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THE BUDAN-FOURIER THEOREM AND

HERMITE-BIRKHOFF SPLINE INTERPOLATION

BY

T. N. T. GOODMAN AND S. L. LEE

Abstract. We extend the classical Budan-Fourier theorem to Hermite-Birkhoff

splines, that is splines whose knots are determined by a finite incidence matrix. This

is then applied to problems of interpolation by Hermite-Birkhoff splines, where the

nodes of interpolation are also determined by a finite incidence matrix. For specified

knots and nodes in a finite interval, conditions are examined under which there is a

unique interpolating spline for any interpolation data. For knots and nodes spaced

periodically on the real line, conditions are examined under which there is a unique

interpolating spline of power growth for data of power growth.

1. Introduction. By an incidence matrix we shall mean a matrix whose entries are

zero or one. Take incidence matrices

£=||£l7llr=o;=o       and       F= H^ll^o

and let x = (x0,... ,xm), 0 = xQ < xx < ■ ■ • < xm — 1.

We define ?(£,*):={/: [0,1] - C; f\(x„ xl+x) G irn, i = 0,.. .,m - 1, and

f("~j)(x~ ) = /("~v)(.x,+ ), V(/, j) with 0 < / < m and £i; = 0), where irn denotes

the set of polynomials of degree < n.

For y >0we write

/O)(0)=/O)(o+),      /0)(1)=/o)(r);

and

/0)(*,) = HfW(*T ) +/0)(*,+ )}    forO < i < m.

We shall refer to the following interpolation problem as the I.P. (£, F, x).

Í For numbers {yu; E¡¡= 1}, find/ G f(£, x)

(1.1) \
^satisfying/(/)(x,) = ytJ.

We say the I.P. (£, F, x) is poised if for any choice of {y¡j}, (1.1) has a unique

solution.

The case of interpolation by polynomials, i.e. 0 < ¡: < m => Ftj■. — 0, has been

studied extensively. The study was initiated by G. D. Birkhoff [2] and later revived

by Schoenberg [16] who called this problem Hermite-Birkhoff (HB) interpolation

and introduced the notion of an incidence matrix.
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Next suppose (£, F, x) are as above with the extra condition that

E0j = EmJ       and       F0j = Fmj,       j = 0,...,n.

We   define   ß(F,x):={f:   R - C;   W G Z,  f\ (v + Xj, v + xi+x) G -¡r„,   i =

0,... ,m - 1, anàf{"-J\v + xT ) = /("_»(f + x,+ ) V(j, y) with FlV = 0}.

For any v, i,j we write

/<»(f + *,) = H/0)(" + *r ) +/0)(" + *,+ )}■

We shall refer to the following 'cardinal' interpolation problem as the C.I.P.

(E,F,x).

[For sequences of numbers {y°'J)} = {(^<'",))°1_   ; 0 < ; < m,

(1-2)
[ and £,y = 1}, find/ G Q(F,x) satisfyingf(J\v + x,)= y(J-J).

In [10] Lipow and Schoenberg considered the C.I.P. (£, F, x) for the following

case: m = 1, « is odd, £ = £and for some 1 < r < {(n + 1),

1,    j = 0,...,r-l,

E°J     Ex>      10,    j = r,...,n.

In this case G(F, x) comprises cardinal Hermite splines with knots of multiplicity

r at the integers. The problem (1.2) then requires interpolation of the spline and its

first (r — 1) dérivâtes at the integers, and is called cardinal Hermite interpolation. In

this case it is proved in [10] that the C.I.P. is 'poised' in the following sense.

We say the C.I.P. (£, £, x) is poised if the following holds. Suppose {y°'j)} have

power growth, i.e. there is a number y with y¡;'J) = 0(\ v\y) as v -> ± oo, V(¿, j).

Then (1.2) has a unique solution of power growth of the same order, i.e. f(x) =

0(\ x |y) as x -»±oo.

In §2 of this paper we derive an extension of the classical Budan-Fourier theorem

to elements of f(/, x), which is then applied in §§3 and 4, where we investigate

conditions under which problems (1.1) and (1.2) are poised. The work of §§2 and 4

is further exploited in another paper of the authors [6].

2. The Budan-Fourier theorem for HB splines. For any incidence matrix F =

\\Fij\\r=Oj=o and x = (x0,. . . ,xm), a = x0 < • • • < xm = b, we define

?<,(£):= UF,*):= {/: R->*; f\(x„xl+l) f=vm, i = 0,...,m- l,f(x) = 0 for

x G [a, b] andf°'~J)(x- ) =/(n^)(x,+ ), V(i, j) with FtJ = 0).

If/is an element of f0(£) for some F, we say/is an HB spline.

