K, < N(Ij) forj = l,...,k.

Therefore, /, < Yfory = l,...,k.

Fixj = 1,.. .,k and choose K, G VG n A such that [£,, K,] ̂  1. Let K, denote the

image of Vx in Y and set J = LVV Then /" = J' = Ij — F*(J). If q is even we can

apply Theorem 1 of [27] to determine the structure of J. If q is odd apply (4.2) of

[29] to see that for j G J with K = (VX,V{)^ SL2(q), the class KJ satisfies

Hypothesis S2 in [2]. Therefore, Theorem 1 of [2] applies and yields the structure of £

(we note that D4(2) should be included in Theorem 1 of [2], but this is not a

possibility here due to the fact that K = SL2(q)).

We conclude from the above that either /y is a group of Lie type in characteristic r

and V* consists of elements of long root subgroups of / (possibly short root

subgroups if E is isomorphic to PSp(2n,2h), F4(2h), or G2(3*)) or q = 2 and one of

the following holds:

(i) J = 0± (n, 2h) and v G V* is a transvection;

(ii)./ s O" (n, s), s = 3 or 5, and v G V* is a reflection;

(iii) J = Sn and v G K* is a transposition; or

(iv)/ = A6, J2, F22, £23, or £24.
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If q = 2, then for v G V*, rJ is a class such that for vx, t>2 G vJ, \ vxv21= 1,2,3,

or 4. So by the main results of Fischer [11] and Timmesfeld [27] we see that the cases

J2 and O ± (n, 5) do not occur. At this stage we may assume that / is a group of Lie

type in characteristic r and the elements of V* are long root elements of / (possibly

short root elements in the three exceptional cases).

We claim that Vx is contained in the center of a root subgroup of /. This is trivial

if | Vx | = r or if / has Lie rank 1. So suppose | Vx \ > r and / has Lie rank at least 2.

Since \VX\> r,Y= X/Z(X) and Vx < /(oo) = /0, a component of X. If the claim is

false, then there exist elements a, b G V* and centers of long root subgroups,

£/, ^ U2 of /0, such that a G Ux and b G U2. Fix g G /0 such that (Ux, Uxg) = SL2(qx),

where qx = \ Ux |. As (a, ag) is not an r-group, (Vx, Vxg) = SL2(q), and so (b, bg) is

not an r-group. Also, Or'(CG((a, ag))) = Or\Cc((Vx, Vf))) = Or'(CG((b, bg))); in

each case the centralizer has the form O''(£), where £ is a Levi factor of CG(VX).

Similarly, £ = Or'(CJo((Ux, i/f ») = Or'(CJo((b, bg))) = Or\CJo((U2, U2g»). But

(Ux,Uf) = Or'(CJo(E)) = (U2,U2g). Since [a, b] = I, we must have Ux = U2, a

contradiction.

Finally, we must prove that Vx is the center of a long root subgroup of /. If not,

then the previous paragraph implies the existence of a group U > Vx with U the

center of a long root subgroup of /. Choosey G/ such that (U,UJ)= SL2(qx),

where q \ qx and qx =\ U\. If r — 2, then we see that for a G V*, there existsy, G /

such that | aaJi \ = qx + 1. But this contradicts the fact that (Vx, Vf) is an r-group or

SL2(q) for each g G G. Suppose r is odd. Then Dickson's theorem ((2.8.4) of [30])

implies that for suitable jx G/ either (Vx, V{' >> 5£(2, qx) or qx = 9 and

(K„ F/')= 5£2(5). This is a contradiction.

(2.9) Let £<F<G with £ an abelian /»-group, and let £0 be the Sylow

//•-subgroup of the preimage in G0 of £.

(a) Cc°(£) < Cc°(£) and Cc°o(£0) < CG°o(£0).

(b) C¿(£) < CG(E) and C¿o(£0) < C¿o(£0).

Proof. Let £, be maximal in £. Then either £ < £, or £ n £, is maximal in £. In

either case Cc(£,) < CG(E n £,) < Cc(£,) for some maximal subgroup £, of E.

The lemma follows.

(2.10) Let X — Xx • • • Xk < G0 be a product of pairwise commuting groups of Lie

type each defined over a field of characteristic r. Let Y «s A" be an elementary

abelian /»-group and (p,\Z(X)\) = 1. Suppose that Y projects onto a cyclic

subgroup, Y¡, of A,/Z(A",), for /' = \,...,k. Then

(a)A<C<?o(Y).

(b) If r divides | C^^) | for some iE{l,...,k), then CGfY) = G0.

Proof, (a) follows by looking at suitable hyperplanes of Y-namely, the kernels of

the projection maps, (b) follows from (2.3) and (3.12) of [6].

(2.11) Suppose £ = ZpX Zp, and £0 is contained in the maximal torus H of G,

where B = UH is a Borel subgroup of G and U — Bu (unipotent radical). Then there

exist at least three maximal subgroups of £0 with nontrivial centralizers in U.

Proof. Suppose false. Then clearly £0 centralizes no element of Û* and we may

then write £0 = £,£2 where, for i = 1,2, £, contains £0 D Z(G0) as a subgroup of
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index p and no element of £0 — (£, U £2) centralizes an element of Û*. Let

A, = (a G 2: £, < C(/7a)}. As £0 induces Z on each root subgroup Ûa for a G 2

we have 2 = A, U A2, a disjoint union. Also A, ¥= 0 # A2 for otherwise £, < C(G)

for / = 1 or 2. Finally we observe that A, = -A, for / = 1,2.

We claim that a G A, and ß G A2 implies [Ûa, Uß] — 1. Otherwise a + ß G 2 and

í/a+;3 < [í/0, Uß] (this follows from the commutator relations). Now fix e G £, —

Z(G). Then e is trivial on f/a, nontrivial on L^, and hence nontrivial on f/a+/8.

Consequently a + ß E\ A,. Similarly a + yS G A2, a contradiction. This proves the

claim.

Let G, = <£>„: a G A,) for /=1,2. Then [G„ G2] = 1, G\G2 = G, and

G[ n G2 ̂  Z(G). But this gives a direct decomposition of the simple group G/Z(G),

which is impossible.

(2.12) Let £be any maximal torus of G with T = T". Then G„ = Or'(Ga)Ta.

Proof. The following is based on a suggestion of G. Lustig. Let it: G -> G be the

natural surjection and regard o as an endomorphism of G. Let T be the preimage in

G of £ and let Z = Z(G). Then f is connected (see (3.2) and (8.2) of [25]). Write

A = G Xz£ for the central product of G and T (amalgamation with respect to Z).

Then a induces an endomorphism of X, via (g, t)a = (ga, t"). Also A = A"0 and

there is a well-defined homomorphism (of algebraic groups) given by (g, t)0 — (g)tr.

Then ker(0) ={(l,r): í G £}. Now ker(0) = T is connected, so Lang's theorem

([18] or (10.1) of [23]) implies that (AJÖ = G„.

Next we note that (GJtt = Or'(Ga) (see_(3.2) of [25] and (12.4) of [23]). Hence

(fa)ir = Ta n Or'(Ga). Let g G G0 - Or'(Ga) and suppose that (g„ f)ö = g with

(g,, í") G A"„. Then, for some z G Z, g° = g,z_1 and í° = íz. As the cosets gOr (Ga)

vary, so does the element z G Z. It follows that | £0/(£0 D Or'(Ga)) \ = | Ga/Or'(Ga) \,

proving the lemma.

(2.13) Let G, — G° be a quasisimple algebraic group over K and a an

endomorphism of G, with | (G,)„ | finite. Let G2 be the universal covering group of

G| with Z *£ Z(G2) and G2/Z = G,. View a as an endomorphism of G2 (see (9.16)

of [23]). Let X = {g G G2: g" = gz for some z G Z). Then Ais a group, X > (G2)aZ,

and X/(G2)a ^ Z.

Proof. Let X— (g G G2: g° = gz for some z G Z}. Clearly A" is a subgroup

containing Z and (G2)„. The map x -» x"^0 is a homomorphism from A into Z. By

Lang's theorem the map is surjective, so X/(G2)a ~ Z.

(2.14) Let notation be as above and assume that G, is a simple group.

Let 77 be the natural surjection from G2 to Gx. Then (G,)a = A"" and |(G,)„:

Or'((G,)0)| = |(Z)a|.

Proof. Clearly A" - (G,)„. Now set A0 = (G2)aZ. Then A0/(G2)o s z/Za, so

| A"/A0 | = | Z01. As A0 is the preimage under it of Or'((Gx)a), the result follows.

(2.15) Let G, be as in (2.14). Then (G,)0 is the group Or'((G,)a) together with all

diagonal automorphisms. Moreover (Gx)a/Or\{Gx)a) is isomorphic to an image of

Z of order equal to | Z0 |. (G2)„ is a universal covering group of Or ((G, )„).

Proof. For the last statement see 12.8 of [23]. For the second statement use (2.14)

and (12.6) of [23]. The first statement follows from (12.3) and (11.6) of [23].
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The following is useful in inductive situations and for various generalizations of

the main theorems.

(2.16) Let X = Xx ■ ■ ■ Xn be a central product of quasisimple groups and let £ be

an elementary abelian //--group acting on X. For each /'= l,...,n assume that

C£(£,) = A,., where £, is the stabilizer in £ of A,.. Then CX(E) = X.

Proof. We may assume that £ is transitive on {A,,...,Xn), so £,■ = Ej for each

i, j and we set F — Ex. Clearly we may also assume n > 1. Let / be a maximal

subgroup of £ with F< I. Write X — 7, • ■ • Yp, where each Y¡ is the product of the

components of A"in a fixed /-orbit. Inductively, Y¡ = C°(7) for /' = l,...,k.

Fix e E E — I and let / be any maximal subgroup of /. Then for y G CY¡(J), we

have IlfJo y"' an element of Cx(J(e)). Do this for each maximal subgroup of I and

conclude that CX(E) covers Cx/ZiX)(e), so contains Cx(e)'. Now this happens for

each e G £ — £ It follows that CX(E) = X, as required.

Throughout this paper we will use the following labeling of Dynkin diagrams.

Table (2.17)

1 2 n-l n
*n   O-O   • •  •   O-O

1 2 n-l.      n
»"O-O • •  ■ O     >Q

Cn   O-O • • • ŒZÇD

1 2
O-o

1 3 4 5 n-I n   ,
O-O-O-O • • • O—  - -O <" = *. ', »i

12 3 4
o-o  >  o-o

1     s,     ,2

3. Subgroups of Chevalley groups. In this section we prove some results on

generation of classical groups that will be used in §4. Also we establish the existence

of certain subgroups of some exceptional groups of Lie type. These subgroups are

similar to ones produced by Stensholt in [26]. However our methods are different,

and yield a bit of additional information that we require in §5.

Let W be an F^-space with a nondegenerate alternating or hermitian bilinear form,

or quadratic form in case W is an orthogonal space. Say A is a subspace of W with

W = A © XL . Define i( A) to be the group of isometries of W generated by those

root subgroups trivial on Xa- . For convenience there will be two cases where we vary

from this definition, namely, the case when W is a unitary space with dim( A") = 1
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and W an orthogonal space with dim( A) = 2. In the first case we let 5(A) be the

group of all isometries of W that are trivial on Xa- . So i( A) s Zq+,. In the second

case í( A) will be the subgroup of SO( W) that is trivial on Xa- . So here %X) = Zq±x,

depending on whether A is anisotropic or not.

(3.1) Assume W = Wx ± W2± W3 and that W2 contains nonzero isotropic (singular

if W is an orthogonal space) vectors. Then either

(i) %W) = 0(WX 1 W2), S(W2 ± W3)), or

(ii) 4(W) = SO+(6,2)= Ag and 0(WX± W2), S(W2± W3)) = A7.

Proof. Set A = (%WX ± W2), %W2 -L W3)). It is easy to see that A is transitive

on each §(W) orbit of V. Also we may assume Wx ¥= 0 ¥= W3. The idea is to show

that A is flag-transitive in the sense of [21]. Once this is achieved we will be done by

applying the main theorem of [21].

Suppose W3 contains an isotropic (singular) 1-space W0, and write W3 = W4± WQ,

where W0 is a nondegenerate 2-space containing W0. Let £ be the stabilizer in $(W)

of W0. Then £ is a parabolic subgroup of <5(W) and the transitivity of A implies that

G = £A. Also £ = Or(P)LH, where £ = §(WX ± W2 ± W4) and H is a Cartan

subgroup of §(W) normalizing L. We may take Or(P)H < B =s £, where £ is a

Borel subgroup of $(W).

In view of the main theorem of [21] it will suffice to show £A = §(W), and for

this we only need £ = £(£ n A). However, inductively we have

L = <5(WX -L W2 1 W4) = ($(WX -L W2), §(W2 ± W4)) or £ ~ At and

0(WX _L W2), %W2 ± W4))= At In either case we have £ = B(P n X). So we may

now assume that W3, and by symmetry Wx, contains no isotropic (singular) 1-spaces.

In particular W is not a symplectic space. If IF is a unitary space, then

dim(IF,) = dim(rF,) = 1. In this case let W4 be an isotropic 1-space in Wx -L W3 and

£ the stabilizer in %W) of W4. Then £ = Or(P)HW2)H and we have £ = B( X n £)

for a Borel subgroup of §(W). As above this gives the result.

Now we may assume W is an orthogonal space. Write W2 = W2 -L W2, where W2

is a 2-space containing a singular 1-space. Let W3 = W2 -L W3 and consider the

decomposition W — Wx A. W2 -L W3. By the above arguments we may assume that

W3 contains no singular 1-space. So dim(W/1) and dim(If3') are each at most 2.

If dim(JF,) = 1, then Wx = (v) for some nonisotropic vector, v, of W. Therefore

A contains i(W2 -L W3) which is of index 2 in Cä(H/)(u) and X is transitive on v (H/).

But then X has index at most 2 in $(W), proving X — i(W). So we may assume

dim(Wx) = 2, and similarly dim(IF3) = 2.

If q is odd we may write Wx — Wxx -L WX2 with dim(JFu) = dimilF^) = 1. Then

argue as above, using the fact that i(WX2 -L W2 -L W3) < A by induction. So assume

q is even. Let WQ be a singular 1-space in W2 and £ the stabilizer in §(W) of WQ.

Then £ = Or(P)LH, where Or(P)H is contained in a Borel subgroup B < P and

£ = §(WX ± W¡). But A > $(WX) X i(Wi) = Zq+X X Z9+1 and we have

£ = (£ D Ä)(3(^i) X HrV;)). So £A= í(IF) and we use [21] to complete the

proof.

(3.2) Let V — Vx -L V2 be an F^-space with a nondegenerate alternating or hermitian

form, or a quadratic form. Assume dim( Vx ) > dim( F2 ) > 2, that dim( K, ) > 4 if F is
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an orthogonal space, dim(F2) > 3 if V is orthogonal and q - 3, and dim(F2) > 4 if

V is an orthogonal space and q is even. Let A = 5p(F), 5i/(F), or 0±(V),

whichever is appropriate, and let /< A be a subgroup containing Cx( Vx ) and

CX(V2), but not stabilizing {Vx, V2}. Then one of the following holds:

(i)/ = A;

(ii) X = SU(4,2); or

(iii)AsO+(8,2).

Proof. Suppose X m SU(4,2) or 0+ (8,2). Let A = CX(V2). If A = CT(8,2), we

may assume A = 0~(A, 2). There exists g G / such that Ag 4 NX(A), and, for such a

group Ag, choose an element c G Ag — N(A) with c a transvection or reflection (in

case q is odd and A = 0± (V)). Then set V0 = [(A, c), V]. We have Vx < V0 and

dim(F0) = dim(K,)+ 1.

Suppose rad(F0) ^ 0. Then rad(F0), being A -invariant, is contained in V2 and

V0 = Vx ± rad(F0). As rad(F2) = 0 there is a 2-space V3 of V2 such that rad(P"3) = 0

and rad(F0) < V3. If F is an orthogonal space with q even and if rad(F0) is

nonsingular, then choose V3 so that V3 contains no singular 1-spaces. Then

/ > A X %V3) and we will show that <5(VX A. V3) < I. To see this let £ be the

stabilizer in §(VX A. V3) of rad(F0) and £0 = C/,(rad(K0)). For the moment exclude

the case where V is orthogonal and q is even. Then £0 = Or(P)Or(A) and acts

irreducibly on Or(P)/Or(Z(P0)) (see §3 of [10]). Since c G N(P0) but c G N(A) we

have (A,c) covering Or(P) mod Or(Z(P0)). The results in §3 of [10] imply that

Or(Z(£0)) = <&(Or(£)), unless A" is a symplectic group in characteristic 2. In the

latter case Or(P) is indecomposable as an ,4-module, unless A = Sp(4,2), where the

result is easy to check. So we may now assume that (A, c)> £0, and so £0 < £ Also

/ > CX(VX) > CX(VX) n CX(V3) and £0 together with this last group generates a

group containing %VX A. V3). To complete this case consider the decomposition

Vx A. V3 A. (V3 n V2) and apply (3.1) to conclude that %V) < I. So A = I.

Now suppose that V is orthogonal and q is even. If rad(F0) is singular the

same arguments work, once we note that / contains a transvection that stabilizes

V3 but not rad(K0). So suppose rad(K0) is nonsingular. Then

(A, c)< £0 = C(rad(F0)) n %VX A. V3) = Sp(k, q), where k = dim(F,). We note

that (A, c)= £0. To see this note that Vx C\ Vx is a hyperplane in Vx, so \A (~\ Ac\

can be computed. Then count the number of elements in AAC and conclude from [17]

that £0 = (A, c). Also / contains i(V3) s Zq+X and we have / » (£0, 5(F,)> =

i(Vx A. V3). At this point we can choose a transvection c' E I such that c' G N(A)

and rad(^) is singular, where V¿ = [(A,c'),V]. Namely, first write V —

Vx ±V3±V4, where V4=V2C\V3. Let c, be a transvection in C(VX) with [V, c,] =

ü3 + v4, where v3 G K3, r4 G K4, and 0 ¥= v4 is singular. Let g G 5(F, ± V3) with

üf G F,. Then c' = cgx is such a transvection. Now argue as above to get the result.

Next we suppose rad(F0) = 0. Then A is neither a symplectic space nor an

orthogonal space with q even. If V is an orthogonal space with q = 3, let U be a

nondegenerate 3-space of V2 with U> V0 n P"2. Otherwise let Í/ be a nondegenerate

2-space of V2 with (7 > F0 D P"2. Unless F is orthogonal and dim(K2) = 2 we may



362 G. M. SEITZ

assume that U contains an isotropic 1-space. Inductively we may assume U = V2.

Indeed, write V = Vx±U±(V2n UL) and apply (3.1).

Next we write Vx = V[ A. V", where V" has dimension at least 2 if F is a unitary

space and at least 4 if F is an orthogonal space. Further, choose V" so that

V" -L V2^[V, c]. Now consider the decomposition V = V'x ± V" -L V2 and apply

induction together with (3.1). We conclude that one of the following occurs: I = X,

V[ = 0, or X = SU(n,2) and V" is a 2-space. In the latter case, we can replace V"

by a proper nondegenerate 3-space of Vx containing V", if n > 6. Here, (3.1) and

induction yield / = A. So from now on we may assume that either A s SU(5,2) or

V[ = 0 and A = SU(4, q), q>2,0^(6, q), q > 3, or 0~ (7,3).

Suppose X s SU(5,2). Then A ~ SU(3,2). The space Vx n Vx is oinvariant,

while [V, c] 4 F,. It follows that Vx D Ff is a 2-space in CK(c), hence nondegenerate.

As A n ^c stabilizes Vx D F,c, /l n ,4f s S3 x Z3. Thus, <!■!, ̂c>»| /L4C |> 12 | A \.

We claim that (A, c> = SU(4,2). As (¿, c>*£ 5(F0), (A, c)< SU(4,2). Elementary

order considerations show that either the claim holds or (A, c) has index 10 in

H^o) = PSp(4,3), so in the latter case (A, c) would be contained in a proper

parabolic subgroup of PSp(4,3). Checking orders we have a contradiction. Therefore,

Í(F0) *s /. Choose g G %V2) such that V = V0 + V§. Then 5(F0g) =£ / and by (3.1)

/ > 0(VO), $(Vo))= HV)- From now on we assume V[ = 0.

Suppose A = SU(4, q) with q > 2. As above it will suffice to show that i(F0) < £

But this follows from a check of subgroups of SU(3, q) (see [5] and [14]). Now

suppose A = O' (6, q) with q > 3 or X =0±(7,3). Here i(F0) = £5/?(4, q),

Vq = (VX,V{), and F, D F,c is a 3-space stabilized by the involution c. Set

£ = <^,c>, so that | L\>\AA''| = | A | -| ^: /I n A1 \. Computing the possible

choices for A n Ac (which stabilizes the hyperplane F, n Vx of Vx), we have

| i(F0)<c>: L\< \q2. Apply the theorem of [17] to conclude that £ = i(F0)(c>.

If A = Oa (6, ^) with q > 3, then choose g G í(t/) such that F0 n t/ ^ F0« n U.

Then / > (5(F0), g, c>, and arguing as above we have I — X. This leaves the case

X=0~(l,3). Let <u0>= VQD U and choose g G Í(Í7) such that <t>0, ü^> is

nondegenerate but contains isotropic vectors. Then (3.1) and induction yield

i«F„ u0, u#» < /• A further application of (3.1) shows that A = £

Let G0 = G0(q) be an exceptional Chevalley group (notation as in §2). We will

produce certain subgroups £ of G0. These subgroups are described below in Table

(3.3). Here £0 = Or(L), C = CL(L0), and £= £/£0C. In all cases each compo-

nent, A, of £0 is normal in L, and L/CL(X) induces inner and diagonal automor-

phisms of A.
To prove the existence of £ we consider G0 = G0 and argue as follows. We choose

a certain a-invariant subgroup £ of G, which usually is generated by root subgroups

of G. Then we produce an element w of the Weyl group of G such that w stabilizes

L. By Lang's theorem ([18] or (10.1) of [23]) wo and a are conjugate in G.

Consequently G0 contains a G-conjugate of Lwa, and this is the appropriate

subgroup L. Recall that root diagrams are labeled as in Table (2.17).

Choose a a-invariant Borel subgroup, B, of G so that the (B, N)-structure of G0 is

obtained in the usual way from that of G. So H0= fa, for £ = £" a maximal torus

in Ê, and o acts on the root subgroups of   Bu= U in the usual way.
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Table (3.3)

La/Z(L0) C Z(L0)

Ee(q)

t-i(q)

E,(q)

¿Eb(q)

F,(q)

G2(q)

D,(q)

L3(q)XL3(q)XL3(q)

L3(q2) X U3(q)

2D4(q) X L2(q3)

2E6(q)

U3(q) X Ub(q)

D4(q) X D4(q)
3D4(q)X2D4(q)

L5(q) X L5(q)

1/5(9) X Us(q)
L3(q) X E6(q)

U3(q) X2E6(q)

PSO-(\2,q)' X L2(q2)

L9(q)

U9(q)

U3(q) X U3(q) X U3(c

L3(q) X L3(q)

U3(q) X U3(q)

E3(q)

U3(q)

M 9)
U3(q)

L3(q)

U3(q)

Zci.q- I)  X   2(3.,,-1)

Z(3.<72-1)

Z(2,ï- I)

Z<7+1

Z(3.?+l)

Z(2,«-l) X  Z(2.,-l)

1

Z<5.„-1)

Z(5,i+1)

Z(3.<?-1)
Z(3.i+1)

Z(2,?-l)

Z(3.,-l)

-(3.Î+1)

Z(3,?+l) X Z(3,?+l)

Z(3,„-l)

Z(3.<;+1)

Z(3.,-1>

Z(3,<,+ 1)

Z(i-1  X Z?-l

Z9+l  X Z?-l-I

Z(q2 + q+¡)

Z(92-?+D

Z(3.</     I) X Z(3,,-l)

Z(3.?2-l)

-a.q-

?(3,«H

'CS.q-

?(3.,-

-(3,?i
Z{ï.q-

X Zo „_(2,?-l)

z„.

