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BALANCED HOWELL ROTATIONS OF THE

TWIN PRIME POWER TYPE

BY

DING-ZHU DU AND F. K. HWANG

Abstract. We prove by construction that a balanced Howell rotation for n players

always exists if n = prqs where p and q ¥= 3 are primes and qs = pr + 2. This

generalizes a much weaker previous result. The construction uses properties of a

Galois domain which is a direct sum of two Galois fields.

1. Introduction. A balanced Howell rotation for n = 2k players, denoted by

BHR(«), consists of a set of n players (denoted by oo, 0,1,... ,n — 2) and a set of

n — 1 boards (denoted by 0,1,... ,w — 2). For each board i the n players are divided

into k ordered pairs (a¡ , bt]),j = \,...,k, where aij and bi} are said to oppose each

other on board i, and atj and each of a,- •.,/ i= j, are said to compete with each other

on board i. The partitions on the n — 1 boards together must also satisfy the

following two conditions.

(i) Each player opposes every other player exactly once.

(ii) Each player competes with every other player exactly k — 1 times.

A BHR(«) can also be represented by an (n — 1) X n array A = (a/y-) where the

rows are boards and the columns are players. Define aiJ = k if (j, k) is an opposing

pair for board i and define a, = -k if (k, j) is such a pair. Let A* be obtained from

A by adding a row oo such that axj = j. Then the signs in A* constitute a Hadamard

matrix, and the numbers in A* constitute a latin square L = (/, ) with the property

lij — k=^lik=j (called a tournament latin square). Of course, superimposing a

Hadamard matrix on a tournament latin square does not automatically generate a

BHR(«) unless for each row /' ̂  oo, the signs of a¡¡ = k and aik =j are different for

ally.

Direct constructions for BHR(«)'s have been given mostly when n is related to a

prime power, for example,

1. n = P + 1 where P = 4k + 3 is a prime power, k S* 1 [1, 5].

2. n = 2(P + 1) where P = 2"'k + 1 is a prime power, m > 1, k> 1 and k is odd

[2, 4, 6].
In [3], an attempt was made to construct BHR(«)'s when n is related to a product

of two prime powers differing by 2 (called twin prime powers). More specifically, it

was proved (where GF*(P) is the multiplicative group of GF(F)) that
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Theorem 1 [3]. A BHR(«) exists if

(i) n — 1 = PQ where P and Q are twin prime powers, and

(ii) there exist generators x of GF*(P) and y of GF*(g) with x" = 2 (mod P),

P - 2^ a> 0, yh = 2 (mod Q), Q - 2> b> 0, such that one of the following three

cases holds: b = a + \,(P - l)/2 >b = a>0, andP-2>b-2>(P + l)/2.

In this paper we look again into the twin prime power case and prove a much

stronger result.

Theorem 2. A BHR(«) exists if n — 1 = PQ = prqs where P and Q are twin prime

powers, P < Q and q =£ 3.

2. Some preliminary results. Let x and y generate G¥*{pr) and GF*(^i),

respectively. Let G be the Galois domain (see [7]) G = GF(pr) ® GF(qs) (direct

sum), and let U= {(t/,0): u G GF(/?r)}, V- {(0, v): v G GF(qs)}. Define d =

(P — \)(Q — l)/2. The two cyclotomic classes in G are

C0= {(x',/),i = 0,l,...,</- 1} - {(*',y),i=y(mod2)},

c, = {(-*',-/).< = 0,l,...,«/- 1} ={(«', y),/^y(mod2)}.

It is well known [7] that C0+ U forms a difference set. Therefore Cr + V — {0} is

also a difference set.

Let the n players be denoted by the elements in G U {oo}. Suppose we can

partition the n players into n/2 pairs a¡ vs. b¡, i = 1,2,...,n/2, which meet the

following two requirements.

(Rl) ±(a, — üj) over all /', except the pair involving oo, runs through the set of

nonzero elements of G.

(R2) ±(ai — Oj), ±(¿>, — bj) over all a¡, o,, b¡, b¡, except oo, covers each nonzero

element of G an equal number of times.

Then a cyclic development of this set of n/2 pairs (which defines a board) yields a

BHR(h), with requirement (Rl) guaranteeing condition (i) and requirement (R2)

guaranteeing condition (ii), since the cyclic development preserves differences.

By letting {a„ a2,...,a„/2} = C0 + U+ {oo}, {¿>„ b2,.. .,bn/2} = C, + V-

{0}, requirement (R2) is automatically satisfied. It suffices to produce a pairing

between {a,} and {bj} which satisfies requirement (Rl). We first prove some

lemmas.

