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A REMAINDER FORMULA AND LIMITS OF
CARDINAL SPLINE INTERPOLANTS
BY
T. N. T. GOODMAN AND S. L. LEE

ABSTRACT. A Peano-type remainder formula

f(x) = S(fix) = [ K(x, ) [ D(2) dt
for a class of symmetric cardinal interpolation problems C.L.P. ( E, F,x) is obtained,
from which we deduce the estimate || f — S, ,(f; )l < K1l f"* VIl . It is found
that the best constant K is obtained when x comprises the zeros of the Euler-
Chebyshev spline function. The remainder formula is also used to study the
convergence of spline interpolants for a class of entire functions of exponential type
and a class of almost periodic functions.

1. Introduction. As in [5], for x = (xo, XppeoosXp), 0= X<, < ---<x,=1
and incidence matrices E = || E; o7, F = | F;II’Zo/-o With E; = E,,; and F; =
F,, j=0,...,n, let @(Fx)—{f R C; VVEZ f|(v+x,,v+x,+l)E
i=0,...,m— 1 and f" (v + x;7 ) = fCD(v + x;) V(i, j) with F,; = 0}, and

refer to the following ‘cardinal’ interpolation problem as the C.L.P. (E, F , x):

For sequences of numbers {y”} = {y{*?; 0<i<m and E;; = 1}, find S €
C(F, x) satisfying SUV(» + x,) = y{).

Sufficient conditions for C.I.P. (E, F,x) to be poised, i.e. existence of a unique
S € C(F,x), S(x) = O(| x|") as x —» + oo satisfying SV (v + x,) = y*” when y/
= O(|»|"), are given in [S].

Suppose that the C.I.P. (E, F,x) is poised; then given a sufficiently smooth
function f of power growth 3 a unique S,(f; ) € C(F,x) of power growth which
interpolates f in the sense that

(1.1) SH(fiv+x)=fD>+ x,), vEZE, =1

The following problem then arises.

Problem. Find necessary and sufficient conditions so that S,( f; ) — f uniformly as
n — oo.

This question was first raised by Schoenberg [9] who also found a sufficient
condition for the convergence of S,( f; ) for the case where m = 1, nis odd, E = F
and

_ _ [0, j=12,...,n
(1.2) Eof_E'f_{l, =0
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In this case ¢(F,x) comprises odd degree cardinal splines with integer knots.
Schoenberg [9] proves the following

THEOREM A. Let
1
(1.3) f(x) = -j-;/_ﬂe’“" da(u)

where a(u) is a function of bounded variation in [-w, 7] and let A = a(-m + 0) —
a(-m), B=a(7) — a(7m — 0). Then
. oy i(A—B) .
klinoloSZk_,(f,x)—f(x) +———277 sin 77x
uniformly on R.

A partial converse of Theorem A was given by Richards and Schoenberg [8].
Subsequently, Marsden and Riemenschneider [6] generalised Theorem A to the case
of cardinal Hermite interpolation which corresponds to m = 1, E = F and, for some
1<r<i(n+1),

. L =01, r— 1,
Eo, = £, = 0, j=r,....,n.

In this case, a sufficient condition for convergence of S,( f; ) analogous to that of
Richards and Schoenberg was given by Goodman [4].

Recently, in an attempt to obtain more information on the convergence problem,
I. J. Schoenberg [10] obtained a Peano type remainder formula

(1.4) f(x)—SZk—l(f;x):/jC sz—l(x§t)f(2k)(’)dt (x ER)

for the case m =1, n =2k — 1, E=F and FE satisfies (1.2), where
Ky y(x,t)i=(x— )2k ' =S, ((-—0)* 'y x). From (1.4), Schoenberg [10]
deduced Theorem A and also obtained a convergence result for a class of almost
periodic functions.
In this paper we shall consider the symmetric C.I.P. (E, F,x)
x;=1—x