(9.q-i)

(3.9-1)

0>-g + ')
(3.9+1)

Z(3,^+l) X Z(3.</+l>

Z(3.?-l)
Z(3,<,+ 1)

Z(3,<?-l)

Z(3.<;+l)

Z(3.,-l)

Z(3.«+ I)

Z<3.<7~ I)

Z(3.i+D

^(5,?-
Z(5,«,+

Z(3.,-

Z(3.<i +

Z(2.i-

Z„.

^(3,?-!)

Z(3,í,2-1)

Z(2,,-

Z(3,„ +

Z(3,?+

za.q- X Z,a.q-\)

/.„.
(3.9-1)

(9,9+ 0

(3,9+0
--(3.9+ 1)

?(3.«-D

-O.q+U

1

-O.q-D

-O.q+t)

-(3.Ï-1)

-(3,?+l)

Let 77 = {a,,... ,a„} be a fundamental system of roots for IF. For the cases £6,

£7, £8 we label the Dynkin diagram as follows:

«1«3«4«5«6 axa3a4a5a6a7 axa3a4a5a6a1aii

«2 "2 «2

In all cases -5 will denote the  positive  root of highest height (with respect to tr).

Listed below are various other fundamental systems for £6, £7, £8:

£6   w,  a5a6taxa3, where t = a2 + a3 + 2a4 + a5

s

£7   -n2 aba5a4a3axs

«2

m3 sta6a5a4a2, where t — ax + a2 + 2a3 + 2a4 + a5

£g   w4 a6<x5a4a2txt2af,, where ', = -(a, + 2a2 + 2a3 + 3a4 + 2a5 + a6)

a3 and i2 = 2a, + 2a2 + 3a3 + 4a4 + 3a5 + 2a6 + «7

7T5 a2a4a3/ja8a7, where r = a, + 2a2 + 2a3 + 4a4

a, +4a5 + 3a6 + 2a7 + a8

7r6 a6a5a4a3axts, where ? = a2 + a3 + 2a4 + 2a5 + 2a6 + 2a7 + a8
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m1 sa^a^ct^a^^ where t = ax + 2a2 + 2a3 + 3a4 + 2as + a6

t

778 txa2a4a5a6a1t2, where tx = ax + a3 + • • ■ +a8, and

a3 t2 = -(a2 + a3 + 2a4 + 2a5 + 2a6 + 2a7 + a8)

Since the Weyl group is transitive on the set of all fundamental systems of roots, we

may choose w¡ G IF such that ttw> = ir¡, i = 1,..., 8. For i > 1, w¡ necessarily preserves

the labeling of the Dynkin diagram. Setting wx = (s4sxs6)s,S5S"S2, we also have this

for/ = 1.

Let G0 = E6(q). Then G = Eb(K) and a is a field automorphism. Let

A, = <(7±a„ {/±«3 >, A2 = <L>±a5, Û±at ), and X3 = (Û±a2, Û±s >. Then

A", s A2 s A"3 s 5£(3, K) and [A,, A2] = [A2, X3] = [A",, A3] = 1. We note that

A,A2 = A, X A"2. This can be seen by viewing Eb(K) «£ E7(K), then considering

A, A2 as a subgroup of 5£(7, K) < E7(K). Conjugation within the Weyl group of

G0 yields A"2 A"3 ~ A, X3 ~ A", A"2 s A, X A2. On the other hand, we claim that

Z( A, A2 A3 ) = Z3 X Z3 if r # 3. From the above we see that either this holds or

Z - Z(XXX2X3) s Z3 X Z3 X Z3. If the latter holds consider Cz(¿/„4) = Z0. Then

Z0 also centralizes U_a¿ hence Z0 < C((l/±aJ/'= 1,...,6» = Z(G). However,

| Z0 | > 9, whereas | Z(G) | = 3. This proves the claim and gives the group £0 for the

first case in E6(q). Namely, set £0 = (A,)a(A2)0(A3)0. Let (z¡)= Z(X¡) for

i = 1,2,3. Notation may be chosen such that zxz2z3 = 1. For each i = 1,2,3 we

apply Lang's theorem ((10.1) of [23]) to obtain an element a¡ G X¡ such that

a° = a¡z¡. Then a" = a, where a = axa2a3. Also a G N(L0) (each a, G JV((A,)0))

and a G £0Z(A,A"2A3) precisely if 3 | q — 1. Let £ = L0(a), £0, or £0 according to

q = 1, -1, or 0 (mod 3). Then £ is the first of the groups for E6(q).

The element h>, G W is an involution and it is clear that AT1"' = Ar2, while

A3W| = A"3, and w, induces a graph automorphism on the Dynkin diagram of A"3. Let

g = wxo. Then g ~ a by Lang's theorem ((10.1) of [23]). We may take a coset

representative of wx in (G0)o, so g2 G a2// and another application of Lang's

theorem yields (X,\i = SL(3, q2) for / = 1,2,3. Therefore, (A,A-2)g s SL(3, q2).

From the action of g on A"3 we have (A3)g s SU(3, q) (see [23, (11.2) and (11.6)]).

Let £0 = (A,A2)g(A3)g. Since Xf = X2 we have Z(£0) s Z(3qi_xy If

(3, q2 — 1) = 1, set £ = £0, and if 3 | <y2 — 1 set £ = L0(xy), where x G A, A2,

y G A3, xg = xzxz2, and j>8 = yz3. Then £ < Gg = E6(q) and we have the other

subgroup for E6(q).

The above set-up can be used to describe the required subgroups for £4(g) and

2E6(q). Let t be the graph automorphism of G, defined with respect to B, H, N, etc.

Let A=A,A2A3 and note that we may take w G GT = F4(K). Consequently,

£4(^f) = (GT)0 contains conjugates of AT D Ag and AT n Xa. Now t centralizes A3, so

z3 = z3. As 1 = (zxz2z3)T = z,z2z3 we must have z\ = z2 and z2 = z,. So Z(A')T =

(z3>. Since [A3, t]= 1, (A3)g or (A"3)„ is contained in AT n A"g or A"T n A0,

respectively. Also ((XXX2\)0 s 5£(3, 9) and ((A,A2)T)g s 5í/(3, ?). This gives the

subgroups £0 for F4(q) and the usual argument gives £ = £0 or L0(a), completing

the case of F4(q). For G0 —2E6(q) note that to- ~ wxro so G0 contains a conjugate of
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Xw to. The element wxto stabilizes each A, and (Xi)w¡TO s SU(3, q). From here the

usual argument shows that £ = XWTO is the required subgroup.

Next, let G0 = Es(q) and G = E%(K). We produce central products X = XXX2

and Y — YXY2 as follows. Let

A, = (U±a2,U±c¡3,U±a4,U±a¡)

and

X2 = (Û±ai,Û±as,Û±h,Û±l2),

where r, = 2a, + 2a2 + 3a3 + 4a4 + 3a5 + 2a6 + a7 and t2 = a2 + a3 + 2a4 +

2a5 + 2a6 + a7. Let Y, = (U±a¡\\ < i < 4) and Y2 = <i/±a6, ¿L«,,{/±„s, U±s).

From the commutator relations we have [A,, A2] = [Yx, Y2] — 1. Each of A, and

Â2 is a perfect central extension of D4( K ) and each of Y, and Y2 is a perfect central

extension of L5(q). An easy computation shows that Z(A,) = Z(A"2) = 1 or

Z2X Z2, according to whether or not r = 5. Similarly, Z(YX) — Z(Y2) s 1 or Z5,

according to whether or not r = 2. From the action oí o on X = Xx X2 and on

Y = YXY2 we obtain the required subgroup £ (£ = Aa or Y0) with

£0/Z(£0) s D4(q) X D4(q) or £5(<?) X L5(q).

From the action of w4 and w>5 on it we see that A/"4 = A, for / = 1,2 and Y™5 = Y¡

for i: = 1,2. Moreover, w4 induces a triality graph automorphism on the Dynkin

diagram of A, and A2, while w>5 induces the involutory graph automorphism on the

Dynkin diagram of Y, and Y2. So considering w4o and w5o we obtain the groups £

with £0/Z(£0) =3£>4(<7) X3£»4(<7) and U5(q) X U5(q). We can also restrict to

E7(K) =£ ES(K) and obtain the first assertion for E7(q). Namely, look at A", X A3,

with A3 = (Û±ai)X (U±t¡)X (Û±h), use the element w4a, and argue as usual.

Next, set Z, = (Û±at,...,Û±af>) and Z2 = (Û±aft,Û±s). Then [Zx, Z2] = 1, Z,

is a perfect central extension of E6(K) (in fact the universal group) and

Z2 s S£(3, K). The argument used for the case E6(K) and the fact that 3 \ \ Z(G) \

imply that Z(ZX) = Z(Z2). Letting £0 = (Z,)0(Z2)a we have

£0/Z(£0) s £6(<7) X £3(<7) and Z(£0) s Z(3 ?„,r Fix z G Z(ZXZ2)# and choose

a G Z, and b E Z2 with a" = az and b" = bz']. This is possible by Lang's theorem.

Then a centralizes aè and £ = L0(ab) satisfies the conditions for the appropriate

subgroup of Eg(q).

Let g = w6o. The usual arguments show that £ = (ZxZ2)g is the twisted version of

the previous example. Namely O''(£) = £0 satisfies £0/Z(£0) =2E6(q) X U3(q). A

variation of this example leads to the second group for E7(q). Namely, use g = tv2a

(acting on E7(K)). As w2 induces an involutory graph automorphism of Z,, we see

that (Zx)g is the covering group of 2E6(q). Also, if we set T = {h(x) \ x(a¡) = 1 f°r

i ¥= 7}, then [Z,, T] = 1 and £ is a 1-dimensional torus. Now Z(ZX) < £ and since

a72 = -s, g inverts T. Thus, £g s Zq+, and £ = (ZxT)g is the desired group.

To complete E7(q), let F, = (Û±ai,Û±«t,...,Û±ai) and F2 = <t/±a,,i/±î>.

Argue as usual to get £ = (VXV2)W „ as indicated in Table (3.3).

We continue the analysis of £8(<5f). Set D = (U±„t, Û±Ui.U±ttl¡, Û±s). Then D

is a perfect central extension of L9(K) and checking the action   of H we have
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Z(D) = 1 or Z3, according to r = 3 or r i= 3. The covering group of D is SL(9, K).

Let £ = £>„ and £0 = Or'(£). If r ¥= 3, then (2.13) implies that | £: L0|= 3. Also,

considering the action of a on 5£(9, K) we see that 3II q — 1, then £ = £0 X Z3. So

£ satisfies the conditions in Table (3.3). To produce the twisted version of this

example let g — w7o and argue in the usual manner.

To complete the analysis of £8(<?) we must produce a central extension of

PSO~(l2, q)' X L2(q2). Let/, = (Ûîai,..., Û±ai) and J2 = (Û±s, U±¡), where t is
the root of highest height in the root system spanned by {a,,...,a7}. Then

/, s Db(K), J2 = (f/±J)X (U±l), w8 induces a graph automorphism of /,, and w8

interchanges the components of J2. Therefore, (JXJ2)W „ satisfies the necessary

conditions.

For the remaining cases let G = D4( K ), with Dynkin diagram

^3

w4

Set A", = (Û±ai,Û±(ai+a2+a3+ai)), so that A, sS¿(3, K). A direct check shows

that A2 = Cfj( A, ) is a 2-dimensional torus. Indeed

C¿(XX) = {A(x):x(«2) = l.x(«i) = fi,x(«3) = fc.xOO = (U2)~'}-

As in previous cases we have Z( A", ) < A"2 and from here consideration of

£ = (A,A2)„ gives the first assertion about D4(q). Now let g = sxs2s3 and argue

with go to get the second assertion. The results for G2(q) are obtained by observing

that the graph automorphism of order 3 of G centralizes A,. Similarly for 3D4(q), but

here one must first check the action of go on A2. But this is a straightforward

computation. All entries in Table (3.3) have now been accounted for.

For later use we point out that in most of the situations of Table (3.3) the

components are generaed by long root subgroups of G0. In the notation of Table

(3.3) let £0/Z(£0) = C, • ■ • Ck, where the C, are as indicated in column 2 of Table

(3.3). Then each C, is a component of £0/Z(£0) except when C, = £2(2), £2(3), or

i/3(2). Here we say C, is a solvable component. In the case U2n+X(q), which has root

system of type BCn, we will call the long root subgroups those that are nonabelian of

order q2. We have the following:

(3.4) Let (G0, £0) be from Table (3.3). Except for the following cases, each C, is

generated by the images in £0/Z(£0) of long root subgroups of G0. In each case the

indicated component (solvable component) is the only one so generated:

(E6(q), L3(q2) X U3(q),U3(q)),    (F4(q),U3(q) X U3(q), U3(q)),

(F4(q), L3(q) X L3(q), L3(q)),    {E7^D4(q) X L2(q'),'D4(q)),

(Es(q), PSO-(l2, q)' X L2{q2), PSO~(l2, q)').

Proof. In each case £0 = Or(L) where £ = £wo, £ is a subgroup of G generated

by certain root subgroups, and w (possibly w = 1) is an element of the Weyl group

of G0. In each case where w stabilizes a component Y of L, w also stabilizes a long
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root subgroup of £ and we easily have Ywa generated by long root subgroups. The

exceptional cases listed are the ones where w has a nontrivial orbit on the components

of£.

(3.5) Let G = E6(K), t the field automorphism k -> kq and 6 the graph

automorphism of G (defined with respect to B — B7, H — HT, etc.).

(i)U3\q — I, then Nr contains a Sylow 3-subgroup of GT.

(ii) If 3\q+ 1, then Gt6 contains a subgroup Y with Y/Fit(Y) s 02(W) =

0'(6,2)' and Fit(Y) is isomorphic to the direct product of 6 copies of Z+1. Y

contains a Sylow 3-subgroup of GTÍ.

Proof. The statements concerning Sylow 3-subgroups will follow from the order

formulas for GT and GtS, respectively (see (5.1) for example). Now t acts on N and

Ñ = H(N)T. Also IF s IF = N/H = O "(6,2). Since HT is isomorphic to the direct

product of 6 copies of Zq_, s F* we have (i).

For (ii) let t, 0 act on N. Now t centralizes N/H and 0 induces the graph

automorphism on Ñ/H. Let g G A' with gH the long word in the fundamental

reflections generating N/H. Then for each a G 2, U¿¡e = U_a. It follows that g6

centralizes N/H and gd inverts H. By Lang's theorem rO ~ gr6 and by the above

H 0 is the direct product of 6 copies of Zq+,. So Gt6 contains a conjugate Y, of Ng7e

and letting Y/Fit(Y,) = 02(Y,/Fit(Y,)) we have the desired group Y. (To check

that N e covers N/H use Lang's theorem once again.)

4. Classical groups. In this section we take G to be a classical group. Accordingly,

let G0 = SL(V), Sp(V), SU(V), or O(V)', where F is the appropriate module. This

is in accordance with the notation in §2, except for the orthogonal group in odd

characteristic. If G = PSO~ (n,q)' with q odd, then the group G0 of §2 may be an

extension of SO± (n, <¡r) by a group of order 2. But as p > 2 this does not affect

generation. We omit the case of an orthogonal space of odd dimension and even

characteristic, for we identify such groups with symplectic groups.

We must make one additional change of notation regarding the group E0. We

want G0£o to act on V. This certainly happens if £0 *s G0 (as in the symplectic and

orthogonal groups). But for G0 = SL(V) or SU(V) this need not occur and we

redefine the group £0 as follows. Recall that we have £ < NG(G) = PGL(V) or

PGU(V). Let £0 be the Sylow/»-subgroup of the preimage in GL(V) or SU(V) of £.

This change of notation does not affect generation.

Throughout this section we will assume dim( V ) s* 8, if F is an orthogonal space.

To describe the cases where generation fails we make the following definition.

Suppose p = 3, q = 2, and G0 s* SL(V). Let F = V0 ± F, J. • • • ± Vk with

F0 = Cy(E0) and V¡ = VtEa for i — l,...,k. We say this decomposition is admissible

if dim(F0) < 0,1,2 according to whether Fis symplectic, unitary, or orthogonal, and

dim(K,) = • • • = dim(F^) = 1 or 2 according to whether F is unitary or not. Note

that k > 2.

(4.1) Assume £0 is abelian. Then precisely one of the following holds:

(i)Z>0=G0.
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(ii) p — 3, q = 2, G0 ^ SL(V) and F contains an admissible decomposition. For

any admissible decomposition V = CV(E0) ± Vx A. • • • ± Vk, we have £>0 < / and

£0 < £,, where / is the stabilizer in G0£0 of {CV(E0), F,,..., F^} and £, = G3(7).

(iii) p = 3, ? = 2, G0 s Sp(2n,2) and Z)0 = 0\2n,2), where e = (-1)". More

precisely, F has an admissible decomposition K = F, _L • • • A. Vk, and for any such

decomposition D0 preserves the quadratic form which has value 1 on each vector in

^*,for/= l,...,k.

In particular, either D0 — G0 or £0 is elementary. Moreover, examples exist for

each of (i), (ii) and (iii).

The proof of (4.1 ) will be carried out in a series of steps. We assume G0 to be a

counterexample of minimal order. By (2.3) we may assume that £0 is contained in no

proper parabolic subgroup of G0£0. A proper parabolic subgroup of G0£0 is the

stabilizer of a particular proper subspace, isotropic subspace, or singular subspace of

V, according to whether G0 = SL(V), Sp(V) or SU(V), or 0± (V)'. So £0 stabilizes

no such subspace. Since £0 is not cyclic £0 does not act irreducibly on V, and

consequently G0 ^ SL(V). We will study £0-invariant decompositions of V.

Write V= CV(E0) © F, © ••• ®Vk, with each Vi irreducible £0-invariant

subspace of V. If W < V with IF n W1- = 0, let j ( W) be the group generated by all

root subgroups of G0 contained in C(W±). Except for certain small cases

j(W) = %W) as defined in §3.

(4.2) We may assume that

(i)V=Cy(E0)±Vx± ■■■ ±Vk.
(ii) Cy(E0) has dimension at most 0,1,2 depending on whether G0 is symplectic,

unitary, or orthogonal.

(iii)dim(F,) = ■•• = dim(KA).

(iv) If Fis decomposed as in (i), then f(Cy(E0) ± V¡) *£ £»0 for i= 1,... ,k.

Proof. Clearly F, 8 ■ ■ • 8 Vk = [V, £0] and so Vx 8 • • • 8 Vk = Cy(E0)± . As

remarked above, F, is not isotropic (singular if V is an orthogonal space). If

rad(K, ) ¥= 0 then G0 = SO± (n, q)' for q a power of 2, and F, is a 1-space. But here

£0 must centralize Vx, whereas F, ^ C^(£0). So in all cases rad(F,) = 0 and

consequently £0 acts on (Cy(E0)± Vx)x. If necessary rechoose K2 so V2 is an

irreducible £0-invariant subgroup of (Cy(E0) _L K,)x . Continue in this way to get

(i).

To get (ii) just notice that CV(E0) contains no isotropic (singular) 1-space. For

i = 1.k, £0 induces a cyclic group of order exp(£0) on  V¡. This determines

dim(K;)   uniquely.   So  (iii)   holds.   To   see  (iv)   note   that,   for   / = 1.k,   £0

induces a cyclic group of order exp(£0) on CV(E0) _L V¡ and that <&(E0) < C(G0) <

C((j(Cy(E0) A.V,)). So <S>(E0)CEa(Cy(EQ)±Vi) is a maximal subgroup of £0

centralizing '\(CV(EQ) A. V¡). The result follows.

(4.3) k = 2.
Proof. Suppose k > 2. First assume that either q > 2, p > 3, or £0 is not

elementary. In each of these cases we will show £»0 = G0, by induction. Let

IF, = CV(E0) ±VX± ••• -L Vk_x and IF2 = CV(E0) ± V2 ± ■■■ A. Vk.

Inductively, UW,), UW2) < D0 (here |(IF,) = 9(W,) as defined in §3) and by (3.1)
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applied to the decomposition V = Vx A. (Wx n W2) A.Vk we conclude that either

G0 s S0+ (6,2)' or Wx t~] W2 contains no isotropic (singular) 1-space. The former is

out as dim(F) > 8 in the orthogonal cases. Therefore Wx n W2 contains no isotropic

(singular) 1-space. This is impossible for V a symplectic space. If F is unitary then

dim(IF, n W2) = 1, forcing Cy(E0) = 0, k = 3, and dim(F,) = 1 for i = 1,2,3. If

Fis orthogonal then dim(IF, n W2) < 2, forcing dim(F) < 8, a contradiction.

Suppose then that G0 s SU(3, q). The proof of (4.2)(iv) shows that f(Vx±V2)

and $(V2A. V3) are each in D0. So by the results of [5] and [14], q — 2 and /» — 3,

which is against our assumption.

To complete the proof of (4.3) we now assume q = 2, p = 3, and £0 elementary

abelian. As above we are done by (3.1) if f(Wx) and f(W2) are each in £>0 (we are

reduced to G0 s SU(3,2), where an easy check gives the result). Suppose then that

f(Wx) 4 Ai- As ^o *s elementary each V¡ is isomorphic to Z2X Z2. If G0 is

symplectic or orthogonal, then each V¡ is a 2-space over F2, while if Fis unitary each

V¡ is a 1-space over F4. So the decomposition is admissible. Let / be the stabilizer in

G0£0 of {CV(E0), F,,..., Vk}. Then £0 < 03(I) = £,, with £, elementary abelian.

We are assuming £»0 < G0. Let £ be a hyperplane of £0. We will show that either

Cc (£) < / or that (4.1)(iii) holds. In the course of the proof it will become evident

how to construct examples where (4.1)(ii) or (4.1)(iii) holds. For i — l,...,k let

£, = CF(V¡) and F, = Cv(Ft). So Vt>Cv(E0)± V, and CCo(£) acts on V, for

i — l,...,k. In addition, V¡ is the sum of Cy(E0) and certain of the subspaces in

{F„..., Vk). Let /, be the normalizer in I of V¡. It will suffice to show that either

(4.1)(iii) holds or, for each i = 1,... ,k, CCo(£) | v< I, \ Vr

Fix / G {!,... ,k}. Reorder, if necessary, so that / = 1 and

F, = CV(E0) ±VX± ■■■ ±Vm, where 1 < m < k. First suppose m - 1. If £ > £,,

then Cc(£) normalizes [VX,F] = Vx and C¿(£) = CV(E0) so we easily have

cgIf)\\ < A Ik,- This also holds if F = £, except if G0 = 0(F)', dim(CK(£0)) = 2
and CK(£0) contains nonzero singular vectors. But in this case

CCo(£) = CCo(£,) 2* i(F,) = 50 "(4,2)' s /l5. From here we obtain D0 = G0 using

induction and (3.1) applied to the decomposition

V= V2A.(CV(E0)±VX)±(V3± ••• ±Vk).

So from now on assume m > 2.