By a block in £ we mean a sequence {(/, j)},j = k,...,k + 1—1, with £,7 = 1,

k <_/' < Â: + / — 1, and Fi(A_,, ̂  1 ¥= Fi(k+Iy The block is called even or odd as / is

even or odd. We say the block is supported if 3i,, /2, /, y2 wilh 'i "^ ' < '2>/i' Í2 < ^

and £    = £     = 1. We let ¿(£) denote the number of supported odd blocks in F.
I\J\ >lJ2 v       ' rr

Both Lorentz [11] and Schumaker [17] have derived bounds of the following form

for the number of zeros of HB splines. If / G f0(£) has exact degree n (that is/("+ "

is the zero function and/'"' is not the zero function), then

m       n

(2.1) Z(/)<2   lF,l-(n+\) + b(F),
; = 0 y = 0
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where Z(f) denotes the number of zeros of /in (a, b) counted with multiplicity in

some specified manner. These results were an improvement of a similar result by

Ferguson [4] and indeed an estimate of this type was given much earlier by Birkhoff

[2].
We now recall the classical Budan-Fourier theorem which gives a bound for the

number of zeros of a polynomial in an interval (a, b). For a real vector v =

(v0,.. .,vk), let S~ v (or S+v) denote the minimal (or maximal) number of sign

changes in the sequence v achievable by appropriate assignment of signs to the zero

entries of v. If Sv = S+ v, we denote their common value by Sv. Then the

Budan-Fourier theorem states that if p is a polynomial of exact degree n, then

(2.2) Z(p)< S   (p(a),...,//"'(«)) -S+{p(b),...,p"(b)),

where Z(p) denotes the number of zeros of p in (a, b) counted with multiplicity in

the usual way. This result has been generalised by Melkman [12] and by deBoor and

Schoenberg [3] to give a bound for the number of zeros of Hermite splines, that is

HB splines where for i = 1,... ,m — 1, there is a number K¡ such that F¡, = 1 iff

J < K,
We shall prove a result of Budan-Fourier type for HB splines which generalises

both (2.1) and (2.2). First we must describe how to count the zeros of an HB spline/.

For any number c we shall write

f-1, i<0,
/(c)-(or/(c)+)=    0,        Ü f{x)   =0,

U, l>o,
on (c — 8, c) (or (c, c + 8)) for some 8 > 0.

Now suppose we have numbers a < ß such that/(x) = 0 on (a, ß) and/(a)~ ¥= 0

^f(ß)+. Define />0, r s* 0 by/(a~)= ••• = /(/~ l\a~) = 0, /(/)(a~ ) # 0,

f(ß+ ) = • ' • = /<r" lKß+ ) = 0,f(r)(ß+ ) t¿ 0. Let 5 = min(/, r). Then we say [a, ß]

is a zero of /of multiplicity M, where

M=is, if a = ßand f (a)'f(a)+ = (-\Y,

[s + 1,    otherwise.

If a = ß is not a knot (i.e. not an element of x), then this is the usual multiplicity.

We say [a, ß] is a continuous zero if s > 1, i.e. f(a~) = f(ß+ ) = 0. Finally we let

Z( / ) denote the total number of zeros of / counted with multiplicity. This zero

count is slightly stronger than those considered by Lorentz [11] and Schumaker [17].

Theorem 2.1. Iff G f0(£) has exact degree n, then

Z(f)^S-(f(a+),...,f<"\a+))-S+(f(b-),...,f">(b-))

+   2    2Fu + b(F).
1=1   7 = 0

Our proof uses both the approach of [3] and that introduced in [4], which is used

also in [11, 17]. We shall need the following lemma which is essentially Lemma 1.2 of

Karlin and Micchelli [8].
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Lemma 2.1. /// G C"[0, 8] andf("\0+ ) ¥= 0, then

/^(0)+^0,       j = 0,...,n,

and

5-(/(0+),...,/""(0+)) = 5(/(0)+,...,/<"'(0)+).

Similarly iff G C"[-8,0] andf(n)(0~ ) ¥= 0, then

/O)(0)"^0,       y = 0,...,«,

and

s+ (/(o- ),..., /<">(o-)) = s(/(or./(">(or).

Proof of Theorem 2.1. For any HB spline/, we let [af,bf\ denote the support of

/, i.e./(x) = 0 outside [af, bf] and f(af)+ ¥= 0 ¥= f(bf)~ . We shall classify a point y

at which/has a discontinuity as follows.

Typel.f(yyf(y)+>0.
Type 2.f(yTf(y)+ < 0 and/'(y) V(y)+ < 0.
Type 3.f(y)-f(y)+ < 0 and/'(Yr/'(7) + > 0.
Type 4. y = a¡.

Type 5. y = fy.
7>/>e 6. Otherwise.

For i — 1,.. .,6, we let d¡ denote the number of discontinuities of/of type i. We

shall show that if/is any HB spline and/' is not the zero function, then

Z(f)^Z(f') + s{f(af)+,f'(af,)+)

{23) -S(f(bf)~ ,f'(bf,y)+2d3 + d6.

