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A REMAINDER FORMULA AND LIMITS OF

CARDINAL SPLINE INTERPOLANTS

BY

T. N. T. GOODMAN AND S. L. LEE

Abstract. A Peano-type remainder formula

/(*) - S„(f; x) = j™xKn(x, í)/<"+l>(í) dt

for a class of symmetric cardinal interpolation problems C.I.P. (E, F,x) is obtained,

from which we deduce the estimate 11/- S„r(f; )ll00 « /f||/("+l>ll00. It is found

that the best constant K is obtained when x comprises the zeros of the Euler-

Chebyshev spline function. The remainder formula is also used to study the

convergence of spline interpolants for a class of entire functions of exponential type

and a class of almost periodic functions.

1. Introduction. As in [5], for x = (x0, x,,... ,xm), 0 = x0 < x, < ■ ■ • < xm = 1

and incidence matrices £ = II Ei] II,™ „"=<» F ~ H Fij »i=07?=o with eoj = Emj and foj =

Fmj,j = 0,...,n, let 6(F,x):= {/: R - C; Vv G Z, f\(v + x¡, v + xi+l) € ir„,

/ = 0,...,m - 1, and f(n~J\v + xj ) = f(n'j\v + x+ ) V(/, /) with FtJ = 0}, and

refer to the following 'cardinal' interpolation problem as the C.I.P. (£, £, x):

For sequences of numbers {y(,J)} = {>'„<'"'); 0 =s /' < m and Et¡ = 1}, find S G

ß(£, x) satisfying SU)(v + x¡) = y«'J\

Sufficient conditions for C.I.P. (£, £, x) to be poised, i.e. existence of a unique

S E 6(F,x), S(x) = 0(| x \y) as x -> ± oo satisfying Su\v + x,) = y^iJ) when y^j)

— 0(\ v \y), are given in [5].

Suppose that the C.I.P. (£, F, x) is poised; then given a sufficiently smooth

function / of power growth 3 a unique Sn(f; ) G G(F, x) of power growth which

interpolates/in the sense that

(1.1) SG\f;p + x<)=fM(v + Xi),       v<=Z,Eu=l.

The following problem then arises.

Problem. Find necessary and sufficient conditions so that Sn(f; ) ^/uniformly as

n -> oo.

This question was first raised by Schoenberg [9] who also found a sufficient

condition for the convergence of S„( f; ) for the case where m = 1, n is odd, £ = £

and

/ Í0,     / = 1,2,.. .,/i,
(1.2) E0j = Etj={l[    JJ = 0/
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In this case 6(F,x) comprises odd degree cardinal splines with integer knots.

Schoenberg [9] proves the following

Theorem A. Let

(1.3) f(x)=j-f e""da(u)

where a(u) is a function of bounded variation in [-it, tt] and let A — a(-TT + 0) —

a(-ir), B = a(w) — a(ir — 0). Then

lim S2k_x(f;x) =/(x) + -—-'- sin™

uniformly on R.

A partial converse of Theorem A was given by Richards and Schoenberg [8].

Subsequently, Marsden and Riemenschneider [6] generalised Theorem A to the case

of cardinal Hermite interpolation which corresponds torn- 1, £ = £ and, for some

K^](n+ 1),

f 1,    ;' = 0,1,. ..,/•- 1,

°J~    XJ~{0,    j = r,...,n.

In this case, a sufficient condition for convergence of S„(f; ) analogous to that of

Richards and Schoenberg was given by Goodman [4].

Recently, in an attempt to obtain more information on the convergence problem,

I. J. Schoenberg [10] obtained a Peano type remainder formula

(1.4)        f(x)-S2k„x(f;x)=r K2k_x(x;t)f*k\t)dt       (x E R)
•'-oo

for the case m = 1, n — 2k — 1, E = F and £ satisfies (1.2), where

K2k_x(x,t):= (x- t)lk-x -S2k_x((--t)2+k-]; x). From (1.4), Schoenberg [10]

deduced Theorem A and also obtained a convergence result for a class of almost

periodic functions.