Suppose £ = £, so that f(Vx) < CCo(£) ^ D0. If Â: > m + 1 set

^ = Vx ± Vm+X ± ■ ■ ■ A. Vk_x and W2 = Vx A. Vm + 2 ± ■ ■ ■ ± Vk. Inductively,

CCo(£)|^ 4 /,|k, impliesKlF,),^^)^^, so, by (3.1), D0 = G0. So now suppose

k — m + I. As £, acts on Vk= Vm+X as a cyclic group we necessarily have

£0 = Z3 X Zj. At this stage a check of the action of £0 on V shows that for some

proper subgroup, A, of £0, CCo(A) contains an element g G / with F/ 7e F^. Then

A) ^ (f(^i)> ^(^i)g) = ^o °y (3-1). This is a contradiction, so we now have £ > £,.

This implies that CGo(£) acts on [F,, F] = F, -L • • • ± Vm and on

C^(£) = C^fo). If w = 2, then an easy check of the group of isometries of

F, J_ F2 (Sp(4,2), Gi/(2,2), or 0+(4,2)) shows that CG(F)\f ^ /, \f. So we now
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suppose m^3. We note that if £0 = £,, then order considerations show that m «£ 2,

so here (4.1)(ii) holds.

Suppose G0 is unitary. Then assuming CG(£) \v ^ Ix\ç, F must have an eigen-

space on F, A. ■ ■ ■ A. Vm of dimension at least 3, say F, J_ • • ■ _L V¡. Then consider

decompositions of V of the form V = Ux A. (Vx A. V2 A. V3) A. U2, where Ux and U2

are each sums of some of the subspaces {CV(E0), V4,...,Vk}. By minimality of G0

and the fact that f(Vx ± V2 J_ V3) < C(£) we conclude

that, for ; = 1,2, £>0 contains f(U,±Vx±V2± F3), unless V= U¡ A. F, -L F2 ± F3.

So by (3.1) we are done except in the case & = 4 and CK(£0) = 1. Here we can write

£0 = £ X £2 s Z3 X Z3, where £2 is trivial on Vx A. V2 _L V3 and fixed-point-free on

V4. It is then easy to produce a maximal subgroup £3 of £0 inducing scalars on

V3 A. V4. Therefore CCo(£3) contains an element g interchanging F3 and V4, while

stabilizing VXA.V2. So

DQ > 0(VX ±V2± V3), i(F, JL K2 J_ V3Y)

= 0(Vx±V2±V3),i(Vx±V2±V4))

and (3.1) yields a contradiction. So G0 is not a unitary group.

In the other cases f(Vx±V2±V3) = Sp(6,2) or SO"(6, 2)'. Now

5/7(6,2) ^ 50"(6,2)' s PSU(4,2) s £5/?(4,3) and from here we check that in either

case C(£) n |(F, -L F2 -L F3) contains GU(3,2). We then argue as in the preceding

paragraph with a decomposition V — Ux A. (F, A. V2 A. V3) A. U2. Set

W¡ = U¡ -L F, -L F2 -L F3 for i = 1,2.

In the orthogonal case apply (3.1), induction, and use the fact that C(£) n

<j([/, L F, -L V3) < C,V:1(£0). We reduce to the case fc = 3 or 4. In

the latter case '{ ( F, -L V2 A. V3 ) «£ £>0 by induction and a direct calculation

produces a hyperplane A of £0 and element g G C( A) n / with [Vx, V2, V3, V4}g =

{Vx, V2, V3, VA) and Vg ¥=■ V4. As before this leads to D0 = G0. If k - 3, then as

dim(K) > 8 we necessarily have dim(C^(£0)) = 2 and £0 = Z3 X Z3. Inductively,

¡J (F, _L F2 -L V3) < £>0. Also there is an element e G E* with C(e) permuting

{Cy(EQ), F,, K2, K3) and moving CV(E0). Then (3.1) implies that D{) = G0.

Now suppose that G = Sp(2n,2). Suppose WX,W2<V. Then by induction

CjV,)(£o) = 5/»(H^) or O -(W¡), where the form is described as in (4.1)(iii). By (3.1)

we then have D0 s* Oe(2n,2), where e = (-1)". But Oe(2«,2) is maximal in G0

(indeed G0 is 2-transitive on the cosets of Oe(2«, 2)), so D0 = G0 or D0 = Oe(2n,2).

Thus we again reduce to the situation of k = 3 or 4. Also, Cy(E0) — 0 in the

symplectic case, so G0 = Sp(6,2) or S/>(8,2). In the latter case we argue as before, so

we are left with G0 s Sp(6,2), a group of order 29 • 34 • 5 • 7.

Here CC(i(£) = GU(3,2) and £, = 1. Viewing £0 < |(F,) X %(V2) X %(V3) we

easily have <J-(K,) X J(K2) X J(K3), Gi/(3,2)>= Z < £>0. Checking a Sylow

2-subgroup of Z (which must contain Q8 and an £8) we have | Z | divisible by 2534.

A Sylow 3-subgroup of Z has the following orbits on V* :

Ox = {c,:t>, G ^*,i= 1,2,3},

02 = {ü, + o,: i #y, 0i G ^*, oy G ^*}
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and

03 = (u, + v2 + v3: vx G V*, ü2 G V2*,v3 G F3*}.

These have sizes 9, 27, 27 respectively. Suppose DQ is transitive on V*. Then £»0 is

transitive on the transvections of G0 and as £»0 contains transvections, G0 = £>0, a

contradiction. So D0 is not transitive on V*. Since elements of order 7 in G() are

fixed-point-free on V* this implies 7 J | Z)01. Suppose 5 | j £>0 |. An element of order

5 in G0 fixes just 3 elements in F#, the nonzero vectors of a nondegenerate 2-

space. Therefore either O, U 02 or O, U 03 is an orbit of D0 on V*. Let g G Z>0,

|g|= 5 and uf = u,. If O, U 02 is an orbit of D0, then g acts on (O, U 02) Í1 vf =

{vx, F2#, F3#, u, + F2#, ü, + V*,V2 + V3*}. But this set contains 22 elements so g

fixes an additional element of this set. This is a contradiction. Therefore if 5 11 D{) \

the orbits of D0 are O, U 03 and 02. But this just says that £»0 preserves the

quadratic form taking the value 1 on F,* U V2# U V3*. That is D0 < 0(6,2) and

has order divisible by 25 • 34 • 5. Consequently £>0 = O"(6,2). So now suppose

5 11 £»0 |. Then £»0 is a {2, 3}-group. No 2-local subgroup of Sp(6,2) has order

divisible by 34, so D0 is 3-local, but not 2-local. Easy arguments show that F(D0)

must contain an elementary abelian subgroup of order 33, and this is not consistent

with DQ > GU(3,2). Thus D0 < /.

We have now completed the proof of (4.3) except for the construction of examples

where (4.1)(iii) holds. Just argue as follows. Write V = F, _L • ■ • ± Vk with k s= 3

and set (x,) = O30(Vt)). Let E0— (xxx2\ xxx2x3, xt: i > 4). Then |£0|=3A~'

and maximal subgroups of £0 have order 3*~2. Given any such maximal subgroup,

say £, there cannot exist a 4-set {/', j, I, m) of {1,...,k) with £(. = F}. = F, = Fm. For

this contradicts \F\. The above arguments then imply that CG (£) < Oe(2k, 2) with

e = (-1)*. By choice of A, (4.1)(i) fails, so we must have °D0 = 0\2k,2). This

completes the proof of (4.3).

(4.4) k > 2.

Proof. Suppose k — 2 and notice that this implies £0 has rank 2. The proof here

will follow from (3.2) once certain small cases are handled. If G0 = SU(3, q), then

dim(CK(£0)) = dim(F|) = dim(F2) = 1 and the result follows from the results of

[5] and [14] (recall, G simple implies G0 m SU(3,2)). Also the case of Sp(4,2) is

easily checked. Suppose Cy(E0) ¥= 0. Then minimality of G0 implies

%(VX A. V2) < D0, so by (3.1) and (4.2)(iv) we are done. So assume Cy(E0) = 0.

Let (e¡) = CEo(V¡) for / = 1,2. Recall that from (4.2)(iv) we have f(V¡) < £»„ for

; = 1,2. We first note that £ can be embedded in a maximal torus of G. To see this

choose e G £0 with £0 = (<?,)(<?). Then ex G C¿(e), so e, can be embedded in a

a-invariant maximal torus of C¿(e) = C¿(e)°, which is a maximal torus of G. Now

pass to G to get the assertion. From (2.11) we have the existence of an element

/G £ - «ë,)U <ê2» such that Or'(CG(f)) ¥= 1. If /0 G £0 with/0 =/, then g =

Or'(Q0(/o)) ̂  L although Or'(C(f0) n (J(F,) X f(V2))) = 1.

Assume (p,q) ¥= (3,2). Then g m S3, so £> does not stabilize {Vx, V2) and we can

apply (3.2) to conclude DQ = G0, except for a minor adjustment needed in case G0 is
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an orthogonal group. Namely, (3.2) is stated for X— 0~(V), rather than for

G0 = f(V). This was done to ease the proof of that result. In our situation consider

0+ (V)' = G0 < 0+(V) = X. E0 = S2,(£) for £ G Sylp(G0), so the Frattini

argument gives X = G0NX(E0). Now NX(EQ) < NX(D0), so D0NX(E0) is a subgroup

of A properly containing CX(VX) and CX(V2). So (3.2) implies

A = D0NX(EQ) < NX(D0), and hence Da = G0.

Finally, assume (p, q) = (3,2). Here G0 = SU(6, 2), E0 = Z3 X Z9, and

G = SL(6, K).lffEEQ and |/|= 9, then /has three distinct eigenvalues on K ® F

and so Q(/) s S£(2, AT) X S£(2, AT) X S£(2, K). So Q = Or'(CGff)) » S3 and

the earlier argument shows that D0 = G0. This completes the proof of (4.4).

At this point the proof of (4.1) is complete and to complete the proof of Theorem

1 for G a classical group we must consider the case where £0 is nonabelian. To this

end we assume that Theorem 1 holds for groups of order less than \G\.

We assume £0 nonabelian. Then E¿ = Z and we may write £0 = £,£2£3, where

£, is 1 or extraspecial of exponent/», £2 = Z(£0), and £3 = 1 or £3 is nonabelian

with a maximal cyclic subgroup. Since p is odd, G0 = SL(n, q) or SU(n, q). The

main result is the following.

(4.5) One of the following holds:

(i) D0 = G0.
(ii)G0 = SL(3k,4)andp = 3.

(iii)G0sS(/(rt,2)and/? = 3.

In cases (ii) and (iii) there is a group £0 < G0 such that £0 > Z(G0), F0/Z(G0) is

an elementary abelian 3-group and CG(F0) «£ NG(F0).

We will prove (4.5) in several steps. Assume the result false and let G be a minimal

counterexample.

(4.6) £0 acts irreducibly on V.

Proof. Suppose false and let F, be a proper £0-invariant subspace of V with F,

irreducible. By (2.3), G0^SL(n,q) and rad(F,) = 0. Then F = F, ± Vf- is

£0-invariant. Continue in this way, obtaining F = F, -L • • • A. Vk, with each V¡

£0-invariant and irreducible. As each V¡ is a faithful module for £,£3 we have

dim(Fj) = k¡p", where | £0: E2\ = p2a. We may assume q > 2, for otherwise

Z(G0) = Z3, p = 3, and (iii) holds. Suppose k > 2. By minimality

f(Vx A. • • • A. Vk_x) and ^(F2 -L • • - A. Vk) (notation as before) are each in D0, so

we have D0 = G0 by (3.1). Therefore we assume k — 2.

Let (z)= ß,(Z(£0)) and let g be the element of GU(V) that is trivial on F, and

induces z on F2. Then [£0, g] = 1, \g\ = p, and we may assume g G £0 (see (2.9)).

Let e be an element of order p in £,£3 — Z(£0) and set £= (e)X (g). Now

consider Cr (£). Notice that q ¥^ 2, q ¥= 3 (as p \ q + 1), and q = 4 implies p = 5.

Since £0 centralizes £ modulo Z(G0) we can apply induction, (2.6), and (2.16) to

conclude that CGfF) < D0. Suppose that C¿o(£) stabilizes {Vx, V2}. As q > 4, (2.6)

implies that C¿ (£) has no subgroup of index 2 and so C¿o(F) acts on Vx and on F2.

But checking the eigenspaces of e on V we see that Or (CG (e)) does not fix F, and

F2. This is a contradiction. Therefore C¿ (£) does not stabilize {VX,V2}, neither does

D0, and by (3.2) we have D0 = G0. This proves (4.6).
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In view of (4.6) we now have £0 irreducible on F, and consequently £2 is cyclic.

From the representation theory of £0 we have dim(F) = p" or pa+\ where | £,£3:

Z(£,£3) | = p2a (use the fact that E{ < Z(G0)). In fact, dim(F) = pa if and only if

£2 is diagonalizable on V. In view of these facts we now assume q > 4 if

G0 = SL(n, q) and q > 4 if G0 s SU(n, q).

(4.7)(i)dim(F)=/7;

(ii)[£2,G0] = l;and

(iii)£,£3 = £, or £3, with | £,£3: Z(£,£3) \ = p2.

Proof. Suppose dim(F) ^ p2. Choose e G £,£3 — Z(£,£3) with | e | = /». From

the representation theory of £0 we see that (e) induces a multiple of the regular

representation on V. Write F = F, 8 ■ • ■ 8 V, where {F,,..., Vp) is the collection

of eigenspaces of e. Choose/of order/» such that (e, f) is extraspecial of order/»3.

Redefining £,, if necessary, we may assume/ G £, and write £,£3 = (e, f)E4 with

[(e,f),E4]=l.
If G0 = SL(V), then (e, /) reducible on F implies (e, f) normalizes a parabolic

subgroup of G0. So (2.3) implies that C¿o((e, /)) = G0. Then induction, (2.6), and

(2.16) imply that G0 = C¿o«e, /)) < D0. So we now assume G0 = St/(F). Now </)

transitively permutes {F,,...,!^,} and an easy computation shows that

V=VX± ■■• ±Vp.

Choose g G £4 — Z(£0). Then (e, g) is abelian of rank 2. The inductive argument

of the last paragraph will work once we show C¿((e, g)) = G0. For this first

consider (e, g) acting on F, ± F2. We have £(F,°) X %(V2) < C¿o«e, g». The

element g has /» eigenvalues on V and dim(F, -L V2) Ss 2/7. It follows that

Or'(C(g)) n |(F, 1 F2) does not stabilize {F,, F2}. Consequently

|(F, _L F2) =£ CCo«e, g» by (3.2). Similarly, f(V, ± V}) « C¿o((e, g» for each « *j.

Now, repeated use of (3.1) gives G0= C¿((e, g)). We have now proved that

dim(F) — p, so (i) holds. Since £,£3 is absolutely irreducible on F, (ii) follows.

Also, (iii) follows from (i).

In view of (4.7)(iii) we alter our notation, if necessary, so that £0 = EXE2, where

[£2, G0] = 1, | £,: Z(£|) | = p2, and £, acts irreducibly on V.

(4.8)£,£3 = £3.

Proof. Assume G0 = SL(p, q) or SU(p, q) and £,£3 ¥= E3. Then

£,£3 = £, = (e, />, where \e\ = \f\=p. Recall that q^4 and q>4 if

G0 = SL(n, q). As p \ q — \ or p\q + 1 according to G0 = S£(F) or SU(V) we can

diagonalize e and /. Write V = IF, © ■ • - © Wp, where W¡ = (t>,) is the eigenspace

for eigenvalue a'-' of e. Here a is an element of order p in F* (Fy in the unitary

case), and/may be chosen so that v¡ = v¡+x for / = 1,...,/» — 1. We get a basis of

eigenvectors for / by setting wx — v, + •••+ vp and w, = w'_, for /' = 2,... ,p. Then

w[ = a'~xwi.

Now CGfe) and CG(f) stabilize the eigenspaces of e and /, respectively. So

CG(e), CGo(/) consists of all diagonal matrices in G0 with respect to the ordered

bases {vx,...,vp}, {wx,.. -,wp). Choose h G CGfe) having eigenvalues ß, y, S,...,8

in the basis {«,,...,«} and k G CG(f) with eigenvalues e, ij,...,tj in the basis

{w,,.. ..m^}. These elements must be chosen so that ßyop~2 = er¡p~] — 1.
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Consider the basis {«,,... ,v    x, wx) of V and check that in this ordered basis h, k

are given by the following matrices:

ß
y

ß-8    y-8    0 0    o

(e - 7j)

(e - t/)

Notice that h and k each stabilize V0 = (vx,v2,wx) and F,

and  V V

= (V3

(V3 +

>4,...,v3-vp),

+ v >.  In theunless p — 2 (mod r) and   VQ n F,

unitary case [W„ W/\ = 0 if / ^/ and [F0, F,] = 0.

Let Abe the subgroup of G0 generated by all such elements h, k above, and let A0

and A, denote the restrictions of A to F0 and F,, respectively. Then A0 contains all

matrices of the form

ß

0

ß-8

0

Y and

0

0

(e

(e

U)

where ßy8p~2 = et)" 1 = 1. Considering the action of the elements h above we see

that an A0-invariant subspace is necessarily a sum of the spaces (vx),(v2),

(v3 + ■ ■ ■ +vp). Now consider the action of all possible elements k, with k as above.

We conclude that either A0 is irreducible on V0 or (v3 + ■ ■ ■ +vp) is invariant. In

the latter case either p = 2 (mod r) or e = tj for all elements k above, this forcing

p = q — 1 or/7 = <7 + 1, depending on whether G0 s SL(V) or ,Sl/(F).

Suppose A0 is irreducible on F0, and consider the image A0 of A0 in PGL(3, q)

(respectively PGU(3, q)). Using the results of Bloom [5] and Hartley [14] we show

that X0 > PSL(3, q) (respectively PSU(3, q)). This involves checking the group A0

against the lists of groups presented in [5] and [14]. The following facts are useful in

such a check. Let / be the group of all elements h above, restricted to F0. Then

/ s Z^x X Zq + X and has image in PGL(3,q) (PGU(3, q)) isomorphic to

(Z -, X Zq + X)/Zp. If p — 3, /consists of matrices of determinant 1, while if p > 3,

I n £S£(3, q) (I n PSU(3, q)) has index at most 3. Choosing h G / with | h | = p

and h not scalar on F0 we have /*£ Cx(h). Comparing this with centralizers in the

various proper subgroups of PSL(3, q) (PSU(3, q)), most cases are eliminated. Also
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one should recall that A0 is irreducible on 1^, that k E I only when k is scalar on V0,

and that when p = 3 we may take h — ë and conclude that Cx(e) contains a

subgroup isomorphic to /, for any e G £, — Z(EX).

Once we have X0 > PSL(3, q) (PSU(3, q)) we conclude that A' contains

(C(VX) n N(V0))'. This is because A induces a group of scalar matrices on F,. Now

the same argument can be carried out with (v¡, e-, h»,) replacing F0, where i ¥=j and

i, j ^p — 1. It is now fairly easy to see that £»0 = G0. If G0 = SU(p, q) this follows

from repeated use of (3.1). For SL(p, q) one can use (B, N)-pairs.

Next suppose p = 2 (mod r). Here r is odd and F0 n F, = (u3 + • • • + u ). On

V0/(v3 + • • • +« > A0 contains all matrices of the form

Iß    0\ 1/ij + e    ij-e\
(o   y)   and   ïln-«   1 + «J«

where y = ß~] and r//'~1e = 1. Considering subgroups of PSL(2, q) we conclude

that either g ± 1 = 2/7 or A0 induces on V0/(v3 + ■ ■ ■ +vp) a subgroup of G£(2, q)

(respectively GU(2, q)), containing 5£(2, q). Excluding the case q ± I = 2p and

using the fact that q is odd, we conclude A¿0O) contains a subgroup Y s 5L(2, q) and

that there exists F2 < F0 such that F2 is Y-invariant and F0 = F2 © (F0 n F,) (an

orthogonal decomposition in the unitary case). As A(oo) centralizes V/V0, Cy(Z(Y))

is a complement to F2 in F, and so Y is generated by groups of transvections in G0

(centers of long root subgroups). So by McLaughlin [19] or Wagner [28] we have

D0 = G0.

We are left with the case p = 2 (mod r) and q + 1 = 2/7, and the case p = q ± 1.
-i/i

In the first case G0 is unitary, r = 3, and q = 3 for some integer A, while in the

second case we have r = 2. In either case, let F0 = («,, u2, wx, w2) and let Y be the

subgroup of £»0 generated by all elements hx, h, kx, k, where A,, A are diagonal

(1,-1,. ..,-1) and (y-1, y, 1,..., 1) in the ordered basis {u,,...,« }, and kx, k are

the same, but in the ordered basis {wx,...,wp}.

For y ¥= 1, each of A, A have fixed space in F0 of dimension 2. Indeed, A

centralizes (u3 +•••+«, a"2u3 + • • • +a"<f'~')i/,) and A centralizes (w3

+ ■■■ +w , a~2w3+ ■■■ +tx~l-p~uwp). Using these facts one checks that Y is

irreducible on F0. In fact, if D is the subgroup of Y generated by those A, A for

which | y | = p, then D is absolutely irreducible on F0 (consider eigenspaces of A, A).

Now, Y centralizes a (/7 — 4)-subspace of V, so V = V0® Vx, with Y trivial on F,.

The sum is orthogonal in case G0 is a unitary group. We identify Y with its

restriction to V0 and note that by McLaughlin [19] and Wagner [28] we may assume

that Y does not contain a full group of transvections.

First suppose that p — q ± 1. Here we apply the result of Mwene [20] to get a

contradiction, although a couple of remarks are in order. Firstly, for the SU(4, q)

case, we cannot simply apply Mwene's main theorem on subgroups of SL(4, q2),

because that result only gives the maximal subgroups of SL(4, q2). However, the

proof in [20] actually describes all subgroups of SL(4, q2). Secondly, in checking Y

against the proper subgroups of 5£(4, q) (resp. SL(r, q2)), our previous remarks are

sufficient  to  rule out  all  but  one  possibility—the  case where   Y preserves  a
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nondegenerate symplectic form on V0. So, suppose Y fixes such a form, [ , ].

Then pvx = w, + • • • +wp implies that 0 = [u>3 + • • • +w , pvx — w, — w2] = [w3

+ • • • +wp, vx] + [w3 + • • • +wp, wx] + [w3 + ■ ■ ■ +wp, w2). Checking eigenspaces

of the elements k above, we see that w3 + ■ ■ ■ + w must be orthogonal (under [, ]) to

(h>,,h>2), and so [w3 + ■ ■ ■+wp,vx] = 0. This implies w3 + ■ ■ •+wp E (vx,v3

+ ■ ■ ■ +vp, a~2v3 + ■ ■ ■ +a~ip~uvp), which is false. So Y fixes no such form, and

the case p = q ± 1 is out.

Suppose q + 1 = 2p. Choose A as above with | A |= q + 1 and write A = h2hp,

where |A2|=2, \hp\=p, and [h2,hp]=l. Similarly, for k = k2kp. Then

D = (hp, kp) and previous remarks show that C,(D) < Z(I) s Z2, where

/ = SU(4, q). Since the Sylow/»-subgroups of / are abelian, this immediately implies

Op(D)=l.

Let 5 t6 p be prime. We claim Os(Y) < Z(I) = Z2. Suppose otherwise, and let /

be minimal normal in Y with / < Os(Y). As D is absolutely irreducible, s i= r and

one of [/, hp] or [/, kp] is nontrivial. By symmetry, we assume the former. If s ¥= 2,

then [/, hp](hp) is a Frobenius group and standard arguments from representation

theory imply dim(F0) > p, a contradiction. The same argument can be used when

s — 2, unless / is extraspecial. In the latter case, set /0 = [/, hp] D C(A2). Then

/0 4 Z(£) and (hp) is fixed-point-free on J0/Z(I). But hp normalizes no such

2-group in C,(h2). This proves the claim, from which it follows that £*(Y) = £(Y)

or£(Y)Z(/).

