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TRANSITIVITY OF FAMILIES OF

INVARIANT VECTOR FIELDS ON

THE SEMIDIRECT PRODUCTS OF LIE GROUPS

BY

B. BONNARD, V. JURDJEVIC, I. KUPKA AND G. SALLET

Abstract. In this paper we give necessary and sufficient conditions for a family of

right (or left) invariant vector fields on a Lie group G to be transitive. The concept of

transitivity is essentially that of controllability in the literature on control systems.

We consider families of right (resp. left) invariant vector fields on a Lie group G

which is a semidirect product of a compact group K and a vector space V on which

K acts linearly. If 5F is a family of right-invariant vector fields, then the values of the

elements of if at the identity define a subset T of 7.(0) the Lie algebra of G. We say

that if is transitive on G if the semigroup generated by U XE¡,{exp(tX): t » 0} is

equal to G. Our main result is that if is transitive if and only if Lie(F), the Lie

algebra generated by T, is equal to L(G).

0. Introduction. In this paper we give necessary and sufficient conditions for a

family of right-invariant vector fields on a Lie group to be transitive. This concept of

transitivity is essentially that of controllability in the literature on control systems. In

our context it can be explained as follows. Let G be a Lie group with its Lie algebra

L(G). There is an obvious correspondence between subsets of L(G) and right

(respectively, left) invariant families of vector fields on G. If T G L(G) we denote by

fr the corresponding right-invariant family of vector fields. X G tr if and only if

^eT where Xe is the value of X at the identity e of G. If X is a right-invariant

vector field then the one-parameter group of diffeomorphisms of X is given by

{exptX: t G R}.

Corresponding to a subset T of L(G) we let S(T) be the semigroup generated by

U^er{exp tX: t > 0}. We say that fr is transitive on G if S(T) = G. If tr is a given

subset of right-invariant vector fields, then there is an obvious corresponding subset

f, of left-invariant vector fields, and T, is transitive whenever Tr is. For that reason

we will only consider the right-invariant families on G.

It is well known that a necessary and sufficient condition for S(T) to have a

nonempty interior in G is that Lie(i), the Lie algebra generated by T, be equal to

the Lie algebra of G (for instance, [SJ], [K] and [L]). It is also well known that when

G is compact and connected this condition is equivalent to transitivity of f [JS].

In this paper we show that Lie(i) = L(G) is essentially equivalent to transitivity

of f on G, which is a semidirect product of a vector space V and a compact group K
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(such G is always noncompact). More specifically, we let K be a compact connected

Lie group which acts linearly on a vector space V, and we let G be the semidirect

product of F with K. We denote this by G = V XSK. Recall that this means that the

elements of G are the elements of V X K with the group operation defined by

(v, g) ■ (w, h) — (v + gw, gh) for all (v, g) and (w, h) in G. L(G), the Lie algebra

of G, consists of elements of VXL(K) where the Lie bracket is defined as

[(a, A),(b, B)] = (Ab - Ba,[A, B}) for all (a, A) and (b, B) in L(G) and where

[A, B] is the Lie bracket in L(K).

This paper is divided into four sections. The first section deals with the basic

definitions and elementary facts concerning Lie groups and semidirect products.

When K is such that Kv — {kv: k G K) = [v] only for v = 0, i.e., when V admits

no fixed points of V except the origin then Lie(T) = L(G) is a necessary and

sufficient condition for transitivity of f. §11 explains this result. In addition it

contains a criterion for i which ensures that Lie(t) = L(G) when K is semisimple,

and acts irreducibly on V.

§111 deals with the case where V has fixed points under the action of K. If

Vx = {v: Kv = v}, then in addition to Lie(T) — L(G) we must require that the

orthogonal projection of C0(T), the positive convex cone spanned by T, on Vx be

equal to Vx. In such a case, these two conditions are both necessary and sufficient

for transitivity of f.

Finally, §IV deals with the related results and applications. This section contains a

transitivity result on a semidirect product of V with a Lie group 77 which is not

necessarily compact but which has a maximal compact subgroup K admitting no

nonzero fixed points in V. In such a case a necessary and sufficient condition for

transitivity is that Lie(i) = L(G) and that the projection Yu of f be transitive on 77.