In this paper we shall consider the symmetric C.I.P. (£, £, x)

x,= l-x„,_,,        i = 0,...,m,

F¡j =1    iff i = 0 or m and y = 0,... ,r — 1,

for some 1 < r < n + 1, and either

(a) n + r is even, m = r and £,  = 1 iffj = 0 and /' = 0,...,m, or

(b) n + r is odd, m = r + 1 and E¡¡ = 1 iffy = 0 and i — l,...,m — 1.

That this problem is poised follows from Corollary 4.3 of [5] and was earlier shown

by Micchelli [7]. In this case the class of cardinal spline functions G(F, x) is usually

denoted by ?->„,., and clearly

Sn>r = e(F,x) = {SG C-'(R);S\{P^+X) G tt,,, V, G Z}.

For r, n as above, we define %,r := {/G C"+1~r(R); /|(„,„+1) G C[(v, v + 1)]

and/'"' bounded and absolutely continuous on (v, v + 1), Vp G Z).
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For/ G <5n r of power growth, we let S„ r(f', ) denote the unique function of power

growth that interpolates/as in (1.1). Following the approach of Schoenberg [10] we

derive a formula for the remainder/— S„ r(f; ) and deduce the following result.

Theorem 1. For fixed n, r and x, 3K such that for any f G <%n r with f{"+ ' ~r) of

power growth and II /(n+1)ll00 < oo,

(1.6) 11/-$,.,(/; )ll»<*ll/(,,+1)ll».

and equality is attained for some f G <Snr. For fixed n, r, K is a minimum when x

comprises the zeros of the Euler-Chebyshev spline &„+x r (see [1] and [4]) and in this

case equality is attained for f= &n+x r

For r = n + 1, this result reduces to a classical result on optimal constants in the

remainder for Lagrange interpolation by polynomials (see [3, p. 64]).

Now let Ba = {f; fis the restriction to R of an entire function of exponential type

<aand II / II ̂ < oo}.

By deriving bounds on the best constants K in (1.6), we prove the following

results, all of which are generalisations of results of Schoenberg [10].

Theorem 2. For fixed x and r> 1,3 Kr such that for all n> r — 1 andf G Ba,

ll/-^(/;)IL<^(a/^)fl+1ll/ll00.

Theorem 3. Iff(x) = frnrve'ux da(u), where a(u) is a function of bounded varia-

tion in [-riT, m], then

r

lim Snr(/;x) =/(x) + C2'-x II sin7r(x-x,)
i=i

uniformly, where

Í(-l)ri{a(rTr) — a(r-Tr — 0) + a(-rir) — a(-rTr + 0)}        if n + ris even,

(-l)r    {a(rTi) — a(rir — 0) — a^rir) + a(-r-n + 0)}     if n + ris odd.

Theorem 4. /// G Br7r is almost periodic in the sense of Bohr, then

r

lim 5„r(/;x) =/(x) + C2r Ü sinfl/x-x,)

uniformly, where

r 1     fT
(-1)    lim   — /  /(x)sin rmxdx        if n + r is even,

T— oo    ' •'()

— 1 1*7^

(-l)r      lim   — /   /( x )cos r-nx dx     ifn + risodd.
T-oo    /  Jq

C

In §2 we apply the results of our preceding paper [5] to the study of the sign

structure of the kernel, from which the corresponding remainder formula is derived.

The proof of Theorem 1 is given in §3. Theorem 1 is then used in §4 to derive

convergence results.
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2. The remainder formula. Take 1 < r < n + 1 and consider the poised, symmetric

C.I.P. (£, £,x) defined in §1. In this case the relation (1.5) and the conditions (a)

and (b) imply that 0 < x, < ■ • • < xr < 1 with equality iff n + r is even. We shall

also write Sn r for G(F, x) and Sn r for C(£, x) which corresponds to the dual C.I.P.

(£, £,x).

Specialising the results of [5] to this special case it is easy to see that the

corresponding null space

e° = e°(F,x) := [S gG(F,x);S(i> + x,) =0VvEZ,Ei0= 1}

has dimension d, where

• _ Í n — t if « + r is even,
In — r + I     if « + r is odd,

and is spanned by deigensplines S.,j — 1,... ,d, satisfying the functional relation

(2.1) Sj(x + 1) = XjSj(x)       VxGR.

The eigenvalues Xj,j= l,...,d, of the C.I.P. (£, £, x) are real, distinct, of sign (-1)'

and are precisely the eigenvalues of the matrix C = (C )dxd where S'Xl) =

C^\0),p,P = 0,...,d.

