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EXISTENCE OF CHEBYSHEV CENTERS, BEST «NETS

AND BEST COMPACT APPROXIMANTS

BY

DAN AMIR, JAROSLAV MACH1 AND KLAUS SAATKAMP

Abstract. In this paper we investigate the existence and continuity of Chebyshev

centers, best n-nets and best compact sets. Some of our positive results were

obtained using the concept of quasi-uniform convexity. Furthermore, several exam-

ples of nonexistence are given, e.g., a sublattice M of C[0, 1], and a bounded subset

BCMis constructed which has no Chebyshev center, no best n-net and not best

compact set approximant.

1. Introduction. It is a familiar situation when one wants to replace a set A of given

data by another one C which is more condensed or of a simpler type. If we have

some metric on our data space X it is natural to try to replace the set A belonging to

the class £E of admissible given data sets by a set C belonging to the class Q of

admissible "approximating" sets such that the elements of A will be as close to C as

possible. More explicitly, if we denote, in the metric space (X, d), B(C,r) =

[x; d(x, C) < r) (the closed /--neighbourhood of C), r(C, A) = min{r; A G B(C, r)}

and re(A) = inf{>(C, A);C G Q), then we are looking for C0 G Q with r(C0, A) —

re(A). We denote by Ze(A) the set of all such C0 G Q.

We shall deal here with the following typical classes of subsets of a Banach space

X: 6$>(V) — the closed and bounded subsets of a closed V G X; %(V)—the compact

subsets of V; and %(V)—the class of sets consisting of at most « points of V.

%,%,% will stand, respectively, for 6MX), %(X) and %(X), V will stand for

<$l(V), and r(A), Z(A)—for rx(A), ZX(A). r(A) is called the Chebyshev radius of A

and Z(A) the Chebyshev center set of A. Similarly, rv(A) is called the relative

Chebyshev radius of A with respect to V and ZV(A) the set of relative Chebyshev

centers for A in V.

The case & = X, G = V is the classical best approximation problem—rv(x) is the

distance d(x, V) and Zv is the metric projection operator Pv corresponding to

x G X the set of nearest points to x in V. (On the other hand, the general case can be

reduced to the classical best approximation problem if we endow %(X) with the

Hausdorff metric « — then re(A) = h(A,Q) and Ze(A) n B(A, re(A)) = Pe(A), but

of course the concrete problem does not become simpler.)
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Elements of Z^(A) are called best n-nets of A.

r<%(A) is easily seen to be the Kuratowski measure of noncompactness of A,

a(A) = inf{r > 0; 3«, F G% with r(F, A) < r).

The concept of Chebyshev centers and best «-nets was introduced by Garkavi [8]

and most of the basic results are due to him. Concerning existence problems, he

observed the following two existence principles.

T

Proposition A. // V carries another topology t such that ya ->y => d(x, y)

< lim d(x, ya) Vx G X, then a ^-accumulation point of a "minimizing sequence" for

the Chebyshev radius is necessarily a Chebyshev center. In particular, if X is a dual

normed space, then for every w*-closed V G X, ZV(A) =£ 0 VA G 9>(X).

The same argument applies also to best «-nets.

Proposition B. // P is a contractive projection of X onto X0 and PQ C Q, then

PZe(A) C Zpe(A) VA G 9>(XQ). In particular, if X is Banach space admittting a

norm-one-projection from its bidual (e.g. X = Lx(p)for any a-finite /x), then Z^(A) =£

0 VA E<$(X).

Approximation of bounded sets by compact sets was investigated in [23], in

connection with questions of best approximating bounded linear operators by

compact ones. M. Feder [7] constructed a bounded subset A of £,[0,1] which admits

no best compact set approximant. This shows that the analogue of Proposition B

does not hold for the class %. On the other hand, it follows from the results of

Fakhoury [6] and Mach and Ward [23] that every bounded subset of /, has a best

compact set approximant.

The existence of Chebyshev centers for bounded subsets is established, by

Propositions A and B, for the classical spaces Lp(p.), 1 </> < oo. For the other

classical space, C(S2) (Í2 compact Hausdorff), the existence of Chebyshev centers for

bounded sets was established by Kadec and Zamyatin [12]. There are several ways of

proving this:

We first observe that the problem of finding Z(A) in C(ß) reduces to the problem

of finding ZC(S2){(inf A, sup A)} in m(Q), and this is equivalent to finding x G C(il)

satisfying sup A - r(A) < x < inf A + r(A), which can be guaranteed by the Hahn-

Tong interposition theorem [27, p. 100] or by Michael's selection theorem. Another

way is a "successive approximation" argument, which will be exploited in §2.