(1) SN, _
F. =1 iffi=0ormand;j=0,...,r — 1,

ij

i=0,...,m,

for some 1 <r <n + 1, and either
(a) n + ris even, m = r and E,j: l1iffj=0andi=0,...,m, or
(byn+risodd, m=r+1land £, =1iffj=0andi=1,....m— 1
That this problem is poised follows from Corollary 4.3 of [5] and was earlier shown
by Micchelli [7]. In this case the class of cardinal spline functions C(F, x) is usually
denoted by &, ,, and clearly

n.re

S, , =C(F,x) = {S € C""(R); Slywsy Em, Vv € Z}.

For r, n as above, we define ¥, ,:= {(f€ C""'7"(R); f,,+1) € C"[(v, ¥ + 1)]
and /" bounded and absolutely continuous on (v, » + 1), Vv € Z}.
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For f € 9, , of power growth, we let S, ( f; ) denote the unique function of power
growth that interpolates f as in (1.1). Following the approach of Schoenberg [10] we
derive a formula for the remainder f — S, ,(f; ) and deduce the following result.

THEOREM 1. For fixed n, r and X, 3K such that for any f € 5, , with f"*' ™7 of

power growth and || f" V| < oo,
(1.6) Nf=S, (i M <KIfrDI,
and equality is attained for some f € %, .. For fixed n, r, K is a minimum when x

comprises the zeros of the Euler-Chebyshev spline &, | , (see [1] and [4]) and in this
case equality is attained for f =&, | .

r

For r = n + 1, this result reduces to a classical result on optimal constants in the
remainder for Lagrange interpolation by polynomials (see [3, p. 64]).

Now let B, = { f; fis the restriction to R of an entire function of exponential type
<ocand| fll, < oo}.

By deriving bounds on the best constants K in (1.6), we prove the following
results, all of which are generalisations of results of Schoenberg [10].

THEOREM 2. For fixed X and r = 1,3K, such that foralln =r — 1 and f € B,
1f =8, A f e < K (o/rm)" M £

THEOREM 3. If f(x) = [ e"“* da(u), where a(u) is a function of bounded varia-
tion in [-rm, rw], then

lim S, (f;x)=f(x)+ 2" [] sinw(x — x,)
n—oC . 1

=

uniformly, where
co (-D)'i{a(rm) — a(rm — 0) + a(~r7) — a(-rm + 0)}  ifn + ris even,
(-1)" {a(rr) — a(rr — 0) — a(~rm) + a(-rm +0)} ifn+ risodd.

THEOREM 4. If f € B, is almost periodic in the sense of Bohr, then

lim S, (fix)=f(x)+C2 ﬁ sinm(x — x;)

i=1

uniformly, where

(-1)" lim l‘/‘Tf(x)sin rax dx if n + ris even,
C= T—o T'Jy
(-1)"" lim l'/Tf(x)cosr'zrx dx ifn+ risodd.
T T'Jy

- In §2 we apply the results of our preceding paper [S] to the study of the sign
structure of the kernel, from which the corresponding remainder formula is derived.
The proof of Theorem 1 is given in §3. Theorem 1 is then used in §4 to derive
convergence results.
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2. The remainder formula. Take 1 < r < n + | and consider the poised, symmetric
C.I.P. (E, F,x) defined in §1. In this case the relation (1.5) and the conditions (a)
and (b) imply that 0 < x, < --- < x, < | with equality iff n + r is even. We shall
also write §, , for C(F,x) and 5, , for ©(E, x) which corresponds to the dual C.L.P.
(F, E,x).

Specialising the results of [S] to this special case it is easy to see that the
corresponding null space

CO=C%F,x):= {SEC(F,x);S(r+x,)=0VvEZ E,=1)}

has dimension d, where

d:{n—i if n + ris even,
n—r+1 ifn+ risodd,
and is spanned by d eigensplines S, j = 1,...,d, satisfying the functional relation
(2.1) S(x+1)=A5(x) Vx € R.