As a way of applications we treat two somewhat distinct situations. The first deals

with the regular curves in R" and their moving frames as described by the Serret-

Frenet formulas. The complete differential system for a given regular curve, that is,

the curve along its orthonormal moving frame, is most conveniently described on G,

the semidirect product of R" with On(R). In particular, we show that the present

techniques generalize the results contained in [J].

The second application of our results is directed to what we call affine control

systems on R" of the form:

dr m

(1) ^ = Ax + a + ^ u,(t){B,x + b,)
i=i

where A, Bx,...,Bm are « X « matrices, a, bx,...,bm are vectors in R", and where

u(t) = (ux(t),...,um(t)) is a control function taking values in some control con-

straint set Í2 in Rm. Such systems can be regarded as projections of control systems

of a semidirect product of R" with a Lie subgroup 77 (determined by the matrices

A, 73,,...,Bm) of GL„(R). More specifically, we regard X = (a, A) and Y, = (b„ B,),

i = 1,2,... ,m, as elements of L(G) and we consider control systems on the form:

(2) f =lx+ îui(,)Yi)g.
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If g(t) = (x(t), h(t)) then

j> / m \

(3) f = U+ 2 «,(')*,\h(t)
\ 1=1 /

and x satisfies equation (1). Our transitivity results apply to controllability of

equation (2) and hence to controllability of affine systems as well.

I. The basic definitions and elementary facts. As already stated in the introduction,

in this paper we will study invariant differential systems on a Lie group G which is

the semidirect product of a finite dimensional vector space V and a compact

connected Lie group K which acts linearly on V. We shall write G = V XSK. The

Lie algebra of G, L(G) consists of elements of V® L(K) with the Lie bracket

defined by [(x, A), (y, B)] = (Bx - Ay, [A, B]) where L(K) is the Lie algebra of

K, x and y are in V, A and B are elements of L(K) and where [A, B] is the Lie

bracket of A and B in L( K ).

We shall write V®s L(K) for L(G) the Lie algebra of G. Throughout this paper ir

and t will be the canonical projections of G onto K and V respectively. We shall

write dir and di for their respective differentials: dir: L(G) -> L(K) and dr:

L(G) -> V, and both maps are linear.

With each subset T of L(G) we will associate the family Tr, of right-invariant

vector fields on G: X G tr if and only if Xe G Y where Xe is the value of X at the

identity e of G. By S(T) we shall denote the semigroup generated by

U {expAf.t>0}.
a<=t

As is well known, S(T) is the positive semiorbit of fr through the identity e. For

convenience to the reader, recall that if ÍF is a family of vector fields on a manifold

M, (complete, as is the case here), then the positive semiorbit of <3r through a point

q G M is the action of the semigroup generated by UA.ei,T{exp tX: t > 0} at q. Here,

{exptX: t G R} is the 1-parameter group generated by the vector field X. (For

further details, see [JK].)

Definition 1. fr is transitive on G if S(T) = G.

In the sequel we assume that i is a fixed subset of L(G) and we seek conditions

on T which characterize the transitivity of fr.

Definition 2. We shall say that v G V is a fixed point under K if Kv = {gv:

g G K} = {v}. We shall write this Kv = v.

II. Transitivity for the cases where K admits no nonzero fixed points of V.

Theorem 1. Suppose that V and K are such that V admits no fixed nonzero points

with respect to K. Then, a necessary and sufficient condition for the transitivity of fr is

that Lie(i), the Lie algebra generated by T, be equal to L(G).

In the proof of this theorem we will be using the following four lemmas which we

state and prove first.

We first make the following important remark which will be used several times in

the sequel.
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Remark 1. Lie(T) = L(G) is a necessary and sufficient condition that the interior

of S(T) be nonempty in G. (For proof, see [K], or [SJ].)

Lemma 1. Assume that Lie(T) = L(G). Then, ir(S(T)) = K.

