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FREE PRODUCTS OF C*-ALGEBRAS

BY

DANIEL AVITZOUR

Abstract. Small ("spatial") free products of C*-algebras are constructed. Under

certain conditions they have properties similar to those proved by Paschke and

Salinas for the algebras C*(G, * C2) where C,, G2 are discrete groups. The free-

product analogs of noncommutative Bernoulli shifts are discussed.

0. Introduction. Let K be a field. Consider the category of unital algebras over A".

It is well known that this category admits coproducts: free products of algebras [2].

Heuristically, the free product of algebras is the algebra generated by them, with no

relations except for the identification of unit elements.

If K = C, the complex numbers, and we consider unital * -algebras, we can easily

define a * -operation on the free products.

Let A, B be unital C*-algebras, and A * B their free product, which is a unital

* -algebra. The question arises: in what ways may one define a pre-C* norm on

A * B that extends the norms on A and Bl Guided by analogy with tensor products,

we expect to have a choice among many pre-C* norms, giving rise to many "C* free

products" of A and B.

One natural norm is

Hell = sup{H w(c)|| : 77 * -representation of A * B).

The * -representations of A * B are in 1-1 correspondence with pairs of * -

representations of A and B, which act on the same Hubert space. Let A * B be the

completion of A * B in this norm. It is easy to see that this construction defines a

coproduct in the category of C*-algebras, and that A * B is the "biggest free

product" of A and B, analogous to the biggest tensor product A <8> B. If G,, G2 are

discrete groups we obtain

C*{G,)iC*{G2)^C*{Gx*G2)

where G, * G2 is the free product group, and this is analogous to the relation

C*{G]) ® C*(G2) = C*{GX X G2).

This paper is motivated by the question: Is there a "smallest C*-product", A-kB,

in analogy to the smallest tensor product, A* B, satisfying a relation

C^G^G^^CfiG^+CfiG,)
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analogous to

C^G.XG^^C^G^^C^G,)
*

for G,, G2 discrete groups?

There seems to be no natural way to define a free product of representations of

two C*-algebras on Hilbert spaces. Therefore, the question as posed must be

answered in the negative. However, if one considers representations together with

designated cyclic vectors, one can define a "free product representation" with a

designated cyclic vector. Equivalently: given states </>, \p on C*-algebras A, B, there is

a naturally defined state <p * \p on A* B in analogy to the tensor product state <¡> <8> \p

on A <8> B. This state is defined in §§1, 2. If <f>: is the standard trace on C*(G¡) for

i — 1,2 then <j>, * <J>2 is the standard trace on C*( G, * G2 ).

The representations corresponding to the states <¡>] * </>2, for different choices of

faithful states </>,, <j>2, are not weakly equivalent, so we have not one "small free

product" but a whole family of them.

The results of Paschke and Salinas [8] on the algebras Cr*(G| * G2) can sometimes

be generalized to the small C*-free products defined here. This is done in §3. Thus,

the construction of small C*-free products gives new examples of simple, uniquely

traced C*-algebras.

§4 discusses some automorphisms of free products that are analogous to Bernoulli

shifts on tensor products.

All C*-algebras in this paper are assumed to be unital. Results for nonunital

algebras may be obtained by adjoining units. This is, of course, the case for tensor

products also. For a general reference on tensor products of C*-algebras see [9].

1. Free products of linear functional s on algebras.

1.0. In this section let A, B be unital algebras over a field K. We identify the units

of K, A, B, A * B so K C A n B C A U B Ç A * B. Let <j>, ip be linear functionals

on A, B respectively, such that #(1) = ^(1) = 1, and let A0 = ker<i>, B0 = ker \p.

1.1. Proposition. There is a unique linear functional, <j> * 4> on A * B, such that

(4> * <//)(l) = 1 and

(**+)(c, •••c„,) = 0,

where m > 1, c¡ G A0 U BQ and for all i, ci G A0 iff c/+, G B0.

Proof. Products c, • • • cm, where c, G A iff c,+ 1 G B for all /', span A * B. I will

define <f> * \¡/ for such products, then show that the definition is consistent with

linearity and with the identification of units.

First let <#> * <p be defined as $ on A, and \p on B. We already have (<#> * t//)(l) = 1.