The group C,(h2) satisfies C,(A2)<0C) s S£(2, q) ° S£(2, q), with A in one of the

factors and A, inducing an outer diagonal automorphism on this factor. From earlier

assumptions, neither factor is contained in Y. Therefore, (A )< Op(CY(h2)).

The restriction q + 1 = 2p forces PSU(4, q) to have sectional 2-rank 4. In

particular, £( Y ) is the product of at most 2 components and if there are two, then

they are each of sectional 2-rank 2. Each of A and k must stabilize each component

of Y, inducing a nontrivial automorphism on at least one component. From the

above paragraph we conclude the components of Y are normalized by (A, A).

By Gorenstein-Harada [31], the components of Y have known structures. Also, we

have <Ap>=£ Op(CY(h2)) and similarly for k2. It follows (use [3] and Table 1 of [29])

that each component of D is of Lie type in odd characteristic. Since dim(F0) = 4,

the Sylow 5-subgroups of Y are abelian for all primes s =£ 3. Assume that / is a

component of Y and of Lie type in characteristic s > 3. By the above, / = SX(2, sc)

or PSL(2, sc). As PSL(2, sc) contains a Frobenius group of order jsc(sc — 1), and

since dim(F0) = 4, we must have sc' < 9. However, p | \J \ and s ^ 3. This forces

sc' = 5 = p, and contradicts the facts (A^)^ Op(Cy(A2)) and (kp)^ Op(CY(k2)).

At this point we have established that the components of Y are of Lie type in

characteristic 3. Each of A and kp induce inner automorphisms on £(Y). For

otherwise, a field automorphism is induced and we obtain a contradiction, as before,

by considering certain Frobenius groups. Therefore hp, kp G £(Y). If Y has two

components, A, and A2, then each has the form 5£(2,3e) or PSL(2,3e) and each
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has order divisible by p. As A, centralizes a Sylow 3-subgroup, R, of A2, R X A2 is

in a proper parabolic subgroup of £ One checks that this forces R to consist of

transvections and X2 = SL(2,3e) = SL(2, q) is generated by full groups of

transvections. This is a contradiction. Thus, £( Y) is quasisimple.

Suppose E(Y)/Z(E(Y)) s £5£(2,3e). Since hp G £(Y),p \ 3e ± 1 and this forces

q\ 3e (use primitive divisors). As C(hp) n YZ(7) > Z(I) X <A2)X (A,), and since

YZ(I)/Z(I) < Aut(£SX(2,3f)), some element of (A,, A2> induces an involutory

field automorphism of £(Y). As (A )< Op(Cr(A2)), this element cannot be A2.

Hence both A, and A,A2 induce field automorphisms. The containment £(Y) <

SU(4, q), forces 3e = q2, so £( Y) s SL(2, q2) or £S£(2, q2). Now, £(C,(A,)) =

5t/(3, q), with natural action on (vx)x n F0. We may write/ = Op'(£(Y) n C(A,))

and / = (A , A¿), for some y G /. Then / s S£(2, q) or PSL(2, q). But A^ is trivial

on a 2-space of (vx)x D F0, so / is trivial on a 1-space. It then follows that

/ s SL(2, q) and is generated by full groups of transvections. This is a contradic-

tion.

The proper parabolic subgroups of / have at most one noncyclic composition

factor and this is isomorphic to PSL(2, q) or to PSL(2,q2). It follows that
E(Y)/Z(E(Y)) s £S£(3,3e), PSU(3,3e), PSL(4,3e), PSU(4,3e), or G2(3e) with e a

power of 2. Since hp G £( Y), an order argument shows that either a \ e or £( Y) is a

4-dimensional symplectic or unitary group with a\2e. As £(Y) < /, we use addi-

tional order arguments to conclude E(Y)/Z(E(Y)) s PSU(3, q), PSp(4,q), or

PSp(4,Jq). In the first two cases, let j be an involution in £(Y) — Z(I) with

j(Z(E(Y))) 2 central. Then CE(Y)(j) contains an SL(2, q) component with center

(j). This component is necessarily one of C,(j) (asj ~ A2 in /), hence generated by

full groups of transvections. We are assuming this false, so these cases are out. For

the last case one argues that in Aut( £5/7(4, Jq~)) the centralizer of an element of

order p is cyclic of order 2p. As (A,, A2)=s C(hp), there is some involution

A G (A,, A2)n C(E(Y)). But then C,(j) has a section isomorphic to PSp(4,Jq),

whereas E(C,(j)) = SU(3, q) or SL(2, q) X 5£(2, q). This is a contradiction, com-

pleting the proof of (4.8).

(4.9)£,£3^£3.

Proof. Suppose £,£3 = £3 and write £3 = (e, f) with \e\ = p and \f\ = p".

Recall that G0 se 5£(3,4). Let 1 ¥= a be an eigenvalue of e on V and let V¡ = («,.) be

the eigenspace of e with corresponding eigenvalue a'-1. First suppose that p" \ q — 1 |

( p" | q + 1 in the unitary case). Then / is diagonalizable with eigenvalues

ß, ßcx,.. .,ßotp~ ', where ß has order p" in the multiplicative group of the underlying

field (F or F92 ). So there is a scalar transformation z on V such that \fz\ = p and fz

has distinct eigenvalues. Replacing £3 by (e, fz) we reduce to (4.8). So from now on

we may assume p" \ q — 1 ( p" \ q + 1 in the unitary case).

This forces (/) to act irreducibly on  V. In an appropriate extension field, /

has the eigenvalues above, so/GG0. Now GL(p, q) = G0Z(f) (GU(p, q) =

G0Z(f)),   where   Z=Z(GL(p,q))   (Z(GU(p,q))).   So   H = C(f) n G£(p, q)
(respectively,   H — C(f) D GU(p, q))   is   contained   in   / = N(D0).   Indeed,

(H (1 G0)Z(f)^D0Z(f)^N(DQ). We may assume/^ SL(p,q)(I^ SU(p,q)).



378 G. M. SEITZ

Now H is cyclic of order qp — 1 (qp + I), so / is transitive on 1-spaces of F if

G0^SL(p,q).

Let W= C(e) n GL(p,q) (respectively C(e) n GU(p,q)) and IF, = Op(W).

We claim that IF < £ To see this first note that Wx ̂ (Zp,-,)p and has index p in a

Sylow/7-subgroup of GL( p, q) (GU( p, q)). In fact Wx{f)=Zp,-svnZp is a Sylow

/7-subgroup of G0</>. As IF < G0ZIF,, it suffices to show IF, « /. Let W0 = IF, D

G0, so WQ < £>„. Suppose W0 G Syy£>0). Since Op(Z(G0)) < W0 we can apply easy

transfer and fusion arguments to get DQ = Z), X Op(Z(G0)) for some subgroup Dx.

Since / normalizes W0 but no proper subgroup of IF0 not containing Op(Z(G0)) we

must have IF0 n Op(D0) = 1. That is D0 = Op,(D0)W0. Let i be a prime such that

s\qp - 1 (resp. s\q2p - 1) but s\r" - 1 for r" < <? (resp. ra < q2). Let 5 G

Syl2(H). Then 5 < G0, so S ^ D0, and a Frattini argument shows that S is

normalized by a conjugate of WQ. But N(S) has /7-rank 2, so w^IFo) < 2. Since

mp(WQ) = p — 1, this is a contradiction unless /7 = 3. But /7 = 3 is eliminated by

considering the lists in Hartley [14] and Bloom [5]. So we now assume p > 3 and

W0 G SyyiVj). If W0 < W0 G Sy\p(DQ), then there exists g G W0 with <?g = ez for

some 1 ^ z G Z(G0). We may choose z such that es/ = e. Now take A G Wx - W0

such that \fh\ = p. Then (e, ß) is extraspecial of exponent /7, /A G G0, and

g/A G CCo(e) < D0. So g/A G 7, and since g, / G /, A G £ But IF, = (IF0, A> implies

that Wx *£ 7 as claimed.

Suppose G0 = ££(/>, </). Let .K be the subgroup of IF that is trivial on (t>2,.. -,vp).

Then [F, /v] = (vx). Let /I = (vx,v2). As / is transitive on 1-spaces, for each

1-space (v)< A, there is a subgroup Kg < / such that [Â^, F] = <u). Let A be the

subgroup of / generated by all such Kg. Then A ^ contains all diagonal matrices in

the basis {vx, v2). It follows that X\A contains all matrices of form (^(forx GF?,

where the matrices are taken with respect to either the ordered basis {vx, v2} or the

ordered basis {v2, vx}. In either case one can then argue that A contains a full group

of transvections. Therefore D0 — G0 by McLaughlin [19].

We are left with the case G0 = SU(p,q). The argument is similar to the above. As

before let K be the subgroup of W centralizing (v2,... ,vp). Suppose that, for some

g G /, rad«t>„ üf » = 0 and vgx G vf . Set A = (o„ t>f>. Then A = (K, Kg) acts

on A and on A± . As A centralizes V/A and V — A A. Ax we conclude that A is

trivial on Ax . Now K is transitive on the isotropic 1-spaces of A (since for each

element 1 ^ A G K, k stabilizes only the spaces (u,> and CA(K), neither of which is

isotropic), so it follows that X\A> SL(2, q). So I contains a group of transvections

and / s= G0 by Wagner [28]. This is a contradiction. So now suppose that

vf G vf — (v2,...,vp) whenever rad((u,, uf» = 0 and g G I.

Recall that C(f) - H < I, and it is irreducible. It is then possible to choose g G I

such that üf G (u,) anduf G vf . Consequently rad((u,, uf» ¥= 0. Souf = ßvx + a

for some 0 ¥= a G (v2,... ,vp). Choose i>2 such that (a,v¡)¥=0, and set

A = (u,, t>f, o,>. Then rad(^l) = 0. Now C(e) contains a subgroup I0 isomorphic to

Z+1XZ(+|XZ(+: such that IQ is faithful and diagonalizable on A and stabilizes

A x . Using the results of Hartley [14] and Bloom [5] we conclude that A = (H0, Kg)

contains 5£(2, q) (and generated by groups of transvections). As before the results

of Wagner [28] imply G0 < I. This is a contradiction, proving (4.9).
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The proof of (4.5) will be complete once we show that for G0 s SL(3*,4) and

SU(n,2) there is a 3-group £0 < G0 such that C<?o(£0) < NGfE0). For G0 = SU(n,2)

this follows from (4.1). So suppose G0 s SL(3k, 4). Let £0 be an extraspecial 3-group

of order 32k+' and of exponent 3. Then we can consider £0 < G0. If V is the module

affording this representation, then each e G £0 — Z(£0) has 3 distinct eigenspaces

on F of dimension 3k~]. Using this and the fact that CE(e) is absolutely irreducible

on each of these eigenspaces, we conclude that CG(£0) < NG(E0). This completes

the proof of (4.5).

5. Exceptional groups of Lie type. In this section G will denote either an

exceptional group of Lie type or one of the groups G2(2)' or 2£4(2)'. Notation will be

as in §2. Namely, G is a simple algebraic group with G = Or(Ga)'. By (2.15), G„ is G

together with all diagonal automorphisms of G. We take £ < Ga and define G, £0,

G0, etc. as in §2. By (2.15) \Ga: G\ divides | Z(G) |. So except for the cases p = 3,

G s E6(q) or 2E6(q), with 3 | q — 1 or 3 | q + 1, respectively, we necessarily have

£0 < G0. We will prove

(5.1) With the above notation one of the following holds:

(i) Cc°o(£0) = G0.
(ii)/» = 3 and G = G2(2)', £4(2), £4(4), £6(2), £6(4), 2£6(2), £7(2), £8(2), or £8(4).

If G s G2(2)', then D0 normalizes a Sylow 3-subgroup of G. In the other cases an

example £0 exists such that CG ( £0 ) < NG(E0).

(iii)/, = 5, G =2£4(2)', and ¿¿„(¿o) < /VGo(£0).

(iv) p = 3, G =2£4(2)' and for £0 = Z3 X Z3 we have C^o(£0) = Aut(£3(3)). On

the other hand if G, =2£4(2), then Cg<lE0) = Gx.

In this section we will prove (5.1). So assume (5.1) false and let G be a

counterexample of minimal order. Let ®d(x) denote the cyclotomic polynomial with

roots the primitive complex dth roots of 1. Then set <pd — ®d(q). The group G and

the order of G0 is given in the following table.

Table (5.2)

_G_ \G0\

G2(q)
3D4(q)

2Uq)

F4(q)
2E6(q)

E6(<J)

E7(q)

Es(q)

We will say /» is associated with <px if x is minimal subject to p \ <px. Notice that if x

is even, then <px divides qx/2 + 1. Also if p is associated with <px, then p > x. The

next several lemmas deal with the easiest cases. These are the cases where the /»-rank

of G0 is 1, where (2.3) applies, or where induction is easily applied. In effect, we

reduce to the case where p is a small prime divisor of q ± 1.

9 «¡WP^Pi
12 2    2    2    2

qn<P\2<P6<pl<pl<p2\

q24<px2<ps<p¡<pl<p23<p42<p4x

q 36<p 12<P9 We <Ps rôwVï

q "«P 1S914«P 12*P 10<P9^8<P7(P6(P5(P4<P3(I'2(P71

i12V30^24<P20^l8<Pl59l4^12^10^9^7^5<P4<P3(P2(Pl
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(5.3) Suppose p is associated with <pA.. None of the following can occur: G = G2(q)'

and x = 3,6; G = ^D4(q) and x = 12; G =2£4(<7)' and x = 6,12; G = £4(?) and

x = 8,12; G =2£6(<?) and x = 12,18; G = £6(<7) and x = 9,12; G = £7(ç) and

x = 14,18; G = £8(^)andx= 15,20,24, or 30.

Proof. This follows from (2.7)(ii) and (2.7)(iv). It is necessary to check that

p \\ W\, and then check that p does not divide the order of any maximal parabolic

of G.

(5.4) Supposep is associated with <px. None of the following can occur: G =2E6(q)

and x = 8,10; G = E6(q) and x = 4,5,8; G = £7(çr) and x = 3,4,5,7,8,9,10,12;

G = £8(<7)and;t = 7,9,14,18.

Proof. The idea is as follows. Say, for example, that G =2E6(q) and x = 8 or 10.

From (5.2) we conclude that a Sylow/»-subgroup of G0 has order dividing q4 + 1 or

<75 + 1, respectively. Also G0 contains 50"(8, (7)' and SU(6,q) and order

considerations show that a Sylow /»-subgroup of G0 is contained in one of these

subgroups. As each of the subgroups is contained in a proper parabolic subgroup of

G0, we are done by (2.3).

The same argument works for the other cases. Let £0 < £ G Syl^Go). Below are

the triples (G, I,<px) where £ G Sylp(I) and / is involved in a proper parabolic

subgroup of G0.

Table

<Px

Eb(q) Lb(q) cp5

E6(q) SO+(10, q)' <p4, <p8

^(í) £ó(í) <P3' <f>4< IV <Pl2

£7(<7) SO+(12, <7)' <P5><P8'<Pio
£7(<7) £7(<?) <p7

£8(<7) E7(q) <p7,<p9,<p,4,<p,8

(5.5) Suppose/7 is associated with <p, or <p2 and that G has Lie rank at least 4. In

addition, assume p =£ 3 if G =2E6(q) or £4(<7), /7 ̂  5 if G =2E6(q) and 5 | ^ + 1,

/7 ̂  3,5 if G = £6(4), and/7 ^ 3,5,7 if G = E7(q) or £8(^r). Then CG°(i(£0) = G().

Proof. Let 5 be the positive root of highest height in 2 and set /, = (U±s).

Choose conjugates /,,... ,Jk of /, s SL(2, q) with A maximal such that [J¡, J;] = 1

for ; ¥=j. This can be done so that each Jt is generated by a pair of opposite root

subgroups of G0 for roots in 2. Then H0 normalizes /, • • • Jk. One checks that A = 4

if G = F4(q), 2Eb(q), E6(q), A = 7 if G = E7(q), and A = 8 if G = E¿q). If

G= F4(q), E7(q), or £8(^f), then O(H0) < /, • ••/lt. In the other cases

/, • -JkO(H0) = /, • -JkHx, where //, = O(//0) D C(/, • • -/J. So in all cases

there is a subgroup //, < //0 with / = /, • • • JkO( H0 ) = (/,-•• /A ) X Hx.

From order considerations, keeping in mind the prime restrictions, we see that /

contains a Sylow /»-subgroup of G0, so we may assume £0 < £ Considering the

projection of £0 into /, • • ■ Jk we can apply (2.10) and get / < CG (£0). In addition,
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for each i — 1,... ,A, £0 acts on G, = E(CG (J¡)). Using §4 and induction we have

G, « CG(£0) for /' = 1,...,A. An easy check gives G0 = (G,: /' = 1,...,A>, proving

the result.

(5.6) Suppose that p is associated with <px and one of the following holds:

G = E6(q) and x — 3; G = E7(q) and x = 6; G = Es(q) and x = 3,4 or 6;

G —2Eb(q) and x = 6. Then £»0 = G0.

Proof. First assume x = 3. If G = E6(q), then from Table (3.3) we see that G

contains a central product A, A2A3 of three copies of 5£(3, q). If G = £8(<7), set

A4 = (U±a ,U±S), where s G 2+ is the positive root of highest height. Then

A4 = SL(3, q) and A4 is centralized by (U±ar..., U±c,t)= E6(q). So for G = Eb(q)

or E%(q), G0 contains a central product A = A, • ■ • Xk of copies of S£(3, g), where

A = 3 or 4 respectively. Now (5.2) implies that A contains a Sylow/7-subgroup of G0,

so we may assume £0 < A. A Sylow /»-subgroup of A is abelian of rank A, and there

is a subgroup £, = Zp X Zp such that £0 < C(£,) and £, < A, A2. By (2.3) we have

G0 = CG(EX) (since £, centralizes a unipotent element of A*). By (2.5), (2.6)(ii),

and either minimality of G or the results of §4 we have CG(EX) < CG(£0). This

proves the result.

Essentially the same argument works for the other cases, but there are minor

changes required. For x = 4, G = E%(q) and Table (3.3) shows that G0 contains a

central product of two copies of D4(q). Then G0 contains a central product, A, of

four copies of O"(4, q)' = L2(q2). From (5.2) one checks that a Sylow/7-subgroup of

A is also one for G0 unless p = 5, in which case a Sylow 5-subgroup of A is of index

5 in one for G0. Suppose this occurs. The arguments used in the verification of Table

(3.3) suffice to show that SU(5, q2) < E%(q). Namely, use the groups Y, and Y2 (of

§3) together with the fundamental system

at   a,    a8     t     oc2   a4    a3

where t — a, + a2 + 2a3 + 3a4 + 3a5 + 2a6 + a7. By orders we may take

£0 *s SU(5, q2) and it follows that £0 is conjugate to a subgroup of A. So in all cases

we may take £0 < A and argue as before. The only difficulty is the possiblilty that

q = 2, p — 5, and with £, as before, there is some x G £, such that CG (x) contains

a component of type Sz(25) or 2£4(2)'. The former case is out by (2.5). The latter

case is also impossible, since in order to get an 2£4(2)' component of CGo(x), C¿(x)

would have to contain an F4(K) component. But this cannot happen since the

components of C¿(x) all have root systems being a subset of the root system of type

£8.

For x = 6 again use Table (3.3) to conclude that 2E6(q) contains a central

extension of U3(q) X U3(q) X U3(q), E7(q) a central extension of 3D4(q) X L2(q3),

and £8(<?) a central extension of 3D4(q) X3D4(q). We may assume that £0 is

contained in the appropriate central product (again by (5.2)). Now 3D4(q) contains a

central extension of L2(q) X L2(q3). So if mp(3D4(q)) = 1, this would force £0 to
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centralize a nontrivial r-subgroup, whence (2.3) gives the result. So we may assume

mp(3D4(q)) = 2 and choose a suitable £,, as before.

In the next two results the contradiction is reached by combining the results of

Table (3.3), (2.8), and the centralizer information in G.

(5.7) Let p be associated with <px. In each of the following cases we have

CG))(£0) = G(): G = F4(q) and x = 4; G =2Eb(q) and x = 3,4; G = E6(q) and

x = 6; G = 3D4(q) and a: = 1,2, but/» ¥= 3; G = EK(q) and x = 8.

Proof. Suppose false. First we point out the existence of a large subgroup, A, of

G. These are presented as triples (G, <jdv, A/Z( A)) and are as follows: (i)

(F4(q), <p4, £SO(9, q)'); (ii) (2£6(<7), <p3, £4(9)); (iii) (2£6(<7), <p4, £SO"(10, q)'); (iv)

(£6(?),%, £4(<7)); (v) (3Z>4(?),«p, or <p2, G2(<?)); (vi) (£g(9), <p8, £SO+(16, </)'). In

cases (i), (iii), and (vi) the existence of A follows from consideration of the extended

Dynkin diagram of G. In the other cases A is obtained from the centralizer of a

graph automorphism of G0. In all cases A is generated by long root subgroups of G0.

Moreover from (5.2) we check that A contains a Sylow /7-subgroup of G0, so we take

£0 < A. We note that mp(E0) = 2. By minimality of G and by results of §4 we have

A<CG0i£0).Let£0 = Cc°o(£0).

Let F be a long root subgroup of G0 with V « A < £>0. Set / = (Fc° D Z)0). Then

£»0 < NG(I) > X and the structure of / is given in (2.8). We may assume (2.8)(i)

does not" hold. Let /= I if q > 3, and /= I/03(I) or I/02(I) if <7 = 2 or 3,

respectively. Write I = Ix • • • Ik, a central product as given in (2.8). As

A=(F°nA)we may take A < /,. If A > 1, then some r-local subgroup of G0

involves A, against U(r, £0) = 1. So / = 1 and / = /,. As A < 7 it follows that /is a

central extension of a group of Lie type defined over F . Comparing orders we have

A =/. In this comparison use the fact that | 7|,. <| G0 |r and the existence of

primitive divisors. (A prime divisor s of r" — 1 is a primitive divisor if s \ rb — 1 for

b < a. Such divisors exist except when r" — 26 or r" = r2 with r a Mersenne prime.)

Now D0 =s A/( / ), so D0 acts on X = I, and as no parabolic subgroup of G0

contains a section isomorphic to A/Z(A) we conclude that A= (Or(D^x))). We

will show this to be impossible. Say G = F4(q) with q even. Then the Frattini

argument shows that £0 is normalized by an element of Aut(G0) lying in the coset of

a graph automorphism. But no such automorphism can normalize D0. Say G = £4(<?)

with q odd. Here we use the embedding of SO(4, q) X SO~(4, q) < £50(9, q)' to

conclude that £0 centralizes a klein group C < G0 with C contained in a parabolic

subgroup of G0. Then (2.3) gives CG(C) = G0. Now use induction and the results of

§4 to conclude D0 = G0. For G =2E6(q) we have £() < / where J = L3(q) X L3(q2)

or F4(q), according to whether we are in case (ii) or (iii). We then have / < I, and

order considerations contradict A = (O''(£>0))(oc).

If G s Eb(q), use Table (3.3) to get a subgroup / such that

J/Z(J) = L3(q2) X U3(q). By orders we may take E0<J and thus / < D0. But

then L3(q2) X U3(q) =s A = £4(<?), whereas a consideration of the parabolics of

£4(<7) shows this to be impossible. Similarly, if G s3£»4(^r), then G0 contains a

subgroup isomorphic to SL2(q) ° SL2(q3). But then £0 is in such a subgroup and Z)0

contains L2(q) X L2(q3). However G2(q) contains no such subgroup, so

(0''(/J<°°>)) * X.
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Finally, suppose G = Es(q), p is associated with </8 — 1 and A s PSO+ (16, q)'.