Proof. Let TK be the projection of T into L(K). Since Lie(T) = L(G) it follows

that Lie(T^) = L(K), ir(S(Y)) = S(TK) where S(YK) is the semigroup generated by

U/)er^{e/": t > 0}. That is, S(TK) is the positive semiorbit of (tK)r through the

identity / of K.

Now, it is well known that Lie^) = L(K) is a necessary and sufficient condi-

tion such that S(YK) — K because K is compact (for instance, [JK] or [JS]). Thus,

the statement of the lemma is true.

The next three lemmas deal with the following set:

T = {(«,/): (v,I) GintS(r)},

under the condition that Lie(T) = L(G).

Lemma 2. T is nonempty.

Proof. Lie(T) = L(G) implies by Remark 1 that int S(Y), the interior of S(T), is

nonempty. Let (v, g) G int S(T). By Lemma 1, there exists w G V such that

(w, g~x) G S(T). But then, sinceS(T) is a semigroup, (v, g) ■ (w, g~x) = (v + gw, I)

belongs to int S(T). Hence, T is nonempty.

Lemma 3. For each v G T there exists an integer N > 0 such that (Xv, I) G T for

all X with X > N.

Proof. If (v, I) G int S(T) then there exists e > 0 such that ((1 + X)v, 7) G

intS(r) for all A with |A|<e. Hence ((1 + X)v, I)" = («(1 + X)v, I) G int S(T)

for each integer « > 0. Let N be any integer with /V(l + e) > 1. Then, the closed

interval [N, N + 1] has the property that (Au, 7) G int S(T) for all A G [N, N + 1].

But by the semiproperty of S(T), then the whole ray {A: A > N} has such property,

and hence we have the statement of the lemma.

Lemma 4. For each (v, I) G T and each g G K there exists an integer M > 0 such

that (Mgv, I) G T.

Proof. For each g G K, by Lemma 1 there exist vectors vg and vg-< in V such that

(vg, g) and (og-., g~x) belong to S(T). Hence, (ty., g~[)(vg, g) = (g~]vg + vg-<, I)

belongs to S(T).

If (v, I) G int S(T) then let M > 0 be any integer such that

(v-M-x{vg-,+g-x -vg),l)

belong to int S(Y). Therefore,

(« - ¿(v + *"' • °*)'7)M = (Mv - (V + g-\)>7) G int W-
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But then,

(ví^í-Iv+AMKv'.«"1)
= (vg, g)(Mv - g~\, g~x) = (Mgv, I)

belongs to int S(Y). Therefore, the statement of the lemma is true.

We now turn to the proof of the theorem.

Proof. That Lie(T) = L(G) is a necessary condition for the transitivity follows

from Remark 1. So assume that Lie(r) = L(G). We want to prove that S(T) = G.

Since G is connected it is sufficient to show that S(T) contains a neighborhood U of

the identity e in G. For then G = \Jn>xUn, and for each « > 0 U"G S(T) since the

latter is a semigroup.

Let (v, I) G int S(T). By Lemma 2 such a vector v exists. Let v — ¡KK ■ v dp

where p is the Haar measure on K such that p(K ) = 1. Since p is invariant under the

translations by the elements of R and since K acts linearly on V it follows that v is a

fixed point of K, i.e., Kv = u. By our assumption it then follows that u = 0.

Let Q(v) be the positive closed convex envelope generated by the set {g • v:

g G K}. Let g,,... ,gp be any elements of K such that any element »6 6(d) can be

written as

p

w= 2 XjgjV   for some A, > 0,X2> 0,.. .,Xp> 0.
7=1

In particular, since JK K ■ vdp G G(v)we have that

p

0 = v = 2 ^j8jv   f°r some A, > 0,... ,A   > 0.
7=1

By Lemma 4 there exist integers Mx > 0,...,Mp>0 such that (MjXjgjV, I) G

int S(Y) for each j = 1,2,... ,/>. Let AT = Wpj=, AT. Then, (MXjgjV, I) G int S(Y)

forj = 1,2,...,p. Thus

(0, /) = (A/«, /) = I 2 MA,g,t>,/

belongs to int S(Y). Hence, S(T) contains a neighborhood of the identity in G, and

therefore our proof is now finished.