Now for products c, • • • cm where m > 1 let

(***)(C,"-Cm)=       S      (+•*)(*/)(* **)(Cl" ■¿/"•O
l«/«m

2      (<p * *)(c,)(* * Mc/X* * *)(c, • • • c,
|</'<y<m

+ ...+(-0m+,(<f>*Mc,)---(<M*)(cJ,

•••c/•■<:„,)
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where the elements with on top are to be omitted, and where the products

containing them are simplified only by multiplying adjacent elements of the same

algebra (not by identifying units). The products obtained on the right-hand side have

length smaller than m, so this is a well-defined recursion. For motivation, note that

the recursion is equivalent to

(* * *)[(c, - («i» * *)(0) ■••(*„-(*• MO)] = o.

This also shows that if <f> * \p is well defined on A * B, then it satisfies the

requirement of the proposition and is unique.

We still have to show that the definition is consistent with the identification of

units, so that </> * \p is actually defined on A * B where such an identification is

assumed. We have to prove that

(**^)(c, ■■•ck_] • 1 -ck+] ■■■cm) = (**Mci ■■■ (ck_ick+]) •••cm).

Use induction on m. By definition,

(<f>*M<M ■■■ck_i ■ 1 • ck+l ■■■cj

2 (**MO(</>*M<VV--0
i¥=k

+ (**^)(0(**Mci ■•• (<?*-iC*+i)-"0

2     (<í>* M c, )(«*>* Mc/)0*Mci ■■■£, •■■Cj---cm)
k¥=i<j¥=k

+ 2(<t>* MO(* * M0(* * Mci • • • *i • • ■ ï • • • O

+  2(+**)(0(***)(<7)(*«*)(c,---ï  •••Cy---Cm)

Now all the terms except the second term in the first brackets telescope to zero. One

example will suffice:

2 (<í> * M Oí* * M<m • • • ct • ■ ■ cm)
i^k

- 2 (* * M Oí* * MOU * M*i • • • c, • • • Ï • • • O
i'<A

"   2  (<í> * MOU * M^OU * *)(c,  ■ • • ï   • • • ëj- ■ ■ Cm) = 0,
k<-j

because by induction on m, the 1 in the kth place can be erased from all the terms in

the first sum, and because ($ * tfO(l) = 1.

After all this telescoping we are left with the second term in the first brackets

which equals

(«j.«*)(c,• • • (**-,<*+,)■--O- Q-ED
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1.2. Proposition. As linear spaces

A * B = K © AQ © B0 © (A0 ® B0) © (B0®A0) © (AQ® B0®A0) © --i.

Proof. Let c, • • • cm be a product of elements of A U B such that c, G A iff

c,+1 G Ä. Write: c, = d¡+ a¡ where í/,. is in /10 or P0 and a, G C. Opening brackets

in the product (</, + a,) • • • (dm + am), we get d, ■■ • dm, which is in the right-hand

side of the equality in the proposition, and other terms that can be written as

products of length less than m. So, A * B is a sum of the linear spaces on the

right-hand side.

We have to show that the sum is direct. Using only the identification K ® V — V

for linear spaces V over K, we can write the sum as

(K © A0) ® (K + B0 + B0 ® A0 + ■ ■ ■ )

= (K © A0) ® {K © (2*0 + B0 ® A0 + ■ ■ • )).

The first summation in the second factor is direct by the existence of (f> * \p. Now

continue:

B0 + B0®A0 + B0®A0® B0+ •■■ = BQ®(K + AQ + A0® BQ+ ■■■)

= B0®{K®(A0 + AQ®B0+---)),

where, again, the existence of (¡> * yp was used to make one summation sign direct. We

already have

A * B = K © A0 © B0 © (B0 ® A0) © • • • .

Continuing this process, we obtain the result stated in the proposition.    Q.E.D.

We shall call a product c, • • ■ cm as in Proposition 1.1a word. Note that <t> * \p is

zero on words and every element in the kernel of <p * yp is a sum of words.

1.3. The linear functional <j> * yp can be seen as the projection onto K that is

associated with the direct sum 1.2. We will consider some other interesting projec-

tions.

Proposition. Let PA: A*B^K(BA0 = A be the projection associated with the

direct sum 1.2. PA is a "conditional expectation", i.e.,

PA(ac) = aPA(c),       PA(ca) = PA(c)a

for all a G A and c G A * B.