Suppose / has continuous zeros at I¡ — [a,, /?,] of multiplicity m¡, i = l,...,N,

where /, < I2< ■ ■ ■ < IN. We note that af, < 7, ^ IN< bf, since/is a step function

outside [aj., bj,}. Thus/' has zeros at 7, of multiplicity m¡■ — 1, / = 1,... ,N.

Forany/= 1.N— l,ff changes sign in (/?,, a/+1). Also if f(af,)+f'(af,)+ = 1,

then//' changes sign in (af,, ax), and iff(bf,)~f'(bf.y = -1, then//' changes sign in

(ßn, bf,). Thus there are at least v intervals in which//' changes sign, where

v = N- S{f(af,y ,f'(af.)+ ) + s{f{bf,y ,/'(*/•)")■

Now if//' changes sign in an open interval /, there are 3 possibilities.

(a)/' vanishes on [a, ß] G J with a < ß.

(b) 3yGJ with/(Yr/(Y)+ > 0 and/'(Y)-/'(y)+ < 0.

(c)3y G/with/(Yr/(y)+ <0 and/'(y)~/'(y)+ > 0, i.e. y is a discontinuity of

/of Type 3.

Thus there are at least v = d3 zeros of/' of type (a) or (b). In addition we have at

least d2 zeros off at discontinuities of /of Type 2. So we have

N

Z(f')> 2 [m,- \) + v-d, + d2.
i=\
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But Z(f) < S»,«, + d2 + d3 + rf6. So Z(/') > Z(/) - (</2 + d3 + d6) - N + v

— d3 + d2, which gives (2.3).

Now if/is continuous at af, then af = a¡- and S(f(af)+ ,f'(af)+) = 0. Also if/

is continuous at £y, then bf = bf, and S( f(bfy ,f'(bf.y ) = 1. So we also have

(2.4) Z(/) < Z(/') - S( /(¿y.)" ,/'(V)" ) + ^4 + 2^3 + ¿6.

(2.5) Z(f) < Z(/') + S{f(a,,)+ ,f'(ar)+ ) - 1 + d5 + 2d3 + db,

(2.6) Z(f)<Z(f')- l +d¿ + d5 + 2d3 + d6.

Now take an incidence matrix F— l|£,yll,107=o and/G f0(£, x) of exact degree

n. We define matrices G = II G,7 ll£„"=o and 77 = || Hu ll£0"=0 bY

P       jl,     if x,; is a discontinuity of f(n~J),

[O,    otherwise,

and

^

2,    if x, is a discontinuity of/(" y> of Type 3,

1,    if x¡ is a discontinuity of /(n_y) of Type 4, 5 or 6,

0,     otherwise.

Let /? and <7 be the largest integers with a^ = a and ¿y(„> = b, and assume

p < q < n. Then by repeated application of (2.3) we have

Z(f)<Z(f^) + S(f(a)+ ,...,/<"(a)+)
(2.7) m-l n

-S(/0)-,...,/<»(*>)") +   2        2      77,,..
i= 1   j — n—p+1

Then by repeated application of (2.4) we have

z(f^)<z(f^)- s{fxp\b)- ,...,yq\b)-)
(2.8) „,-1       n-p

+ 2     2    hv+i.
i— 1   j = n — q+1

Finally repeated application of (2.6) gives

m—In—9

(2.9) Z(/<«))<Z(/<-)) -(«-«)+   2    2fily+l-
1=1   7=1

Combining (2.7), (2.8) and (2.9) gives

Z(/)«Z(/<">) + S(/(«)+ ,...,y»\a)+)

(2.10) w_,   „

-s{f(by,...,yq\b)-)+ 2 2 #„-(»-?) +2.
1=1   7=1

But by Lemma 2.1,

S(f(a)+,...,f^(a)+) = S~(f(a+),...,pp\a+))

= S-(f(a+),...,f^(a+))
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and

S{f(b)' ,...,/«"(£>)-) + n - q = 5+ (/(¿T ),...,/<«>(&")) + n

= s+(f(b-),...,f<"\b-)).

MsoZ(fw)<^JxxHi0-2.

Thus (2.10) gives

m—\     n

Z(f)<  2    2Hu + S-{f(a+),...,f<"\a+))
(2.11) 1 = 1   7 = 0

-s+(f(b-),...,f\b-)).

We can similarly deduce (2.11) for other values of p and q by suitable application of

(2.3)-(2.6).
Now suppose H¡j = 2. Then if G¡U_X) = 1, x¡ is a discontinuity of f("~J+X) of

Type 1 and so HiU-X) = 0. Also if Gi(j+X) = 1, x¡ is a discontinuity of f("~j~X) of

Type 1 or 2 and so Hi{j+X) = 0. Also/("~7+1)(.x,)~ ^ 0 and so /', < i and/', <_/ with

Gjj = 1. Similarly 3/2 > i andj2 <j with G¡, = 1.