The eigenvalues A, j = 1,...,d, of the C.LP. (E, F,x) are real, distinct, of sign (-1)"
and are precisely the eigenvalues of the matrix C = (C,),x, Where S*(1) =
C,S"0), p,»=0,....d.

Now for i = 1,...,r, we let L, denote the unique element of C(F,x) of power
growth (actually of exponential decay) satisfying

L(v+x,)=280, VYveEZ, j=1,.,r
Then, for f € 5, , of power growth, the unique function S, ,( f; ) € C(F,x) of power

growth that interpolates f for the C.I.P. (E, F, x) is given by

(22) SAfx) =3 S fr+x)Lx—).

i=lv=-2

We let S~,,‘,( i) e gn‘, denote the unique spline function of power growth that

interpolates f for the dual C.I.P. (F, E,x).
For x, t € R we define

g(x) = g(1) = (1/n)(x — 1)}

and

(2.3) K(x.1) =K,(x) =K (1) = g(x) = S, (g x).
Clearly, from (2.1), we have

(2.4) K(x+ 1,1+ 1)=K(x,1), Vx,t €ER,
and

(2.5) K(v+x,)=0, VveRandi=1,...,r.

Now we see from (2.2) and (2.3) that, forp = 0,...,n,
RO(1) = (<1)80(x) = 5,.((-1)°8: x).
Butforv € Zand p =0,...,r — 1, g!® € C(F,x) and so
(2.6) K®(»)=0, Vx€ER.
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Now we see from (2.2) that, for fixed x, S, ,(g; x) as a function of ¢ lies in
C(E,x) and has power growth. By (2.6) it interpolates g, for the C.LLP. (F, E, x).
Hence S, (g, x) = S',,‘,(gx; t),Vx,t € R, and so

(2.7) K(x,t) =g(t) = S, (&:1).

LEMMA 2.1. For 1 <r < n, there is a constant B > 0 such that the following hold for
p=0,...,n.

(a) Fort € R, K{PY(x) = O(e PM) as x - = o and the only zeros of K, (1 & Z) are
simple zerosatv + x;, v €EZ,i = 1,...,r.

(b) For x € R, szt")(t) = O(e Py as t - = o and the only zeros of K"x (x&Z+
x,) are isolated zeros of multiplicity r at the integers.

Proor. We shall prove only (a) as (b) follows similarly by duality, and only for
even n + r as the result for odd n + r follows similarly. By (2.4) and (2.6) we may
suppose 0 < ¢ < 1.

Now, for n + r even the C.I.P. (E, F,x) has n — r distinct eigenvalues A ,..., A, _,
of sign (=1)" with |A,[>|A,|> - >|A,_,|>0and N\, _, .., =A7, i=1,...,
n—r.

We let S,,...,S,_, denote the corresponding eigensplines, which span ©°. The
eigenvalues A ,...,A, _, are precisely the eigenvalues of the matrix C where (-1)'C is
an oscillation matrix with corresponding eigenvectors (S/(0),...,S/"""(0)), i =
1,...,n — r. So by a theorem of Gantmacher and Krein we have

S(8/0),...,8(0)=i—1, i=1l,...,n—r

(see also Micchelli [7]).

Now K, € C""(R) and for » = 1,2,..., K,|, ,+1, € m,. Thus, by (2.5), K, |, .,
can be extended to an element of C°. Since K, is of power growth, we therefore have

K(x)=YcS(x), Vx=1,
i=p

where ¢, # 0 and p > 3(n —r). Similarly K,(x) = Z,c,¢;Si(x), Vx <0, where
c,#0and g <j(n —r).

The first part of (a) follows.