A particular case covered by Theorem 1 is the case where K acts irreducibly on V.

The following theorem deals with that case, and it gives a criterion which ensures

that Lie(i) = L(G) for a given subset Y of L(G). For that purpose we introduce the

following considerations.

The group G = VXSK acts on Vin the obvious way:

(v, g)x = g • x + v    for all (v, g) G G and all x G V.

Since K acts linearly on V, the preceding action is affine. For each M = (v, A) G

L(G) and for each x G V, {(exp tM)x: t G R} is a one parameter group on V whose

infinitesimal generator is the affine vector field x -» Ax + v.
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Définition 3. If T C L(G), then <$(T) will be the set of affine vector fields on V

generated by Y, i.e., X G LJ(Y) if and only if X(x) = Ax + v for some (v, A) G Y.

In the language of [JK], ^(Y) is subordinated to the preceding group action and

generated by Y. If x G V we shall write ?X(Y) for the set {X(x): X G uJ(i)}. Using

the notations we then have the following

Theorem 2. Suppose that K is a connected, compact, semisimple real Lie group

which acts irreducibly on a vector space V. Let G = V Xs K and let Y G L(G). Then a

necessary and sufficient condition for Lie(T) = L(G) is that

(i) Lie(YK) = Lie(dir(Y)) = L(K) and

(ii) ̂ (O =¿ {0} for all x G V.

Proof. If Y is a given subset of L(G), we shall write G(L5)(x) for the orbit of

i'v(i) through x G V. More precisely, G(v7)(x) is the action of the group generated

by U^g^p^exp tX: t G R}. If 77 is the subgroup of G generated by

U {exptA: / G R)
A<ET

at x, then Hx = G("5)(x). (Here 77x = {gx + v: (v, g) G 77}.)

If Lie(T) = L(G), then H — G since G is connected. Thus the orbits of <3(T)

through each point x G V are given by Gx. The fact that K acts irreducibly on V

implies that Gx ¥= {x} for each x G V. Thus, no orbit of ($(Y) consists of a single

point, and therefore for each x G V there exists X G C5(Y) such that X(x) ¥= 0. Thus

condition (ii) holds. Since condition (i) is obviously satisfied, we have proved the

necessity of our choice.

Conversely suppose that (i) and (ii) hold. Let irT be the restriction of the projection

77- on Lie(T). Thus, irT: Lie(T) -» L(K) is a Lie algebra homomorphism. From

condition (i) irT is onto. Since ker7rr is an ideal of Lie(T), and since irr is onto it

follows that ker irr is a linear subspace of V invariant under K. By the irreducibility

assumption, either ker7rr = {0}, or ker7rr = V.

If kerwr = V, there is nothing to prove for then obviously Lie(T) = L(C7). So

assume that ker7rr={0}. Thus, Lie(T) is isomorphic with L(K). Since K is

semisimple and compact it follows that Lie(T) is a compact algebra, that is, the

integral group 77 of Lie(L) is compact. 77 being compact, and acting affinely on V

has a fixed point. This in turn implies that the orbit of 5F(J?) through this fixed point

consists of just that point alone which contradicts our assumption (ii). Thus,

ker irr ¥= {0} and our proof is now complete.

III. Transitivity of right-invariant systems in the case where V has fixed points

under the action of K. Before going any further into the details let us consider the

following example showing that the Lie algebra condition of the preceding section in

the presence of fixed points does not always ensure transitivity.

Example 1. Let K = SOx(R) X SO„(R), and let V = R X R". K acts on V in the

obvious way that is (1, g)(x, y) = (x, gy) for each (1, g) G K and each (x, y) G V.

In this action Kv = v if and only if v — (x, 0).
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We shall take G = V XSK and in G we consider a family Y = {(v, A): v = (x, y),

x>0,A GL(7<:)}.Then,

(i) Lie(L) = L(G) and

(ii) S(Y) = {(v, g): v = (x, y):x>0,gG K}.

Hence, fr is not transitive on G even though Lie(r) = L(G).