Now suppose that for some i, 1 < /' < m, {(i, j)},j = k,...,k + I — 1 is a block

in G. Then if 2*=¿~'//,-,•> 1, it must be that {Hik,...,HKk+l_X)} is of the form

{2,0,2,... ,0,2}. Thus / must be odd and the block must be supported. Hence

m — 1    n m—\n

(2.12) 2    2V  2    2GIJ + b(G).
i=\   7 = 0 1=1   7 = 0

But since G¡¡ = 1 => F¡j — 1, it is easy to see that

m — 1     « m—\n

(2.13) 2   2G,v + MG)< 2   2 *;,■+ *(*")•

The result then follows from (2.11), (2.12) and (2.13).

We can immediately deduce the following.

Corollary 2.1. If f G f0( /) has exact degree n, then

m      n

Z(/)<2   lFu-(„+l) + b(F).
1=0 y=0

3. The interpolation problem (£, F, x). We now consider the I.P. (£, £, x) as in

(1.1). Since the problem is independent of the values of F0j and FmJ,j = 0,... ,n, we

may assume, without loss of generality

(3.1) £„=1    iff£,(„_y) = 0,       i = 0orm,j = 0,...,n.

For (E,F,x) to be poised we require the number of interpolation conditions

2, jEjj to equal the dimension of f(£, x), namely n + 1 + 2{/7: 0 < / < m, 0 «£j: *£

n). This condition can be written neatly by defining, for any matrix A = \\A¡j ll£L0"=0,

n    f m-\ ]

M(A)= 2    K)7+   2 ¿tj + iAmj  ■
7=0  L 1=1 J
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The above condition then becomes

(3.2) M(E) = M(F)

and we henceforth assume this is satisfied. Then the I.P. (£, F, x) is poised if and

only if the only function/in f(£, x) satisfying

(3.3) /0)(*¿) = 0    for all i,j with EtJ = 1

is the zero function.

Our first result reveals a duality between the matrices £ and £. Since the original

submission of this work, we discovered this had already been proved by Jetter [7],

but we retain our proof for completeness.

Theorem 3.1. The I. P.(E, F, x) is poised if and only if the I. P. (F, E, x) is poised.

Proof. By (3.1) and (3.2)

m—1     n m      n

2  2FtJ= 2 2EU
i = 0 7 = 0 ( = 1 7 = 0

and we denote their common value by N. Let {(ir, jr); r = \,...,N] denote the

elements of {(/, j); 0 < / < m, F¡j = 1} ordered so that for 1 < r < N, ir < ir+ x or

ir = ir+x and jr<jr+x. Let {(ks, ls); s = 1,...,7V} denote the elements of {(i, j);

0 < i < m, Eij — 1} ordered so that for 1 < j < JV, ks> ks+x or ks = ks+x and

Then any/ G f0(£, x) can be written as

"   \r(x - Xi )"-J'

/(*) = 2
r=l («-JrV-

for constant XX,...,\N, where for any x and/7,

\xp,       x>0,

xl =    \xp,    x = 0,

10, x<0.

With the convention that (p\)~x = 0 forp < 0, the conditions (3.3) become

2 —7-:-p^— = 0,       s=l,...,N.
r=\      (n-jr-ls)\

Thus the I.P. (£, £, x) is poised iff the matrix

n-j-l, "N

{n-jr-ls)\

is nonsingular.

Defining £, F, x by Êtj = E(m_iy, Fu = £(m-,)y, x, = 1 - xm_„ we see that the

matrix corresponding to A for the I.P. (£, £, x) is the transpose of A. So the I.P.

(£, F, x) is poised iff the I.P. (£, £, x) is poised. But by making the transformation

x -» 1 — x, we see the I.P. (£, £, x) is poised iff the I.P. (£, £, x) is poised.    D
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It will be convenient to introduce the matrix G = IIG, ||fi0''=0 defined by G,  =

Eij ~ Ei(n-jV

We note that (3.1) and (3.2) can then be rewritten as

(3.1)' G¡j¥=0,       i = Oorm, j = 0,...,«,

(3.2)' M(G) = 0.

We shall also let | S | denote the cardinality of a set S, and for any matrix A we

write

AUx,...,iik]
vx,...,v,  I H»j"i=\j=\>

that is the submatrix of A determined by the rows ¡i,,..., p,k and columns vx,.. .,v,.

We now consider further conditions on (£, £) which are necessary for the I.P.

(£, £, x) to be poised. First consider the case of interpolation by polynomials, i.e.

Ftj — 0 whenever 0 < i < m. If, for any r — 0,... ,n,

m      r

2   2 Eij< dimw,.,
1=0 7=0

then there would be a nonzero/G irr satisfying (3.3) and the I.P. (£, F, x) would

not be poised. Thus we have the necessary conditions,

m      r

2   2 E,j>r+ 1,        r = 0,...,n.
i = 0 7 = 0

These are well-known Pólya conditions on £ (e.g. see [1]).