Garkavi [8] also gave the first example of nonexistence of Chebyshev centers: He

showed that if X is the nonproximinal hyperplane {x G C[-l,l]; j°xx(t)dt =

f¿x(t)dt} of C[-l, 1], then Z(A) = 0 for some A G %. Garkavi showed later [9]

that if A" is a finite-codimensional subspace of C(ß), then ZX(A) # 0 VA G

%(C(ß)) iff X is proximinal. Garkavi and Zamyatin [10] showed that for such a

proximinal X, ZX(A) ^ 0 VA G %(C(Ü)) iff the support of every p G Xx is

"extremally disconnected with respect to fi " (i.e. G n spt ju is open in spt ju for every

open GCÛ). Some remarks concerning these examples are made in §3.

It is now natural to investigate the existence of Chebyshev centers for bounded

and compact sets in the "semiclassical" Banach spaces. As such can be considered
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the Lindenstrauss spaces (preduals of L,-spaces) and the spaces C(fi, X), Lp(n, X)

of vector-valued functions, where X is "classical". The case of Lindenstrauss spaces

is studied in §4, and the case of vector-valued functions in §5.

2. Quasi-uniform convexity and the successive approximation argument. We say

that the normed space ^fis quasi-uniformly convex (q.u.c.) with respect to its subspace

Y if Ve > 0 30 < 8 < 1 such that Vy G Y 3z G Y with \\z\\ < e, and such that if

u G X, || m II < 1 and \\u — y\\ < 1 — 8, then also \\u - z|| < 1 - 8. In the case

X = Y we say that X is quasi-uniformly convex. X is said to be strictly convex with

respect to Y if y — z G Y, \\y\\ — \\z\\ — \\\(y + z)\\ -» y = z, and uniformly convex

with respect to Y if Ve35 such that y — z G Y, \\y\\ = ||z|| = 1, ||y — z\\ 3* e =>

Ili0> + *)IK1-*P].
The concept of quasi-uniform convexity is due to Calder, Coleman and Harris [4].

2.1. Lemma. If e< \ and 8 = 8(e) satisfies the q.u.c. condition, so does every

V e (0, 8).

Proof. By homogeneity, i\ satisfies the q.u.c. conditions with respect to (1 — r¡)

(1 — 5)~'e < 1.   Therefore,   given y G Y  there  is   u G Y  with   ||m|| < 1 and

B(y,l -rt)D B(0,l) G B(u,l - rj). There is z G F with ||z||«£ such that

B(u, 1 - 8) n 73(0,1) C B(z, 1 - 8), and then

u+ (1 -8)(l -■f])'i[B(y,l -r,) n/3(0, 1) -u] GB(u,l -8) n 73(0, 1)

Ct3(z,1 -8).

Let w = u + (1 - tj)(1 - 8)x(z - u). Then B(y, 1 - tj) n ß(0, l) C B(w, 1 - tj),

and since z G [u, w], also B(y, 1 - r¡) n 73(0,1) C 73(z, 1 - tj).

2.2. Proposition. The following are equivalent:

(a) X is uniformly convex with respect to Y.

(b) X is q.u.c. with respect to Y and strictly convex with respect to Y.

(c) X is q.u.c. with respect to Y and we can take z G [0, y].

Proof. If X is uniformly convex with respect to Y then it is clearly strictly convex

with respect to Y. Given y G Y, e > 0, let

y if||jHI<e,

ey/WyW     if||>-||>e.

If Hull ̂  1 and llu-jHI < 1 -5(e), then ||«-^|| « 1 - jô(ll^ll). If \\y\\ >e
then

e
yIl vil

2e

llvll
+ 1

ll.pl

* MA1 - ï'M)) + l-JyJ\='- MÔ(MI) < l - ô(e)

(since 8(t)/t increases with /)• If II jll < e then ||h — z|| = ||m — j>|| « 1 — 5(e).

Thus 5(e) = 5(e). Thus (a) ^> (b), (c).
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If X is q.u.c. with respect to Y and we can always take z e [0, y), let d — 5(e/3).