To elucidate this point we shall assume that K is a given compact group which

acts linearly on a finite dimensional vector space V. We denote by ( , > the scalar

product on V invariant under K, and by dv we shall designate the corresponding

metric on V. Thus, K G O(V), where O(V) is the orthogonal group relative to ( , ).

If dK denotes the left- and right-invariant metric on K, we let dG be the following

metric on G = VXSK:

dG{(vx,gx), (v2, g2)) = dK(gx, g2) + dy(vx,v2)

for all (v,, g,) and (v2, g2) in G. lî(w, h) G G, then

dG((w, h){vx,gx), (w, h)(v2, g2)) = dG((w + hvx,hgx), (w + hv2, hg2))

= dK{hgx,hg2) + dv(hvx,hv2) = dK(gx,g2) + dv(vx,v2).

Thus, dc is left-invariant.

We let Vx be the subspace of V consisting of the fixed points under K, and we

designate by V2 the orthogonal complement of V. Since K, = {v: Kv = v), it follows

that for any A'G L(K), Xv = 0 for all v G Vx. Moreover, if w G V2, and if

Xe L(K), then

(v, Xw)= -(Xv,w)=0    for all u in F,.

Hence, XV2 G V2. Thus, both Vx and V2 are invariant under the elements of L(K).

We will use P to designate the orthogonal projection of V onto Vx. As already

mentioned earlier, t is the canonical projection of G onto V, and dr is the projection

of L(G) onto V. We now have the following

Theorem 3. Let Y be a subset of L(G). Then the associated right-invariant system Yr

is transitive on G if and only if Lie(T) = L(G), and the positive convex cone

C0(P ° dT(Y)) spanned by P ° dr(Y) is equal to Vx.

Proof. We first prove the necessity. If (a, A) G Y, then (a, A) = (a,,0) © (a2, A)

where ax = Pa and a2 = (I — P)a, (ax,0) and (a2, A) commute, hence

exp/(a, A) = (axt, I)(a2(t),exptA)    where a2(t) G V2 for all t

since AV2 G V2.

It is now clear that if Y = (b, B) is another element of Y then

expt2(b, B) ■ expi,(a,, A)

= (axtx + bxt2, I)(b2(t2) + (expt2B)a2(t),expt2B ■ exptxA).

Thus, the projection of S(Y) onto K, is equal to the positive convex cone spanned by

P ° dr(Y). If T is transitive, then such a cone must be equal to Vx.

Conversely assume that Y is such that Lie(T) = L(G) and C0(P ° dr(Y)) = Vx.
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Let, as before, T = {(t>, 7): (v, I) G int S(i)}. From Lemma 2, T is nonempty.

If (v, I) G T, then let w = }K K ■ v dp where p is the normalized Haar measure on

K. Kw = w hence w G Vx. If w = 0, then as in the proof of Theorem 1 it follows that

(0, I) G T, and since G is connected, S(Y) = G. So in this case there is nothing to

prove.

If w =£ 0, then there exists a positive integer N such that v = Nw is in T. This

follows from the fact that w belongs to the closed convex cone C0(Kv) spanned by

the orbit Kv. Thus, w = 2f=, A,g,u for some g elements g,,... ,g in K and positive

numbers A,,.. ..A^,. By Lemma 4, there exist integers M}; such that (M/XjgjV, I) G T.

The desired integer TV can then be taken to be equal to Il^=, M,.

We next show that there exists A > 0 such that both Xv and -Au belong to

intS(C0(i)) where C0(i) stand for the convex cone spanned by Y. Since

C0(P « dr(Y)) — Vx there exists an element X of C0(Y) of the form (~v + u, A)

where u G V2, and A G L(K).

expt(-v + u, A) = (-vt + u(t),exptA)    where u(t) G V2 for all /.

Since (v, I) G T which is open it follows that some ball B(v, e) of radius e centered

at v is contained in T. From the left-invariance of the metric dc it follows that

B(exptXv, e) is contained in int 5(C0(r)). Now, K is compact, hence there exists

time t > 1 such that dK(exp tA, I) < e. Therefore,

dG(((l -t)v + «(/),/), ((1 - t)v + u(t),exptA)) <£.

