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ON THE CONSTRUCTION OF RELATIVE GENUS FIELDS1

BY

GARY CORNELL

Abstract. We show how to construct the relative genus field in many cases. This is

then applied to constructing fields with interesting class groups.

Introduction. One way to get information about the Hilbert class field of a number

field E, HE, and thus about the class group of E, CE, is to study the largest subfield

of HE of the form EF^ where F^ is an abelian extension of some subfield F of E.

The maximal such field is called the genus field of E relative to F, and we denote it

byE*.
The case when F = Q, the so-called absolute genus field, was first studied by

Fröhlich [5, 6], In the relative case a very useful formula for the degree of Ep/F is

due to Furuta [7]. Nonetheless it is often useful to construct the genus field

explicitly. The project in the absolute case was carried out by Ishida in a series of

papers which culminated in his monograph [8]. Among the reasons for believing that

an explicit construction will be useful are the following: The given field E may

contain two different subfields F and F' and perhaps the respective relative genus

fields are disjoint. This would give more information about CF than would be

available from a formula. Also, if the method of constructing relative genus fields

were somehow 'canonical' then it might be possible to show that certain classes of

fields have class groups with interesting properties precisely because they would have

a properly larger relative genus field with respect to some subfield. We give examples

of this in the last section when we prove that any finite abelian group is the

subgroup of the class group of an explicitly describable full cyclotomic field. While

the fact that any finite abelian group is a subgroup of the class group of some

abelian extension of Q is well known (see Washington [12] for a proof), it is easy to

see that these ideal classes capitulate in the abelian closure of Q and in fact do not

even survive to the full cyclotomic field with the same conductor as the given abelian

number field. (This is because the ideal classes constructed come from the absolute

genus field of the abelian extension and ultimately depend on the fact that a cyclic

extension of Q, of degree and odd prime /, with two ramified primes, has an element

of order / in the class group because there is an absolutely abelian extension of

degree I2 containing it which is unramified over it.)
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Other examples of the usefulness of the explicit construction, which will be given

in subsequent papers, are to fields with infinite /-class field towers [2] and the

existence of fields with class number > 1 in the (unique) Z extension of Q [3]. (By

the Z extension of Q we mean the composite of all Z extensions for every prime p.)

The first section is preliminary and contains, among other things, a proof of what

is often called "Abhyankar's lemma." This is probably the simplest method of

insuring that composites produce unramified extensions. Since proofs of this result

are not easily available, I have taken the liberty of including one. In addition, since

most of our constructions will depend on class field theory, I have summarized the

needed results here. Finally, a result on when the intersection of two ray class fields

is trivial is also included. This is useful, in among other places, when discussing the

relations between genus fields relative to different subfields. The next section

contains the main results about the explicit construction of relative genus fields.

Some of the results obtained here appear to contradict certain criticisms of Ishida's

work made by Frey in [4]. (Note: The Frey who wrote the review is not the Frey

referred to in the review as "the reviewer." This might otherwise lead the reader of

the review to misunderstanding.) The third section contains some applications.

1. If a is an ideal of a number field F then by F" we mean the (full) ray class field

with conductor a. It contains the Hubert class field of F, HF, and its degree over Fis

hF ■ \ (O/a)* \/[U: U(a)], where hF is the class number of F, and U, respectively

U(a), denotes the units, respectively the units congruent to 1 mod q and O is the

ring of integers in F. Moreover, the Galois group of Fa over HF is isomorphic to the

group (£>/a)*/U/U(a). Notice the group U/U(a) is of finite rank as a Z-module

because U is. Thus by making a divisible by enough primes we can insure that the

field Fa properly contains HF.

Lemma 1. Suppose a is an ideal exactly divisible by p", « > 1, p a prime. Set

b = ap1_"; then \ Fa : Fb \ is a power of p where p is below p in Z.

Proof. Without loss of generality we may assume that we are looking at the case

[Fa : Fb] where ab~x = p and p | b. Then by class field theory the index has order

[f7(a) : Í7(b)] • | (£)/a)* \/\ (£)/b)* | . Now the Chinese remainder theorem implies

that | (£)/a)* |/| (O/b)* | is a power of p. So there only remains the index on the

left. We can define a homomorphism U(a) -> a/b by 1 + a -> «. This a homomor-

phism because (1 + a)(l + ß) maps to ä + ß since aß G b. The kernel is clearly

t/(b). Now since a/b is isomorphic to £>/p which does have order a power of p, the

result follows:

Proposition I. Any tamely ramified abelian extension E of a number field F is

contained in Fa where a is an ideal not divisible by the square of any prime ideal.