If Hull = Hull = 1, ||u - u|| > e and u - v G Y, there is z G [u,(l - d)u] with

||z - u|| =£ e/3 and ||z|| < 1 - d. Let w = (1 - d)(2 - d)~x(u + v). Then w G

[(1 — d)u, v] and

||w-u|| =(2-<0-l||(l -</)«-o|| > |||(1 - d)u - v\\ > e/3;

w G [(1 — d)u, z] and || w|| < 1 — d. Therefore

Ili(« + o)ll = i(2-rf)0 -d)-l\\w\\<\ -y,

so that 5(e) > j8(e/3). Thus (c) =» (a).

Finally, if X is q.u.c. with respect to Y and strictly convex with respect to Y, and

Hull = Hull = 1 satisfy u - v G Y, \\u - v\\ > 4e and if \\{-(u + v)\\ = 1 - d where

d<8(e), then by Lemma 2.1 there is z G F with ||z|| « e and B({(u - u),l - d) f"l

73(0,1) C 73(z, 1 - d). Since ||« - (« - u)/2|| = ||-u - (u - u)/2|| = 1 - d, we

have \\u - z\\ < I - d, Ilu + z|| ^ 1 - d and ||£(w + u)|| « 1 - d. Equality im-

plies, by strict convexity, u — z = v + z, i.e. z = {(u — v) and we get the contradic-

tion e > || z || > 2e. Therefore 5(4e) > ô~(e).

Remark. Proposition 2.2 is, essentially, due to Calder, Coleman and Harris [4].

Examples of nonstrictly convex spaces which are q.u.c. are the C(ß) spaces and

some of their subspaces, as shown in Proposition 4.4.

2.3. Proposition. If X is q.u.c. and Y is the range of a norm-one projection P in X,

then Y is also q.u.c. and 5y(e) > ô^e).

Proof. Given/ G Y, e > 0, let ||z|| < e, z e Xsatisfy

B(z, 1 - 8x(e)) D B(y, 1 - 8x(e)) D 73(0, 1).

Then ||Fz|| < e and

B(Pz, 1 - 8x(e)) D B(y, 1 - 8x(e)) D 73(0, 1) D Y.

2.4. Proposition. If a Banach space X is q.u.c. with respect to a closed subspace Y,

then:

(a) Every bounded A G X has a nonempty Chebyshev center set in Y, ZY(A), and

A -» ZY(A) is uniformly continuous on {A; rY(A) < R) for every R > 0.

(b) Every bounded set A G X has a nonempty set of best compact set approximants

in Y, Zc^iy-XA), and the mapping A -* Z%{Y)(A) is uniformly continuous on {A; rY(A)

^R} for every R > 0.

Proof, (a) For a y > 0 let yn satisfy

(      A) < rv(^)

ryy"'    ^n?=.(l-i(2-*y))

(since ô(ïj) « tj, the product converges). Let z, — yx • zn+x G Y can be chosen by the

q.u.c. property so that

rY(A)

-n+\ 2'"yr(y„,A)    and    r(z„+x, A)
n?=„+1(i-5(2-*r))
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The sequence (z„) is Cauchy and converges to a Chebyshev center z G ZY(A), and

\\z-yx\\<yr(yx,A).

To prove the uniform continuity of ZY let e > 0 be given. Let y = e/2R, and

h(A, A') = r¡rY(A) with tj < \8(y/2). Then | rY(A) - rY(A') \< t\rY(A) and for

z G Zy(A), r(z, A') « (1 + y\)rY(A). Furthermore,

(1 + ilWM)
l-5(y/2)        nr=,(l-5(2-*y))

and,  therefore, by the first part of the proof,  there is z' G ZY(Ä) satisfying

||z-z'|| <y(1 + j))rY(A). Thus h(ZY(A), ZY(A')) ^ e.

(b)LetF„ G %{Y) satisfy

r%(Yy\A)

r(Fn, A) < -;-;-—- .
uk=n(\ - s (2-*.))

Let G, = F,. Having G„_,, replacing each point x of G„_, by an «-tuple of points in

B(x, e/2") n Y, we get G„ of cardinality «! satisfying r(Gn, A) ^ r(Fn, A).

G = U G„ is compact and r(G, A) — r%(Y)(A). The proof of the uniform continuity

is analogous to part (a).