Let M be the natural module for Y = 0+ (16, q), choose e G £*, and regard e G Y.

Then e acts on M and we set Y0 = Or'(Cy(e)). Write M = Mx 8 M2, a sum of

(e)-invariant 8-spaces of M. One checks that Y0 = 1, 0"(8, q)', or SL(2, q4)

depending on the action of e on M, and M2. However, by (3.3), G0 contains a central

extension of 0~(12, q)' X U3(q). So G0 contains a central extension of

0"(8, q)' X 0+ (4, q) X U3(q), and some element, e, of £0 — Z(G0) centralizes a

subgroup isomorphic to SO+(4, q) X U3(q). Moreover, each of the factors of the

subgroup is generated by conjugates of F, so Cf(e) contains S0+(4, q) X U3(q),

contradicting A = /. This completes the proof of (5.7).

(5.8) Let p be associated with <px. Then none of the following occur: G = G2(q),

p>3,andx= 1,2; G = Es(q) and x = 5,10,12; G = F4(q), and x = 3,6.

Proof. As in the proof of (5.7) we produce a certain subgroup A of G. However

this time A will be a central product of two quasisimple Chevalley groups. The

triples (G, <px, X/Z(X)) are as follows: (F4(q), <p3, L3(q) X L3(q)),

(F4(q), <p6, U3(q) X U3(q)), (Es(q), «p5, £5(^r) X L5(q)), (Es(q), <p10, l/5(9) X U5(q)),

(Es(q), <px2,3D4(q) X3D4(q)), (G2(q), <p, or <p2, £2(?) X L2(q)). The existence of A

follows from Table (3.3) in all but the first and last cases. In the first case let

A= A,A2, where A, = (U±Bi, U±0¡¡¡) and A2 = (U±a¡, U±s). In the last case let

A= A,A2, where A, = (U±c¡2) and A2 = (U±s). (In each case s denotes the

positive root of highest height in 2.) Using Table (5.2) we check that A contains a

Sylow/7-subgroup of G0, so we may take £0 =e A.

First we claim that each component of A has /7-rank 1, so that E0 = ZpX Zp. This

is clear from the theory of linear groups except for the case where

X —3D4(q) X3£»4(<5i). Suppose mp(3D4(q)) > 1. Here the argument of (5.6) applies.

Namely, £0 < C(£,) with £, s Z X Zp and £, in one of the components of A

From here induction, the main results of §4, and (2.3) give a contradiction to

CG (£0) < G0. This proves the claim and we write £ = £, X £2, where £, = £ n A,

and A,, A2 are the components of A. Clearly A < CGo(£0).

Next we set I — (VG° n DQ) for Fa long root subgroup of G0. We will determine

the structure of I as in (5.7). We have A< £»0 < NG (I) and either by (3.4) or by

construction, at least one of the components of A is generated by conjugates of F.

We use (2.8) to obtain the structure of £ Set /= I if q > 3, /= I/02(I) if q = 3,

and / = I/03(I) if q = 2. Now A < D0< NG(I) and at least one of the components

of A is actually contained in I. By (2.3) and (2.8) the structure of I/Z(ï) is known

and /= /, • • • ïk, a central product, with f = {Vf) for some Vi G Ve and f is

either a Chevalley group over F , or q = 2 and £(/,) is described in (2.8)(iv). Since

mp(E0) = mp(G0) = 2andH(r, £0) = {1}, we must have A =£ N(f)fori = 1,...,A.

As A = A', A induces a group of inner automorphisms on each I¡, and since

H(r, £0) = {1} (by (2.3)) we conclude that A < 2. Indeed, if A > 2, then there exists

í G {1,... ,k} such that p\\Í¡\, and for this /', [A, f] = 1. Now let / = IX and

/ = IX, IX/02(I), or IX/Oj(I), depending on whether q > 3, q = 3, or q = 2.

Then either J ¥= I, or / = ÏL where [/,£]= 1. In the second case we must have

k = mp(I) — mp(L) = 1. This can be seen by using the facts that mp(G0) = 2 and

H(r, £0) = {!}. Consequently £0 n £ ¥= 1, and we conclude that £ is the image of
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one of the components of A. Write / = /, J2 a central product, with £( /, ) quasisimple,

and £(/,) quasisimple or J2 = 1. Also we have X = (X (~) JX)(X H J2) and A = A'.

Thus £ contains root elements. If q — 2, this rules out all exceptional cases of

(2.8)(iv) other than the Fischer groups F22, F23, F24. Each of | £231 and | £24 | is

divisible by 23, whereas 23] | G0|. So these cases are out. If J¡/Z(J¡) s= £22, then

order arguments force G0 = £8(2) and /A = Xx X F22. By [6] some parabolic of G0

contains a Sylow r-subgroup of A, in its unipotent radical and £22 in its Levi factor.

Consideration of the nilpotence class of the Sylow r-subgroup of A, and order

considerations lead to a contradiction. Therefore, /— JXJ2 with each of /,, J2 a

central extension of a Chevalley group over F .

We claim that / = A and we indicate by example how this is proved. Say

G = Eg(q) and p is associated with <p5. Then A/Z( A) s L5(q) X L5(q). Suppose

that A < /,. Checking orders of Chevalley groups defined over ¥q we conclude that

/, must be an extension of Lxo(q). This implies that some/7-local subgroup of G, and

hence some parabolic subgroup of G, involves L9(q). The parabolic subgroup is

necessarily the maximal parabolic of E%(q) that involves E7(q). Repeating this we

see that some proper parabolic subgroup of E7(q) must involve L%(q). This is

impossible (compare orders). So we may assume A, =£ /, and A2 < J2. Say /, > A,.

Considering possible choices for /, we can argue as above. For example if /, involves

L6(q), then some proper parabolic subgroup of G0 involves L5(q) X L5(q) and we

argue as above to get a contradiction. Thus / = A as claimed. The other cases are

similar, but there is one troublesome point when G = £8(<<0 and p is associated with

<p,0. Namely, we must rule out the case J/Z(J) = PSU(10, q). Suppose that this

occurs. Then / has a parabolic subgroup involving L5(q2) and containing an

element e G E*. It follows that e is in a parabolic subgroup, £, of £8(<7) involving

either £7(<7) or D7(q). We claim that CGfe) contains a conjugate of F. In the £7(<7)

case this follows from the fact that Z(Or (P)) is a long root subgroup. For the D7(q)

case use (17.14)(ii) of [3] to see that the Levi factor of £ acts on Or(£)' as on the

natural module for 0+(14, q)' and root groups correspond to singular 1-spaces.

Considering the action of e on the usual module, we have the claim. On the other

hand Cj(e) contains no conjugate of F, and this contradicts the definition of/. So in

all cases we have the claim that J — X.

By (2.7)(iii) and (2.11) we may take £0 =s H and find e G £0 — (£, U £2) such

that C{j(e) ¥= 1. It follows that £0 = Or'(CGo(e)) is a nontrivial central product of

Chevalley groups defined over extension fields of F (see (2.6)). Since H(r, £0) = {1},

£0 n £(£0) ¥= 1. In particular £(£0) ¥= 1 and £(£0) induces a group of inner

automorphisms on A. But H(r, E0) = {1} implies £(£0) < / and so £(£0) < A, A2.

However C(e) D A, A2 is an r'-group, so this is a contradiction.

At this point we have dealt with all cases except those for which either p is "small"

or G0 has Lie rank 2.

(5.9) Let G = £4(<7) or 2E6(q). If G =2E6(q) and p = 3, then suppose p \ q — 1.

One of the following holds:

(i) D0 = G0.

(ii)/» = 3, G0 = £4(2) or £4(4), and for suitable choice of £0, Cg(E0) < NG(E0).



FINITE GROUPS OF LIE TYPE 385

Proof. By Table (5.2) and the results of (5.3)-(5.8), the only cases to consider are

p = 5 | q + 1 with G =2E6(q) and p — 3 \ q ± 1. First consider the case/7 = 5. Then

G =2E6(q) and from the extended Dynkin diagram of G we find a subgroup, A, of

G with A a central extension of £SO"(10, q)' and A generated by long root

subgroups. Considering the action of H on A we then find a subgroup Hx < A with

[/J,, A] = 1 and 77, of order divisible by (q + l)/(3, q + 1). From order

considerations we may take £0 < 77, A. One then argues that £0 < Op( 77, ) X £,

where £ is the direct product of 5 copies of 0/,(Zç+1) and £ acts on the usual

module for 0(10, g) respecting a decomposition into five pairwise orthogonal,

anisotropic 2-spaces. Hence there is a subgroup £, < £ with £0 < C(EX),

Ex si Z X Z , and £, centralizes a proper r-subgroup of A. So C¿o(£,) = G0 by

(2.3). Then minimality of G together with (2.16) and the results of §4 imply

G0 = C¿ (£,) < 7J>0. So from now on we may assume/» = 3.

Suppose G = £4(<7). From Table (3.3) we have a subgroup £ < G0 such that there

exists £0 < £ with | £: £0 | = 3 and L0 — LXL2, the central product of two copies of

S£(3, q) or 5i/(3, g), according to 3 | q — 1 or 3 | ¿j + 1. If 3 | q — 1, then we may

take £2 = (U±a3,U±c¡4) and £, = (Í/±J, i/±a|) where 5 is the positive root of

highest height. Now suppose G =2E6(q) and 3 | q — 1. We regard £4(<7) <2E6(q)

and write 2£6(9) = <£/±a,, i/±„2, (7±aj, ¿L«4>, where U^< #aj, ^ « Ûtt4, etc.

Here we have a subgroup £ > £ such that £ contains £0 = £,£2 as a normal

subgroup of index 3, where L2 = (U±(Xi,U±a/)= SL(3, q2). Then £0 < £0,

£2 = £2 n £, and[£,,£2]= 1. Let (z> = Z(£) = Z(£).

Suppose q ¥= 2,4 and G0 = £4(<¡r). We may assume that z G £0 (use (2.9)(a)). We

claim that there exist 3-elements xx G £, and yx G £2 such that |x,>»1|=3,

xxyx G £0 — Z(£0), and .x:,^, G C(£0). If £0 fl £0 ¥= Z(L0), then just choose

xxyx G £0 — (z). Suppose £0 n £0 = (z). Then £0 = (z)X (z'> for z' G £ — £0.

Choose x, G £,, .y, G £2 each of order 3 such that z' centralizes xx and yx mod

((z)). Then z' centralizes one of x,, yx, xxyx, or x,yf' and the claim follows. If

£0 < C(xx) or if £0 < C(yx), then set £, = (xx, z), respectively (j,, z). Then £,

centralizes a component of £0 so CGfEx) = G0 by (2.3). By induction, (2.16),

(2.6)(ii), (2.5), and §4 we have D0 = G0. So suppose neither xx nor yx is centralized

by£0.

Let £, = (z, xxyx). Then £0 =s C(£,) and if £, normalizes a proper r-subgroup

of G0, we can argue as above. Suppose this is not the case. Then 3 | q + I,

£, s £2 s SU(3, q) and relabeling, if necessary, xx is in a conjugate, C, of (U±s),

where 5 is the root of highest height and where C < £,. Then Ex < N(C)' = C X I,

where 7 s Sp(6, q). Considering elementary abelian 3-subgroups of Sp(6, q) we

argue that there exist conjugates C,, C2, and C3 of C such that

£, < C X C, X C2 X C3. We claim that 7 < C¿o(Ex). This will follow from (3.1)

once we show that the copies of Sp(4, q) in 7 corresponding to C, X C2 and C2 X C3

are in CG (£,). Say, for example, 70 is the copy of Sp(4, q) with Cx X C2*z 70 and

[J0l C3] =° 1. Then CXXC2< C/o(£,) and by (3.2) either 70 = C/(£,) or C/o(£,)

normalizes C, X C2. A direct check shows the latter to be impossible. Thus

70<C¿(£,)   and   we  conclude  that  I<CG(EX).   We  may   now  assume   that
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C3 = (U±a), for a = a2 + 2a3 + 2a4. By symmetry ï = E(CGo(C3)) < CCg(Ex). A

check with root systems shows that (7, /)= G0, so G0 = C¿ (£,) and we argue as

before that G0 = £»0. Now suppose G =2E6(q) with 3 | <? — 1 and g > 4. Then we

may take £0 < £ < L, so by the above minimality of G and §4 we conclude

CG (£0) > (£, F4(q)) = G0. So for these cases (i) holds.

Next suppose that q = 2 and G = £4(2). We will exhibit an elementary abelian

subgroup, £, for which generation fails. Write 03(£,) = (xx, x2 ) and

03(£2) = (yx, y2), so that (x,, x2) = (yx, y2) is extraspecial of order 33. Then

£, = 03(£,)g, where g, s g8 for i = 1,2. Finally, £ = £0(e>, where | e |= 3. To

see that e exists just observe that £ contains a Sylow 3-subgroup of £4(2) and that

£4(2) contains a direct product of four copies of S3 (each generated by long root

subgroups). So £4(2) has 3-rank at least 4, whereas £0 has 3-rank 3. We may assume

that e G C(x,) D C(yx), so setting Z(£0) = (z> we let £ = (z, e, x,, y,). By (3.4)

and the structure of 57/(3,2) we may assume that the involution in Qx is a root

involution of G0, and that x, is a product of two root involutions. This is true for

each x G (x,, z)— (z). So for each such x, CG(x) = (x)X 5/7(6,2). Let £, be

maximal in £. If x G £, for x G (x,, z) — (z), then C(£,) < (x) X 5/»(6,2) and we

have CG (£,)*£ 7V(£) (see (4.1) and the proof of (4.3)). From the work of Burgoyne

[7] we have £ = Cc(z) and we can argue that £ is normalized by a graph

automorphism of G0, which necessarily interchanges £, and £2. Consequently, if £,

contains an element of (yx, z>— (z) we again get CGo(£,) < N(F). So we may

assume that £, contains z and an element g = xj_y/ for i = ±1, j = ±1. Then

CGo(Fx) < CGo(z) n CGo(g) = Q(g). But C¿(g) < 03(L)(e) and it is easy to see

that CL(g) < iV(£). So (ii) holds.

Suppose q = 4 and G = £4(4) or 2£6(4). Write £0 = £,£2 with £, = £2 = 5£(3,4)

and £0 s £,£2 with £2 < £2 s 5£(3,16). Let / G Syl3(£) and set Ji = JCiLi for

i — 1,2. Then /, s J2 is extraspecial of order 33 and as / has 3-rank 4 (as for £4(2))

we may write/ = JxJ2(e) with (e)= 3. Set (z)= Z(J) = Z(JX) = Z(J2) and note

that / G Syl3(£). By (2.9) we may assume z G £0. Suppose that a G £0 with

a G /, — (z). Then £0 *£ CG (a). Now a G / where / is generated by two opposite

root subgroups of G, so CG(a) = (a)X I where 7 s 5/7(6, #) if G = F4(q) and

7 s SÍ/(6,4) or 0"(8,4)' if G =2£6(4). Now argue that £0 normalizes an /--subgroup

of 7 (one can argue as in (4.2)). So in this case (i) holds by (2.3). Now assume that £0

contains no such element, a, or any conjugate of such an element.

By Burgoyne [7] each a G £0# is conjugate to z and CG(i(a) s CCo(z) — L

(respectively £). For £4(4) we will produce a subgroup £0 for which (ii) holds, and

for 2£6(4) we will show that (i) holds. First consider G = £4(4). As before write

/, = (x,, x2) and J2 = (yx, y2), where [x,, x2] = z and [yx, y2] - z~\ Set

£0 = (z, xxyx, x2y2). If e G £0 - <z), then CGo(e) n CGo(z) = CL(e) is solvable.

By Burgoyne [7] it follows that z ~ e.So £* is fused in G0.

From the construction of £ one can show that there exists e G / — /, /2 such that

xf = xx,yx = yx, x2 — x2x,, andy{ — yxy2. Let £be a hyperplane of £0 with z G £.

As NL(E0) is transitive on (£0/(z))#, in order to show CGo(£) < NGo(E0) it will be

enough to show CGo((z, xxyx)) < NGfE0). But

CGo«z, x,j,» = CL(xxyx) = <x,, x,^,, z, x2>-2, e>< NGo(E0),
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as needed. Now let £ be an arbitrary hyperplane in £0. Say zg G £. Then £0 < Lg.

If £<£¡f, then £ is £¡f-conjugate to (zg,(xxyx)g), so CG(£) is £<f-conjugate to

CL(xxyx)g, and as CL(xxyx)g/(zg,(xxyx)g) is abelian, we have CGq(£) < N(E0).

We claim that NG(E0) is transitive on £*. We already have NL(E0) transitive on

(£0/(z))* and it follows that £0 — (z) is fused in NGg(E0).

It will suffice to show that U* is fused in NG(E0), where U = (z, xxyx). Let

£ = (z, x,, yx, x2, y2, e) G Syl3(G). One checks that U< P, CP(U)/U is elemen-

tary of order 33, and U = CP(U)'. Let zg E U - (z). Then CP(U) has index 3 in a

Sylow 3-subgroup of CG(zg) and it follows that NG(U)/CG(U) contains 5£(2,3).

Also, CG(U) — CL(U) — CP(U). If vv0 is the long word in W, then w0 induces a

graph automorphism on £, and on £2, so notation may be chosen so that w0 inverts

U, w0 G N(E0), and w0 centralizes E0/U. It follows that EQ/U = C(w0) D CG(U)/U

and so £0 < NG(U). This proves the claim. So if £ is any hyperplane of £0, letting

zg E F, then we may take g G N(E0). This gives £ < £0 < £^ so by the above

CG (£) =£ N(E0). Therefore (ii) holds and the case of F4(q) is complete.

Finally, consider 2£6(4). By previous arguments we may take £0 < £ < £ and

assume that each element of £* is conjugate to z and that £0 normalizes no proper

/■-subgroup. Say z G £0 and set D0 = CG(E0). By §4 £2 < D0, so £2 < D0 D F4(q).

This holds for each element of £*. Now £2 is generated by short root subgroups of

£4(<7), but as q = 4 we can apply (2.8) to get the structure of (L2°nF"(9)) = A. Since

z G £2 < A, we have £0 < A. Analysis of the possible choices for A and using

H(r, £0) = {1} leads to A= £4(<7). But then D0 > (F4(q), £2>= G0, so (i) holds.

This completes the proof of (5.9).

(5.10) Let G = E6(q), or 2E6(q) and // = 3 | g + 1. Then one of the following

holds:

(i)D0 = G0.

(ii) p = 3, G = £6(2), £6(4), or 2£6(2), and there exists £0 such that

Cl(E0) < NGo(E0).
Proof. By Table (5.2) together with (5.3)-(5.8) either G =2E6(q) andp = 3\q+ I

or G = E6(q) and p — 3 or 5 with /? | ^ ± 1. First assume that /> | </ + 1 and

G = E6(q). Then G0 > (f/±i ) X 70, where s is the positive root of highest height and

70 = SL(6, q). So G0 > A, where A s SX(2, g) X (SL(2, q) wr Z3). If/» = 5, then A

contains a Sylow 5-subgroup of G0 so we may take £0 < A and argue as in (5.5) to

get D0 — G0. Suppose p = 3. By Table (5.2) we may assume £0 < £4(^) < E6(q)

and £0 < £, where £ is the second group listed in Table (3.3) for the group E6(q). In

fact, from the proof of (3.3) we may assume that £4(^f) n £ is the second group

listed for F4(q). If q > 2, use (5.9), (4.1), and (4.5) to get Da > <£, F4(q)) and then

apply (2.8) to obtain (£, F4(q)) = G0. Suppose q — 2. Here we choose

£0 < £0 n £4(2) < £0 n £4(4) as it was constructed in the £4(4) case of (5.9)(ii). The

same arguments show that DQ < NG (£0); hence (ii) holds.

If p - 5 | q - 1 we again may take £0 < (U±S)X 70. Then £0 projects to an

abelian subgroup of 70 s 5£(6, q). Consequently £0 acts reducibly on the usual

module for 5£(6, q) and H(r, £0) ^ {1}. So here (2.3) implies that (i) holds. At this

point we may take p = 3. If G = E6(q), then 3 | q — 1 and if G =2E6(q), then

3\q+ I.
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By (3.3) G0 contains a subgroup £ such that £ contains a normal subgroup, £0, of

index 3 and £0 = £,£2£3, a central product of three copies of 5£(3, q) or 57/(3, q)

depending on whether G0 = E6(q) or 2E6(q). Also Z(£0) = Z(£) = Z3 X Z3. We

write (x,) = Z(L¡). Then xy ¥= 1 for / = 1,2,3 and we may choose notation so that

x, = x2x3 ' and z — x,x2 generates Z(G0). By Table (5.2) a Sylow 3-subgroup of £

has index 9 in a Sylow 3-subgroup of G^,. Here Gqq denotes the preimage in G of Ga.

We claim that NG (£) contains a Sylow 3-subgroup of Gqq. To see this we go back

to the proof of Table (3.3), where £ was constructed. We had A,, A2, A3 commuting

copies of SL(3, K) with centers (z,), (z2), (z3), respectively. For each i we

constructed a¡ G X¡ with a° = a,z¡. Then axa2] G G^ — G0 and axa~2 G A/(£). Also

there was an element g G G0 interchanging A, and A2, while normalizing A3.

Similarly, we can construct g' G G0 interchanging A2 and A3, normalizing A,. So G0

contains a 3-element x transitive on {A,, A2, A3}. Then £(x, a,a2')= L contains a

Sylow 3-subgroup of G^ and £ < £. We may assume £0 < £.

It is possible that E0^fC(xx), but we may assume z G £, by (2.5), so

[x,,£0]^(z)<£0.A slight extension of (2.9) allows us to take x, G £0. We may

assume that there exists j> G £0 with [x,, y] = 1 and y £ (x,, z>. To see this argue

as follows. If £0 n C¿ixx) > (x,, z), just choose y in the intersection. Otherwise,

£0 = (x,, z, y) for any y G £0 — (x,, z). But then ^ is transitive on {A,, A2, A3},

H(r, £0) # {1}, and by (2.3), (i) holds.

Suppose q > 4 if G = £6(^r) and <? > 2 if G =2Eb(q). Then £0 =s £»0. Let F be a

long root subgroup of G0 and set 7 = <FC n D0). By (3.4) £0 < 7 and by (2.8) 7 is a

central product of finite groups of Lie type each defined over F . Using order

arguments we conclude that 7 = £0. Also, £0 = O'' (CG (x,)).

Since CG(X|) is connected we can embed (x,)X (y) in a maximal torus £, of G.

Let £, < £,, where 7Î, is a Borel subgroup of G and let Ux be the unipotent radical

of Bx. Then i7, is the product of 36 root subgroups and since £0 = Or(CGa(xx)) we

see that x, centralizes precisely 9 of these root subgroups. So some element of

(x,, y)— (x,> must centralize at least 9 root subgroups of Ux and we may take this

element to be y. Using this information together with basic properties of the root

system of type £6 we have the following possibilities for the Dynkin diagram of

E(C¿(y)): A2 U A2 U A2, Ax U A4, Ax U A5, A5, D4, D5. As in the proof of (2.6) we

see that the components of CG(y) are central extensions of some of the following

groups: L,(q), 2 < i < 5, í/f.(¿ 2 < i < 5, £3(^3), U3(q3), U5(q), D5(q), 2D5(q),

2D4(q), D4(q), 3D4(q). Moreover, q9 divides the order of E(CGo(y)).