Lemma 1. Suppose thatj, k, l, m satisfy the conditions

x2k + xJ = xm,       0<m-j<P-2,       -2yJ+1'=\.

Furthermore, suppose that (i) when 0 < m — j < {P — l)/2, then 2j + 2/ —

m - (P + l)/2 is either 0 or 1, (ii) when (P - l)/2 < m -j < P - 2, then 2j + 21

— m — (P + l)/2 is either 1 or 2. Then there exists a pairing satisfying requirements

(Rl) and (R2).

Proof. We demonstrate pairings between elements in C0 + U + {oo} and ele-

ments in C, + V — {0} satisfying requirement (Rl) for both case (i) and case (ii).
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Case (i). The pairing is:

(1) (x,+2k,yi)vs.(-xi+J,-y'+J+21),       (P - l)/2 < i < d- 1,

(2) (x' + 2k,y') vs. (O,/'),       0 < i < (P - 3)/2,

(3) (-x'+y,0)vs. (-x'+',-/+'+2/),       0 < í 4 (P - 3)/2,

(4) (-X'+;,0)VS. (0, yl+2J+2l-m-{P+\)/2^

(P-l)/2<i<m + (P-3)/2-y,

(-x'+y,0) vs. (0, y+2y+a'-»-<i,+ i)/2+i)j

(5) m + (P- l)/2-j<i<P-2,

(6) (0,0)vs.(0,^+2'-'),

.. oo vs. (0, yp), ii2j + 2l-m-(P+ l)/2 = 0,

oo vs. (0, y~1)/2),     iî2j + 2l-m- (P + l)/2 = 1.

The symmetric differences are:

(1) ±(x'+m,-y'+J+21),       (P-l)/2«/«d-1,

(2) ±{x¡+2k,0),       0 < i < (P - 3)/2,

(3) ± (0, /+y+2/),       0 « i < (P - 3)/2,

± (Xi+J, y' + 2j+2l-m-(P+l)/2^ (p _  j)/2 «; / < w + (/> _ 3)/2 -¿

(4) =±(je<+«ty+y+2/-<i'+i)/2)>        (p_ l)/2-m+y<i<(P-3)/2,

= ± (x'+m,-y+>+2/),       (P- l)/2-#«+y<i<(P- 3)/2,

± (jc/+>, y+ay+2/-«-(i,+ «)/2+i),       m + (P - l)/2 -j<i<P- 2,

(5) = ±(x--+«-c-i)/2jy+y+2/)>       0</<(P-3)/2-m+y,

= ± (xi+m,-y'+J+21),       0</< (P - 3)/2 - m +7,

(6)        ±(o,y+2/-') = (o,-//,-|»/2+>+2') = ±(o,/'-')/2+/+2/).

Case (ii). The pairing is:

(1) (x' + 2*, /) vs. (-je'+>, /+y+2/),        (P - l)/2 < i < d,

(2) (xi+2k,y,)vs.(0,yi),       0 < j < (P - 3)/2,

(3) (-jc/+y,0)vs. (-Jc'+y, /+y+a,)>        0«/<(P-3)/2,

(4) (-^+>,0)vs.(0,^'+2>+2'-'"-<p+,)/2-'),       (P- l)/2<i<m-j-l,

(5) (-x'+^,0)vs. (0,/+2'+2/-",-</>+1»/2),       m-j<i<P-2,

(6) (0,0) vs. (0, y+z'-c+sj/z),

oo vs. (0, yp), if2y + 2/-m-(P+l)/2=l,

oo\s.{0,y(p-])/2)     H2J + 21- m- (P + l)/2 = 2.
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The symmetric differences are:

(1) ±(x,+m,y,+j+21),        (P- l)/2 </<</- 1,

(2) ±{x'+2k,0),       0</<(P-3)/2,

(3) ± (0, y'+J+v),       0 < / =s (P - 3)/2,

±(JcI+7)y+2y+2/-m-(/'+l)/2-l)) (p_  i)/2</<w-/-  1,

= ±(x'+y^' + 27+2/--+('>+i>/2-i),        (/>- l)/2</<m-j'- 1,

= ± (x'+m-(/,_1)/2, y'+y+2/),        P - 1 - m +j < / < (P - 3)/2,

= ± (x'+m,-T'+/ + 2/),        P - 1 - m +7'< i <(P - 3)/2,

± (jci+y, y+2./+2/-»-('+i)/2)j       m-j<i<P-2,

= ± (x'+m, /+>+2'-('+D/2)j       o < i <P - 2 - m +7\

= ± (xi+m,-y+-/+2'),       0 =e / <P - 2 - m +j,

(6) ± (0, >,y + 2/-(F+3)/2) _  ± ^ >,(P-l)/2+y+2/^

(4)

(5)

In both cases, it is straightforward to verify that the pairings and the symmetric

differences are indeed what we want. Note that if m — j = (P — l)/2, then subcases

(i)(5) and (ii)(4) do not occur.