Thus,

((1 - t)v + u(t), I) G B(exptXv,e)

and hence,

((\-t)v + u(t),l)GT(C0(Y)).

Now, JKK((l — t)v + u(t))dp = (1 — t)v, and by a preceding argument it follows

that for some positive integer M, M(l — t)v G 770,(1)). Since M(l — t) < 0 it

follows, by Lemma 3, that there exists A > 0 sufficiently large that both Xv and -Xv

are in 7TC0(r)). Since 7TC0(r)) is a semigroup it follows that 0 = Au — Au is in

T(C0(Y)) and thus 77C0(r)) contains the identity of G. This shows that 5(C0(r)) =

G, since G is connected. And, now, we are finished, because it is well known that

S(C0(Y)) CclS(i) and that clS(i) = G implies that S(Y) = G provided that

Lie(T) = L(G). Our proof is therefore finished.

IV. Related results and applications. The first result deals with transitivity of

systems on semidirect products which are not necessarily defined by compact

groups.

Theorem 4. Let H be a connected Lie group which acts on a finite dimensional

vector space V, and let G = V XSH. Let ir be the canonical projection of G onto 77.

Assume that 77 contains a maximal compact group K which has no nonzero fixed points

in V. Then, a necessary and sufficient condition that a right-invariant system Yr be

transitive on G is that

(i) YH = dir(Y) is transitive on 77 and

(ii) Lie(L) = L(G).
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Proof. The conditions of the theorem are evidently necessary, hence that proof

will be omitted. So assume that conditions (i) and (ii) hold. As before, condition (ii)

implies that int S(Y) is nonempty. If (v, g) G int S(Y), then by condition (i) there

exists w G Ksuch that (w, g~x) G S(Y). Thus, (v + GW, I) G int S(Y). Hence, Tas

defined in the previous lemmas is nonempty. If (v, I) G T then consider w = jKK ■

v dp. w is invariant under K and hence w — 0. The rest of the proof follows as in the

proof of Theorem 1. Hence, the origin is in T, and thus S(Y) = G. This proves the

theorem.

The following example shows that without any assumption on the compact

subgroup K conditions (i) and (ii) do not in general guarantee transitivity.

Example 2. Let 77 = SO0(n, 1) be the connected component through the identity

of the Lorentz group in R". This group, as a subgroup of GLn+x(R), acts linearly on

V= R"+l. Consider G = V XSH. Let C be the light cone of 77 in V, and let

T = C ©j L(H). Then, obviously, conditions (i) and (ii) are satisfied, but S(Y) = C

X 77 ¥^ G. In this case, the maximal compact subgroup K of 77 is equal to

SOn(R) X SOx(R) which has many fixed points in V.

As a way of applications of the preceding results we will concentrate on the

following two distinct cases:

Case I. Serret-Frenet moving frames. Recall that a curve x(s) in R" parametrized

by its arc-length from a certain fixed point x0 is called regular if dx/ds,

d2x/ds2,...,d"~xx/ds"~x are linearly independent for each s > 0. Every regular

curve x generates an element V(s) G 0„(R), the so-called moving frame of x at s,

and it generates «—1 curvatures kx(s),.. .,k„_,(j). If vx(s),...,vn(s) are the

columns of V(s), then we have the following well-known Serret-Frenet formulas:

dx

dv,

^ = K|U-

dv, _

~ds~ - "K<-

a\
ds  "     K"-'U'<-'-

The above set of differential equations can be regarded as a differential system on

the semidirect product of R" with 0„(R): If we regard g(s) = (x(s), V(s)) as a curve

on G = R" X^O^R) then dg/ds = g(s) ■ L(kx(s),. . .,k„_x(s)) where for each s > 0,

L(kx(s),. .. ,Kn-x(s)) is an element of the Lie algebra of G, defined by

L(kx(s),...,k„_x(s)) = (e,,2;=,'K,(i)/l,) where A¡= -Ei(i+X) + £((+1), for each / =

1,2,...,«— 1. (Here, Ei)• = e,© ey.) We shall assume that « — 2 curvatures

kx,...,k¡_x, k¡+ ],...,k„_, are a priori given and are constant with respect to s, and

we shall be interested with transitivity results as the remaining z'th curvature k¡ is

allowed to vary over all positive smooth functions on [0, oo). If we let X —

(ex,1"^x KjAj) and Y — (0, A¡) then the set of curves g(s) in G generated by the /th

curvature k, satisfies

(1) dg/ds = g-(X+KiY).