Let / be a component of CG(y) and let £ = NEo(J). Suppose we knew that for

any such /, / = Cy°(£). Then°(2.16) implies that E(CGo(y)) < D0. However, this

contradicts the fact that L0 = I — E(D0). Therefore, there is some component /

with / t¿ Cj(F). By (4.1), (4.5) and induction we conclude that F/CF(J) is not

contained in the subgroup of Aut(/) generated by inner and diagonal

automorphisms. To handle the remaining cases we appeal to (6.1), (6.3), (6.4) and

(6.5) of the next section. The proof of (6.1) does not require Theorem 1. The proofs

of (6.3), (6.4) and (6.5) make use of Theorem 1, but since we are in a minimal

situation these applications are valid. Therefore, we conclude that / = Cj(F), which

is a contradiction.
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Suppose G —2Eb(2). Then G0 has Sylow 3-subgroup of order 310. Let í be the

positive root of highest height. Then 7 = £(CGo«i/±J») = 57/(6,2). Now I contains

an elementary abelian subgroup, £0, of order 35 which is normal of index 9 in a

Sylow 3-subgroup of I. Set <i>>= 03((U±S)) and £0 = (v)X F0. We claim that

CG (£0) < NG (£0). Let £, be a hyperplane in £0 with vg G £, for some g G G0.

Then £0 < CG(EX) < CGo(t;) = Z3 X 57/(6,2). So £0 projects to E(CGo(v)) as an

elementary abelian subgroup of order 35. No proper parabolic subgroup of 57/(6,2)

contains such a subgroup. By (4.1) and the proof of (4.2), CGo(£,) *s N(E0).

Now suppose £, is a hyperplane of £0 containing no G0-conjugate of v. Then

EQ= (v)X Ex and £, projects to £0 in 7. Let M be the natural module for 57/(6,2)

and let {»,,... ,t)6} be an orthonormal basis for M. We may asume £0 is diagonal in

the basis and £0 = (x,)X • • • X(x5), where (t>,)x, = av¡, (u,+1)x, = a~'t>,+,, and

(Vj)Xj = Vj if j ¥= i, i + 1. Here a G F4 is an element of order 3. Each x, is

G0-conjugate to v, so for each i either ux, or tr'x, is an element of £,. Say üx, G £,.

If u"'x2 G £,, then x,x2 G £,. However, we have x,x2 ~ x, in 7, a contradiction. So

ux2 G £,. Similarly, ux3 G£,. Then (f;x,)(t;x2)(ux3) = x,x2x3 G £, and again we

have £, n vG" ¥= 0. This is a contradiction. So £»0 < N(E0).

Finally, we consider G = £6(4). Let £ = L(x). We claim that there exists

e G £ — £ with | e \ = 3. To see this consider the natural embedding of G0 in £7(4).

The group N of the Tits' system for £7(4) splits over the split torus, T. To see this

just observe that the long word in the fundamental generators of the Weyl group of

£7(4) inverts £. The splitting of N over T forces a similar splitting in G0, and this

guarantees the existence of e.

We may assume Af = A2 and A2e = A3. So E(CLfe)) = £5£(3,4). Let

(b, c) G Syl3(£(C¿o(e))) and set £0 = (x,, x2, b, c). We fix a hyperplane, £, of £0

and claim that CG (£) < NG(E0). Clearly, we may assume z G £.

Suppose, x, G £. As NG(E0) is transitive on (£0/(x,, x2))#, we may assume

£ = (z, x,, A) = (x,, x2, b). Then

CGo(F)^CGo(xx) = L.

Write b = bxb2b3 and c = cxc2c3, where b¡, c¡ E Lj for /= 1,2,3, and let F =

(x,, x2, bx, b2, b3, c)= CLo(b). Then CGo(£) = C,(b) = V(d) ford EL- £0. Now

e normalizes V(d) and we consider V(e, d)/(xx, x2). The group F/(x,, x2) is

elementary abelian and d normalizes F/(x,, x2)n C(e) = (b, c, x,, x2)/(xx, x2).

On the other hand, (\d, c/])(x,)= (A,, x,), for /'= 1,2,3 and this implies that

[¿, c]< (A, x,,x2>= £ We conclude that £= CGo(£)' = CL(A)'. In particular,

£0<C£(A) = CGo(£).
Viewing CG(A) n CGo(x,) first as a subgroup of £ and then as a subgroup of

CGo(A), we conclude from [7] that b ~ x, in G0. Let U - (z, x,, A> and D = NGfU)

n C(U/(z)). Then 7) is a 3-group of index 3 in a Sylow 3-subgroup of

CGo((xx,z)/(z)) and in a Sylow 3-subgroup of CGo«A, z)/<z». It follows that

02\nGo(U)) induces 5£(2,3) on U/(z).

We have CGo(77) = (U, bx, b2, c, d). Also,

(cx,c2, c3, z)<e>= (cx,cex, cf, z)(e),    (bx, b2, b3, z)(e>= (A,, b\, bex , z)(e),
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and both groups are isomorphic to Z2X (Z3 wr Z3). Set A0 = [A,, e] and c0 = [cx, <?].

Then D = CGo(U)(e, c0). We will use the fact that (z, A, A0> is the unique hyper-

plane of (z, A,, A2, A3) that contains z and is normalized by e.

Now D/CGfU) acts on U s Z3 X Z3 X Z3 as the group of transvections in

5£(3,3) with fixed direction (namely (z>). Hence, 02'(NGfU))/CGo(U) is

isomorphic to 02(£), for £ a parabolic subgroup of 5£(3,3). In particular,

02'(NGfU))_is transitive on (D/CGfU))*. Consider the action of D on CGfU)/U

= (^i>x (^i)x (c)X (d), where bars denote images modulo U. Then c0 induces

a transvection on this elementary group having centralizer (bx, b2,c) and commuta-

tor space in (bx, b2). This commutator space is normalized by e, so earlier remarks

imply that [CCo(U)/U, (c0>] = (A0). We must have e inducing a transvection on

CGo(U)/U, and since [bx,e]-b0, we conclude that [CGg(U)/U, (e)] = (b0),

as well. It follows that [D, CGfU)] U/U = (A0> < 02(NGo(U)). Moreover,

02(NG(U)) normalizes Z(D/U) n CGfU)/U = <A0, c>. Therefore, 02'(NGo(U)) <

C((A0, c, U)/U), so 02(NG(JJ)) < N(E0). Consequently, there is an element g G

N(E0) such that x, G F8. By the previous case, CGo(Fg) > N(E0); whence CGo(£) <

N(E0). This proves the claim. Therefore, (ii) holds and the proof of (5.10) is

complete.

(5.11) Suppose G = E7(q) or Es(q). Then one of the following holds:

(i) D0 = G0.

(ii) q = 2 and/» = 3.

(iii) q = 4, /» = 3, and G0 = £8(4).

Moreover, if p = 3 and G0 = £7(2), £8(2), or £8(4), then there is an elementary

abelian 3-subgroup £0 « G0 such that CGq(E0) « NGfE0).

Proof. Since p\\Z(G0)\, £0 s £ is elementary abelian. By Table (5.2) and

(5.3)—(5.8) we need only consider the cases p = 3,5,7 and p\q±l. Regard

7 = E7(q) < £8(<?) = G0 in the obvious way. Let / = (U±s) for s the positive root

of highest height in G0 = Eg(q). Then 7 = E(CGo(J)).

Suppose p = 1. Then Table (5.2) implies that JI contains a Sylow /7-subgroup of

G0. If p | q — 1 then a Sylow/7-subgroup of 7 is contained in a parabolic subgroup of

7 with a section of type L7(q). So here (2.3) gives (i). Suppose p \ q + 1. By Table

(3.3) and (3.4) £8(<?) contains a central extension of Ug(q) = X with A generated by

root subgroups of E^q). Then A contains a conjugate, J8, of / such that

CX(J8) > Or(GU(l, q)). So 7 ^ Or(GU(l, q)) and has Sylow 7-subgroups

isomorphic to 07(Z?+,)wrZ7. Let 5 G Syl7(7) or 5 G Syl7(/7), according to

G0 = E7(q) or EK(q), and let 50 be the unique subgroup of 5 with 50 the direct

product of 7 (respectively, 8) copies of 07(Zq+,). By (2.3) and the argument used to

prove (4.2) we may assume that £0 < 50. On the other hand, 7 contains the direct

product, /, X • • • X/7, of seven conjugates of /. Therefore, we may assume

E0 </,-•• /7 (respectively, //,-•• J7) and argue as in (5.5) to get (i).

Suppose G0 = £7(<7) and/71 q — 1. Here/» = 3 or 5 and a Sylow/7-subgroup of G0

is contained in a conjugate of the parabolic subgroup of G0 having an Eb(q) section.

So U(r, £0) ^ {1} and (i) holds by (2.3).

Next suppose G0 = E7(q) and /? | <? + 1, where p = 3 or 5. If p = 5, then let /,

and £ ~ Oy(GU(l, q)) be as in the case p = 1. By orders we may assume that
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£0 < /,£, and arguing as before we have £0 conjugate to a subgroup of /, ■ • • J7,

where the product is a commuting product of conjugates of /,. Once again argue as

in (5.5) to get (i). Suppose p — 3. By Table (3.3) G0 contains a subgroup R such that

£(£) is the covering group of 2Eb(q) and R/E(R) = Z(R) = Z3. Then R contains a

Sylow 3-subgroup of G0, so we may take E0< R. Also £0 = £ is elementary abelian.

Recall the subgroup £ discussed in (5.10) and regard EQ*¿ NG(L). By (2.9) we may

take z G £0, where (z)=Z(£). Assume q > 2. Let e E £0 — (z) and set

£, = (e, z). By (2.16), (2.6)(ii), (2.5), (4.1) and results of this section,

Of'(CGo(0) < A) for each t G £,*. By (5.10) and (3.4) £(£) < 7, where

7 = (Ve" n D0) and Fis a root subgroup of G0. Then, assuming (i) fails, (2.8) and a

check yield £(£) = 7 = Or'(E(D0)). We then must have Or'(CGo(?)) < £(£) for

each t G £,*. Now argue (see (2.7)(ii) and (2.11) for example) that t G £, — (z)

may be chosen with Or'(CR(t)) * 1. Then H(r, £,) ^ {1}, CGfEx) = G0 by (2.3),

and we have a contradiction. This completes G0 = E7(q) except for q = 2, /7 = 3.

Suppose G0 = £8(g) and p — 5. By Table (3.3) G0 contains a subgroup Y such

that £(Y) is the central product of two copies of 5£(5, q) or SU(5, q), according to

5\q — 1 or 5 | ̂ r + 1. Also Y/E(Y) s Z5 and, by Table (5.2), Y contains a Sylow

5-subgroup of G0. We take £0 < Y, and let / and 7 be as before. Since a Sylow

5-subgroup of 7/ has index 5 in one for G0, we may assume 7/ contains a

hyperplane, say £, of £0. Suppose £ contains F0 = Z5X Z5. As in (5.10) there are

commuting G0-conjugates /,,...,/7 of / such that £0<//, • ■•/7 = /0. Clearly

/0 = C/(£0), so by (2.16), (4.1), and the results of this section, we have /0 < D0. But,

also, (4.1) implies £(Y) < 7)0. We can now use (2.8) to argue that D0 = G0. So

suppose £= Z5, that is E0 = Z5 X Z5. By (2.9) we may assume z G £0, where

(z) = Z(Y). From the structure of 5£(5, q) and 5i/(5, q) it is clear that £0 acts on

an elementary abelian subgroup of £(Y) of order 57. It follows that £0 can be

embedded in an elementary subgroup of order 53. So using (2.9) we reduce to the

previous case, and obtain £»0 = G0. From now on we have/7 = 3.

Let G0 = £8(<7) and use Table (3.3) to get a subgroup £, < G0 such that

£(£,) = A0BX, a central product, where A0 = 5£(3, q) or 57/(3, q), Bx s Êb(q) or

2Eb(q) and in each case the choice is determined by whether q = 1 or -1 (mod 3).

Also Z(£,)= (z)sí Z3 and £,/£(£,) = Z3. By Table (5.2) £, contains a Sylow

3-subgroup of G0, so we may take £0 *£ £,. There is an element x, G 7?, such that

| x, |= 3 and E(CB(x)) = AXA2A3, a central product of three G0-conjugates of A0

(see Table (3.3)). We set A — A0AXA2A3 and choose notation so that x, G Ax. Then

Z(A)=(z)X(xx).

We also have NL(A) containing a subgroup A > A with Â/A sz Z3X Z3 and Â

normalizing each A¡. Finally, there is a 3-element e, G NL (A) such that Â — Âe' and

ex permutes {Ax, A2, A3} as the 3-cycle (1,2,3). By orders Â(ex) contains a Sylow

3-subgroup of G0, so we choose £0 < Â(ex).

First suppose q > 4. If £0 < Â, then let £, = (z, x,). If £0 4 Â, let £, = (z, e),

where e is any element inEQ- A. Then £0 < C(£,). In either case it is clear that Ex

centralizes a proper r-subgroup of G0, so (2.3) gives C¿(£,) = G0. But the

assumption q > 4 together with (4.1), (4.5), and the results of this section give

CG (£,) < D0. So (i) holds in this case.
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Suppose, now, that q = 4, p = 3, and G0 = £8(4). We will produce a subgroup £0

such that (iii) holds. Retain the above notation. Thus £(£,) = 5£(3,4) • £6(4). Set

x2 = xf1 and x3 = xf1. Then x,x2x3 = 1, so x3 = xf'xj"1 and we may assume that

z = x,x2'. Set 5 G Syl3(i<e,» with e, G 5, and write 5, = 5 n A¡ for i = 0,1,2, 3.

Then 5, = (at, A,), where [a¡, A,] = x, for i — 1,2,3, [a0, A0] = z, and e, stabilizes

{ax, a2, a3) and {A,, A2, A3}. We now set £0 = (z, xx, a0axa2a3, bxb2b3, A0A]"'A2)

and observe that £0 is elementary of order 35. We will show that CG(E0) < NG(E0).

Let £ be a hyperplane in £0 and assume z G £. First, suppose x, G £. Then

CGo(£) =s CGo(xx) n CGo(z) = CL¡(xx) = À. Calculation within Â yields CGfF) =s

NGfE0). Suppose £ does not contain x,, so that £0 = £ X (x,). Using the results of

[7] one checks that <A,A2A3, x,>* is fused in £, = £6(4). Let (x>= £ n (A,A2A3, x,>.

Then £0 =s CL|(x) ~ CL(xx) and

CGo(£)<CGo«z,x»=i*

for some g G Bx. Since x, G F, F projects onto a Sylow 3-subgroup of A0/Z(A0),

and it follows that CGfF) < (A(gx))8, where g, G Â n £,.

Let <2 = (z, x,, axa2a3, bxb2b3). As in the £6(4) case, we have (ô/(z))* fused in

NBt(Q)- So we maY take £ e ^,(0) such that xf - x and £ < (AxA2A3)g. We

claim that CG (£) is contained in a Sylow 3-subgoup, Y, of (A(gx))8. It will suffice

to show that C(A A A )Ä(£) is a 3-group, where F is the projection of £ n A8 to

(y4,/l2/l3)g. However, ^^^((x,, z, <7,)) is a 3-group for any qx G O — (x,, z> and

£ n Qg > (xf, z). This proves the claim.

Suppose Y = Y0(e) for some e E F, where Y0 = Y D /I*. If j» G Cr(£), then

>> = e'}>0 for some jb G Y0. So

£ó" = £>'<> = «e)(£0 n Y0))yo = (e>M£o n Y0)v'" = <e>(£0 n Y0) = £0

and y G A/G((£0). Suppose no such element, e, exists. Then £=£ Y0. The projection

of £0 to £, is nonabelian, so the projection of £ to 7?, is nonabelian. This forces

CY(F) < Y0. In particular, £0 < Y0 and so Cy(£) < N(E0). We have now shown

that CG (£) < /Vc (£0), whenever £ is a hyperplane of £0 containing z.

If £ is a hyperplane of £0 with £0 = £(z), then £ contains x,z' = x, for some /'.

As A < C(x) we use [7] to conclude that x ~ z. So CG)(x) ~ CGo(z) and ^4 =s CG(x).

In view of the embedding of £0 in A we can argue as above that C(£) *£ N(E0).

This completes the proof that CGo(£0) < NGo(E0) for this case.

We are left with the cases G0 = £7(2) or £8(2) and p - 3. Let s be the positive

root of highest height and / = (U±s)= S3. Then CGo(03(/)) = 03(/) X £(CGo(/))

and £(CGo(/)) s 0+(12,2)' or £7(2), according to whether G0 s £7(2) or £8(2). In

the former case £(CG (/)) contains/, X ■ • • X/6, a direct product of 6 G0-conjugates

of /. To see this just consider the direct product of three copies of 0+ (4,2) in

0+ (12,2). If G0 = £8(2) let /0 be a conjugate of / in £(CGo(/)). Then G0 contains

/ X /, X • • • X/6 or / X /„ X /, X • • • X/6, depending on whether G0 = £7(2) or

£8(2). Let 03(/) = <x> and 03(/,) = (x,> for /=1,...,6 (; = 0,...,6 if

G0 a £8(2)).
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We claim that CG(£0) «£ NCo(E0), where £0 = (x, x,,. . . ,x6 ) or

(x, x0, x,,...,x6), depending on whether G0 ~ £7(2) or £8(2). First suppose

G0 s £7(2). Let £ be maximal in £0 with x G £. Then by (4.1) we have

CCo(F) = Cc0(E) n CGo(x) < A/Go(£0). Now suppose £0 = <x>X £. As above we

may assume (x,)5^ £ for i = 1,2. So xmx,, x"x2 G £ for m, n G {1,-1} and

aEF for a = x,x2 or x,x2'. Now C(a) n E(CGo(J)) = (a)X O"(10,2)', so

CG(a) n C(J) = (a)X O"(10,2)'. From Burgoyne [7] we conclude that CGa(a) =

(a)XJXO'(lO,2)'. Again we use (4.1) to argue that CGo(F) < NGfE0). So

Cl(E0)<NG¿E0).
Now suppose G0 s £8(2). Here we argue as above. First let £ be maximal in £0

with x G £. Then CGo(£) < CGo(x) = <x) X £7(2), so from the above paragraph we

conclude that CG (£) < iVG (£0). To complete the proof argue as above, using [7] to

show that E(CG¡a)) = 0_(14, q). This yields Cgo(E0) < iVGo(£0) and completes the

proof of (5.11). °

(5.12) Let G = G2(q). Then one of the following holds:

(i)7)0=G0.
(ii) q = 2, p = 3, G0 = Aut(£57/(3,3)) and D0 normalizes a Sylow 3-subgroup of

G0, for any proper 3-subgroup, £0, of G0.

Proof. By (5.3), (5.8), and Table (5.2) we may assume/» = 3. From Table (3.3) we

see that G0 contains a subgroup £ with £ s 5£(3, q) or 57/(3, q), according to

whether 3\q — 1 or 3\q + 1. Then £ contains a Sylow 3-subgroup of G0, and we

take £0 < £. If 3 | q — 1, then £ = 5£(3, q) has just one class of elementary groups

of order 3" > 3. They are isomorphic to Z3 X Z3 and are conjugate to a subgroup of

77. So (i) holds by (2.3).

Now suppose 3 | q + 1 and q > 2. Again £0 s Z3 X Z3 and Z(£) < £0. So

£ =£ 7)0. For e E E0 — Z(L), e is contained in (U±s)g < £ for some g G G, where s

is the positive (long) root of highest height (to see this check the action of e on the

usual module for 57/(3, <?)). Then £0 acts on E(CGo((U±s)g)) = <7/±Q| )*.

Consequently (7/|a|}< 7)0, and usual arguments (e.g. apply (2.8)) show that

G0 = (£, (U±a¡)g). Again (i) holds.

For q = 2, just note that G2(<jf) = Aut(i/3(3)), so (ii) holds. This proves (5.12).

(5.13) Let G0 =3D4(q). Then 7)0 = G0.

Proof. By (5.3), (5.7) and Table (5.2) we may assume that/7 is associated with 3>3

or $6, or that p = 3. Assume q =£ 2. By Table (3.3) G0 contains a subgroup £ with

the following properties: 02(£) s 5£(3, </) if 3 | q — 1 or if p is associated with

q3 - 1; 02\L) = SU(3,q)if3\q+ 1 or if/? is associated with ç6 - 1;£= 02(L)C

where Csf2 + ^+ 1 ox q1 — q+ 1 depending on whether 02(£) = 5£(3, <¡r) or

57/(3, 9); [£, C] = 1 and £ n C = Z(£).

Suppose /? is associated with q3 — 1 or çr6 — 1. Then £ contains a Sylow

/7-subgroup of G0 and we take £0 < £. Then £0 = Z X Z and

£0 = (£0 n £(£)) X (£0 n C). At this point we can argue as in (5.8) to conclude

D0 = G0.

Suppose, then, that p = 3. Again using Table (3.3) we see that £ < £ with

£/£ = Z3. Then £ contains a Sylow 3-subgroup of G0 and we take £0 < £. Also G0
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contains ([/±¡t!) X (U±s), for s the positive root of highest height, and this group is

isomorphic to 5£(2, q) ° 5£(2, q3). Thus a Sylow 3-subgroup of G0 contains a group

isomorphic to 03(Zq±x) X 03(Zq^±x). It follows from these facts that G0 has 3-rank

2 and £0 = (z, y) for (z)= Z(£). In particular £ =£ 7)0.

Let 7 = (Ve n 7J0), where V is a root subgroup for a long root. Then

02(£) =£ 7 < £>0. Using (2.8) together with the fact that 7 « 7>0 =£ jV(7), we have

7 = 02(£). So 02(£) < D0 and hence 7)0 =£ N((z)). Also (2.7) and (2.11) imply

that we may choose y such that K = E(C¿(y)) ^ \. Then Ka =£ £»0 < N((z)).

Consequently, (2.3) implies the result, unless 53 s 02(Ka) 4 C(z). However, from

Burgoyne [7] we see that 02(Ka) s= 53 is impossible.

The remaining case is q = 2. We have G0 > L s SU(3, 2) and

G0 > X s £2(2) X £2(8). Let 50 = 03(£). Then 50 has index 3 in a Sylow 3-subgroup

5 of G0 and 5 < NGo(£). For 5 G 5 - 50, 5 = 50(i) and since 5 has exponent 9,

| j | = 9. Thus £0 < 50 and G0 contains one class of subgroups isomorphic to

Z3X Z3. We may take £0 < A n £ so that (A, L>< Z)0. Moreover, £0 < £ implies

that £0 — (z) is fused, so £2(8) s E(CGo(e)) *£ J>0 for each e E £0 — (z). One can

now use (2.8) to conclude that D0 = G0.

(5.14) Let G0 = 2£4(g)'. Then one of the following holds:

(i) q > 2 and D0 = G0.

(ii) q = 2,/7 = 5, £0 s Z5 X Z5, and CG°o(£0) =£ /VGq(£0).

(iii) q = 2, p = 3, E0 at Z3 X Z3, and CG (£0) = £3(3)(y), where y is the graph

automorphism of £3(3). In this case if we set G, =2£4(2), then CG(£0) = G,.

Proof. By (5.3) we may assume that/7 is associated with $,, $2, or 04. Suppose

the latter holds and q=£2. Then G0 contains a subgroup A = (A, X A2)(r>, where

A2 = A,', Xx=Sz(q), and t2 = 1. By (5.2) we may take £0 < A, X A2 and

£0 = ß,(£) for P G Sylp(G0). Clearly (A, X X2)(t)^D0. However the arguments

used in (5.8) do not work here because of the lack of root involutions. We proceed as

follows.