Proof. First E will be contained in some ray class field Fa' where a' is divisible

only by the primes that ramify in E. We use induction on the number of primes s

that divide a'. If ä = 1 then | EFV : Fp | is a power of p by the lemma above. Also

EFP/FP is totally ramified because FP"/HF is. But the ramification degree of

EFP/FV divides that of E/F. Since E/F is tamely ramified, the degree \EFP: Fp\

must be one.
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We may assume by induction that the result is true for less than « primes. Suppose

a = p,1 • • • p°". If a, > 1, let Ex be the fixed field of the inertia group of p, in E.

Then Ex/F is ramified only at p2,...,p„ and, therefore, by induction, Ex G Fb

where b' = p2 • • • p„. Therefore, £, C Fb where b = p,p^ • • • p»«. Now [£F6 : Fb]

divides [Fa : Fb] = p™ by the lemma. Since £/£, is tamely and totally ramified at

the primes above p,, we have that [E : Ex]is prime to px, so as before [EFb : F°] — 1

and E G F"1"*2' ' """. If a2 > 1 we may proceed similarly to conclude that E G

F"|p2*°3' ' ■*""; in finitely many steps we have the result.

Remark. Another method of proof is to use the "conductor-discriminant formula."

While perhaps less direct, the above proof is included because it is closer to the

flavor of the rest of the paper.

Given that E D FXF2 we will be constructing the genus field of E relative to Fx,

respectively relative to F2, by taking certain sub fields of the ray class fields of Fx,

respectively F2. If we knew that the ray class fields were also disjoint, we could

derive much more information about CE [where CE will mean the class group of E\.

What follows then is a theorem which gives sufficient conditions for this to be true.

Lemma 2. Let L D k be abelian, both fields normal over Q; let L' be another field,

also normal over Q. If L' D k = Q, then L n L' is abelian over Q.

Proof. By "Lagrange's theorem on natural irrationalities" Gal(LHL'/Q) is

under the given hypothesis, isomorphic to Gal( L'k/k ). This group is the homomor-

phic image of Gal(L/k) and so is abelian. The result follows.

Now look at L™, L2 where m and « are integers from Z considered as integral

ideals of Lx, respectively L2.

Theorem 1. Suppose that « and the discriminant of L2, D(L2), are relatively prime

to D(LX ). Then F' = L™ Pi L" is abelian over Q and its conductor is divisible only by

primes common to m and «.

Proof. The hypothesis on the discriminants implies that L, fl L2 = F is an

unramified extension of Q and so must be Q. The previous lemma implies F is

abelian over Q, since ray class fields for integral ideals are normal over Q. The

statement on ramified primes follows by going up the LHS and RHS of the tower

below:

Theorem 2. Let a be an ideal of Lx, a' an ideal of L2. Suppose that a and a' are not

divisible by any proper ideal of Z. Suppose no prime dividing a' and D(k2) ramifies in

kx; then Lax n L2' = Q.
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Proof. We know Lax G L^V/q, La2 G L^V/e and so

F = Lax n L2 C LNxa n L^a' = F'.

Now by the previous theorem F' is abelian over Q and so F is a subfield of an

abelian extension of Q and is in turn abelian.

In particular if p is a prime from Z ramified in F it is, say, the e(p) power of an

ideal in £) F. Now in the lattice of fields below:

Na rNa'
1 ¿2

p does not ramify in L, since, by hypothesis, no prime ramified in the RHS ramifies

in L, and sop = Px ■ ■ ■ Pg in ¡0t. Nowp is exactly the e(p) power of an ideal in F

and so is at least the e( p ) of an ideal in L" by unique factorization. Thus each of the

Pi 's 1 < i < g, must ramify. Thus each P¡ divides a which contradicts the hypothesis

that a is not divisible by an ideal of Z.

We can extend the above trivially to

Theorem 2'. Let Tbe normal over Q. Suppose Lx, Lax are as above. Then if D(T) is

prime to D(LX) we have Lax D T = Q.

The next result to be taken up is "Abhyankar's lemma."

Theorem 3. Let Ex, E2, F be local fields, Ex, E2 finite extensions of F with

ramification indices ex, respectively e2. Suppose E2 is tamely ramified and e2\ex. Then

E2EX is an unramified extension of Ex.