Nowforp=0,...,n—randv =1,2,...,

KP(v) = 2 eXSP(0) and K(—») = X ¢,A;7"S!P(0).
i=Zp i<q

So K(P(v) = ¢,N,S#)(0) + O(X,) as v — o0 and K{#)(-») = ¢, A, *S{P/(0) + O(v, )
as » — o0. Thus for large enough N,
(2.8) S(KUN),....,K""P(N)) = 8(8;(0),....8~"(0)) = p — 1
and
(29)  S(K[(-N),....K"""(-N)) = 5(5.(0),....S"""(0)) = ¢ — 1.

We now show that K, is oscillating in (-N, N). For suppose K, = 0 on some
interval (a, b) € (-N, N). Since K, € C""'(R) and is a piecewise polynomial with
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knotsat Z U {t},a, b € Z U {t}. Furthermore, either a <t or b > 1. Suppose a < .
Then K!*(a)=0,p=0,....n—r,and K(a— 1+ x,)=0,i=0,...,r — 1, im-
plies that K, = 0 on (¢ — 1, a). Hence K{*(a — 1) =0, p = 0,...,n — r. By induc-
tion we have K!?(-N) =0, p = 0,...,n — r, which contradicts (2.9). Similarly b > ¢
leads to K{?(N) = 0,p = 0,...,n — r, which contradicts (2.8).

Now K, has exact degree n in (0, 1) and so we may apply Theorem 2.1 of [5] to
g = K| n.ntogive

Z(g)<Q@N—=1Dr+1+S (g(-N*"),....g"(-N"))

—S* (g(N ).....g"(N"))
<@N-Dr+1+(g—1+r)—p (sinceg(-N")=g(N")=0)
=2Nr+q—p<2Nr— 1.

But K, has 2Nr — 1 zeros in (=N, N) at points as in (2.5) and hence these are the
only zeros of K, in (-N, N). Since N can be arbitrarily large, (a) follows. [J

We must also consider the special cases » = n or n + 1, for which it is easy to see
the following. If 1 € (v, » + 1), then K, vanishes outside [», » + 1] and vanishes in
(v,v+ 1) only at » + x,, i = 1,...,r. Similarly if x € (v, » + 1), then 1€X vanishes
outside [v, » + 1] and vanishes nowhere in (v, » + 1).

THEOREM 2.1. If f € &,
(2.10) fx) = S, fix) = [* K(x,0)f "0y de

— o0

and {1170 is of power growth, then

PrROOF. By (2.4) we may assume 0 < x < 1. We may also assume x # x,, | =
1,...,r, since otherwise (2.10) is trivially satisfied.

Now integrating by parts and applying (2.6) gives, for any » € Z,

v+1 r
[ K ore vy =y [

v

v+1 ~

K(r)(t)f(n+1 r)(t) dt

So [* _ K(x, t)f " D(t)ydt = (-1yf* K (t)f "' ~"(¢) dt which converges since
fUrr170 4s of power growth and K (" decays exponentially. Also f*) is of power
growth for 0 < p <n + 1 — r and so we may integrate by parts to give

[T RO 0 de= () [ RO)f (@) de

e el

Now (-1)'K{"(1) = (x = )% =3/, 32 _ (v + x,
(4Y[7KWUNW)w=ﬂx Py
)=S0 O

3. Proof of Theorem 1. We see immediately from Theorem 2.1 that for f € &,
with f("*!77 of power growth and || f"* V|| , < o0

r=s, (£l sup{j | K(x. t)|dt}||f"’+”ll

xER

- t)(i L,(x — v) and so

f(V + xi)Li(x - )

b
rM8

nr
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Now there is an eigenspline E, | , € 5, | , with eigenvalue (-1)" which vanishes

aty + x,, Vv € Zand i = 1,...,r. We assume it is normalised so that | E{}} ) |= 1.