Lemma 2. Suppose that k,m, z satisfy the following conditions:

x2k+\=xm,        O^miP-2,        2=_yz.

Furthermore, suppose that (i) when 0 < m < (P — l)/2, /Ae« z — m is either 0 or 1,

(ii) when (P — l)/2 < m < P — 2, í/¡e« z — m is either 1 or 2. Tfte« í/zere exwís a

pairing satisfying requirements (Rl) a«<5? (R2).

Proof. Case (i). The pairing is:

(1) (je'+2*,/)vs.(-x',-y).       (P-l)/2<i<</-i,

(2) (x'+2*,y)vs. (0, y),       0</<(P-3)/2,

(3) (-jc',0)vs.(-*',-y).       0 < i < (P - 3)/2,

(4) (-x',0)vs.(0,y+*-M),       (P-l)/2<i<(P-3)/2 + m,

(5) (-*',0)v8.(0,y+z~m+1),       (P-l)/2 + w<i<P-2,

(0,0) vs. (0,yp), iîz~m = 0,

(6) (0,0) vs. (0, y-')/2),     Uz-m=\,

(7) oovs.(o,y+(/,-')/2).

The symmetric differences are:

(1) ±(xi+m,yi+z),       (P- \)/2<i<d- 1,

(2) ±(x'+2*,0),       0 < i < (P - 3)/2,

(3) ±(0,y),       0 < / < (P - 3)/2,
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(6)

± (x1, y,+z~m),       (P - l)/2 < / < (P - 3)/2 + m,

(4)
= ± (xi+m, yi+z),       (P - l)/2 - m =£ ;' < (P - 3)/2,

± (x1, yt+'-m+l)i       (p - i)/2 + w < f <p - 2,

(5) = ±(xi+m,yi+z+l),       (P-l)/2<i<P-2-/M,

= ± (jc'+™, y+x),       0<i'<(P-3)/2-m,

± (0, y^) ± (0, /") = ± (0, y-y2),       if z - m = 0,

(6) ±(0,yp-1»/2),       ifz-m=l.

Case (ii). The pairing is:

(O (*'+2*,y)vs.(-x',-y).    (p-i)/2</<</-i,

(2) (jc'+2*,y)vs. (0, y),       0</<(P-3)/2,

(3) (-jc',0)vs.(-jc',-y),       0<i<(P-3)/2,

(4) (-jc',0)vs.(0,y+*-'"-1),       (P-l)/2<i<m-l,

(5) (-x',0)vs.(0,y+*~m),       m<i<P-2,

(0,0) vs. (0,^), if z — m = 1,

(0,0) vs. (0, y(P~i)/2),    ifz-m = 2,

(7) oovs.(0,y-').

The symmetric differences are:

(1) ±(x'+m,y'+I),       (P-l)/2<i<d-\,

(2) ±(*'+2*,0),       0 < i < (P - 3)/2,

(3) ±(0,y),       0</<(P-3)/2,

±(je',y+x~m~1),       (P-l)/2<i<ro-l,

= ±(xi,yl+'~m+r),       (P- l)/2<i< m - 1,

= ± (x'+«-(i,-i)/2> y+z-iP+D/2^       p _ j _ m < j, < (p _ 3)/2)

= ± (x'+m, y+z),       P - 1 - m < i < (P - 3)/2,

±(x', yi+z~m),       m<i'<P-2,

= ±(*'+m,y+*),       0<i<P-2-m,

±(0,^/,) = (0,y^-1)/2),   ifz-m=l,

±(0fy-»/2)j     if 2 — W = 2.

Note that when m = (P — l)/2, then subcases (i)(5) and (ii)(4) do not occur.

3. Proof of Theorem 2. Let x be a generator of GF*(P). For u G GF*(P), define

logx u = i if u = x', 0 < i < P — 2. Similarly, we can define log,, u for u G GF*(ß).