Proof. It is enough to prove the identities with a E A0 and c an elementary tensor

in 1.2. We will prove the first identity. The other is similar.

If c starts with an element of B0, then PA(ac) = 0 = aPA(c).

If c starts with A0 ® B0, let c = a]bid where a, G A0, ¿>, G BQ and d G K or d

starts with A0. So,

ac = aa^bxd — (aa{ — ̂ (aa^b^d + ^(aa^b^d.

Hence, PA(ac) = 0 = aPA(c).

Finally, if c G A0, then

PA(ac) = ac = aPA(c).    Q.E.D.
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1.4. Proposition. If <p, yp are tracial, i.e., <p{a^a2) = <i>(a2a,), and similarly for yp,

then (f> * yp is tracial.

Proof. It is enough to show that (<f> * yp)(ac) = (<f> * yp)(ca) for a G A0, c an

elementary tensor in 1.2. We also need a similar identity with b G S0 instead of a,

but the proof is identical.

Case 1. If c begins and ends with B0,

(<f> * yp)(ac) = 0 = (cf> * yp){ca).

Case 2. If c begins with BQ and ends with A0 (the opposite case is similar), let

c = b^dax where a, G A0, bi G B0, and d begins with A0 and ends with B0 or d is

empty:

(<p * yp)(ac) = (<í> * yp)(abida¡) = 0,

(<f> * yp)(ca) = (<f> * t//)(Z>,iW,a)

= (<i> * MM(aia ~ ^(«i«))) + (<í> * M<í>(aia)M) = 0.

Case 3. If c begins and ends with A0, let c = axda2, where a,, a2 G /10 and c/

begins and ends with B0:

(4> * yp){ac) = (<p * yp)(aalda2)

— ((p * yp)((aa[ — <p(aax))da2) + <p{aa{)(<p * yp)(da2) = 0,

and similarly (<p * yp)(ca) = 0.

Case 4. If c G An,

{<p * yp)(ac) = <p(ac) = <p{ca) = (<!>* yp)(ca).    Q.E.D.

1.5. The definitions and claims in this section extend to free products of any

number, finite or infinite, of algebras.

The decomposition 1.2 becomes

* {A(i): i G /} = e {A(¿¡) ® ■ ■ ■ ®A^: k > 0, i] ^ iJ+i for ally},

where A\¡} = ker <p0) C AU). For k = 0 the direct summand is Kby convention.

An elementary tensor in A^ ® ■ ■ ■ ®A{¿") will be called a tensor of type (/,,.. .,/„).

If (/,,. ..,/„) ¥= 0, we will call such a tensor a wo«/.

2. Small free products of C*-algebras. Let A, B be C*-algebras and </>, yp states on

them. It is not clear that </> * yp, defined in §2, is positive or that it extends to A * B.

To show that, I will construct directly the representation -n^ of A * B, correspond-

ing to the state <p * yp.

2.1. Let [A(l): i G /} be C*-algebras and </>,- states on them. Let (w,, «,, 7/(,)) be

the corresponding GNS objects. Let //¿" = {to,}1 C/P0. Consider the Hubert

space

H = 0 {//¿") ® • • • ®//0'»»: « > 0, /, ^ ¡y+, for ally}.

For n = 0, the direct summand is C. 1 G C, considered as a vector in H, will be

denoted by ß.
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Given / G I, there are natural identifications

H « (C © 233')) ® (© W ® ■ • ■ ®22<'">: i, * /})

=* H{,) ® (0 {//¿") ® • ■ • ®2/¿''">: í, ^ /}).

Let [/,.: 2/ - »O ® (0{2/¿í') ® • • • ®2/¿,'"): i, * /}) be the isometry implementing

this identification. For v an elementary tensor, Utv — v if v starts with Hfr) and

t/,t> = co,® v if v starts with 2/q" for some y' ¥= i. Ufi = u¡. Now let A(i) act on H by

a multiple of ir¡; formally: a G A(,) acts by U^ir^a) ® I)U¡. Denote by it the

resulting representation of * {A{l): i G 1} on 2/.

Proposition, (i) S2 « a ir-cyclic vector,

(ii) For aile G * {^(,): i G 2},

(w(c)Ü,0)=(**,)(c).

(iii) Le/ /' = (i,,.. .,ik) be a type (see 1.5). Leí P,- 6e the projection of * {A0): i G 2}

oh/o //ie spa« of tensors of type i that is associated with the decomposition 1.2. Let p- be

the projection of H onto 220;/|) ® ■ ■ ■ ®Htfk).