Next consider a general matrix F and take any 0 ^ r < n, 0 ^ k < I < m. Let V

denote the space of restrictions to (xk, x¡) of all functions in (£, x) with exact

degree < r. If

2   2 Eu +\{(i,j);i = k or l,j = 0,...,r, £,.,. = £,,„_,, = 0} |< dim V,
i=k 7 = 0

then there would be a nonzero g G V which could be extended to a function

/ G f(£, x) vanishing outside [xk, x¡] and satisfying (3.3). Thus for the I.P. (£, F, x)

to be poised we must have

2   2 EtJ + \{(i,j);, = korl,j = 0,...,r, EtJ = F/(B_y) = 0} |
i = k 7 = 0

/-I        r

>r+l+    2      2 Fun-jy
i=k+\ 7=0

This can be written more neatly as

(3.4)    ¡\ {(«, j); i = k or l,j = 0,...,r, GtJ = 0} | +mU[ ^•••') ) > 0.
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By Theorem 3.1 we must also have

il {('> /); ' = korlj = n - r,...,n, GtJ = 0} |

-M\G\ ^0.
\    \n — r,...,nj j

These conditions have been considered by various authors in various forms and

under various names, [7, 13, 15]. If (£, F) satisfies (3.4) and (3.5) for any 0 < r < n,

0 < k < I *£ m, we shall say (£, £) satisfies the Pólya conditions.

We next turn out attention to conditions on (£, £) that are sufficient for the I.P.

(£, £, x) to be poised for any x. For the case when 0 < i < m => F¡j■ = 0, there is a

well-known result by Atkinson and Sharma [1] which states that the I.P. (£, F, x) is

poised if £ satisfies the Pólya conditions and has no supported odd blocks. This we

proceed to generalise.

Following standard terminology we say an incidence matrix £ = || i^,-||£L0jL0 is

quasi-Hermite if for í = 1,... ,m — 1 there is a number M¡ > 0 such that E¡j = 1 iff

J < M,

Theorem 3.2. Suppose (£, £) satisfies the Pólya conditions and E¡j = 1 => £,<„-,)

= 0 V(i, /') (i.e. we do not interpolate at a discontinuity). Suppose further that one of

the matrices E, F is quasi-Hermite and the other has no supported odd blocks. Then the

I.P. (£, £, x) is poised for any x.

Proof. Suppose £ is quasi-Hermite and b(F) = 0. We shall assume the I.P.

(£, £, x) is not poised and reach a contradiction. Then 3 nonzero /G f0(£, x)

satisfying (3.3).

Choose r,k,l, 0 < r < n, 0 < k < I < m, such that f(xk)~ = f(x,)+ = 0, / has

exact degree r on (xk, xf) and/is oscillating in (xk, x¡), i.e. /does not vanish on any

nontrivial interval in (xk, x¡). Let F = F(nk_-r•■•' „).

Then for x = (xk,... ,x¡), 3 nonzero g G f0(£, x) with g = / on (xk, x¡). Also

b(F) = 0. So by Corollary 2.1,

Z(g)<2   ÍFu-(r+l)<    2     ÎEU,
i=k7=0 i=k+\ 7=0

by the Pólya conditions.

But gU)(x¡) = 0 V(z', j) with E¡j = 1, and since all zeros in (xk, x¡) are isolated,

we have Z(g) > 2'=} + 1 ̂ ,rJ=QEij, which gives the required contradiction.

The result is therefore true if £ is quasi-Hermite and b(F) = 0. It follows from

Theorem 3.1 that it is also true if £ is quasi-Hermite and b(E) — 0.    □

4. The cardinal interpolation problem (E,F,x). We now consider the C.I.P.

(£, f, x) as in (1.2). We again assume condition (3.2) but instead of (3.1) we assume

the weaker condition,

(4.1) E0j=l~FQ(n_J) = 0,       7 = 0,...,«,

i.e. at the integers we do not interpolate at a discontinuity.

Now let J = {j; EQJ = £0(„-y) = 0} and put d = | / |.



460 T. N. T. GOODMAN AND S. L. LEE

,;=„. *" = ii^ii,m=0;=o.£l = n^iir=0;=o and

if / = 0 and y G J,

otherwise,

if / = m and n — j G J,

otherwise,

if i = m andj G J,

otherwise,

and

il,       if i = 0 and n — j G J,

'j    1 F,-,    otherwise.

Theorem 4.1. 7/i/îe 7.7». (£', £', x) Wi/ze 7.7°. (£2, £2, x) are both poised, then

for any choice of {y(lj)} the solutions of (1.2) form a manifold of dimension d.

Proof. Clearly the elements g G f(£, x) which satisfy

gu)(xi)=y^   fori = 0,...,m- l,j = 0,...,n,EtJ= 1,

gO)(i)=>;(o.7)   fory = 0,...,«,£0y.= l,

form a manifold of dimension d. But any such g can be uniquely extended to a

solution of ( 1.2) and the result follows.    D

Henceforward we shall assume the I.P. (£', £', x) and the I.P. (£2, £2, x) are

both poised. We let 6° = G°(E, F, x) denote the ¿-dimensional space comprising all

solutions of (1.2) when all sequences yUJ) are zero. We note that there is a

nonsingular matrix C = IIC „II,, „eJ such that for any/ G 6°,

(4.2) /<">(1) = q,,/<"(0),       p,vGJ.