Putting f = E, , , , in (2.10), we see from Lemma 2.1(b) that

o0
|Eper ()= [ |K(x,0)|di,  Vx€ER,

so that the constant K in (1.6) is given by
(3.1) K=1E,; M-

Following the definitions of Cavaretta [1] and Goodman [4], we let&, ., , €5, ,,

denote the Euler-Chebyshev spline, normalised so that | &{1}" |= 1. Now the zeros

of &,,, , are points » + B, » € Z, where B, i = 1,...,r, are symmetric about x = 34
and 0 < B, < --- < B, <1, with equality iff n + r is even. Furthermore

8n+|.r(x +1)= (_l)r5n+l,r(x), Vx €ER,

and f = &, , , minimises || 1l , over all f € §, ., , with [| f"* V||, = 1. The result
follows. [

4. Convergence of S, (f; ). Henceforth we shall examine the behaviour of
S, (f, x) as n > oo. Analogous problems were studied in [6, 9 and 10]. We first
derive an estimate for || E, ;| Il ..

LeEMMA 4.1. For fixed x and r = 1, 3K, such that

(4.1) IE, ., I, <K,/ (rn)"",  vanzr—1.

PrOOF. First, assume that r is odd. For x € [0, 1], let
En+l,r(x) = aoEn+|(x) + alEn(x) + - +anEl(x) + an+1Eo(X)s

where E,(x), k=0,1,...,n+ 1, are the Euler polynomials. The conditions
E®, (1) = -E{#, (0) for p=0,1,...,n—r+ 1 imply that a,_,,, =0 Vk=
0,1,...,n — r + 1. Hence for x € [0, 1],

En+|.r(x) = aOEn+](x) + aIEn(x) +oe +ar—lEn—r+2(x)'

Now E,,, (x)=0, i=12,...,r, gives a homogeneous system of equations
aoE, . (x) +aE(x;)+ - +a, \E,_,,(x)=0,i=12,...,r, whose determi-
nant must be zero. Hence we can write

dCt( En—m+2(Bl))lr,m=|
det( E,,—m+2(xl))lr‘m=2

En+l.r(x) = Vx € [Oa 1]

where

_x ifl=1,
B/_{x, if 1 1.
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Using the Fourier expansions of the Euler polynomials E,(x) we obtain

r

[,m=1

|En+l.r(x)| = n+2

T r

det( 3 ek (2k + 1)”‘"’“)
2 ~ oo

2

— o0

det( e/ (2k + 1)”“"’”)

I.m=2

2l AE ) Vik,, ky,....k,) I;[le2k/ml3,/(2kj+ )"
— LSRR , j=
) (W,H—Z) " j n+1
S Vlky ky...ok,) IT e /(2k, + 1)
kyksy,..., k, j=2

where V(a,, a,,...,a,) denotes the Vandermonde determinant det(a’,');,_, =
II,<j<k<-(a, — a;). A straightforward computation gives

I En+l.r(x) I

S Vlky kg k)det(e2omB] S (2K, + 1)
(4.2)( 2 ) ki< <k, =
A 2 Vlky koo k, )det(e omyp o

I"l<“'<kr J

2k, +1)" """
2

I~ 1l

The dominant term in the numerator of (4.2) is

a . —(n - l - 3 - 1 — i r
‘HI (2J_r) ( +2){V(_(r 5 )’_(r 5 )’...’r 5 )(e(Zm r l)ﬂ’BI)/,m=l
j=

(4.3) ~V(_<“2r D) ,-(’; D ’;3 )(e‘z"’*'”"""),’.m:,}-

The dominant term in the denominator is

! , 1 (r—=1) (r—23) (r—3)

Xdel(e(Zm-»r—})m.\‘,)/’ I

It follows from (4.2), (4.3) and (4.4) that Vx € [0, 1]
H,_z(zj — = 2)n+|

j=

(B () 1= [ =25 ] o(1).