Let 5, G Syl2(A,) and set 52 = S[. Choose 1 ^ x G ß,(5,). Then 52 < CGo(x) so

x is 2-central in G0 (see e.g. (18.6) of [3]). Now CDfx) > 5, X A2 and

CG (x) = O2 (£) for £ a maximal parabolic subgroup of G0. The structure of CG (x)

is given explicitly in §10 of [12]. We check that if CDo(x) > 5, X A2, then

Q) (■*) ̂  S, • 02(P)', and it is easy to check that this group and A, generate G0. So

suppose CDo(x) = 5, X A2. Let 5 = (5, X S2)(t). Clearly Z(5,) X Z(52) is weakly

closed in 5, and hence 5, X 52 = Q(Z(5,)Z(52)) is characteristic in 5. By the

Krull-Schmidt theorem (p. 120 of [16]) the pair (5,Z(52), Z(5,)52} is characteristic

in 5, and taking squares, we conclude that (Z(5,), Z(52)} is characteristic in 5.

From this and the above we see that 5 G Syl2(£»0). Also Corollary 4 of [13] shows

that Z(5,)Z(52) is strongly closed in 5. But now consider Cx¡X2(t) s Sz(q). By

(18.6) of [3] t is G0-conjugate to an involution in Z(5,). Applying Sylow's theorem in

Cc(0 to (e)= E n Cx¡Xi(t) we see that Y = 02'(CG(e)) ~ Sz(q). But then

t G Y*s D0 and t is a square in D0. This contradicts the fact that Z(5,)Z(52) is

strongly closed in 5. So DQ = G0 in this case.

If q = 2 and p = 5, then £0 = 05( A, A2) (notation as above) and £0 G Syl5(G0).

If £, = 05( A,.), then CG()(£,) = £, X Ay, where {/, j) = {1,2}. Also it is easy to use
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the above arguments to check that NG(E0) is transitive on £*. It follows that

CG°o(£0)</V(£0) and (ii) holds.

We now suppose p \q±\. If p\q— 1, then by (5.2) £J < 77 for some g G G, and

so (i) holds by (2.3). So, assume p | q + 1. Suppose p > 3. Then by (5.2) we may

assume

E0<(U±a\X(U*¿i\s*)=SL(2,q)XSL(2,q).

This implies £0 < C(£,) where £, s z3 X Z3. If x G £,*, then by [7]

CGo(x) s 57/(3, (?). By (4.1) it will suffice to show that G0 = CSa(Ex). That is, we

may now assume p = 3.

Next we will show that it suffices to look at the case q = 2. First note that 2£4(2) is

a subgroup of 2F4(q). Choose £0 < (U±a¡)X (UsJsa\S2) = A. With the natural

embedding of Y =2£4(2) < G0 we may take £0 <2£4(2)'. Each involution in 2£4(2) is

in 2£4(2)' (see 18.6 of [3]). Since the Weyl group of 2£4(2) and G0 are the same, we

may consider the Weyl group of G0 as a subgroup of Y. Let 7 = (A, Y>< £»0. Then

7 contains all subgroups (7/ia) of G0 for Ua~ Ua. From the commutator relations

(see §10 of [12]) we see that if ß is any root with (U±ß)^Sz(q), then ß,(L^) < 7.

For such a root ß we have 7 n (U±ß)> <ß,(7/±/8)> = (U±ß), for ? > 2. So 7 = G0

and it suffices to look at the case q — 2.

Now G0 =2£4(2)', E0 = Z3 X Z3, and by Burgoyne [7] each e G £<f satisfies

C(e) n2£4(2) s 57/(3,2). We then have CGfe) a subgroup of index 2 in 57/(3,2).

Write £0= (a) X (A). In G, =2£4(2) there is just one class of such subgroups and it

follows that G0 > A, X A2 s 53 X 53, with (a)= 03( A,) and (A)= 03(A2). So

CG(a) contains an involution, tx, that inverts A. Let 5 = 03(CG(A)). We now have

Nc((b)) an extension of 5 by a semidihedral group of order 16, and NGf(b)) an

extension of 5 by 7)8. Let £ be a Sylow 2-subgroup of NG ((b)), with tx E T. Then

Eq = {E0, £,} where £, = (A, c) and £0£, = 5. £ contains a klein group

^o = (h) x ('2) w'th the following properties: ?, inverts c, t2 centralizes c, t2 inverts

a, and t2 inverts A. So TQ = NT(E0) = NT(EX) and T = T0(j), where j is an

involution with // = t2 and ¿F = c.

Let £0 = NGo(EQ) and £, = NCo(Ex). Looking at £0 D C(a) and £0 D C(A) we

easily have £0 being the semidirect product of £0 with G£(2,3). Similarly for £,. Set

A = <£0, £,). Then A = Xj and we claim that A s £3(3).

The claim is proved by first giving a (B, N)-pair in A. Let

Y = £0 n £, = 5<i„ t2)= ST0. Y will be a Borel subgroup of A and £0 a Cartan

subgroup. £0 is 2-transitive on the cosets of Y, so there is an involution j0 G NP(T0)

such that £0 = Y U Yj0Y. Similarly £, = Y U YjxY, where we may take;, - j¿. Now

5 = (a)(b)(c) and we then have

V»/, =h(a)(b)(c)jx = ((a><A»y%J.<i->yi

This implies y0Y/', Ç Yy0y',Y. To get additional relations observe that since j0

normalizes T0, j0 must permute the proper subgroups of £0 that are £0-invariant,

namely (a) and (A). As j0 G N((b)), j0 interchanges (a) and (A). Similarly /,
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interchanges (A) and (c). Thus,

JoSJiJo =JoEo(c)J\Jo = E0Jo(c)JJo = E0j0jx(b)j0

= E0j0jJ0(a)Q Sj0jJ0S.

At this point the additional relations are obtained by proving that (j0, jx)= S3.

Now (j0, jx) induces 53 on (tx, t2) and (jQ, /',)< (j0, j) as a subgroup of index 2.

From the known information on centralizers of elements of order 3 and 5 we see that

if (Jo> J\)^ ^3> then (j0, j) is dihedral of order divisible by 24, and an element of

order 4 centralizes (?,, t2). To see that this is impossible argue as follows. We may

take A, = (U±a¡) and A2 = (UsJsa\s>). Then we have (tx, >2>~ (I7ai, &£*"'*>, and

using (18.6)(ii) of [3] together with the relations in §10 of [12], we see that C((tx, t2))

is elementary abelian. So (j0, jx)= S3 and A = £3(3) by Theorem 2 of [15]. Thus

A<y>=Aut(L3(3)).

From the structure of Aut(£3(3)) we see that CG (e) < X(j) for each e E £*.

Also CX(E0) is a maximal parabolic subgroup of A. Indeed CX(E0) — NX(EQ).

Since Cx(j)(b) > Cx(b) we have CG°o(£0) = CG°o(£,) = X(j). So D0 = X(j) for this

choice of £0. Now, in G, =2£4(2) there is just one class of subgroups of type

Z3XZ3. So CGo(£0) s Aut(£3(3)) for any such subgroup £0 < G0.

If 7), = CG(£0) for £0 as above, then we easily see that £», is transitive on

elements of order 3 in 7), and 7), is strongly 3-embedded in G,. So | G,: £», |= 1

(mod 27). But with D0 < Dx this is impossible. The proof of (5.14) is now complete.

With the results of this section we have now completed the proof of Theorem 1.

6. Automorphisms and Theorem 2. In this section we deal with the case G simple,

£ < Aut(G), £ = En with n > 1, but £ not contained in the subgroup of Aut(G)

generated by inner and diagonal automorphisms of G. Since p is odd this usually

means that some element of £ induces a field automorphism of G. Let G0 = G„ and

let G, be the inverse image in G of G0. Then G,/Z(G,) is isomorphic to G extended

by all diagonal automorphisms of G. Let G2 be the extension of G, by field

automorphisms of G0.

We first assume that £ is contained in G2/Z(G0). There is a/7-subgroup £0 < G2

such that E0Z(G0)/Z(G0) = E. Set £>0 = C<?o(£0) and D = C<?(£). Then £>0 = G0

implies that D = G. Note that the only cases not included under the above

restriction on £0 is G s D4(q) or 3D4(q).

(6.1) Suppose £0 < G2, but £0 4 G,.

(i) If p > 7, then D0 = G0.

(ii) Suppose mp(E) > 2 and 7)0 < G0. For e G £0 — (£0 n G,) set £ = CGfe)

and £, = £0 n G,. Then there exists e such that C°(£,) < £. So the pair (£, /?) is

given in Theorem 1.

(iii) If mp(E) - 2, either £>0 = G0, or /7 = 5 and G s 5z(25), or /» = 3 and

G = £2(8).

Proof. Suppose D0 < G0. By Lang's theorem [18] each element in £0 — (£0 n G,)

induces a field automorphism on G0. Set £, = £0 n G,. If mp(E) = 2, then

CG (e) *£ £»0 for each e G £0 - £,. Suppose mp(E) > 2. If (ii) fails, then CGo(e) *£ 7)0

for each e G £0 — £,. So in all cases we have CGfe) < 7)0 for each e G £0 — £,.
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First suppose that for e G £0 — £,, CG (e) & S3, A4, or 5z(2). Then Theorem 1 of

[8] implies that Or (Cc(e)) < D *s CG(e) for each e E £0 — £, (we are using the fact

that Or(CG(e)) = CG (e)Z(G0)/Z(G0)). Since £ is generated by such elements e, we

have Or'(CG(e)) =£ CG°(£) for e G £0 - £,. This contradicts (2.3).

Consider the three exceptional cases. If Or(CG(e)) = 53, then p = 3 and

G s £2(8). If Or'(CG(e)) = 5z(2), then p = 5 and G = 5z(25). For these cases (iii)

holds. Finally, assume Or(CG(e)) =A4. Here p = 3 = r, against our standing

hypothesis. We have now proved (6.1).

The pairs (G, p) appearing in (i), (ii), and (iv) of Theorem 1 each give rise to

larger configurations where generation fails. These correspond to the situation of

(6.1)(ii).
(6.2) Suppose (G0, £0, p) is one of the cases constructed in (4.1) or (5.1) where

generation fails, and suppose that the pair (G, p) satisfies (i), (ii), or (iv) of Theorem

1. Let G0 = G„, G0 = Gap and £0 = E0(t), where t is the field automorphism of

order p that a induces on G0. Then C£(EQ) < G0.

Proof. We are assuming that G0 is one of the groups 0±(2n,2)', 5/7(2«,2),

5T/(/!,2), £6(2), 2£6(2), £4(2), £7(2), £8(2), G2(2)', or 2£4(2)'. In the last case/7 = 5;

otherwise p = 3. Let £0 be as constructed in the proof of (4.1) or (5.1). In each of

these cases it is clear from the definition of £0 that G0 contains a subgroup 7 such

that 7 is a r-invariant homocyclic /7-group satisfying £0 = ß,(7) = [7, t]. For

example, in many of these cases £0 = 03(/, X ■ ■ • XJk), where each J¡ s 5£(2,2)

and each J¡ is generated by conjugates of long root subgroups. Here we take £0 < 7

with 7 G Syl3(/, X • • • Jk), where J¡ < J¡ = 5£(2,23) and J¡ is generated by long root

subgroups of G0.

For the moment exclude the configuration of (4.1)(iii). Then in each of the

remaining cases we showed that CG(£0) *s NG(E0), and we claim that Cj(£0) <

A/G(£0). To see this let £ be a maximal subgroup of £0. If

£=£0, then clearly C(£) < N(EQ). Suppose £ ¥= £0, so F=Fx(er), where

£, = £ n £0 and e G £0. There exists g G 7 such that t8 — er. Then C¿"(F) =

C¿0(Fx(er)) = CGo(F,<T»* = CGo(£)* < NG¿E0)* < NGq(E0). This proves the

claim.

If (4.1)(iii) holds, then G0 s 5/7(2«, 2), G0 s Sp(2n, 8), and £>0 s 0 * (2«, 2). Here

embed £»0 in t50 s 0* (2«, 8), such that D¡ = D0. We can then choose 7 < 7)0 and

use the above argument to get CG (£0) < t30.

(6.3) Suppose (6.1)(ii) holds with the pair (£, p) given in Theorem l(iii). Then

D0 = G0.

Proof. We have p = 3 and £ s5£(3*,4), 2£4(2)', £4(4), £6(4)> or £8(4). By

(6.1)(iii) we may take mp(E) > 3. The case £ s2£4(2)' is out since £ = CGo(e) (see

(5.14)(iii)). Let £, = £0 n G,.

First assume £ = 5£(3,4), so G0 s 5£(3,64). By (4.1) we may write £, = (a, b)

where [a, A] = z and (z) = Z(G0). Write £0 = £,(e) and choose e so that [a, e] = z.

Then £ = CG)(e) s 5£(3,4) and a induces an outer automorphism of order 3 on £.

Then CT(a) ~ Z2, as otherwise CT(a) = Z3X £2(4) and £, normalizes a 2-group £,

contradicting (2.3). Thus, CG(£) = Cr(a) s Z2, where £ = (a, e, z>. Now letting a

vary we conclude that £ *£ CGo(£0). Next, let e vary to conclude that £>0 = G0.
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Suppose £ = 5£(3\4) with A > 1. Let £0 = Ex(e) and choose a, b G £, such

that (a)Z(G0) ¥= (b)Z(G0). Then consideration of the usual module for G0 shows

that (a, b) normalizes a proper parabolic subgroup of G0. By (2.3) CG ((a, A)) = G0.

Now (2.16), Theorem 1, (6.1), induction and the above paragraph yield £>0 = G0.

Essentially the same argument works for the cases £ = £4(4), £6(4), or £8(4).

Namely, choose (a, A)< £, with (a)Z(G0) ¥= (b)Z(G0) and use [7] to conclude

that (a, A) stabilizes a proper parabolic subgroup of G0. Then proceed as before.

This proves (6.3).

We will have completed the proof of Theorem 2 once we deal with the case

£0 4 G2. This requires the existence of a graph automorphism of order 3, so

G0 = D¿q) or 3D4(q).

(6.4) Suppose G0 ̂ 3D4(q) and £0 4 G2. Then either CG(£0) = G0 or q = 2,

p = 3 and there exists £0 s Z3 X Z3 X Z3 such that CG (£0) < G0.

Proof. First suppose ¿¡r > 2 and note that £0 < G0(t), where t denotes the graph

automorphism of £>4(^r3), restricted to G0. Then G2(g) ss Cg(t). By Table (3.3)

CG (t) contains a group £ s 5£(3, q) or 57/(3, <7), according to 3 | q — 1 or 3 | q + 1.

Let 5 G Syl3(£). By Table (5.2) 5 has index 3 in a Sylow 3-subgroup of G0, so

5 X (t) has index 3 in a Sylow 3-subgroup of G0(t>. Therefore, we may assume

that £0 < N(S X (t>) < N(Z(S X <t») = N((x, t», where (x>= Z(£) = Z(5).

Since CG (t) does not contain a Sylow 3-subgroup of G0, t ~ tx' for i = 0,1,2. Now

apply Theorem 2 of [8] to conclude that G0 = (0r'(CG(Tx')) |/' = 0,1,2). So if

£0 < C((x, t», then G0 = CG (£0) by Theorem 1. Hence we may assume £0 ^ G(t).

By (2.9) we may assume x G £0. Suppose q > 4. Then £ < £>0 so £ < (Fc n £>0),

where Fis a long root subgroup of G0. Using (2.8) and Table (5.2) we conclude that

E(D0) = £, £>0 = G0, or E(D0) s G2(q). Suppose E(D0) = G2(q). Then one checks

that Or(DQE0) = G2(q) X Z3, the Z3 factor being generated by a conjugate of t. By

(2.9) we may assume tg D £0 ^ 0, which is not the case. Suppose E(D0) = L. For

e G £0 — (x) one can argue within G to conclude that Or(CGfe)) # 1. But g > 4

implies Or'(CGo(e)) ^ £>0 *£ N(L). Since £ = £(/VG(£)), 0'(CGo(e)) < £. In

particular (e, x) centralizes a nontrivial /--subgroup of G. By (2.3), CGf(e, x» = G0,

while the above arguments applied to e, G (e, x) show C¿ ((e, x)) < N(L). This is

a contradiction. Hence D0 = G0.

Next, suppose q = 4. Then £ = 5£(3,4). If w3(£0) = 2, then £ = 0r'(C(x)) ^ £»0

and we argue as above to get D0 — G0. Suppose «i3(£0) > 3. Then m3(E0) = 3 and

we write £0 = (x, e, ar) for some e G G0 such that t' ^ t. Since 5(t)= 5 X (t)

we may take a G 5. Then e E\ S X (r). Now, CL(e) = Z3X £2(4) or Z21. In

the former case, £() normalizes a proper 2-subgroup of G0, so (2.3) implies

£>0 = G0. Assume CL(e) s Z21. Then £ = (CL(v): v G (e, at)- (ût)), so £ <

CG(E0) — D0. As above, either £»0 = G0 or £ < £>0. So suppose £ < £>0. Let

j G (x, e)*. By [7] either Or(C(y)) s £2(64) or>^ ~ x. In the former case we have

Or'(C(y)) < 7)Q, against £ = £(7)0). So (x, e)# is fused in G0. In particular,

£(CG(e)) = 5£(3,4). Since C(e) D C(x) contains 7-elements, x induces an outer

automorphism on E(CG (e)) and we can then argue that E(CGg(e)) *£ 7)0 < N(L), a

contradiction.
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Finally, let q — 2 and retain the above notation. Set £0 = (x, a, r), where

a G 5 - (x). Then 5 < CGo(x), as £ s 57/(3,2), so 5 < CGo(£) for any hyperplane,

£, of £0 with x G £. Suppose £ is a hyperplane of £0 with £ D 5 = (ax7) for

1 = 0,1, or 2. Then tx'G £ for some i = 0,1,2, and t ~ tx' implies that

CGo(t) s G2(2) a Aut(7/3(3)). Now 5 G Syl3(CGo(Tx')) and it follows that

CG[(£) < NCo(S). We have now proved Cgo(E0) < ¿VGo(S), so (6.4) is proved.

Similar arguments will be used for G0 = D4(q).

(6.5) Suppose G = D4(q) and £0 4 G2. Then one of the following holds:

(i)CG°o(£0) = G0.
(ii) ö = 2 or 4, /» = 3, and £0 < D4(q)(o) for a a graph automorphism (of order

3) of G0.

(iii) q = 8 and £0G0 = 03(Aut(J»4(8))).

Moreover if q = 2, 4 or 8, there exists £0 < Aut(G0) for which CG (£0) < NG (£0).

Proof. Suppose £0 contains an element in the coset of G, given by a field or

graph-field automorphism. Then we can argue as in (6.1) to get CG(£0) = G0,

except when q = 8 and (iii) holds or £0 n G0 = 1. Suppose £0 D G0 = 1. Then

£0 = Z3 X Z3 and by Lang's theorem £0 contains both a field automorphism and a

graph-field automorphism of G(). Here CG (£0) = G0 by Theorem 1 of [8]. Suppose

<7 = 8. Let a be a field automorphism of G0 of order 3, t a graph automorphism of

order 3, and [a, t] = 1. Then CG (a) n CG (t) s G2(2) and we let £, be an elementary

subgroup of CG ((a, t)) of order 9. Set £0 = £,(a, t).

Let / = /, X /2 X /3 X /4 with each /, generated by opposite root subgroups of

G0. We may assume that a induces a field automorphism on each /; and that (t) is

transitive on {/,, J2, J3} while fixing/4. Let £0 = (a, A) with a E J4 and A G /,/2/3.

We claim CGo(£0) < N((b)). Let £ be a hyperplane in £0. If A G £, then clearly

CG (£) < N((b)), so suppose A G F. Since a, aA, aA"1 are all conjugate in

CG(o) H Cg(t) n N(E0), we may assume a G £. From here the claim is easily

checked.

From now on we assume £, = £ n G0 is a hyperplane of £0 and £0 < G,(t) for

t a graph automorphism of G0 such that | t | = 3. From Table (3.3) and its

verification we conclude that G0 contains a subgroup A such that there exists £ < A

with £ s 5£(3, q) or 57/(3, o), according to q = 1, -1 (mod 3). Also,

Z = Z(A) = Z?T, X Z?=c, and | A: £Z|= 3. Finally, AT = A and £ = C^(t). By

Table (5.2) we may assume £0 < A(t) and by (2.9) we may assume x G £,, where

(x) = Z(£). Assume q > 4. Then (4.1) implies £ < C£o(E0).

Suppose t G £0. Then £, < CGq(t) = G2(q), and so £, is contained in a Sylow

3-subgroup of CG(j(t). Table (5.2) implies that £ contains a Sylow 3-subgroup of

CGo(t), so assume £, < £. Therefore Z(A) < C(EX) < C^o(£0). By (5.1)

Gilq) s CCo(t) < CG°o(£0) and so CG°o(£0) 3* (Cg(t), Z>= G0 (use (2.8) and the

fact that CGq(t) is self-normalizing in G0). From now on assume £0 contains no

conjugate of t.

The results in [9] (see (3.5)) imply that we may assume (ra)g G £0, where a ¥= 1

and a E H (1 (U±ct2). Also, using the Bruhat decomposition we see that

Q(ra)« a £5£(3, AT) (or see (4.3) of [9]) and then CGfra)g = CGfra)g = PGL(3, q)
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or PGU(3, q), according to q = 1,-1 (mod3). By (4.1) Or'(C^o(ra))8 < C°o(E0), so

C^o(£0) > (L, Or'(CGo(ra))8). Now let 7 be the normal closure"of £ in C^(E0) and

argue, using (2.8) (extended slightly to cover the case £0 4 G,), that CGo(£0) = G0.

This requires a check that embeddings such as £5£(3, q) < £5£(4, q) < 7)4(ö) if

3 | q - 1 and £57/(3, a) < £57/(4, q) < D4(q) if 3 | q + 1 are impossible. For this

one can use representation theory (e.g. the tensor product theorem of Steinberg [24]).

We are left with the cases q = 2,4. Here we construct an example £0 for which (ii)

holds. Let a be an element of order 3 in (7/±Qi) and x be as above. We may assume

(U±„2 )^ L = Cx(j). Let Eqo = (x, ra, y), where y = yxy2 with yx E L,

y2 E Z — £, |j, | = |>»21= 3, a-V| = ax, and t^2 = tx"1. Then £qo is elementary

abelian.

Let £ = 03(CC((Ta)) s £3(4) or U3(2). Now <x> = [£(X), (a)] and a G

CG(i(ra), so xG£. Also CGfa)nCGfr)>SL2(q) (as CGo(t) a 02(fl)). Thus

SL2(q) *£ CG((tûi) n CGfa), and a induces outer automorphism on £. Let (a, y)C\

P = (x)X (y*) for some /' G L. Set £0 = (x, /, ra). We claim that C<2o(£0) =£

NGo(E0).
Let £ be a hyperplane of £0. If £ = (x, y]), then it is easy to see that

CGo(£) *£ NGo(E0). Suppose £ ¥= (x, >>' ). If x G £, we again check that

CG (£) < NG (£0). So suppose x £ £. Then £ contains rax' for some i = 0,1,2.

Now rax' ~ ra by an element of £ normalizing £0. Therefore,

£0 n G0 *£ 03(CG(i(Tax')) and we easily see that CG (F) =s /Yc (£0). This proves the

claim and completes the proof of (6.5).

We have now completed the proof of Theorem 2.