For the case of cardinal Hermite interpolation we see from Theorem 4.1 that 6°

has dimension n + 1 — 2r. In [10] Lipow and Schoenberg construct a basis for C°

comprising what they term eigensplines, and then use this basis to prove that the

C.I.P. is poised. Their work has been generalised by Micchelli [14] and the work of

this section is a direct generalisation of §2 of [14].

We call any/in G° an eigenspline for the C.I.P. (£, £, x) with eigenvalue À if

f{x + 1) = A/(x),       Vx G R.

Clearly the eigenvalues of the C.I.P. (£, £, x) are precisely the eigenvalues of the

matrix C.

Theorem 4.2. If the C.I.P. (E, F, x) has d distinct eigenvalues, then it is poised iff

no eigenvalue lies on the unit circle.

Proof. If there is an eigenvalue on the unit circle, then there is a bounded

eigenspline and so any solution of (1.2) of power growth is not unique and so the

C.I.P. (£, £, x) is not poised.

We define matrices £' = ll£¿ll™0

í-2 = ii£,72iir=o;=oby

Ht
71'
1 FtJ>

4
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We assume, then, that there are d distinct eigenvalues not on the unit circle and

show that the C.I.P. (£, £, x) is poised. Take any y > 0. Since the eigensplines span

6°, there is no nonzero/ G 6° satisfying

(4.3) f{x) = 0(\x\y)    asx^±oo.

Now for any (k, I) with Fkl = 1 and 0 «£ k < m, we shall construct a function

L(kJ) gG(F,x) satisfying

(4-4) L<k,i)(" + xi) = hfiußji-

Let X, and/, i = \,...,d, denote the corresponding eigenvalues and eigensplines.

Then write

2   Cif{x),    x< -1,

p(x+ 1), -1 <x<0,

q(x), 0<x<l,

2   c,/(x),    x> 1,

(4.5) L(kJ)(x) =

where c¡, i = 1,... ,d, are constants and p,q G f(£, x). For (4.4) to be satisfied, we

must solve 3d + 21'i"=0 2"=0 £,, nonhomogeneous linear equations in the same

number of unknowns. If there were no solutions, then there would be a nonzero

solution to the homogeneous problem and thus a nonzero bounded element of Q°.

Since this cannot happen, we conclude that we can construct L,k,n °f Iorm (4-5)

satisfying (4.4). From (4.5) we see that L(kJ) decays exponentially as x -* ± oo. If the

sequences {y°'J)} satisfyy¡;',J) = 0(\ v \y) as v -> ± oo, then (1.2) is satisfied by

00

f(x)= 2   2ä(%>-')
K--00   (/,/)

and this solution satisfies (4.3). If g is another solution of (1.2) satisfying (4.3), then

/— g G &° satisfies (4.3) and so/ = g.    D

We say the C.I.P. (£, £, x) is symmetric if for / = 0,... ,m,j = 0,...,n,

E¡j = E,m_iy,       F¡j = F,m_j)j       and       x, = 1 — xm_t.

Thus the problem is invariant under the transformation x -» 1 — x and so X is an

eigenvalue iff X-' is an eigenvalue. This immediately gives us the following result.

Corollary 4.1. Suppose the C.I.P. (£, £, x) is symmetric and has d distinct real

eigenvalues. Then it is poised iff an even number of eigenvalues are positive and an

even number negative.

We also note that the duality between £ and £ extends to the following result

concerning eigenvalues.

Theorem 4.3. The C.I.P. (£, £, x) has eigenvalue X iff the C.I.P. (F,E,x) has

eigenvalue \~ '.
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Proof. Let {(ir, /); r - 1,... ,M(E) + d) denote the elements of {(/', j); 0 < i

< m, F/j = 1} and {(ks, ls); s = l,...,M(E) + d) denote the elements of {(/', /');

0 < 7 < w, £,2 = 1} with the ordering as in the proof of Theorem 3.1. As before we

let

{*k. - x,r)

n-jr-ls HM{E) + d

+

B-

{n-j,.-ls)\
II s,r= I

Let nx.nd denote the elements of J in increasing order. Let (0, n — nt)

(/r, /. ) and (m, n,) = (ks¡, ls), t = 1,... ,d. Finally let

■>\i

sx,...,sdj

Then for any/ G (3° we have

/("■»(0) = 5,7/<"',(l),        i,j=\,...,d.

Thus X is an eigenvalue of the C.I.P. (£, £, x) iff \_I is an eigenvalue of B. The

result then follows as in the proof of Theorem 3.1.    D

Thus to determine whether the C.I.P. (£, £, x) is poised, we must examine the

eigenvalues of the matrix C defined by (4.2). We recall that a square matrix is called

totally positive if all its minors are nonnegative, and called strictly totally positive if

all its minors are strictly positive. It is shown by Gantmacher and Krein (see [5, p.