)n+2

;:l(zj - r

and (4.1) follows for odd r.
If r is even, a similar argument shows that for x € [0, 1] the eigensplines E, , | ,(x)
may be expressed in terms of Bernoulli polynomials B,(x) as follows:

— det*(Bn—»H-}( Bl))IrZI;ij
det*(Bn—m+3('xl))lr:2;m:3

En+l.r(x)
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where det* means that all the entries in the last row of the determinant are 1.
Expanding each determinant along the last row and applying a similar method to
each term gives the inequality (4.1) for r even. O

Now recall the definition of B, in §1. We shall need Bernstein’s theorem that if
f € B, then, for each integer n, /" € B, and

(4.5) NN, <ol fll ..
From (1.6), (3.1), (4.1) and (4.5), we can immediately deduce Theorem 2.

COROLLARY 4.1. If f € B, and o < rm, then
lim S, ,(f; x) = f(x) uniformly on R.
h— 00

COROLLARY 42. IffE€ B, , then foralln = r — 1

1 =8, (Mo < KNl

We now follow a similar approach to that of Schoenberg [10] in proving Theorem
3. First we introduce the class B* of functions which are uniform limits on R of
functions belonging to B, for p <rm, ie. f€ B if and only if 3f, € B, p;<rm,
j=1,2,3,..., such that Hf—fjllw —0asj— co.

LEMMA 4.2. If f € B} then
lim S, ,(f;x) = f(x) uniformly.
nh—oC

PROOF. Suppose f; € BP,’ p,<rm j=123,..., and || f— fill, = 0 as j — oco.
Thenf—S, (f;)=f—f— S, (f—f;)+ [ — S, ) ) and using Corollaries 4.1
and 4.2, the result follows as in [10]. O

Before we prove Theorems 3 and 4 we first study the behaviour of the spline
functions S, ,(cos rmx) and S, (sin rmx) that interpolate cos rmx and sin rox respec-
tively at v+ x,, i =1,2,...,r, v €Z. In order to simplify writing, we define
a,...,a, by

a, = X, i=1,...,r,if n + ris odd,
a,=0 and «,=x,_,, i=1,...,r—1,if n + riseven.

We first introduce the exponential Euler splines

(4.6) S, (x;u)= Y e Q(x,u) Vx€ER,

s=1
where

r

det(Z2. e B/ (u + 2km)" ")

k= Lm=1

k)

Q(x,u)= -

det( % eZk”’“// (u + 2k7r)n—m+2)

k=—00 I.m=1

(r—2yr<u<rm and

_[x ifl=3s,
'B’_[a, ifl #*s.
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Clearly S, (v + a;; u) =" ¥Vi=1,2,...,r, v€Z, and S

n,r

S, ,(cosrmx) + iS, (sin rmx). Therefore we are mterested in the limit of S,
as n — oo. First we prove

(x, rm) =
(x; rm)

n.r

LEMMA 4.3. Fors = 1,2,...,r,

V(€ *21”[3,’ e*-’-’”ﬁz“ . ’e—2m’[i,)

(4.7)  lim Q(x, rr) = e™*"Vcos m(a, — x) )
e 2mia,

PR 3 V(e'*Zﬂial, e"Z‘rriaz’. .

uniformly on R.

PROOF. Assume (r — 1)7 < u < rz. A straightforward computation shows that

S Wlkykyeok,) T €280/ (u+ 2k,m)""

Koo Y j=1
QJ(X, Ll): Kiks o ‘lr
2k, mia ntl
S V(kykyeonk,) [T e2mes (u+ 2k,m)
Kikyooons k, Jj=1
S V(k,, ky.... k,)det(e2knm By H (u+2km) "
o kl< ...</\r :
= r .
S Wk, ky... .k, )det(e ey H (u+2km)"
Ay<<--- <k, =
n+1 — n+1
=2(m - HmiB,\" u =2mmif;\" u 27 )
_ de((e I)I.m:I +( u— 2]‘77) del(e )l.m—‘—’l + 0( u— 2’_77_
n+l — n+1y\
=2(m—lmia; " u —2mmia;\" u 2w )
det(e )I.m:l +( U — 2’,77) de[(e I)l.m=l + O( u— 2ra