Proof. Let E2r be the maximal unramified extension of F in E2. So E2 is totally

ramified over E"r. Now ExE"r/Ex is unramified and so its ramification index over F

is the same as Ex/F. So since the composite of an unramified extension with an

unramified extension is unramified we may assume that E2/F is totally and tamely

ramified. Thus by the classification theorem for totally and tamely ramified exten-

sions of local fields (see Lang [11, p. 52]), we know E2 — F(irx/e2) for some prime

element ir in F. Now if n is a prime element in Ex we have ulle' — ir, u a unit in Ex.

So EXE2 = Ex(ux/e'-W>/eT-) = Ex(ux/e*) since e2 \ ex. But if (e, p) = 1, an extension

by an eth root of a unit is always unramified.

Suppose then that we are given global fields Ex, E2, F whose ramification indices

at p satisfy the above. Then the composite EXE2/EX will be unramified at p since this

is a local question. If this were so at each p then EXE2/EX would be unramified

everywhere.
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2. The explicit construction. We make the convention that e9 (E/F) denotes the

g.c.d. of the ramification indices at the primes above p, in E. This agrees with the

usual notation when E/F is abelian.

Suppose E/F is tamely ramified. Then any abelian extension F* of F whose

composite with E is unramified over E must also be tamely ramified. Thus by

Proposition 1 of § 1 we have

Theorem 4. Let E/F be tamely ramified with ramification at p,,..., p„. Then the

genus field Ep of E relative to F is the composite of E with an abelian extension of F

whose conductor is divisible only by primes to the first power.

Which field is it? Put a = p,.. .p„ and b, = p,...£,,. .p„ ( denotes deletion). Then

the galois group of Ea over Eb is cyclic or of order d,—\ Np — l\/\U(a): U(b)\.

Put d*(p,-) = g.c.d.(e„ (E/F), d,). Then there is a unique subfield F¿ of F" of degree

d*(X>i) over A:b: Put F« = C\F¡.

Theorem 5. F^ is the largest abelian extension of F whose composite with E is Ep.

Proof. By Abhyankar's lemma F¡ yields an extension of E which is unramified at

p, and abelian. Also no larger field than F¡ can do this. This is because Fa/Fb is

totally ramified at all the primes above p,. By putting F„ = DF, as above, we see

that F^ yields an unramified abelian extension of E. Suppose F' is any other abelian

extension of F whose composite with E is unramified over E; then F' is certainly

tamely ramified and so F' G Fa. Now each of the F/s was the maximal subfield of

Fa whose composite with E was unramified at p,, thus F' G F¡ for each i and the

result follows.

It is easy to see now what the mistake in [4] was. The assumption the reviewer

made would only be true if given relatively prime ideals ax, a2 in £)F then the ray

class field K0'"2 = Ka'K"2. This obviously does not hold in general and will depend

on a unit index.

That is, to construct the relative genus field it is not sufficient to work "one prime

at a time," i.e. by looking at the various subfields F, of the Fp> whose degree over HF

satisfy

\FX: HF\= g.c.d. {ePi(E/F),\Fp':HF\)

and taking composita.

In one important case (besides F = Q) this can be done, however. Let F be an

imaginary quadratic field; then we usually have | F"'"2 : Fa'F"2 \ — e, where e =\ UF\ .

So if we take the maximal subfields K, Kx, K2 of, respectively, F"'"2, Fa>, F"2 of

degree a power of / where l\e, then K = KXK2. This leads then to the following:

Suppose | E : F | is relatively prime to e. Then E, = the unique subfield contained in

FPi of degree i/*(p,-) over HF and K = EXE2,. ..,£„. So under the above hypothesis

we have

Theorem 6. Ep = EK. (Notice (\E: F\ ,6) = I is enough.)

Now we return again to the general case.
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Theorem 7. Suppose E/F is abelian with at most one ramified prime p; then

E* = EHF.

Proof. Ep is the composite of abelian extensions of F and is thus abelian. Ep has

ramification only at p and is by Class Field Theory contained in Fp", some «. We

know FP"/HF is totally ramified at all the primes above p and so FP"/EHF is also.

Thus no extension of EHF can be unramified. Since EHF is certainly unramified we

are done.

If E/F is abelian and HE is the Hilbert class field of E, then Ep is the fixed field

of the commutator subgroup of Gal(HE/F). If E/F is cyclic with generator a then

by the functoriality of the Artin map we have that Gal(Ep/E) » CE/CE~". Com-

bine the above with the exact sequence

0 - C¿°> - CE - cE - cE/cE-" - 0.