105]) that an N X N oscillation matrix has N distinct positive eigenvalues. This

result has been generalised by Karlin and Pinkus [9] to the following.

Theorem 4.4 (Karlin and Pinkus). For N^l and p = 0,...,N, define

7(p) := || e¡S¡j \\u=\, where e, = -1 for i < p and e, = 1 for i > p. Then if A =

\\Ai -\\^j-x is an oscillation matrix, del(A — Xl(p)) has p distinct negative and N — p

distinct positive zeros.

For the case of cardinal Hermite interpolation, Lipow and Schoenberg show in

[10] that (-l)rC is an oscillation matrix and thus C has d distinct eigenvalues of sign

(-\)r. Following Micchelli [14], we shall show that under certain conditions the

matrix C ■= \\\ Cpv \ \\„veJ is an oscillation matrix, and then apply Theorem 4.4 to

examine, under certain conditions, the eigenvalues of C.

We now state conditions on (£, £) that we shall assume throughout the rest of

this paper. We shall not interpolate at a discontinuity, i.e. we assume

£,7=1-£,(„_„ = 0.

We assume further that £ is quasi-Hermite and F = II F¡j ll,"L0"=0 has no supported

odd blocks, where

Oorm, and £,(„-,) = 0,

Also we assume (£', £') and (£2, £2) satisfy the Pólya conditions. Thus by

Theorem 3.2, the I.P. (£', £', x) and the I.P. (£2, £2, x) are both poised. Now
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these Pólya conditions imply that

m—\     r m — 1      r

2   2eu> 2   2*W      r = 0,...,»-l.
,=o 7=0 1=0 7=0

We shall make the stronger assumption that

iil—l      r m — 1      r

(4-6) 2    2EU>  2    2FKn-j)>       r = 0,...,n-l.
1=0 7 = 0 1 = 0   / = ()

For the case 0 < i< m => F¡■ = 0, conditions (4.6) are called the strong Póly a

conditions on £.

Of course by duality, for any result we deduce under the above assumptions, there

is a corresponding result when the conditions on £ and £ are interchanged.

Theorem 4.5. (i) All the principal minors of C are nonzero, i.e.

ft,,...,/*/

(Ü)

(hi) //

det C | | ¥= 0   for any distinct /i,,..., /x., G J.
Mi»- ■ -iPi)

sgnC„„ = (-1)°" + T",    where a^ = 2 E0J, \ = 2 F^-j)
j>ß j>"

¡U,,. . . ,jtl, I

detCl |=^0   for p.x < ■ ■ ■ < p„ vx < ••■ < v,,

then

sgn det C
ft,,...,/*/

"!'•••'"/,
sgn II CM„ .

i = i

We first prove a lemma. Let £ and Q be any nonempty subsets of J with

£|+|g|=i/.   We   define   G = G(P, Q) - l|G/y||/™0"=o   and   H = H(P,Q) =

ltfvll"o"=oby

1,        if/= 0and/G7\

1,       if i = m and/ G Ç,

£,;,    elsewhere,

Gü =

and

77,

1,       if/ = 0andn-/e/-P,

1,       if i — m and n — j G J — Q,

Fjj,    elsewhere.
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Lemma 4.1. Suppose the I.P. (G, 77, x) is poised and that a nonzero f G f(77, x)

satisfies

(4.7) fU)(x¡) = 0       V(/, /')    with G,  = 1, except i = m,j = max<7.
qeQ

Then f is oscillating and has exact degree n.

Proof. Take/as above and choose k, I, 0 < / *s m, such that f(xky = f(x,)+ = 0

and / is oscillating in (xk, xt). We cannot have k > 0 since the I.P. (£',£', x) is

poised and we cannot have / < m since the I.P. (£2, £2, x) is poised. Thus / is

oscillating.

Suppose / has exact degree r. Since the I.P. (G, 77, x) is poised we must have

r s* max eeqr. Then

and so for r < n we have by (4.6)

(4.8) l    U. " l    l°.'

H*(t:::D) -"Mw))~
But by Corollary 2.1,

m      n m-\     r

Z(f)<2  2H,j+l-{r+\)< 2   2g,7
i=0 7=0 1=1  7=0

by (4.8) which contradicts (4.7). So r = n.    D

Proof of Theorem 4.5. We first note that

detch'-'^'Uo
\ "i."//

iff the  I.P.  (G(P, Q),  H(P,Q),x)  is  poised,  where P = J - {vx,...,v,},  Q =

(M..M-
If v¡ = p¡, i — 1,...,/, we have (G(7", Q), H(P, Q)) satisfies the Pólya conditions

because ( £ ', £ ' ) and ( £2, £2 ) do. This gives (i).

Now for v GJ, let pv denote the unique element of l( £, x) satisfying

py\x,) = 0,   when£0=l,

and

p<J*(0) = Oj,    for/G 7.

We see from (4.2) that

(4.9) Q„=/>i"'(l)    forp.,vGj.