Now for / = l,...,r, we let L, denote the unique element of G(F,x) of power

growth (actually of exponential decay) satisfying

E¡{v + Xj) = 8„08,j,       Vu G Z,j = \,...,r.

Then, for/ G Sj, r of power growth, the unique function Snr( f; ) G G(F, x) of power

growth that interpolates/for the C.I.P. (£, £, x) is given by

r oo

(2.2) $,,,(/;*)= 2   2 f(p + xi)Li(x-p).
1=1   V-00

We let Sn r(f\ ) G S„ r denote the unique spline function of power growth that

interpolates/for the dual C.I.P. (£, £, x).

For x, / G R we define

g,(x)^gx(t)--={\/n\)(x-t)"+

and

(2.3) K(x, t) = K,(x) = Kx(t) := g,(x) - Sn>r(g,; x).

Clearly, from (2.1 ), we have

(2.4) K(x+ l,t+ \) = K(x,t),        Vx,/GR,

and

(2.5) K,(v + x,)=0,       Vv G Rand/ = 1,...,/-.

Now we see from (2.2) and (2.3) that, for p = 0,...,«,

K</Kt) = (-iygi'>\x)-sn,r{(-iyg<<>\x).

But for v G Zandp = 0,...,r- l,giP) G <2(£,x) and so

(2.6) ^p>(") = 0,       VxGR.
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Now we see from (2.2) that, for fixed x, Sn r(g,\ x) as a function of t lies in

G(E,\) and has power growth. By (2.6) it interpolates gx for the C.I.P. (£, £,x).

Hence Snr(g,\ x) = Sn,r(£x; 0. v*> ' G R< and so

(2.7) K(x,t) = gx(t)-S„,r(gx;t).

Lemma 2.1. For 1 < r < n, there is a constant ß > 0 such that the following hold for

p = 0,...,n.

(a) For t G R, K¡p)(x) = 0(e~ßM) as x -» ± oo and the only zeros of K, (t £ Z) are

simple zeros at v + x¡, v G Z, í = 1,...,r.

(b) £w x G R, ä:<p)(0 = Ofe-"1'1) as t ->±oo and the only zeros of Kx (x £ Z +

x,) are isolated zeros of multiplicity r at the integers.

Proof. We shall prove only (a) as (b) follows similarly by duality, and only for

even n + r as the result for odd n + r follows similarly. By (2.4) and (2.6) we may

suppose 0 < t < 1.

Now, for n + reven the C.I.P. (£, £, x) has n — /-distinct eigenvalues X,,.. . »X„_r

of sign (-l)f with | A, |>| X2\> ■■ • >|X„_,|>0 and A„„r_,+ I = X~1, i = 1,...,

n — r.

We let S,,...,S„_, denote the corresponding eigensplines, which span G°. The

eigenvalues \,,...,X„_r are precisely the eigenvalues of the matrix C where (-l)f is

an oscillation matrix with corresponding eigenvectors (5/(0),... ,S{"~r)(0)), i =

l,...,n — r. So by a theorem of Gantmacher and Krein we have

S(s;(0),...,S<"-r)(0)) = i~ 1,       /= \,...,n-r

(see also Micchelli [7]).

Now K, G C"-'(R) and for v = 1,2,..., K,\^p+X) G mn. Thus, by (2.5), K,\llM)

can be extended to an element of G°. Since Kt is of power growth, we therefore have

K,{x)= 2 CiSi(x),       Vx^ 1,

where cp ¥= 0 and p > \(n — r). Similarly Kt(x) = *ZlSiqc,Si(x), Vx *£ 0, where

cq ¥= 0 and <? < j(« - r).

The first part of (a) follows.

Now for p = 0,..., n — r and v = 1,2,...,

K¡»\v) = 2 c,W(0)    and    K¡»\-v) = 2 c,A,-<>,«»(0).

SoK¡»\v) = cprpS^(0) + 6>(X;)as^ oo and *<»>(-") = ct/X;/Sq"\0) + 0(v^)

as v -» oo. Thus for large enough N,

(2.8)      5(A-;(yv),...,/:<»-)(/v)) = s(s;(o),...,s;"-^o))=p-1

and

(2.9)       S{K;(-N),...,K¡"^\-N)) = s{Sq(0),...,Sq"-r\0)) = q - I.