We can derive as corollaries of the previous theorem the following results:

Corollary 1 (Iwasawa [9]). Suppose that E/F is a p-extension with only one

prime ramified. Moreover, suppose this prime is totally ramified; then p\hF^p\hE.

Proof. By induction we may reduce to the case when E/F is cyclic of degree

p. Now a p-group acting on a p-group must have nontrivial fixed points so

P I nn ö P 11 ̂ io) I • But by tne 4-term exact sequence above this has order equal to

| CE/C]f | . By the previous theorem and the discussion above this is equal to

| EHF : E | = | HF : E n HF | so p 11 EHF : E | « p \ \ HF : E n HF \ . The result follows

since E is totally ramified and E D HF = F.

Corollary 2 (Kisilevsky [10]). Suppose E/F is cyclic unramified of degree n.

Then

\C£\ = \CF\/n = hF/n.

Proof. As before | Cf | = | CE/CE~" \ , but this has order | HF: E n HF\ . Now

| HF : F\= hF = \HF: E n HF\\ E n HF: F\; since E is unramified of degree « the

result follows.

A proposition which complements the previous theorem is the following:

Proposition 2. Suppose E = EXE2, each Ex abelian over F, suppose E2 is ramified

only at p and p is unramified in Ex. Then E* = E*E2 (where E* denotes the genus

field of Ex relative to F).

Proof. The fixed field K of the inertia group of p is the maximal subfield of Ep

unramified at p over F. This field contains Ep. The field K/E* must be unramified

at all p' t^ p since ramification degrees multiply in towers. So K/E* is unramified at

all primes and thus K = Ep. Now Ep/E2E* = E2K is totally ramified at p, so we

must have Ep = E*E2.

In trying to construct the relative genus field, things are often easier if | E : F | is a

prime power. The next theorem shows that if E/F is abelian this reduction is always

possible.
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Suppose then that E/F is abelian and (E : F) = /f1 • • • l°\ Let Et be the unique

subfield of E of degree If1 over F. Let E* be the genus field of F, relative to F.

Theorem 8. Ep = Ep ■ ■ ■ E*.

Proof. Ep is the composite of E with an abelian extension K* of F and each E* is

the composite of £, with an abelian extension E* of F. We need to show K* = Ep

■ ■ ■ e:-
Now each E* yields an unramified extension of E, and so by translation, also an

unramified extension of E. Since the composite of unramified extensions is unrami-

fied we have K* C EXE* ■ ■ ■ E*.

We need to prove the reverse inclusion. Let T = Gal(K*/F) and write r = T,

• • • r„r" where each of the T/s is the /,th sylow subgroup and /, ) | V | for all /. Let K,

be the unique subfield of K* such that |K¡: F\ = \ T¡\. We claim KxKm an

unramified extension of E¡ and so K¡Km G E*, 1 </'<«, and the result would

follow.

Consider the tower of fields E¡ -» E¡KiKm -» EK,Km. Since EKiKm/E is unrami-

fied we see that the ramification indices of E¡K¡Km/Ei divide the degree | E : E¡ | =

l22 ■ ■ ■ lan". But they must also divide | EiK¡Km : E, | which is relatively prime to

l2 ■ ■ ■ /„. Thus the ramification index is one for each prime and the result follows.

Remarks. (1) Obviously E/F nilpotent is enough.

(2) Thus when L/K is abelian we may always assume L/K is a prime power when

we are trying to construct L*..

Suppose we are trying to construct the genus field of E/F when E/F is not

necessarily tamely ramified. Then the field F^, constructed in Theorem 5, is

obviously the largest tamely ramified abelian extension of F contained in Ep. With

this remark we have

Theorem 9. Suppose E/F is abelian of degree l" with tame ramification at all but

one prime X. Then Ep = £7%..

Proof. Let F, be the fixed field of the inertia subgroup TX(E/F). Now E D F+ is

the maximal subfield of E which is tamely ramified over F. Thus | EF^ : F* | =

| E : E n F„ |= ex(E/F). We also have | Ep : F, \> ex(E/F). Since F* is maximal

we must have F = Fx. So since \Ep : F, |= ex(E* : F) = ex(F/K) we must have

E* = FF,.

Remark. Thus by combining what has gone before with the above we can

construct the genus field for any abelian extension E/F provided that there is at

most one wildly ramified prime above / for each l\\ E : F\ .