For all cG * {/":/£/},

p,-(»(c)0) = ir(ir(c))0.

Proof. Let c G /lo" and let v = ü(| ® ■ • • ®vu G H^0 ® ■■■ ®H^] such that

i, ¥= i. From the definition of it,

Tt(c)v = TTj(c)03i ® V.

Repeating this m times we get: if c = c, • • • cm is a tensor of type (/,,.. .,/'„,) then

*(c)Q = Vh(c¡)otl ® ■■■ ®77,Jc„>,m.

All the claims of the proposition follow immediately from this formula, and from the

characterization 1.1 of * <£,.    Q.E.D.

2.2. Proposition. Let A, B be C*-algebras and </>, yp states on them. PA: A * B -» A,

defined in 1.3, extends to a conditional expectation PA: ir^.^(A * B) -» tt^.^A).

Proof. Let c G A * B. Since it^.^a is a multiple of ir^,

W,(PA(c))\\ = W^(PA(c))\\

= sup{\\^(PA(c))^(a)U,\\:<p(a*a) < l}

= sup{II^(P,(c)a)Wl||: <.(a*a)<l}

= sup{||ir^(Pi<(c)a)0||:+(a*a)*:l}

= sup(pCQœ//ili)(7r^(ca)fi)l|: <i>(a*a) < l)

using 2.1(iii). Continuing,

<sup{lkw(ca)Q||:*(a*fl)<l}

<sup{||V^c)||||V+(a)ß||:«i»(a*fl)<l}

= lk^(c)||.    Q.E.D.



FREE PRODUCTS OF C*-ALGEBRAS 429

2.3. If ir^,^(A * B) is to be considered as a C*-free product of A and B, then A * B

should be (faithfully) contained in it, that is, ir^ must be faithful on A * B. One

case in which this happens is

Proposition. If the states <p, yp on A, B are faithful, then fi is a separating vector for

A * B. In particular, 77^,, is faithful on A * B.

Proof. By 2.1(iii) it is enough to check that tt^^c)^ = 0 implies c = 0, for c

which is a sum of words of the same type. For ease of notation I will carry out the

proof for some particular type, say c = 2"=, aibia\ where a¡, a\ G A0 and bi G B0.

Assume ir^^,(c)Q = 0. By the formula in the proof of 2.1 this means

n

2 ^(a,K ® »*(*<H ® "♦«)"♦= °'
1=1

which can be written as

/   " \
(w+ ® 7^ ® 77J   2 o,® *,- ® a,'  ( s ® <** ® «♦) = 0.

\/=l /

Now, «. ® to, ® to. is a separating vector for tt^® tt,® tt^ even onA®B®A (see
*       *

Appendix). So we get 2"=, a¡ ® ¿>, ® a,' = 0, so c = 0.    Q.E.D.

It is not sufficient that 77^, 77^ be faithful in order for 77^ to be faithful on A * B.

See 3.3 for an example. I do not know whether the proposition can be strengthened

to give the result that <f> * yp is faithful on tt^^A * B). Note, however, that if <f>, yp are

traces, then <p> * yp is a trace, and is therefore faithful even on tt^„¡,(A * B)".

2.4. Let G,, G2 be discrete groups. Let <#>,, <i>2 be the standard traces on C*(Gt),

C*(G2), such that <p,(s) = 0 for all s G G, except s = e. By 1.1, (<í>, * <p2)(t) = 0 for

all / G G, * G2 except t = e. This means that <í>, * <j>2 is the standard trace of G, * G2

and

Cr*(Gt * G2) - n^lCr*(G,)i C*(G2)).

This is analogous to the relation

C?(G,XG2)^C?(GX)®C?(G2).

It is known that C,*(G| * G2) has a unique trace, unless Gx = G2 — Z2 [8]. If ypu yp2

are traces on C^G^), C*(G2) that are not both equal to <f>,, <f>2 respectively, then

yp{ * yp2 cannot be defined on C*(GX * G2) because of the uniqueness of trace. It

follows that 77^ ̂ , 77^ m¡¡/ are not weakly equivalent even if i//,, yp2 are faithful. This is

in contrast to the situation in tensor products, and shows that we cannot define a

unique "smallest C*-free product".