We now show that K, is oscillating in (-N, N). For suppose K, = 0 on some

interval (a, ¿>) G (-N, N). Since /<, G C"~r(R) and is a piecewise polynomial with
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knots at Z U {/}, a, b G Z U {/}. Furthermore, either a < t or b> t. Suppose a < t.

Then Kjp)(a) = 0, p = 0,...,« - r, and K,(a - 1 + x,) = 0, / = 0,...,r- 1, im-

plies that K, = 0 on (a - 1, a). Henee K¡p)(a - 1) = 0, p = 0,...,« - r. By induc-

tion we have K¡p)(-N) = 0, p = 0,... ,n — r, which contradicts (2.9). Similarly b > /

leads to K¡p)(N) = 0, p = 0,... ,n - r, which contradicts (2.8).

Now K, has exact degree n in (0,1) and so we may apply Theorem 2.1 of [5] to

8 '~   Kt\(-N.N)i0&^

Z(g)<(2N- l)r+ 1+ 5- (g(-/V+ ),..., g""(-/V+))

-S+(g(N-),...,g<"\N-))

<(2N - \)r+ 1 + (q - 1 + r) - p    (since g(-N+ ) = g(N~) = 0)

= 2Nr + q - p<2Nr - 1.

But Ä^, has 2Nr — 1 zeros in (-/V, 7V) at points as in (2.5) and hence these are the

only zeros of Kt in (-N, N). Since N can be arbitrarily large, (a) follows.    D

We must also consider the special cases r — n or n + 1, for which it is easy to see

the following. If t G (v, v + 1), then K, vanishes outside [v, v + 1] and vanishes in

(v, v + 1) only at v + x,, i = 1,...,r. Similarly if x G (v, v + 1), then Kx vanishes

outside [v, v + 1] and vanishes nowhere in (v,v + 1).

Theorem 2.1. /// G ÍF„ r andf{n+ ' ~r) is of power growth, then

/oo K(x,t)f("+X\t)dt.
-oo

Proof. By (2.4) we may assume 0 < x < 1. We may also assume x ^ x¡, i =

1,...,/-, since otherwise (2.10) is trivially satisfied.

Now integrating by parts and applying (2.6) gives, for any v G Z,

r+lK(x,t)f("+x)(t)dt = (-iyr+iK(/\t)f("+x-r)(t)dt.

So Jx00K(x,t)f("+X)(t)dt = (-iyfx00Kxr)(t)f("+x-r)(t)dt which converges since

f(n+\-r) js 0f p0wer growth and K1/"1 decays exponentially. Also/<p) is of power

growth for0^p^«+ 1 — r and so we may integrate by parts to give

(-i)7" je<'>(o/<»+,-'>(o* = (-i)7" Ki"\t)f(t)dt.
•'-oo ^-oo

Now (-\)nKx"\t) = (x- 0+ -2i=1 Z%-Jv + x, - 0+ L,(x - v) and so

/•OC i-oo

(-1)7    kx"\t)f'{t)dt=f{x)- 2     2    f{v + x,)L,(x-v)
00 /— 1  v— — OO

= /(x)-5„,r(/;x).    D

3. Proof of Theorem 1. We see immediately from Theorem 2.1 that for/G ^nr

with/("+|-r) of power growth and II/("+1,ll00 < oo

l/--Sw.,(/;)lL<suP(r \K(x,t)\dt)\\fx" + 1)11
" 00 *
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Now therejs an eigenspline En+]r G §„+l r with eigenvalue (-l)r which vanishes

at v + Xj, Vc£Z and i = 1,...,/•. We assume it is normalised so that | F^+tV | = 1.

Putting/= En+X r in (2.10), we see from Lemma 2.1(b) that

/oo \K(x,t)\dt,       VxGR,
-oo

so that the constant K in ( 1.6) is given by

(3.1) K=\\En+xJx.