., + K,+,!),+ ,, 1  </'<«,
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If T = {X + k{Y: k, > 0}, then S(Y) consists precisely of all points in G which lie

on the solutions of (1) emanating from the identity of G as k,(s) varies over all

piecewise constant positive functions on [0, oo). As explained in [J], Lie(T) = L(G)

except in one case. This exceptional case is when « is even, /' = «/2 and k,- ■ = ni+J

for ally = 1,2,...,/— 1. When Lie(i) = L(G) it then follows from Theorem 1 that

S(Y) = G and hence we have the following result:

If g0 and g, are any points in R" X SO„(R) then there exist an sx > 0 and a

positive (smooth) function k,-(s) defined on [0, sx] such that the corresponding

solution g(s) of equation (1) satisfies g(0) = g0 and g(sx) = g, stated differently, for

any initial point x0 and any initial frame V0 in SO„(R) and for any final point xx and

final frame K, in SO„(R) there exists a regular curve satisfying:

(i) x satisfies the given curvature constraints and

(ii) it connects the two given points with prescribed initial and final frame.

Case IL Affine control systems on R". Here we will consider differential control

systems on R" of the form:

dx "'
(2) ^ = Ax + a+ 2 u,(t)(B,x + b,)

i = i

where A, Bx,... ,Bm are « X « matrices, and where a,bx,...,bm are vectors in R".

The state variable x is in R" while the controls ux,...,um each takes values in R and

is defined for / G [0, oo). We call such systems affine. For simplicity of exposition,

we will concentrate only on the case of scalar control:

dx
(3) ^ = Ax + a + u(t)(Bx + b).

The system defined by (3) is said to be (completely) controllable if for any initial

state xQ and any final state xx in R" there exists a control u such that the

corresponding solution of (3) starts at x0 at t = 0 and passes through xx in some

positive time t. When a = 0 and B = 0, then such a system is called linear and as is

well known in the literature of control theory that controllability is equivalent to

b. Ab,... ,A"~ xb being linearly independent.

We will however regard equation (3) as a part of a larger system defined as

follows:

Assume that the admissible controls u are required to take values in some

constraint set Í2 C R. We shall regard A and B to be elements of M„(R) the Lie

algebra of GL„(R) the general linear group of R". As such the set {A + uB: u G fi}

generates a certain Lie subalgebra of M„(R). We denote by L such a subalgebra, and

we denote the integral group of L by 77. 77 is the group generated by

U  {eM':tGR}.
M(EL

We regard X = (a, A) and Y = (b, B) to be elements of the Lie algebra of

G = R" Xs 77. Instead of just equation (3) we consider

(4) dg/dt=(X+u(t)Y)g(t),       g(t)GG.

If g(t) = (x(t), h(t)) then x satisfies equation (3) while « satisfies

(5) dh/dt = (A + u(t)B)h(t).
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When the admissible controls vary over all piecewise constant functions defined

on [0, oo) with values in Í2, then as is well known, the set of points in G reachable

from the identity via the solutions of equation (4) is given by S(Y) where Y = {X +

uY: u GQ).

Transitivity of Y on G implies in particular controllability of equation (3). From

our choice of 77 we already know that YH — dir, Lie(Y„) = dir(Lie(Y)) is equal to

L(77) so in order to apply the preceding transitivity results we need to verify that

(i) either 77 is compact, or that TH is transitive on 77, and

(ii) that Lie(i) = L(G).

The results contained in [JK] deal with conditions A and B which ensure that

equation (5) is controllable or, equivalently, that the corresponding right-invariant

system Y„ is transitive on 77.

A more detailed analysis of affine systems using the semidirect products of Lie

groups will appear elsewhere.
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