Taking the limit as u — ra, after some simplification, we obtain
(4.8)

V(efzmﬁ.“”,e~—zwiﬁ,)(1 +(=1)" e 2mn ./3/) +o((r— 2/,)”“)
V(e 2mer, e 2me)(1 4 (=1)" e 23] + O((r — 2/r)"" ) ’

Q,(x.u) =

Now suppose n even. If ris even, a; = 0 and

(4.9) S e, = _2+%.
=1
If ris odd, @, > 0 and
d r—1 1
(4.10) §a,= 5 +§.

The result (4.7) then follows from (4.8), (4.9) and (4.10). For odd n,
d (r —1)/2 ifrisodd,
2 o = { /

r/2 if r is even,

and (4.7) follows similarly. O
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LEMMA 4.4. If a; = 0, the following limits hold uniformly:

(4.11) lim S, (cos rmx) = cos rmx,
n— 00
(4.12) lim S, (sin rmx) = sin rex + (1) 27" [ sina(x — ;).
n- oo i=1

If a; > 0, the following limits hold uniformly:
(4.13) lim S, (cos rmx) = cos rmx + (~1)"" 277" [ sinw(x — a,),
n—o i=1

(4.14) lim S, (sin rmx) = sin rax.
n— oo

PrOOF. First we write

V(e 2B g7 2miBa o 2mikr) I (e72mibe — em2mit)

V(e—21ria|’ e—21ria2" . ’e—21ria,) H (e—Zﬂiak _ e—27ria,)

H sinm(B, — B;)

e~ D7i(a;—x) Is/<ksr

[ sina(e,—a)

I</<k<r

,
I sinm(x — ay)
= o(r=Dmi(a,—x) k=1

b

p
’ .
klll sinm(a, — a;)

where [II';_, indicates that the factor involving k = s is omitted. Hence it follows
from (4.6) and (4.7) that

.
, [l sinw(x — o)
lim S, (x,rm) = 3 e™*cosm(x — a,) -+

n— o0 4 .
klll sin7(a, — a,)

s=1

=¢(x) +iy(x),

where

,
I’ sin 7(x — a;)
k=1

r

1)

¢(x) = D cosrma cosm(x — a,)

s=1 [I’ sin (o, — a,)
k=1
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and
.
14 .
. II sinm(x — a;)
Y(x) =3 sinrma,cos m(x — a,) -~ .
= [l sinm(a, — o)
k=1

Clearly lim,, . S, (cosrmx) = ¢(x),lim,_ S, (sin r7x) = Y(x).
Next, we want to simplify ¢(x) and ¢(x). First we consider r even. The Gauss
trigonometric interpolation formula gives

(4.15) o(x) = cosrmx + A [[” sinm(x — a).
k=1

To determine A, we write

(4.16)
a(a, — x I inm(x — a S em(xTa) 4 pmmilxmay)
cos 7(a, )EISI ( %) 2(2i),,,( + )
. (exp[m’((r— 1)x — é’ ak) S+ (-1)"exp —m’((r— Dx— Y ak)l)
k=1 k=1
and

+ ...

e 54

Equating the highest order terms in (4.15), it follows from (4.15)-(4.17) that

e ¥ {((_z) +((-z))

k=1

o oo ol oefle 2]

r r
:cosrvrx+)\{c057r(rx— > ak) +isin7r(rx— > a,\,)
k=1 k=1

ILI sinm(x — a;) = (21,.), (exp[wi(rx - élak)

+ (-1)"exp

(4.17)

+ (_D’[cosw(rx - /élak) - isinﬂ(rx - élak”},

where A, = cos mra, /I’y - sinm(a, — a).
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Since r is even it follows that

2>\cos'n(rx - ak)