Following the definitions of Cavaretta [1] and Goodman [4], we let S„+1 r G Sn+1 r

denote the Euler-Chebyshev spline, normalised so that | &„"^xX)r |= 1. Now the zeros

of Sn+, r are points v + /},-, v G Z, where /?,,/' = l,...,r, are symmetric about x = ^,

and 0<jS,< • • • < ßr *£ 1, with equality iff « + r is even. Furthermore

S„+,,r(*+l) = H)rS,,+ ,»,        VxGR,

and/=S„+lr minimises \\f\\x over all/G Sn+1 r with II/("+l)ll00 = 1. The result

follows.    D

4. Convergence of Snr(f', )• Henceforth we shall examine the behaviour of

Sn r(f, x) as n -» oo. Analogous problems were studied in [6, 9 and 10]. We first

derive an estimate for l|£„+1 _r\\x.

Lemma 4.1. For fixedx and r > 1, 3Krsuch that

(4.1) WEn+Ur\\a><Kr/(nr)'+\       Vif>r-1.

Proof. First, assume that r is odd. For x G [0,1], let

En+i.Âx) = a0En+x(x) + axEn(x) + ■■■ +a„Ex(x) + an+xE0(x),

where Ek(x), k = 0,1,... ,n + 1, are the Euler polynomials. The conditions

EtfiM) = -£«+.,r(0) for p = 0,1,...,n - r + 1 imply that a„_fc+1 = 0 Vfc =

0,1,...,«-r+ 1. Hence for x G [0,1],

E„+i,r(x) = a0En+x(x) + axEn(x) + ■■■ + ar_xEn_r+2(x).

Now £n+lr(x,) = 0, i—\,2,...,r, gives a homogeneous system of equations

a0£„+,(x,) + a,£„(x,) + ■ • • +ar_1£n_r+2(x,) = 0, / = 1,2,...,r, whose determi-

nant must be zero. Hence we can write

£n+i {x) = det(£,_w + 2(A));,M=,        vx g [o> u

det(£„_„,+2(x/))/m=2

where

ix     if/=l,
Pi ~ \ x,    if / # 1.



476 T. N. T. GOODMAN AND S. L. LEE

Using the Fourier expansions of the Euler polynomials Ek(x) we obtain

E„+\.Ax)

det    2 e2k^'/(2k+ I)"'
, 1 3

l,m=\

det    2 elk"ix'/ (2k + l)"'
i > 3

l,m = 2

.11 + 2

A,,A,

2       V(kx,k2,...,kr)][e2k^l/{2kJ+ 1)
n + i

r-i

I       V(k2,k3,...,kr)I[e2k^/(2kJ+l)"+]
k2,k3.k, 7=2

where  F(a,, a2,...,ar) denotes the Vandermonde determinant det(a'mx)'/ m=x =

Hi</<*«i(i|i — fly)- A straightforward computation gives

\En+UX)\

(4.2)
2r

2    v{kx,k2,...,kr)d*{e2k^yhm=x s {ikj+iy
*,<•■•<*, 7=1

(n + 2)

2       K*2. *3,...,*,)det(e2*-"x,)/'«=2 2 (2*,- + l)
A2< ■ - ■ <kr 7 = 2

(ii+l)

The dominant term in the numerator of (4.2) is

n(2/-r)-("+2){K(-

(4.3) V -

(r- 1)      (r-3) r- 1

2      ' 2      '•""     2

(r + 0      (r~ 0 '•- 3 |
2      ' 2      '■•"'     2

The dominant term in the denominator is

(    (2m-r-\)viß,y
Ve 7/.m=l

'01,''
V c fl.m— 1

(4.4)

Il (27 - r - 2)
(n+i).

7 = 2

('- ')      (r-3) (r-3)

2      ' 2

Xdet(e(2n,_'-3)'"JC')/'',m=2-

It follows from (4.2), (4.3) and (4.4) that Vx G [0,1]

£„+l.r(*)| =

2' n;=2(2y - r - 2)'!

n;=,(2y-r)
n + 2

0(1),

and (4.1) follows for odd r.

If r is even, a similar argument shows that for x G [0,1] the eigensplines En+X r(x)

may be expressed in terms of Bernoulli polynomials Bk(x) as follows:

det*(fi„_m+3(/?,));=1;m=2
E„+l.r(X)

det*(£„„m + 3(x,));=2;,
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where det* means that all the entries in the last row of the determinant are 1.