Let log,.2 = z. Then z # (/> + l)/2 since 2 =y =y*+,)/2 = -1 implies a = 3, a

contradiction to our assumption. We consider four other possible cases.
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Case (i). 1 < z < (P - l)/2, logx(xz - 1) = 1 (mod 2).

Set; = 0 or 1 where / =(P + l)/2 - z (mod 2),

2/ = 3(P + l)/2 -2-7',        2Jfc = 2y + 2/ - 3 + logx(V - 1),

m = 2j + 21- (P + l)/2- 2.

We now verify that the conditions in Lemma 1 (ii) are satisfied.

First of all it is easily seen that both 2/ and 2k are even. So k and / are well

defined. Furthermore

x2k _|_ XJ — x2y + 2/-3 + logv(jr'-l) _|_ XJ

= Xm + (P-^2{XZ -  1) + X' = _je«(,3(l'+l)/2-y-2/ _  ,) + xy

= _x"'(x(/>+l)/2-7-2/+2 _ 1) + xy = _X7 + x» + x> = xm^

-2yJ + 2' = -2y*p+])/2-z = -2(-l)(i) = 1.

Finally,

2j + 2l- m -(P+ l)/2 = 2,

and

m -j =j + 2/ - (P + 0/2 -2 = P+l-z-2 = P-l-z

imply (P — l)/2 < m — 7 < P — 2. Thus Theorem 2 follows from Lemma 1 (ii).

Case (ii). 1 <z < (P - l)/2, logx(;r - 1) = 0 (mod 2).

Set m — z,2k = \o%x{xz — 1). We now verify that the conditions in Lemma 2(i)

are satisfied. Clearly, 2k is even. Furthermore

x2k + 1 = xz - 1 + 1 = xm.

Finally, by our assumptions,

y: = 2,       0<w<(P-l)/2,

and z — m = 0.

Case (iii). (P + 3)/2 < z < P, log^x2"2 - 1) = 1 (mod2).

Set; = 0 or 1 where; = (P + l)/2 - z (mod 2),

2/ = 3(P + l)/2 -z-j,       2k = 2 y + 2/ - 1 + log^**-2 - 1),

m = 2y + 2/-(P + l)/2.

The verification that the conditions in Lemma l(i) are satisfied is similar to case

(i).

Case(iv). (P + 3)/2 < z < P, \ogx(xz~2 - 1) =; 0(mod2).

Set m = z - 2, 2£ = logx(jcz_2 - 1).

The verification that the conditions in Lemma 2(ii) are satisfied is similar to case

(ii). The proof is complete.

4. Examples.

Example 1. n = 16, P = 3, Q = 5, d = 4.

x = 2 and j = 2 are generators of GF*(3) and GF*(5),  respectively.  Since

z = log,2 = 1 and logv(jc3 — 1) = 0 (mod2), we set

m = z — 1,       2& = logv(x; — 1) = 2,
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and use the pairing of Lemma 2(i), i.e.,

(2.2) vs. (1,3),

(1) (1,4) vs. (2,1),

(2.3) vs. (1,2),

(2) (1,1) vs. (0,1),

(3) (2,0) vs. (2,4),

(4) (1,0) vs. (0,2),

(6) (0,0) vs. (0,3),

(7) oo vs. (0,4).

Example 2. n = 36, P = 5, Q = 1, d = 12.

x — 2 and y = 3 are generators of GF*(5) and GF*(7), respectively.  Since

z = log,,2 = 2 and logx(.xz - 1) = 1 (mod 2), we set

/•= 1 =(P+ 0/2-z (mod2),       2/=3(P+ l)/2-z-y' = 6,

2k = 2j: + 2/ - 3 + \ogx(xz - 1) = 8,       m = 2j + 21 - (P + l)/2 -2 = 3,

and use the pairing of Lemma 1 (ii), i.e.,

(1) (4,2) vs. (2,1), (3,6) vs. (4,3), (1,4) vs. (3,2),

(2,5) vs. (1,6), (4,1) vs. (2,4), (3,3) vs. (4,5),

(1,2) vs. (3,1),      (2,6) vs. (1,3),

(4,4) vs. (2,2), (3,5) vs. (4,6),

(2) (1,1) vs. (0,1), (2,3) vs. (0,3),

(3) (3,0) vs. (3,4), (1,0) vs. (1,5),

(5) (2,0) vs. (0,4), (4,0) vs. (0,5),

(6) (0,0) vs. (0,6),

(7) oo vs. (0,2).
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