HERMITE-BIRKHOFF SPLINE INTERPOLATION 465

By Lemma 4.1, with P — J — {v}, Q = {v}, we see that pv is oscillating and has

exact degree n. We may therefore apply Theorem 2.1 to give (ii).

We prove (iii) by induction on /. It is clearly true for / = 1. Assume it holds for

/ — 1. Suppose

and define

'[M'"",,V| *0,
vx,...,v,

C„

<

p(x) =

<p,,vx< ••■ < v,.

G

Vi'i

A,(*)

r
Hi- \"i

Pr(x)

We may then apply Lemma 4.1 with P = J - {vx, — v,}, Q = {ju.,, — ii¡} to

show that p is oscillating and has exact degree n. It then follows from Theorem 2.1

and (ii) that

sgn/7<^(0)/'")(l) = sgnC,/„;

Since

and

Mi 'M/-i
detCl.I =/7("')(0) ̂ 0

vx,...,v,_x

detC
Mi. >M/

^(l).

C„„ | II   „ey is an oscillation matrix.

we may apply the inductive hypothesis to give (iii) for /.    D

Corollary 4.2. The matrix C :

Proof. From Theorem 4.5 we see C is a totally positive nonsingular matrix and

C > 0 for all p., v G J. It follows from a result of Gantmacher and Krein [5, p. 105]

that C is an oscillation matrix.    D

Theorem 4.6. If J = {/',,... ,jd) withjx <j2< • ■ • <j¿, suppose there are numbers

p, T/ vvz'fTi 0 < p < d such that for k = l,...,d,

■      L  L. J_        X^J.        ■     ieVen        'fk<P'
jk + k + n + d + 7)is<    ,,      ...
Jk [odd      ifk>p.

Then the C.I.P. (E, F, x) has p distinct eigenvalues of sign (-l)v and d — p distinct

eigenvalues of sign (-1 y + '.

Proof. The eigenvalues of the C.I.P (£, £, x) are the solutions of

(4.10) det(C-A7) = 0.
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Now for each p. G J, multiply row p of C — À7 by (-1)"" and column p by (-1)T*.

Then by Theorem 4.5(h), equation (4.10) becomes

(4.11) det(C-A/) = 0,

where 7= ll(-ir"+T*fiAJIM,„ey. But if p. =jk, 1 < k < d,

Jk = 2 E0J + 2 ^0(1,-7) + k - 1
7<M /</*

and so

a^ + TH=   2  E0j +   2   F0(n-j),
7>fi />fi

= n+l-d- 2E0J- 2£o(„-7
/-=

= « ~d-jk + A-

)

Thus

[even     if k < p,

M      M       odd     if A > p.

So from Corollary 4.2 and Theorem 4.4, equation (4.11) has p distinct solutions of

sign (-iy and d — p distinct solutions of sign (-ly1+x.    D

Corollary 4.3. If J — {/,.jd)  with jx <j2 < ■ ■ ■ <jd, suppose there is a

number p with 1 < p < d such that for k = l,...,d — 1,

(even    if k = p,

7/ the C. I. P. ( E, F, x) is symmetric, then it is poised if and only if d and p are even.

Proof. Writing/^ =/, + 2*=,'(//+1 —//) gives for k = \,...,d

[even     if k *£ p,
Jk + Ji + Ä: — 1 is ^ ,
* [odd      if k > p.

The result then follows from Theorem 4.6 and Corollary 4.1.    D

Finally we consider an example which satisfies the hypothesis required for

Corollary 4.3 to be applied. We consider a symmetric C.I.P. (£, £, x) satisfying the

following properties.

For all /',/',£„= 1 =* £,<„_,) = 0.

If 0 < / < m, the following hold.

(a) There is a number M¡ > 0 such that E:/ = 1 iff/ < A£.

(b) If {(/', /)},/ = k,...,k + I- 1, is an odd block in £, then k = 0.

(c)2;=0F,7^min(iW,,2;=0£07).

Finally, we have

m — 1     r m—\r

2    2Eu>  2    2Fi,n-J),       r = 0,...,n-l,
i = 0  j=0 i = 0   / = ()

m— \      n m— I      n

2   2e,j= 2   2F,r
1 = 0  7 = 0 1 = 0  7 = 0
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It is straightforward to verify that (£', £', x) and (£2, £2, x) satisfy the Pólya

conditions and so (£, £, x) satisfies all the hypotheses required for the application

of Corollary 4.3. This example includes all the particular examples considered in

[14].
To give a more specific example not considered in [14] we consider the following

symmetric C.I.P. (£, £, x) with m s* 2, n > 5.

For i = 1,...,ot — 1, £, = 1 iff /' = 0 or 1 and F¡¡ =1 iff / = 1 or 2. Also

£0I = F01 = 1, 2 < l"j=0 £0, = 2;=0 F0J < 2m, and E0j = 1 => £0(„_/) = 0. It is easily

checked that this is a special case of the previous example.
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