Expanding each determinant along the last row and applying a similar method to

each term gives the inequality (4.1) for r even.    D

Now recall the definition of Ba in §1. We shall need Bernstein's theorem that if

f G Ba then, for each integer n,f{n) G Ba and

(4.5) ll/(")ll00<a'MI/ll00.

From (1.6), (3.1), (4.1) and (4.5), we can immediately deduce Theorem 2.

Corollary 4.1. /// G Ba and a < rir, then

lim Sn r(f'y x) = /(•*)    uniformly on R.
11-. 00

Corollary 4.2. /// G Brit, then for all n > r     1

U-S,,,r(f)\\x^Kr\\f\\oa.

We now follow a similar approach to that of Schoenberg [10] in proving Theorem

3. First we introduce the class B*^ of functions which are uniform limits on R of

functions belonging to B for p < rir, i.e. f G B*v if and only if 3/ G Bp , p} < rir,

j= 1,2,3,..., suchthat II/ —jÇII«, — 0 as> — oo.

Lemma 4.2. /// G B*„ then

lim S„ r( /; x ) — /( x )    uniformly.
n -»oo

Proof. Suppose f G Bp , p} < rir, j = 1,2,3,..., and 11/-/ll^ -> 0 as j — oo.

Then/ - 5„,r(/; ) = / - f¡- S„,r(/- /; ) + /• - S„.r(/; ) and using Corollaries 4.1

and 4.2, the result follows as in [10].    D

Before we prove Theorems 3 and 4 we first study the behaviour of the spline

functions S„ r(cos rirx) and S„ r(sin rirx) that interpolate cos rirx and sin rirx respec-

tively at v + x¡, /'= 1,2,...,/-, i»EZ. In order to simplify writing, we define

a,,...,arby

a,■ = x¡,       i = \,...,r, if n + r is odd,

ax = 0    and    o, = x,_,,        i — 1,... ,r — 1, if n + r is even.

We first introduce the exponential Euler splines

r

(4.6) S„  (x; u)= 2 e,uxüs(x, u)       Vx G R,

s=\

where

„,   v   det(2r=-oo^^/(^ + 2^)"-"-t-2);m„

del(ï^_xe2k"""/ (u + 2kir)"-m+2)rl

(r — 2)ir < u < rir, and

fx       ¡f/ = i,
pi      la,    ifl^s.
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Clearly S„ r(v + a,; u) = eiu(v+a* V/ = 1,2,... ,r, v G Z, and Snr(x, rir) =

Sn r(cos rirx) + iSn r(sin rirx). Therefore we are interested in the limit of Sn r(x; rir)

as n -» oo. First we prove

Lemma 4.3. For s = 1,2_, r,

yt „-2711/3,   p-2viß2 -2-n,ßr\

(4.7)      hm Q(x,rir) = e»««-- v)cos 77(0   - x)-^—-'—,-^^-¿
»-oc K(e_2'r''a,,e_2l"'<,,2,...,e_2ir,'a')

uniformly on R.

Proof. Assume (r — l)7r < u < rir. A straightforward computation shows that

2       r(*„*2,...,*,) u e2kJ"ßJ/(u + 2kjir)
O / x *i-*2.Ar_/=1_
fi <x, a) =-

2       F(/c,,/c2,...,^) ne2V'V(« + 2A:^)'
A,,A,_k, 1    1

«+1

2       ^*,, *,,...,*Jdet(e"«-*«,')/,.»=i u (h + 2*,*)
A,< ■ • • <k, )= 1

ii-l

2       V(kx,k2,...,kr)det(e2k»™>)ï,m=x il (11+ 2*,»)
A,< • •• <A. 7= 1

-n-1

«(.--«•»...,+(1-jL_)",lM.-ta-»)u,+"(if^n

d.,(,- — ),'.„., +(-Ji-)",'de,(e—».),'..„, + o(|i=^

Taking the limit as u -» rir, after some simplification, we obtain

(4.8)

V(e-2w,*,...,e-2«'')(\ +(-\)m+xe-2"V-'*>) + 0((r - 2/r)"+')

Öf(x,«)
K(e-2*'"',...,e-2""')(l +(-!)"*'e-2"'-;-'«') + 0((/-- 2/r)"+1)