-2 k=1
(4.18) 2 A smw(rx— Y « ) = cos rmx + -
(2i)" 5= k=1 * (2i)
Now if &, = 0, then 3} _, a, = r/2 — 1, so that (4.18) becomes
(r+2)/2 r _ (r+2)/2 .
(-1) cosrvrx( >4 ) = cos mrx + (1) .22\sm Ly
(i) s=1 (2i)

Hence A = 0. This proves (4.11) for r even.
If a; # 0, then X _ a;, = r/2, so that (4.18) becomes

2\ cos mrx

2 r
— sin rvrx( > As) = cos mrx + 3

2"

Hence A = —2"~'. This proves (4.13) for r even. The proof of (4.12) and (4.14) for r
even are the same.
Next we consider r odd. If a; # 0, we let &, = 0 and write

H sinm(x — a,)

2 cos rra,cos m(x — a,)~=2

s=0 H' sinm(a, — ak)
k=0

(4.19)  o¢(x)=

sin x

The Gauss interpolation formula again gives

r

’ .
, [I" sinm(x — a,)
S cos rma, sin ma cos m(x — a,)~=2
s=0 ’

sin(a, — a;)
k=0

= cosrmxsinmx + A ] sinw(x — a,).
k=0
A similar calculation gives A =2""! so that (4.19) gives ¢(x) = cosrmx +
2" 'M% -, sinm(x — a). This proves (4.13) for r odd. The proof of (4.14) is similar.
If ) = 0, welet a,,, = % and write
r+1
il [l sinm(x — a,)

> cos rma, cos ma, cos m(x — a,) rk+:ll ,
s=1

[l sinw(a, — o)
k=1

(4.20) o(x) = Py

and (4.11) and (4.12) for odd r are proved similarly. [J
PROOF OF THEOREM 3. Let

a(-rm +0) ifu=—rm,
ag(u) = 3 a(u) if -7 <u<rm,

a(rm—0) ifu=rm.
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Then ay(u) has no jumps at *rz. Define

fo(x) :f e'“day(u)  Vx ER.
Setting 4, = a(-rm + 0) — a(-rm), A, = a(rm) — a(rm — 0), we can write f(x) =
fo(x) + Aje™™* + A,e’™, and setting 4 = A, + A,, B = i(4, — A,) we obtain
(4.21) f(x) =f(x) + Acosrmx + Bsinrmx  Vx €R.

Now f, € B, since f; is the uniform limit of the sequence {f}, f; € B, . defined by
[i(x) = jf/p/e’“"' dag(u), with 0 <p, <rm, p,—rm as j— co. By Lemma 4.2 we
conclude that lim, _ S, .( fy; x) = fy(x) uniformly on R. The theorem now follows
from (4.21) and Lemma 4.4. [

Finally we consider the class & % of almost periodic functions in the sense of Bohr.
To every f € @9F corresponds a Fourier series

f(x) ~ § Ave"}\"x’

v=1
where A, are real numbers, called the Fourier exponents of f. Also for ¢ = 0,
APNB,={ffEAP, -0<A,<0}.
PROOF OF THEOREM 4. Suppose f € @ N B,,. Then its Fourier exponents A,
v=1,2,3,..., satisfy -ro# < A, < rm.
Without loss of generality we may assume that A; = —r#, A, = rz with the
understanding that 4, = 0 if the exponent —ra is absent, and similarly that 4, = 0 if

exponent 7 is absent.
Let

Aye” "M 4+ Ae™* = A cos rmx + Bsin rax,

where 4 = A4, + A,, B=i(A, — A,). It follows that the function

(4.22) g(x) = f(x) — Acos rmx — Bsin rox

has Fourier series g(x) ~ 3% ,A4,e™" where —rm <\, <rm VA=3,4,5.... A
similar argument as in [10] shows that g € BX . It follows from Lemma 4.2 that
(4.23) S, ,(g;x) = g(x) uniformly on R.

The theorem then follows from (4.22), (4.23) and Lemma 4.4. [
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