2.5. Example. A 3-dimensional space which is not quasi-uniformly convex: Let 73 be

the symmetric convex hull of the circle {coste, + sin te2; 0 < t < 2ir) and the

segment {sex + e3; -1 *£ s < 1), and || ■ || the norm whose unit ball is 73, i.e.

,x,y,z,

Since Z(-ex, ex) — [-e3, e3] and Z(-ex — i\e2, ex + -qe2) = 0, it is clear that A -»

Z(A) is not continuous, so that the space is not quasi-uniformly convex. Indeed, let

x = (1 -T?)e3,

u = (l -in)e, + iv3"e2 + (1 -Tj)e3,

o = -(1 - ÍTj)e, - 1/3 e2 + (1 - Tj)e3. Then r(x,[u, u]) = (1 - tj + r¡2)x/1 <

r(z,[u, u]) for every z with ||z|| < 1. This shows that 5(e) = 0 Ve < 1.

2.6. Proposition. If (il, p) contains 2« + 1 disjoint sets of finite positive measure,

then 8,M(e) < e/(2« + 1) Ve < 1.

Proof. Let Ax,... ,A2n+x be disjoint of finite positive measure. Let

1       2'^+1     A,

2« + 1 ,=, nU)

and suppose z satisfies the q.u.c. condition for x, e and e/(2« + 1). Denote a,

}A | z, | dp. We may assume a, » a2> • • • > a2n+ x. Let

1      2n+x    vA
u = —— y   x -

» + 1/-7+ii»U«)'
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Clearly ||u|| = 1,

while

?.2n+\        ". \ n + 1      2n + 1 / 2« + 1 'i=i i=«+i

n 2n+l , 2n+l n 2n+l

2 «/ +   2   —:pr-   2   «,= 1+2 2«,-  2 a,
i=i       i=ii+i ¡=ii+i i=i        ,  i

\   2n+l r
2« ,\     vi , 1

>i + krxr-H 2 «,>i2« + 1        /  .~     ' 2« + 1i = i

2.7. Corollary. Infinite-dimensional Lx(p)-spaces are not quasi-uniformly convex.

Remark. The case F,[0,1] follows also from Proposition 2.4 and results of Feder

[7]. In this case we have the stronger result which will be used in §5:

2.8. Proposition. 7« L,[0,1], if x = I, no \\z\\ < 1 andd G (0,1) satisfy

B(x, 1 - d) n 73(0,1) C 73(z, 1 - d).

Proof. Take A with p(A) = (1 — d)/2 and JA\z\ dp maximal, and let u =

2(1 -xJ/0 +</). Then Hull = 1,

1 -d1+d ,   1 -d
ll"";cll=TT¿^ + ^

while

1

H u - z II > f \z\dp+ í udp- í c\z\dp= 2Í \z\dp- Il z II + 1

> 1 - ||21| +2-1(1 -</)||z|| = 1 - HzlU.

Remark. The q.u.c. property is the simultaneous approximation version of a

simpler property which was studied, in several variants, by Holmes [11], Lau [14]

and others:

Call a subspace Y of X "cV-proximinal" if Ve > 0 35 > 0 such that

73(0, 1) FI (Y+ 73(0, 1 - 5)) C (73(0, e) D Y) + 73(0, 1 - 5),

i.e. such that if || w|| < 1, y G Y, \\u— y\\ < 1 — 5, then ||u — z|| *£ 1 — 8 for some

z G Y, Hz H <e.

This property is weaker than q.u.c. and is enjoyed, e.g., by "semi-M-ideals" Y in

any Banach space X (with 8 = e).

Y is called "locally {/-proximinal" in X if it is t/-proximinal in span(F, x}

Vx G X.

Local (/-proximinality implies proximinality in a way analogous to Proposition

2.4, and in the [/-proximinal case the metric projection is continuous.

3. Nonexistence of centers and best compact approximants in hyperplanes of C(ß)

and isomorphs of C(ß). In the particular case ß = [a, b] (or, more generally, any

metric compact), the Garkavi-Zamyatin result shows that the finite codimensional
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subspace X = [px,... ,p„]± of C(ß) admits relative centers for bounded sets in C(ß)

iff each of the annihilating measures has a finite support [31]. In fact, if this fails we

get more nonexistence results.

3.1. Example. Let X = {x G C[0, 1]; ¡¿x(t)dt = \), A = {x G X; \ x(t) \

°* 2X[o,i/2](0 + X(i/2,i](0}- Then A has no best n-net for any n > 1 and no best

compact approximant in X.