We now want to discuss the cases not covered by the remark above. Unfor-

tunately, a general treatment seems difficult and we confine ourselves to the case

when F is an imaginary quadratic field. While it is possible to give a treatment

without using Furuta's formula it is much easier to use it. We quote the result from

[71.



508 GARY CORNELL

Let gF be the "genus number," i.e., the degree \Ep : E\ . Then we have

Theorem (Furuta [7]).

hr-Ile''F     "tp

gF' \K0:F\\e:i,\'

where « F is the class number of F, e'v is the ramification index in the maximal abelian

subfield of the completion ED over Fp and K0 is the maximal subfield of E abelian over

F and \ e : i\ | denotes the index of the units that are everywhere local norms in the full

group of units.

Theorem 10. Let E be an extension of an imaginary quadratic field F with l\\ UF\

and ramification only at XX,X2 with (XX)(X2) = (I) in F. Then Ep = ETX with Tx the

unique abelian extension of F contained in the full ray class field Fx"' of degree

e4E/F).

Proof. Since Gal(Fx"'/HF) « (£>/À")* it is a cyclic group since X¡ is a prime of

degree one above an odd prime. Thus there is a unique field of the type specified.

Put Fx equal to the fixed field of the inertia group of A2. Then Fx/F is ramified

only at Xx, and | Ep : F, |= ex (£*/£). Now by Furuta's formula, the degree

\Ep: F\= e(Xx)e(X2)h F since l\\ UF\ .

Thus F, must be Tx since its degree over F is e( X, )« F and Tx is the unique abelian

extension of F with ramification only at \, of degree e(Xx). Now E n F, is the fixed

field of the inertia group Tx (E/F). So

|£F, : F, | = | £: E n F, | = | Tk¿E/F)\= eXi(E/F)

and we have that

|£F, : F| = |£F, : F, 11 F, : F\= e(X2)e(Xx)hF.

The final case we discuss is when E/F has tame ramification at p,,..., pn and

wild ramification at both A,, X2, (XX)(X2) = (I) and l\\ UF\ .

Theorem 11. Let E/F be abelian with ramification described as above. Then

Ep = EF/TX with F, as in Theorem 5, and Tx as in the previous theorem.

Proof. Let T be the group generated by Tv(Ep/F), for all i, along with

TXi(Ep/F). Since Ep/Fis abelian its order is at most up ev(E/F) ■ e^(£/F).

The fixed field of T is the maximal subfield of Ep ramified only at X,. The degree

| Ep : F| is [I, ev ex ex^ ■ hFby Furuta's formula (we are again assuming /11 UF\). Let

Fx be the fixed field of T; then FX/HF has ramification only at the primes above A,.

Thus the degree | F, : HF\< e(Xx). Moreover, FX/HF is totally ramified at all the

primes above A,. Now we have

| Ep : F\< n<Kp,>(A2) ■ | F, : £|< lle(ï,)e(X2)e(Xx)hF.

So since | Ep : F\ equals the RHS we must have | Fx : HF\= e(Xx) and F, is the

unique field contained in Fx" of degree e(Xx) over HF. There remains only to prove

thatL* = LFJX.



RELATIVE GENUS FIELDS 509

Now I ££*£, : F | = | £ : £ n FifFx \ ■ \ FjfFx : F \ . Notice that (£ n FifFx ) is the

inertial subfield of X2 since it is the maximal subfield of £ unramified over F at \2.

Thus the degree | £ : £ n FitFx | = e(X2). Thus the degree | £ : £ n F*FX \= e(X2).

Since we already know that | FJfFx : F|= Uv e(p)e(\,) • hF, we are done.

Remark. Notice because of the reductions possible for abelian E/F we have

shown how to construct the genus field Ep for all imaginary quadratic fields F save

those for which 2 splits and both primes above 2 ramify in £. The problem in this

situation is the lack of a way of singling out the right extension ramified at the

primes above 2.

3. Applications. While many applications are possible, we confine ourselves in this

section to those dealing with the construction of number fields with "interesting"

class groups.

The first application is to cyclotomic fields. But as mentioned previously we must

choose the cyclotomic field so as to contain a "useful" subfield. Now if « is any

integer such that 4|«, we know <2(f„) contains Q(i), a field whose abelian

extensions are easy to describe. Let irx,...,irn be primes above integer primes

px,... ,p„ that split in Q(i). (Notice that the p/s must be = 1 (4).) Then we have

Proposition 3. (1) The galois group ofQ(iY' is cyclic of order (p: — l)/4.