Now suppose n even. If /• is even, a, = 0 and

(4.9) ¿a/ = Z^l+l
/=! Z Z

If r is odd, a, > 0 and

(4.10) 2a/ = __z_L+»
/=i        ¿      ¿

The result (4.7) then follows from (4.8), (4.9) and (4.10). For odd n,

y {('"- O/2     if/"is odd,

..   '      \r/2 if ris even,

and (4.7) follows similarly.    D
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Lemma 4.4. If ax — 0, the following limits hold uniformly:

(4.11) lim S„ r(cos rirx) = cos rirx,
n-* oo

r

(4.12) lim Sn r(sin rirx) = sin rirx + (~l)r2r~x II sin7r(x — a¡).
n -» oo ,1

//a, > 0, the following limits hold uniformly:

r

(4.13) lim 5„ r(cos/-wx) = cosrwx + (-l)r   2r~x II sin7r(x — a,),
ii-oc      • ,= 1

(4.14) lim 5„ r(sin rirx) = sin rwx.
n-*oo

Proof. First we write

TT        (p-2nißk _ p-2„,ß,\

V{e-2^,e-2^,...,e-2^) =xJ^ry '

Vie'2™'"', e-2"'"2,... ,e  2w'M (e~2"i<*t _ e-2i,ia,\

ls£/<A:=Sr

II      smir(ßk-ß,)
— e(r-l)wi(ar-x)   laS/<Ag£r_

u      sinir(ak- a¡)
!«:/<*: s: i-

r

II' sinw(x — ak)
-  -<r-\Ui(a,-x)   k=]_

u' sinw(as - ak)
k=\

where 11'*= i indicates that the factor involving k = s is omitted. Hence it follows

from (4.6) and (4.7) that

r

r                                     II' sin77(x - ak)

lim S„ r(x, rir) = 2 e"Tia'cos ir(x - a,)-^-

s=\
IT sin ir(as - ak)
a    i

= <t>(x) + i^(x),

where

r                                               W sin7r(x - ak)

<¡>(x) - 2  cosrirascosir(x — aj-^f^-

u' sin7r(av - ak)
k=\
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and

r II' sinw(x - ak)

^(x) —  2  sin rirascos ir(x — as)—y-

u' sin ir(as~ak)
.5=1

k        1

Clearly lim,,^XS„ r(cosrirx) = <J>(x), limn^xS„ r(sin rirx) = 4>(x).

Next, we want to simplify <j>(x) and >Kx). First we consider r even. The Gauss

trigonometric interpolation formula gives

(4.15) <í>(x) = cos rirx + X II   sin7r(x — ak).
k=\

To determine X, we write

(4.16)

'                                        i

cosir(as - x) Ü' sin77(x - ak) =-_.(e"<*-«.) + e--i<*-«.>)
A=l

exp iri\(r- l)x- 2' «a
A=l

2(2/)'

+ •■• +(-l)r  'exp -iri\(r- l)x- 2' ak
k=\

and

(4.17)

sin ir( x —a.) =-I exp
a=i (2/)rl

rx —   2 ak
A = l

+ .

rx —  2 ak
A=l        i

+ (-l)rexp

Equating the highest order terms in (4.15), it follows from (4.15)-(4.17) that

rx —  2 a* I I + 'sm I w   r* —  2 a
2(2

1 VaÍ     I-T   ^  ^ ^.K COS I 77 1 ía -j   u¿ i   i     i    * am i v/ i f a ¿¿   w.¿

i)F       s=\       [       \     \ k=\       I I k=\

+ (-!)' cos   77   rx 2 a*
k=\

— /sin   ir\ rx 2 ak
A=l

cos rirx + X< cos ir\ rx —   2 aA+ ' sm m \rx ~   2 alk    I        11  OUI   H        /A /,     Ur

k=\       I \ k=\

+ (-1)' 2 a*— isin 77   rx —   2 aCOS 77 I  rX J   «^  1 l »in /; i  f a j   U£

k=\       I \ k=\

wherey^ = cos77ras/n'£=1 sin77(as - ak).
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Since r is even it follows that

2Xcos77   rx —  y «i
\ k%

(418)    7—7 2 ^sinv7   rx-  2 «J =cosr77x + -       - *
(2/)  s=\ \ a=i     / (2/)

Now if a, = 0, then 2*=] a* = r/2 — {-, so that (4.18) becomes

(-l),r+2)/2 (¿A- ■   Hr2)/22Xsinr77xt"2)/2 /     r \

-cos r77x    2 A    = cos 77 rx +
Y V v=1    /(2/)r l,r, */ (2/)'

Hence X = 0. This proves (4.11) for r even.