3. Simplicity and uniqueness of trace.

3.0. It is known [8] that if G,, G2 are nontrivial discrete groups, not both equal to

Z2, then C*(Gt * G2) is simple, and has a unique trace. In this section, I will show

how the same computations give a similar result for tt^,^(A * B) under certain

assumptions. I do not claim that these assumptions are relevant to the results, or that

the results are definitive. My aim is merely to demonstrate that the computations in

[8] do not depend on group structure, but on C*-free product structure.
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The following lemma, due to Choi [3], will be used.

Lemma, let H = H0@ Hx be a Hilbert space. Let ux,...,un be unitaries on H such

that u*UjH] C H0for i ¥*j. Let b be an operator on H such that bH0 C Hv Then

1    "
— 2 Ujbuf
n     ,   'i— i

3.1. Proposition. Let A, B be C*-algebras and <p, yp states on them. Let a G A0 and

b G B0 be unitaries such that <p, yp are invariant with respect to conjugation by a, b

respectively. Let c G B0be unitary such that yp(b*c) = 0.

Then for all x G it^,^(A * B).

(<p * yp)(x) G c\conv{u*xu: u unitary)

where cl conv denotes norm-closed convex hull. It is enough to take u generated by a, b,

c.

Proof. Let Wa Q A * B be the span of words starting with AQ or a multiple of b,

and of constants. Let Wx be the span of words starting with some b' G 220 such that

yP(b*b') = 0. Let

Then 22^ = 220© 22,.

I claim: (ba)kHx C H0 for all k ¥= 0. It is enough to show that (ba)kW] C W0.

Indeed if k > 0, then (ba)kW] is spanned by words starting with b. If k < 0 then

(ba)kWí =(a*b*ykWi,

which is spanned by words starting with a*. Note that the last b* in (a*b*)~k

combines with any b' G B0 in the beginning of words in Wt to give b*b' G B0.

Now, let x be a word in A * B, and let y be an integer, bigger than the length of x.

Since <p, yp are a, b invariant, so is <j> * yp, and we get

(<p*yp)((ab)Jx(abyJ) = 0.

So (ab)'x(ab)~' is a sum of words. From the fact that j is bigger than the length of

x, we get by a routine reduction that (ab)Jx(ab)~j is a linear combination of three

kinds of words:

(l)(ab)",n>0.

(2)(b*a*)",n>0.

(3) Words starting with a and ending with a*.

Using the facts that

yP(bc*) = yp(c*b) = yp(b*c) = 0

and

yp(cb*) = yp(b*c) = 0

based on /3-invariance of yp, we get that

cac[(ab)Jx(ab) J\c*a*c*

< 2||¿||
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is a linear combination of words starting with c and ending with c*. Hence

cac[{ab)Jx(abyJ]c*a*c*W0 C Wx,

Using again yp(c*b) = 0. So

cac[(ab)jx(abyJ]c*a*c*H0 C Hx.

The same is true if x is a linear combination of words of length less than j.

Now using Lemma 3.0 we get

^ 2 (ba)kcac(ab)Jx{(ba)kcac(ab)JY

k = \

By a routine approximation argument, x can be taken to be any element of

W'4 * ß) such that (4> * ̂ )(x) = 0.   Q.E.D.

Corollary. (1) If<p * yp is faithful on -n^,^(A * B) then this algebra is simple.

(2) Either <p * yp is the only a, b, c-invariant state on tt^,AA * B) or there is no such

state, depending on whether yp is c-invariant.

(3) If <p, yp are traces, then ir^AA * B) is simple, with unique trace.

Note that the corollary assumes the existence of a, b, c as in the proposition.

3.2. The conditions of 3.1 are not always satisfied, even if <f>, yp are traces. There

may be no unitaries with zero trace. For example, if A = C2, and <p is the trace

corresponding to the measure {p, 1 — p), 0<^< 1, there is a unitary with zero

trace iff p — \. The conditions are satisfied in some interesting cases discussed in 3.4

including Mn * Mm with respect to the traces.

3.3. The following example illustrates the relevance of the invariance assumptions

for (#>, yp in 3.2. It also shows that even when 77^, 77^ are faithful, 77,^ may not be

faithful on A * B.