(2) The field Q(¡Y'. ■ -0(0"" 's galois over Q(i) with galois group isomorphic to the

direct product of cyclic groups of order ( p, — 1 )/4, ...,(p„— 1 )/4.

Proof. The first statement follows from class field theory because Q(i) has class

number one. The second will follow if we can show that any of them are disjoint

from the composite of the rest. Look at the diagram below (where denotes

deletion).

Qorj
^ £-"

I

( £ is the intersection.) By going up the left-hand side the only primes that ramify in

£ are (possibly) irx,... ,#,-,..'. ,ir„. Via the right-hand side it is only it,. Thus*F is an

unramified abelian extension of Q(i) and so since Q(i) has class number one,

F=Q(i).    Q.E.D.
Let G be any finite abelian group. So by the fundamental theorem of abelian

groups G * C(j X • ■ ■ Xcv wnere the C, are cyclic groups of order t¡. We want to

find an N such that Q(ÇN) contains G as a subgroup of its class group. Choose

primes px,... ,p„ such that y?, = 1 (4/,). Then put N = 4/7, • ■ • pn.

Theorem 12. Q(ÇN) contains G as a subgroup of its class group.

Proof. By the previous remarks we need only show that the field F= Q(iY'

" ' ' Qi'Y" intersected with Q(ÇN) is just 0(0- Suppose this is the case. Then since

ßor-ßOT'-ßoy-
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the ramification degree of the ir/s is just (/>, — l)/4 in Fand its ramification degree

in Q(ÇN) is Pi — 1, Abhyankar's lemma would apply. To show the intersection is just

Q(i) is easy; just notice that the intersection is an abelian extension of Q and so if

any of the ir,'$ ramified its conjugate would also. But none of the conjugates ramify

in F. So the intersection would again be an unramified abelian extension of Q(i)

which has none.    Q.E.D.

Remarks. It is easy to see that the genus field of Q($N) with respect to Q(i)

provides a counterexample to the statements of [4],

Now there was really nothing special about showing that the intersection of Q(ÇN)

with F was Q(i). The same argument would show that the intersection of gab with F

is also Q(i) (where ßab denotes the maximal abelian extension of Q, e.g. the field of

all the roots of unity). Thus we have a method of constructing unramified abelian

extensions of <2ab of any type. This leads to the following theorem which was

suggested by M. Rosen.

The idea is to replace Q by some fixed field F, Q(i) by any finite abelian

extension £ of F and Q(Ç„) by some (very) large ray class field K of F containing £,

then show that K has a properly larger genus field relative to £ which does not

intersect the maximal-abelian extension of F, Fab, in too large a way.

Theorem 13. Let F be any number field and Fab its maximal abelian extension.

Then Fab has an unramified abelian extension M such that the galois group of M over

Fab is any finite abelian group. Moreover, M can be chosen so as to be of the form

M — Fab£*, where E* is some (abelian) extension of any pregiven field E which is

finite and abelian over F.

(We may say that we can "induce" finite abelian unramified extensions of Fab

from any previously given finite abelian unramified extension £ of F. Of course, the

extension £* of £ needed may not itself be galois over F.)

Proof. Let £ be the given abelian extension of F and G » C, X • • • X C¡ as

before. Let s be the rank of the unit group of £. Then by taking more than s primes

of F whose absolute norms are all = \ (t¡) and putting a, to be their product, we can

insure that the galois group of Ea,/E contains C,. We can even take the primes

dividing the a, to be above primes of degree one of £. All this is possible by the

density theorem. If we put o to be their product then the galois group of £"/£

would, as in the proof of Proposition 2, contain G if not for the existence of the

Hubert class field of £. This is, however, a finite extension of £, so by throwing even

more primes into a, we can indeed make the galois group of Ea/E contain G. Now

let K be the ray class field of F at the primes below the ones dividing a, as in the

proof of Theorem 2. KEa/K is an unramified abelian extension of K. Now the

intersection of K (or of Fab) with £° is as in the proof of Theorem 2 an unramified

abelian extension of F and is therefore contained in the Hubert class field of F, HF.

This is again a finite extension of F and so by throwing even more primes of £ into a

and changing K accordingly we can insure that FabEa is an unramified abelian

extension of Fab which contains G.    Q.E.D.

The above fact has applications to the Picard group of Qab as may be seen in the

forthcoming work of Brumer [1].
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