7. Additional results. In this section we will prove Theorems 3-7. Theorem 3 is an

immediate consequence of Theorems 1 and 2 so we concentrate on the notions of

"layer generation" and "balance". Notation will be as in §2. Let G, be the group G

extended by all diagonal automorphisms of G. As in (2.1) we may prove Theorems 4

and 6 for the group G0.

(7.1) Assume ZpX Zp = E < G,. Then one of the following holds:

(i)CG°o(£0)<G0.

(ii)CGo(£0)=G0.
(iii)p \q — I, G0 = SL(p, q), and £0 is nonabelian.

(iv) p | q + 1, G0 a SU( p, q), and £0 is nonabelian.

Proof. Suppose CGo(£0) = G0. Let e E £0 - Z(G0) and let Dx,...,Dk be the

products of the (a)-orbits of components of C¿(e). Let T— Z(C¿(e)) and for

/= l,...,Aset£, = 0''((75,)0).ThenO''(CGn(e)) = £, • • • Lk (see(2.5)).

First suppose that £0 is abelian, so £() < C¿(e) for each e G £0 — Z(G0). By (2.4),

C¿(e) = T), • • • T)^. Choose/ G £0 - (e)Z(G0) and consider Y = C(/) n CG"(e).

If Y,° = (Y n j),-)0 is not a maximal torus of J),, then (Y]0)„ contains an element of

order r, and (ii) follows from (2.3). So assume that Yj-° is a maximal torus of D¡ for

each ; = 1,...,A. Then Y° is a a-invariant maximal torus of G with £0 ^ Y°. We

conclude from (2.12) that (CG(e))„ = L, • • • £/tYD and from (2.11) that C¿fE0) ¥= 1.

Then (C¿(e))0 = £,-•• £,Y0 <£,-• • £,CG()(£0) < /VGÍC¿Í£0)). Since e was arbi-

trary we have G0 = C?o(£0) ^ N(C¿¿E0)) and (ii) holds.



FINITE GROUPS OF LIE TYPE 401

Suppose £0 is nonabelian. Then /?||Z(G0)| and G = Ln(q), Un(q), Eb(q), or

2Eb(q). In the first case p \ («, q — 1), in the second case p | («, q + 1), and in the

other cases p — 3. If G — Ln(q), then as in §4 we may assume £0 acts on the usual

module for G0 = 5£(«, q). If £0 acts reducibly, then £0 is contained in a parabolic

subgroup of G0£0 and (ii) follows from (2.3). If £0 acts irreducibly, then elementary

arguments from representation theory yield « = p, and (ii) holds.

Next, suppose G0 = SU(n, q). Then we may assume that £0 is a subgroup of

GU(n, q). Let Fbe the usual module for GU(n, q); Fis an Fy-space of dimension «.

Let eEE0- Z(G0) with | e |= p, and let/ G £0 - (e)Z(G0). If (z) = £0 n Z(G0),

then we may assume e{ = ez. The eigenspaces of e on F are permuted transitively by

(/) and each has dimension n/p. Let F,,..., V be these eigenspaces. Using the fact

that 1 is an eigenvalue of e, an easy check gives V = Vx ± ■ • ■ ± Vp. If dim(F) = p,

then (iv) holds. So suppose dim(F) >p; that is, dim(I^) > 1 for i = 1,...,/». Let

0 ¥=vx E Vx be an isotropic vector and (vx),...,(vp) the images of (vx) under

(/). Then (t),,...,o)=(»,)l ■•■ -L (t^) is an £0-invariant isotropic subspace

of F. Therefore £0 is contained in a proper parabolic subgroup of GU(n, q) and (ii)

follows from (2.3).

Finally, we assume that either G0 = Eb(q) with p = 3 | q — 1 or G0 =2E6(q) and

/» = 3 | 9 + 1. Let e, f G £0 with [e, f] * 1. Then/ £ CG(e), although/ G JV(Q(e)).

This is because CG(e) = Q;(e/). By (2.3) we may assume that / normalizes no

proper /--subgroup of CG(e). Then considering the (/)-orbits on components in

CG(e) and then the action of a on these orbits we see that / must normalize each

component of CG(e). Also, if we choose e such that | e | = 3, then it is easy to see that

£(CG(e)) ¥= 1. Indeed, just embed e in a maximal torus of G and consider the action

of e on the unipotent radical of a Borel group. Let Y be a component of CG(e). Then

Y = Yí and there is a root subgroup, F < Y, with F = F/. To see this just consider

the isomorphism that / induces on Y. By (7.5) of Steinberg [23], / stabilizes a Borel

subgroup of Y, and we let V be the center of the unipotent radical of the Borel

subgroup.

Now consider £0 as a subgroup of £ = N¿(V). £ is a parabolic subgroup of G

with £/£„ = 5£(6, K)I, where 7 = 7° is a one-dimensional torus centralizing the

5£(6, K) factor. By (5.16) of [22], £0 stabilizes a maximal torus of £ and we may

assume £0 < Nf(î), where 7 is a torus of G with IPU/PU = 7. So £0 is in a Levi

factor of £ and it follows that Cß(E0) contains a component. But C(f) n C¿(e)

does not contain a component. This is impossible. This completes the proof of (7.1).

Theorem 4 (layer generation). Let ZpX Zp = E < Aut(G). Then one of the

following holds:

(i) CG°o(£0) < G0.

(ii)CGo(£0) = G0.
(iii)/» | q — 1, G0 = SL(p, q), E < G,, andE0 is nonabelian.

(iv) p\q + I, G0 = SU(p, q), E < G,, íz«í/ £0 is nonabelian.

Proof. By (7.1) we may assume £ 4 G,, and we may also assume that

cc0(E0) = G0. First suppose that it is not the case that /» = 3 and G s £>4(^) or
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3D4(q). Then Lang's theorem [18] implies that E — (£ n G,) consists of field

automorphisms of G. As in the proof of (6.1) we use Theorem 1 of [8] to get

C¿fE0) = Or'(CGo(e)) for each e G £0 with eZ(G0) G G,. But then £0 normalizes a

proper parabolic subgroup of G0, and (2.3) gives (ii).

Suppose p = 3 and G = D4(q) or 37)4(<7). Either £0 n G0 = Z3 or G s 7)4(<7) and

£ n G, = 1. In the latter case the argument of the first paragraph of the proof of

(6.4) gives C¿o(E0) - G0. So suppose £0 Pi G0 = (<?)= Z3. In addition we may

assume that G0£0 = G0(t), for t a graph automorphism of G0. For otherwise use

the argument of the above paragraph.

Suppose / G £0 — (e) and / induces a graph automorphism on G0. Then

CGo(/) s G2(q) and we consider CGff) < G2(K) = Y, where Y — Gf. Now embed

e in a maximal torus of Y and then consider the action of e on the unipotent radical

of a Borel subgroup of Y. It is easy to deduce that E(CY(e)) ¥^ 1, so applying a to

this group and using (2.3), we again see that (ii) holds. From now on we assume that

£0 contains no conjugate of t.

Suppose £0 < Cg(t) X (t)s G2(q) X Z3. Cc(t) contains a subgroup, £, such

that £ s 5£(3, q) or 57/(3, í¡r) depending on whether q = 1,-1 (mod 3). By order

considerations we see that £ contains a Sylow 3-subgroup of Cg(t) so we take

£0 *£ £ X (t). As tí £0, the projection of £0 to £ contains a representative of

each class of elements of order 3 in £. However, it is easy to check that t ~ rl for

some element, /, of order 3 in £. This contradicts the above.

Suppose G0 =3D4(q) or G0 = D4(q) with q > 4. Then the argument in the fourth

paragraph of the proof of (6.5) shows that G0 = C¿(E0), proving (ii). So now

assume G0 = D4(q) with q = 2 or 4.

We use the notation in the proof of (6.5). Write E0— (e)X (ra), where

CG(,ra) = PGU(3,2) or £G£(3,4), depending on whether q = 2 or 4. If

e G 02(CC(i(Ta)), then e is 3-central in CC()(ra). Since t G CGo<t>(túO, this would

imply that £0 centralizes a conjugate of t, which we have just seen to be impossible.

Therefore e G 02(CCo(rö)) and CCo(ra) = 02'(CGo(™))(e>. Each /G £0 - (e>

satisfies/— to, so CGff) = 02(CG()(/))(e), for each/ G £0 — (e).

If we also have CG\(e) = 02(CGo(e))(e>, then CG°o(£0) ̂  NCo(C¿o(E0)) = X, and

the result follows. So suppose CG (e) 4 A. Then CG (e) > 02(CG(e))(e) and by [7]

we have e ~ x, where x is as in the proof of (6.5). Consider CG(e). This group can

be expressed CGo(e) = Z(u, d), where Z = 02(CGo(e)) s 57/(3,2) or 5£(3,4),

depending on whether q = 2 or 4, Z(u)= GU(3,2) or G£(3,4), |d|=3, and

CGo(e) = Z(m>X <d). Now ra acts on CGo(e) and [to, d] - e~\ So ¿/ G N(E0) =£ A

and a Sylow 3-subgroup of A has index at most 3 in a Sylow 3-subgroup of G0.

We claim that A contains a Sylow 3-subgroup of G0. Suppose false. If

5 G Syl3(Cx(e)) with 5™ = 5, then 5 G Syl3(A), S = (xx, x2)X (d), where

(x,,x2)=5nZ. Let F be the natural module for G0. We may assume

dim(Cv(d)) — 6 and Z acts irreducibly on Cy(d), while centralizing [F, d]. It

follows that e is fixed-point-free on Cy(d), but elements of (x,, x2) — (e) centralize

a 2-space of Cy(d). Now consider CG()(Tfl) s PGU(3,2) or £G£(3,4). We have seen

that e G CC()(ra)' and dim(C^(e)) = 2. Also CGo(Ta)' acts irreducibly on Fand it is
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easy to see that each element of order 3 in CG (ra)' centralizes just a 2-space in V. So

CG (ra) contains a subgroup of order 27 of the form (e, j), with (e, j) extraspecial.

Apply Sylow's theorem to X(ra) and conclude that (CGa(e)' X (d))(ra) contains a

conjugate of (e, f)X (ra). This forces (e, j)~ (x,, x2) in G0. But dim(CK(e)) = 2,

while dim(Cy(w)) = 4 for each w E (x,, x2) — (e). This is a contradiction. Thus A

contains a Sylow 3-subgroup of G0. Let 5 < 5 G Syl3(A). Then | 5: 5 |= 3 and

from the above considerations we see that (e) is weakly closed in Z(5). So

5 < CG(e) and we now have CG(e) < A. This contradicts the earlier assumption.

We have now proved Theorem 4.

Next, we will consider the notion of balance.

(7.2) Suppose Z X Z = E < Gx. Then one of the following holds:

(i) CG°(£) < G.
(ii) Pi eOp.(Cx(e)) = 1 for any G < X< Aut(G), the intersection ranging over

e EE*.

(iii) G = Lp(q), p | q — 1, and £0 is nonabelian.

(iv) G = Up(q), p | q + 1, and £0 is nonabelian.

Proof. Suppose that (i), (iii), and (iv) are false. Then Theorem 4 and (2.1) imply

that CG(E) = G. So it will suffice to prove that if 1 ¥= g E Op,(Cx(e)) for each

e G £* and some G < A< Aut(G), then CG(E) < CG(g). Fix such an element g

with g of prime order, and e G £#.

Choose a //-element e, G G such that e, projects to the element e E G. Then

Y = C¿(ex) = £, • • • EkT, where the product is a commuting product of the

connected torus £ and the components £,,...,Ek (see (2.5)). Passing to G, let

Y = £, • ■ • £,;.£. Then C¿(e) normalizes Y and CG\e)/Y is a finite/»-group.

Let £>,,...,D¡ be the orbit products of a on {£,,.. -,Ek] and set £, = 0r((7),)a).

Then Or(CG(e)) = £, • • • £,. The element g permutes the components (solvable

components) £,,...,£, of CG(e). Suppose [L¡, g] ¥= 1 for some /' = 1,...,/. Since

g G O^C^e)), we have [£,, g] a //'-group. It follows that £, is a //'-group. This is

clear if Lf ¥= £,. If £f = £,, then [£,, g] = Li unless £, is a solvable component, and

in this case the assumption p ¥= 2, r gives the assertion. In particular, p\q2 — 1

unless £, is a Suzuki group.

The condition p\q2— 1 implies that Z(G0) has order prime to /> and

E = E0sZpX Zp. So £0«CG-(<?,) and it follows that [£,, £0] « £,. Also, if

/G £0 — (e,), then/induces the product of an inner and diagonal automorphism

on L¡. However, £, is a//'-group and// ] g2 — 1. It follows that [L;, /] = [£,, £0] = 1.

If £, is a Suzuki group, then q is even and G s 5//(2«, 7Q or £4(7i ). Thus Z(G) = 1

and we can use the same argument to obtain [L¡, £()] = 1.

Choose/ G £# and consider £, < 0r(CG(/))./acts on each component of CG(e)

and we claim that [/, D¡] = 1. Suppose 7), is the product of « components of CG(e).

Then (a") is the stabilizer of each of these components and we take a component

7 < 7>. Then Ia" = I and [Or'(70„), /] = 1. From (2.1) of [8] we conclude that

[7, /] = 1. The claim follows.

Since £0 is abelian we choose/ G £0 — (e,) and embed /in a maximal torus, 77,

of C¿(ex) = C¿(ex)°. Then £0 < 77 and we let 77 < B, where £ «s 77 is a maximal
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torus of G and £ is a Borel subgroup of G. By (4.1) of [22] the components of C¿</)

are generated by the root subgroups in Gu that are centralized by /. It follows that

the normal closure of 7), in C^if)0, call it K¡, is the product of a (a)-orbit of

components of C^f). Set A, = Or'({K,)a). Then [£„ g] ¥= 1 implies [A,, g]¥=l.

Now rechoose the pair (£,, e), if necessary, so that | £, | is maximal subject to the

conditions that £, is a component (solvable component) of CG(e) with [£,, g] ^ 1.

We then have £, = A, < 0r'(CG(/)). So NG(L,) > CG(e) = G, a contradiction. This

proves that [g, £,] = 1 for each component (solvable component), £,, of CG(e) and

for each e G £*. Therefore G = C¿(£) < CG(g) which is impossible.

The next result handles case (i) of (7.2).

(7.3) Suppose ZpX Zp ~ E < G, and CG(£) < G. Then one of the following

occurs:

(i) H l1ke Op.(Cx(e)) = 1, for any G < A =s Aut(G).

(ii)// = 3 and-G = £3(4).

Proof. Apply Theorem 1 to restrict the possibilities for G and p. In each case

| G,: G|= 1 or p. Let Y= D 1#e 0^,(0,3^)). We will first show that Y = 1.

If G =2£4(2)' with// = 5, then £ G Syl5(G) and there is an element e E E* with

CG(e) s Z5 X Dxo. This already implies Y = 1. So we now assume/» = 3 and q = 2

or 4. We may then apply the results of [7]. There are only two possible configurations

where some element e G £* satisfies 03(CG(e)) ¥= 1. The cases are G s £5£(3A,4)

and G = £6(4), and Oy(CG(e)) = Z7 in either case.

So supposing Y ¥= 1 we must have Y = Z7 and 03.(CG(e)) = 03.(CG(/)) for each

/G £*. Also CG(£) < /VG(Y), so by (2.3), £ is contained in no proper parabolic

subgroup of G. For G = PSL(3k,4) this implies that the preimage of £ in G£(3*,4)

acts irreducibly on the usual module for GL(3k, 4). Then E ^ Z3 X Z3 implies

A = 1, and it is easy to see that Y = 1.

Suppose G = £6(4). By [7] we have E(CG(e)) =3D4(4) for each e G £*. Fix

eG£#and/G£-(e>. Then use [7] to see that C(f) n E(CG(e)) has even order.

So £ is contained in a parabolic subgroup of G, and (2.3) implies that CG(£) = G,

against our hypothesis. Therefore Y = 1.

Set Y, = PI ,^fOp,(CAut(G)(e)) and suppose Y, ^ 1. By the above Y, n G, = 1.

Considering the possibilities for G we see that Y, is quite restricted. For example if

G =2£4(2)', then Aut(G) =2£4(2) and there are no involutions in Aut(G) — G. So

this case is out. In the remaining cases Aut(G)/G, s 1, Z2, Z2 X Z2, Z4, or 53 (the

latter possible only if G = £»4(2)). So Y, a Z2, Z4, or Z2 X Z2. Let _y be an

involution in Y,.

The possible actions of y on G are determined in §19 of [3]. Namely, y induces a

field automorphism, graph automorphism, graph-field automorphism, or

02(CG(y)) t^ 1. This last case contradicts (2.3), so this does not occur. Choose

e G E* and let £,,...,£, be the components (solvable components) of CG(e). By

(2.3) H(r, £) = {1}, and it follows that 3 11 £, | for / = 1,...,/. However [£,, y] is a

3'-group for each /= 1,...,/. Since r = 2 we necessarily have [Lj,y]—l for

/' = 1,...,/. The conclusion is that CG(E) = C¿ (y)(E).

If G = £5£(3*,4), then as before we get k = 1. So (ii) holds. We assume

now   that   G^£5£(3*,4).   If   G = £57/(«,2),   then   £ < CG(y) = Sp(n, 2)   or
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Sp(n — 1,2), so the preimage of £ in GU(n, 2) is elementary abelian. Here (4.1) and

linear algebra show that the condition CG(£) = C¿ iy\(E) is impossible, Similarly

forG = 0±(«,2)'.

For the remaining cases use the tables in [7] to check that CG(E) ¥= CGr(v)(£).

We now prove

Theorem 5 (balance). IfZpXZp = E*¿ Aut(G), then D e^xOp,(Cx(e)) = 1 for

any G «ï A < G, and one of the following holds:

(i) n^,0,,(Cx(e))= l,foranyG*zX<Ant(G).

(ii) p\q — 1, G s Lp(q), £ < G, a«J £0 w nonabelian.

(iii) //1 i? + 1, G = Up(q), E *£ G,, a«c/ £0 is nonabelian.

Proof. Suppose 1 ¥= g E D X¥=eOp-(CAui,G)(e)). First assume that either (7.2)(iii)

or (7.2)(iv) holds. Then £0 is nonabelian and is absolutely irreducible on the usual

module for G0. It follows that g G G,. This together with (7.2) and (7.3) allow us

now to assume £ *£ G,. Suppose each e G £ — G, induces a field automorphism on

G. For e E E — Gx, p divides the order of CG(e) and it follows that p divides the

order of Or'(CG(e)). So g G Cl ,„, 0,-(CAut(C)(e)) implies [Or'(Q(e)), g] - 1. As in

the proof of (6.1) we apply Theorems 1 and 2 of [8]. It is necessary to look at the

cases G s L2(2P), L2(3P), and Sz(2p) individually, but this is straightforward. For

all the other cases we have Or(CG(e)) < CG(g) for each e G £ — G, and so

Or'(CG(e)) = 0r'(CG(g)) for each e E E - G,. So £ < C(Or'(CG(g))) and looking

at £ n G„ we contradict (2.1) of [8].

So we now suppose that some e G £ — G, does not induce a field automorphism

on G. Then p — 3, and G = 7)4(<7) or 3D4(q). The above arguments allow us to

assume that £ < G,(t), where r is a graph automorphism of G with | t | = 3. As in

the fourth paragraph of the proof of (6.5) we argue that for e E E — G,,

CG(e) ss G2(q), £G£(3, <?), or PGU(3, q). The first case occurs if e is conjugate to t,

and one of the other cases (according to q = 1,-1 (mod 3)) otherwise. For q > 2 and

e G £ n G,, Or(CG(e)) = £(CG(e)) (see (2.5)). So under the assumption q > 2 we

argue as before (e.g. as in (7.2)) that [Or (CG(e)), g] — 1 for each e E E*. Then

C¿(£) < GG(g) and we have a contradiction if CG(E) = G. By Theorems 1, 2, and 4

we are reduced to the cases G = £>4(2), £»4(4), or 37)4(2).

Choose e E E — G,. The possible choices (listed above) for CG(e) and the results

of [7] show that g E\ G,. Considering Aut(G) we see that | g | = 2, G = D4(4), and g

induces a field automorphism on G. Then [g, CG(e)] = CG(e)' (= G2(4) or £3(4)), a

contradiction. This completes the proof of Theorem 5.

Theorem 6. Suppose p^l and (p,\ W\) = 1, where W is the Weyl group of the

associated algebraic group of G. Then C¿o(E0) — G0.

Proof. First suppose E<GX. Then (2.7) implies that £0 is contained in a

maximal torus of G and CG(e) = CG(e)° for each e G £*. Choose

ZpX Zp s £ < £0. By Theorems 4 and 1 we have CGfF) = G0. For / G F* each

component (solvable component) of Or (Cc (/)) has Weyl group with order dividing

that of | IF |. This is because such a component is obtained as the fixed point group

of a on a product of components of C¿( f ) and each of the components of C¿( / ) is
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generated by the root groups in a subsystem of 2 (see (4.1) of [22]). So we can apply

induction to get 0'(CGo(/)) < C¿fE0). Then G0 = C¿(£) ^ C¿o(E0).

Suppose £ 4 G,. Then £ — (£ n G,) consists of field automorphisms and the

arguments of (6.1) give the result.

Our last result determines the strongly //-embedded subgroups of Chevalley

groups. For this we drop the assumption p ¥= 2, r.

Theorem 7. Let p be an arbitrary prime and suppose A< Aut(G) is a proper,

strongly p-embedded subgroup of GX. Assume m ( X) > 2. Then X is contained in the

normalizer of a Sylow p-subgroup of G and one of the following holds :

(i)p = 3andG = L3(4).

(ii)// = 5 and G = 5z(25) or 2£4(2)'.

(iii) G = L2(q), U3(q), Sz(q), or 2G2(q)', where q is a power of p.

Proof. Assume A is strongly //-embedded in GA. Then A contains a Sylow

//-subgroup, £, of G.Ifp = 2, apply Bender [4] to get the result. If p — r, then either

G has Lie rank 1 (which gives (iii)) or G is generated by the proper parabolic

subgroups of G that contain £. As these groups are //-local subgroups, we have

G < 77, a contradiction. So we may now assume p ^ 2, r.

For any ZpX Zp = £ < A we have CG( £ ) < A. So Theorems 1 and 2 restrict the

possibilities for G. If p = 5, then (i) holds. So now assume/» = 3 and q is a power of

2. If G has Lie rank at least 3, then from the Dynkin diagram it is easy to produce a

proper parabolic subgroup of G containing two commuting copies of L2(q). But

then there exists Z3XZj=£<inG with £ in a proper parabolic subgroup of G

and CG(E) < G. This contradicts (2.3). Therefore G has Lie rank at most 2.

If G has Lie rank 1, then by Theorems 1 and 2, G77 s Aut(5z(25)) or Aut(£2(8)),

so that (ii) or (iii) holds. Suppose G has Lie rank 2. Then m3(G) > 2 and there exists

Z3 X Z3 s £ ^ A n G, satisfying C¿)(£) < G. Theorem 1 now gives G s £3(4),

£5/7(4,2)', £57/(5,2), G2(2)', or 2£4(2)'. If G = G2(2)', then G ~ U3(3) and (iii) holds.

If G s2£4(2)' with A < G, then A = Aut(£3(3)) and A=(iVG(£):

Z3 X Z3 ~ £ < £>. On the other hand, choosing g G2£4(2) -2£4(2)' with g G JV(£),

we must have X8 = A. But then CC(A) contains an involution in G, — G, whereas

Gx — G contains no involution.

If G = £57/(5,2), a Borel subgroup of G has 3-rank 2. So this case is out by (2.3).

Thus G s £3(4) or £5/z(4,2)' = £2(9), and Theorem 7 is proved.
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