First let S be a discrete semigroup with unit e. Let C*(S) be the C*-algebra on

l2(S) generated by the operators of left multiplication by elements of 5. The vector

e G l2(S) is cyclic, and the corresponding state 8e satisfies Se(t) = 0 for all t G 5

except t — e. In general, 8e is not a trace and is not faithful. As in the group case, we

obtain

c;(s,*52)-77S(^(c;(s:)ïc;(52)).

Now, consider the special case S = Z+ , the nonnegative integers with addition.

C*(Z+) is the C*-algebra of the one-sided shift. The representation 77s „g is not

faithful on C*(Z+) * C*(Z+) because if Vu V2 are the generators of the two

semigroups, then VfV2 = 0 in C*(Z+ * Z+ ). Note that V2 takes every word to a

word starting with a positive power of V2, and on such words Vf is zero.

Now let p be the one-dimensional projection on e in l2( Z+ * Z+ ). Then

p = 1 - vyf - v2v2* g c;(z+ * z+ )

and 8e(p) — 1. However, all the operators in the norm-closed convex hull of the

unitary orbit of p must be compact, so Proposition 3.1 fails. This is true even though

2||;c||

tfl/2
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there are many unitaries of zero á^-state, which are orthogonal to each other, in

C*(Z+ ). For example, let

",= 1 - 2p2-y,1(e_eu) G K{l2(Z+)) Ç Cr*(Z+ )

where el is i G Z+ considered as a vector in l2(Z+ ). See [4] for the fact that C*(Z+ )

contains the compact operators, u, is unitary, u¡e0 = et, so ôe(«,) = 0 and 8e(u*Uj)

— 0 if /' T^y. What goes wrong is that 8e is not invariant by the unitaries.

Note, by the way, that [5, 3.1] C*(Z+ * ■ ■ ■ * Z+) (k times) is an extension of K

(the compact operators) by Ok (the Cuntz algebra), while C*(Z+ * Z+ * ■ • ■ ) is just

Ox, which is a simple algebra. So a free product with respect to a nonfaithful state

may be simple.

3.4. Proposition. Let M be a W*-algebra that has no nonzero Abelian ideal. Let yp

be a normal ( finite ) trace on M.

Then M has two unitaries u, v such that yp(u) = yp(v) = yp(uv) = 0.

Proof. It is enough to prove the proposition for each direct summand of M.

For a type II finite algebra, let /?,, p2, p3 be disjoint projections of trace | each.

Take

m = v =/?, + e2n¡/ip2 + e~2ni/3p3,

so that

uu=/>, + e-2wi/3p2 + e2wi/3p3.

Then u, v are unitaries and yp(u) = \p(v) = yp(uv) = 0.

For an M2 summand let

For   an   Mn   summand,   n > 2,   let   u = v = diag(l, f,... ,£"   ')   where   f =

exp(277//«).    Q.E.D.

We obtain: (M,\p) satisfies the conditions for (B,yp) in 3.1.

4. Shift automorphisms of free products.

4.0. Using the analogy between tensor and free products, we may define the

free-product analogs of noncommutative Bernoulli shifts. They turn out to have

interesting applications for noncommutative topological dynamics [1]. We will call

an automorphism group uniquely ergodic if it has a unique invariant state.

4.1. Let {(Aj, 4>j): j G T) be C*-algebras and states on them. Let G be a group

acting on T by permutations, and for each s E G, j E. T let an automorphism be

given A  -» Asj, which takes <fy to <f>SJ. We get an action of G on

A =«4* {A/JET})

by automorphisms, and this action preserves the state <f> = * ty.

Proposition. Let G, A, <p, T be as above. Suppose each 2-element subset of V has

infinitely many disjoint G-translates. Then (G, A) is uniquely ergodic. Moreover, if

(G, B) is any other C*-flow, then the invariant states of (G, A ® B) are exactly

[<p ® \p\ yp G-invariant on B).
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Proof. I will prove the second claim, which in the case B = C gives unique

ergodicity. Represent B faithfully and covariantly on some Hubert space H, and

consider A <8> B as acting on H^ ® H covariantly with a representation u of G.

For y, a 2-element subset of T, let Hy be the span of elementary tensors in H^

starting with H^ for some i G y. Let {g,,} G G be an infinite sequence such that the

sets gny are disjoint. For n ¥= m,

u(gn){Hy®H)±u(gm){Hy®H).