If a, ¥= 0, then 2£= ,a* = r/2, so that (4.18) becomes

-2   .          / ^,   „ \                     ,  2Xcos77rx
— sin r77x    ¿a As    = cos 77rx H-—-.

Hence X = -2r~x. This proves (4.13) for r even. The proof of (4.12) and (4.14) for r

even are the same.

Next we consider r odd. If a, ¥= 0, we let a0 — 0 and write

1 ¿ , A = 0
II' sin77(x - at)

(4.19)      $(x) = —- 2 cosr77aJcos77(x — aj—;
Sin77X

s = 0
II' sin77(0:, - ak)
A=0

The Gauss interpolation formula again gives
r

r                                                     II' sin77(x - ak)

2  cos riras sin iras cos 77 ( x — as ) —^-
ç = 0

IT sia(as-ak)
A = 0

= cosr77xsin77X + X II   sin77(x — ak).
A = 0

A   similar  calculation  gives  X = 2r_1,   so   that  (4.19)   gives  <p(x) — cos rirx +

2r~xHk=x sin77(x — ak). This proves (4.13) for r odd. The proof of (4.14) is similar.

If a, = 0, we let ak+, =5 and write
I-+1

, + 1                                                        II' sin77(x- ak)

(4.20)    <t>(x) =- 2  cosr77arcos77a cos77(x — ac)-^7T-,
COS77X    /~ '•+1

II' sin77(av - ak)
A=l

and (4.11) and (4.12) for odd r are proved similarly.    □

Proof of Theorem 3. Let

a(-r77 + 0)     if u = -rir,

a0(u) = -j a(«) if -r77 < u < r77,

a(r77 — 0)       if u = r77.
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Then a0(u) has no jumps at ±r77. Define

/rm eiuxda0(u)       VxGR.
-rn

Setting Ax — a(-rir + 0) — a(-r77), A2 = a(rir) — a(rir — 0), we can write f(x) =

f0(x) + Axe~nix + A2e""x, and setting^ = Ax + A2, B = i(A2 - Ax) we obtain

(4.21) /(x) =/0(x)+^cosr77x + £sinr77x       VxGR.

Now/0 G B*^ since/0 is the uniform limit of the sequence {/}, f G B defined by

fj(x) = \pj_pe'uxda0(u), with 0 </t/ < r77, pj -> r77 as / -» oo. By Lemma 4.2 we

conclude that limn^xSn r(f0; x) = /0(x) uniformly on R. The theorem now follows

from (4.21) and Lemma 4.4.    D

Finally we consider the class &9 of almost periodic functions in the sense of Bohr.

To every / G 6? ('P corresponds a Fourier series

00

f{x) ~ 2 Ave'^x,
v=\

where X„ are real numbers, called the Fourier exponents off. Also for o^O,

&9r\Ba = {/:/G(£<3>, -0<X„<ff}.

Proof of Theorem 4. Suppose f G iïc9 n Brm. Then its Fourier exponents X,„

v = 1,2,3,..., satisfy -r7r < X„ < r77.

Without loss of generality we may assume that X, = -rir, X2 = rir with the

understanding that Ax = 0 if the exponent -r7T is absent, and similarly that A2 — 0 if

exponent r77 is absent.

Let

Axe~r7"x + A2er7"x — A cos rwx + B sin rwx,

where A = A2 + Ax, B = i(A2 — Ax). It follows that the function

(4.22) g(x) = f(x) — A cos rirx — B sin rirx

has Fourier series g(x) ~ 1™=3Ave'x-x where -rir <XV< rir VX = 3,4,5,_ A

similar argument as in [10] shows that g G 73r* . It follows from Lemma 4.2 that

(4.23) S„  (g;x)^g(x)    uniformly on R.

The theorem then follows from (4.22), (4.23) and Lemma 4.4.    D
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