Proof. For any « G N,

, v _  I , v      2«2(1 -2Q + 1
XnV) -   2X[0,l/2-l/2«]ViJ + 2(2« +  1) X(l/2-l/2i.,l/2](0

+ (1/2(2«+l))X(1/2,](/)

satisfies Jt„ G A'and r(x,„ A) = 1 + 1/2(2« + 1) -» 1.

Suppose now 7C C X is compact; then it is equicontinuous and therefore there is

0 < 5 < to such that \s - /|<5, y G K, implies \y(s) -y(i)|< jo- Let x G A

oscillate between the upper and lower bounds faster than tj, where 0 < tj < too is

such that | s - 11< tj, y G K, implies \y(s) — y(t) |< 5/10, and suppose y G K

satisfies ||x— y\\ < 1. Then y satisfies |j|*!8/10 in [\,l]. We also must have

>>^ { + 8/10 on [0,^]; hence

(y(t)dt<s(± + ±8)    Vs

and for some t G [s, {] we must have

For this / we have

v(t)     y( l\> l      (V10+ 2^/10   ,5)1       28/10
n '    y\ 2 j      2      \        I -2s 10/      2       l-2j-

Taking s = (1 — 5)/2, we get y(t) — y(j) = {- ~ -fe > 75, which contradicts the

choice of 5. Thus r( K, A ) > 1 VK G DC.

Remarks. The fact that the sets of type of A fail to have centers in X was observed

by Smith and Ward [28].

The next example is similar, only that this time we have nonexistence in a strictly

convex isomorph of C[-l, 1].

3.2. Example. Let X be C[-l,l] with the norm \\\x\\\ = \\x\\œ + \\x\\2,A — {x G

C[-l,l];-2<jc<0 on [-1,0), 0 < x < 2 on (0,1]}. Then A has no Chebyshev

center in X.

Proof. For any « G N,

*n — X[-l,-!/„)+ ntX[-\/n,\/n)'    X[l/„,1]

satisfies

°À

r(x„,A) = 2 + 2(i-¿) + 2jfe--í'*
1/2

2+ i/2 + 8/3« - 2 + (Í.
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Suppose z G Z(A). Let * denote the involution x*(t) = -x(-t) in X, and let

x = j(x + x*). Since A = A* = A, we have r(y, A) = r(y, A) Vy, so that we may

assume that the Chebyshev center z is an odd function. Define

/(0 = 2 - ¿/+/2 Í>G)2 + (i - to(i + ¿02]
1/2

LetO <8 < 1 besuchthat | s - f |«8 =>|z(s) - z(i)|< \ and such that/( 8) > 2 +

v/2 . Further, let 0 < tj < 8/2 be such that | j — 11< tj =>|z(s) - z(/) |< 8/6.

Let x be odd and satisfy p{t G [0,1]; | x(t) - 1 | ¥= 1} < 8/2, x(i) = 2 if í G [tj, 1]

and z(t) *£ 1 - 8/6, and x(t) = 0 if r G [tj, 1] and z(t) > 1 + 8/6. Then

\(x- z)(tj) I +Ä ( r I *(/) - z{t) |2 A + /' I x(t) - z(t)

■f{8)>2 + {2.

dt
1/2

4. Lindenstrauss spaces. Recall the Lindenstrauss-Wulbert diagram of pre-L1

spaces:

,A (S)-^Ao(S)

C(K C0(K)

CV(K1-

pre-L

We want to find out in which of these spaces Chebyshev centers and best compact

set approximants exist.

4.1. Proposition. If compact sets in the Banach space X have relative Chebyshev

centers in the subspace Y, then they also have best n-nets in Y for all « G N.

Proof. Let K G %(X), and let Kbe its canonical embedding in X**. K has a best

«-net in Y±J-, yx,...,yn (by Proposition B). Let r = r^,Y)(K), f = r9iYx±)(K),

Ki = K n B(y„ f), z, G ZY(K¡), i= 1,...,«. By a result of"Lima [16, Corollary 1.3],

it follows that rY(E) = rY^(E) for all E G %(X), hence r(z„ K¡) ■(Ki)

<r, and {z,,...,z„} G Z^(Y)(K).

Remarks. (1) The converse is obvious—if ZiF (Y)(K) ^ 0 f°r au< K e °K(X),

then also Z^(Y)(K) ¥= 0 for all 7Í G %(X)—just add a remote pointy G Y to K.