Let a E A be a word starting and ending with {A(0j):j G y}. For any b E B,

(a ® b)((Hy ® H)1) QHy® H.

By Lemma 3.0, for any N,

1    N
77 2«(g„)(«®ft)«(sJ*

n= 1

Let x be any G-invariant state on A <8> B. We obtain

i   o*,.M^2||a®2>l|
Ix("®ô)I<-j-ï7T-.

and since jV is arbitrary, x(ß ® ft) = 0. Since y is arbitrary, this holds for every word

a in A.

Now let yp = X\b> and let a G * {Ay.j E V). For any b E B,

X(a ® b) = X((fl - *(*)) ® b) + *(a)x0 ® ft)

= 0 + *(a)i/-(6) = (<i> ® yp)(a ® b),

since a — <p(a) is a sum of words. Hence x = <í> ® yp-    Q.E.D.

The following lemma shows that the conditions on (G, T) are satisfied, for

example, if G is infinite and acts freely on I\

Lemma. Let (G,T) be a permutation group such that G is infinite and every stability

subgroup is finite. Then every finite subset of T has infinitely many G-translates.

Proof. Let y C T be finite. No finite subset of T intersects sy for all s E G.

Indeed, let F C T be finite. If / G F, then sf E y happens for only finitely many

s E G, so sF n y =£ 0 happens for only finitely many s E G.

Now, suppose we have already chosen su...,sn E G such that i,y,...,j„Y are

disjoint. The finite set 5,y U • • • Usny does not intersect sy for all s E G, so there is

s„+] E G such thati,Y D sn+iy = 0 for/ = \,...,n.   Q.E.D.

4.2. Using the definitions of [1 or 7], we obtain the following: if G in 4.1 is

amenable and <i> is faithful, then (G, A) is a minimal C*-flow, and its tensor products

with any minimal C*-flow is also minimal. This is in contrast to the commutative

case, where a flow cannot be disjoint from itself [6]. See [1] for details.

4.3. By the remarks at the end of §3, and by 4.1, the Cuntz algebra Ox has a

unique state which is invariant under all permutations of the generators S, (or

equivalently under a single infinite-order permutation).

2||q® ¿>|

TV'/2
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Appendix: Tensor products of faithful states. Let A, B, C, D be C*-algebras, and

let P: A -» C, Q: B -» D be completely positive maps. Then P®():.4®P^C®2)

extends to a completely positive map P ® Q: A ® B -+ C ® D. Here <8> denotes

the minimal (spatial) tensor product. [9, 4.23].

Proposition. Let A, B be C*-algebras and {<f>(: i E 1} a faithful collection of states

on A, i.e., {a G A: <p,(a*a) = 0 for all i G 2} = 0.

The collection of completely positive maps, <f>, ® IB: A <8) B — B, is faithful.
*

Proof. Let T G A (g) P such that (<*>,. ® IB)(T*T) = 0 for all i E I. Let t// be any

state of B. Then

(4>, ® IC)(IA ® yp)(T*T) = (2C ® *)(>, ® IB)(T*T) = 0.

Identifying A ®  C with /I, and <f>,- ® 2C with <£,., we get, since {<f>,.: / G 2} is a faithful

collection,

(lA®yP)(T*T)=0.

Now let <p be any state of A. Then

(* ® M^r) = *(/, ® *)(rr) = o.

Since <f>, yp are arbitrary, P = 0.    Q.E.D.

Proposition. Let A, B, C be C*-algebras. Let P: A — C fte a faithful, completely

positive map. Then P ® IB: A ® B -> C ® ß is faithful.

Proof. The collection {4>P <f> state of C} is a faithful collection of states of A. By

the preceding proposition,

{4>P ® IB: <p state of C}

is a faithful collection of maps A <8> B ^ B.
*

Now let PG/4 <8> B such that (P® IB)(T*T) = 0. If <i> is a state of C,

(*P ® IB)(T*T) = (<p® IB)(P® IB)(T*T) = 0.

So T = 0 and P ® 2ß is faithful.

Corollary. Lei /I, 22, C, D fte C*-algebras. Let P: A - C, (?: B -> D be faithful,

completely positive maps. Then P ® Q: A <S> P^C<8> 2) is faithful.

Proof. P® £ = (2>® ID)(IA ® 2)).   Q.E.D.

In particular, the tensor product of faithful states is faithful on the smallest tensor

product algebra.
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