(2) If we assume E only bounded, we may have rY(E) ¥= rY±±(E), e.g., X = Y =

C[-l,l], E= [x, -1 <x<0on[-l,0], 0<x< 1 on [0,1]}.

4.2. Proposition [19, Theorem 2.2]. // Y is an M-ideal in an Lx-predual space X,

then ZY(K)^ 0 for all K G %(X).

4.3. Corollary. If Y is an M-ideal in an Lx-predual X, then Z^ ( Y)(K) ¥= 0 for all

KG%(X).

4.4. Proposition. If X is the linear sublattice of C(ß) (ß compact Hausdorff)

determined by the full set of conditions: x(sa) = Xax(ta), sa, ta G ß, Xa ^ 0, and if

inf{Aa; Xa > 0} > 80 > 0, then C(ß) is quasi-uniformly convex with respect to X, with

8(e) 5* S0e.
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Proof. Let N = {t G ß; x(t) = 0Vx G X). If t G N, there is>>, G A'with || y, || < 1

andy,(t) > 80. Let V, = {s; y,(s) > 80}. Given x G X, let AT0 = {/; | x(t) \> 50e). By

compactness there are tx,...,tm such that UJl,Fr D K0. Let y = max,S;s:m >>,. and

let z = ej A x V (-£j). Clearly ||z|| < e, and if u G C(ß), ||u - x\\ < 1 - 50e and

Hull < 1, consider for / G ß the three possible cases (we may assumex(t) > 0):

(i)x(t) *£ ey(t); then \(u - z)(i)| = |u(/) - x(t)\< 1 - 50e.

(ii)x(t) >ey(t) > u(t); then \(u - z)(t)\^\u(t) - x(t)\< 1 - 50e.

(iii)x(?) >ey(t), u(t) >ey(t); then | (u - z)(f)| = «(0 - ey(t) « 1 - 80e.

4.5. Corollary. If X G C(ß) is the M-space determined by the full set of relations

x(sa) = Xax(ta), sa, ta Go, Xa 3= 0, and if 80 = inf{Aa; Xa ¥= 0} > 0, then every

bounded subset A of C(ß) has a nonempty set of Chebyshev centers in X, ZX(A), and a

nonempty set of best compact approximants in X, Z%(X)(A), and the mappings

A — ZX(A), A -» Z%(X)(A) are Lipschitz continuous in the Hausdorff metric with

constant 2/80.

Proof. The existence is immediate from Propositions 4.4 and 2.4. As to the

continuity statement, given bounded sets A, A', and z G ZY(A) define e =

2h(A, A')/(S0(rY(A') + 2h(A, A'))). Since r(z, A') =£ rY(A') + 2h(A, A'), we also

have

r(z,A')^rY(A')/(l-S0e)

and therefore the proof of Proposition 2.4 shows the existence of z' G ZY(A') such

that

Ilz - z'll ̂  er(z, A') < 2/S0h(A, A').

This proves 2/50 to be a Lipschitz constant for the Chebyshev center map. The

proof for the map A -* Z^X)(A) is similar.

Remark. Observe that Corollary 4.5 applies to the following particular cases:

(a) X = C(ß) (here we have only the trivial relations x(ta) = x(ta), and we have

5(e) = e Ve > 0)—the fact that Z(A) ¥= 0 was proved first in [12].

(b) X is a closed subalgebra of C(ß) (here, by the Stone-Weierstrass theorem, the

determining relations are x(t) = x(s) when t ~ s under the induced equivalence

relation, and x(t) = 0 for / G (ix£Xx~x(0), and again 8(e) = e). The fact that

ZX(A) ¥= 0 for bounded A G X and that it depends continuously onyl was ob-

served first in [29].

4.6. Corollary. If X G C(ß) is the G-space determined by the full set of relations

x(sa) = pax(ta), sa, ta G ß, and if 80 = inf(| pa \ ; pa # 0} > 0, then every bounded

subset of X has a nonempty Chebyshev center in X and a best compact set approximant

in X, and the mappings A -» ZX(A), A -> Z^(X)(A) are Lipschitz continuous in the

Hausdorff metric with constant 2/80.

Proof. By [18, Theorem 3] there is a norm-1 projection from {x G C(ß X ß);

x(sxa) = pttx(t\) if pa>0, x(sl) = -pax(tl) if pa<0} onto X, and we apply

Proposition 2.4 and Corollary 4.5.
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Remark. Corollary 4.6 contains the particular case when X— Ca(ß) for some

involutive homeomorphism a of ß onto ß (here the nontrivial relations are x(t) =

-x(at), t G ß, and again 8(e) = eVe > 0).

4.7. Example. An M-space X and a bounded A G X which has no Chebyshev center

and no best compact set approximant. Let

X={xGC[0,l];x(±) = f\x(J^),n=l,2,...},

A = \xGX;0^x^ 2 (x[,/,2„+i),i/2,„+ (l +-)x(./2„..(2„-.))

Let y„(t) be the piecewise linear function with the vertices (0,0), (I/(2k - 1), 1) and

(l/2k,l/k) for k = 1,...,«, and (1/(2« + 1),0). Then r(yn, A) = 1 + l/(« + 1)

-> l.IfTC C Xis compact and r(K,A)< 1, take « so that y( 1/(2« - l))<\Vy G K

and then take 0 <S < 1/2« such that \s- t\<8 =*\y(s) -y(t)\< 1/2«Vy G K.

Consider the positive linear function x with the vertices (0,0), (1/2« + 8, 1 + 1/«),

(1/(2« - 1),0), (1,0). x G A and therefore, for some y0 G K, \\x — y0\\ < 1. In

particular, y0(l/2n + 8) > l/n; hence y0(l/2n) > 1/2« and y0(l/(2n - 1)) > {,

which contradicts the choice of «.

4.8. Corollary. The space A(S) of continuous affine functions on a compact

Choquet simplex need not have Chebyshev centers or best compact set approximants for

bounded sets.

Proof. By a result of Lazar and Lindenstrauss [15, Theorem 5.5], every separable

infinite-dimensional pre-L, Banach space is isometric to a subspace of some A(S)

space on which there is a norm-1 projection from A(S). Thus by Example 4.7 and

Proposition B, there is a set A in A(S) which has not best «-net for any « s* 1 and no

best compact set approximant.
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5. Continuous vector-valued function spaces. Observe that the quasi-uniform

convexity condition for uniformly convex spaces and for C(ß) spaces (and the more

general class discussed in Proposition 4.2) can be satisfied with z = z(x, e, 8)

depending continuously on x (here e and 8 are fixed). More precisely, a space X is

called continuously q.u.c. (c.q.u.c.) if for all e > 0 and the corresponding 8(e) there is

a continuous selection z(x, e, 8) for the point z in the q.u.c. definition at the

beginning of §2.

5.1. Proposition. If X is c.q.u.c. then, for every topological space ß, C(ß, X) is

q.u.c. with 8C(ax) = 8X.

Proof. Given/G C(ß, X), let g(t) = z(f(t), e, 8). g G C(ß, X) by our assump-

tion and clearly satisfies the q.u.c. condition.

5.2. Corollary [2]. // X is uniformly convex, then C(ß, X) admits Chebyshev

centers for bounded sets and the Chebyshev center map is uniformly continuous with

respect to the Hausdorff metric on bounded families of sets.

If X is not q.u.c, C(ß, X) may fail to admit centers:

5.3. Example. A bounded subset of c(L,[0,1]) = C(w, L,[0,1]) with no Chebyshev

center: Let

A = {y G c(Lx);y(n) = (-1)"Xe/ (1 - n~x)p(E), p(E) = (n + l)/2«}.

As in Proposition 2.8, ZL¡({y(n); y G A}) = (-1)"/(1 — «"') and the radius is 1.

Let

(0, « > m.

Then r(zm. A) — 1/(1 — m~x)   —   1. Clearly, the radius 1 cannot be realized.
m-* oo

5.4. Example. A bounded subset of c(X) = C(u, X), X 3-dimensional, without a

Chebyshev center: Let X be as in Example 2.5,

A={yG c(X);y(n) G (1 + n-^/2[(-l)"e3 ± (ex + n~xe2)]}.

As in Example 5.3, we have

Zx({y(n); y G A}) = (-1)"(1 + «"O^,     rx({y(n); yGA})=l.

r(0, {y(n); y G A}) = (1 + /r')(l + n~2)-x/2 shows that rc(X)(A) = 1 cannot be

realized.

Remark. Similar examples can be constructed in c(lx) and other c(X) spaces,

whenever the Chebyshev center map in X is not upper semicontinuous.
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