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EXTENSIONS FOR AF C* ALGEBRAS

AND DIMENSION GROUPS

BY

DAVID HANDELMAN1

Abstract. Let A, C be approximately finite dimensional (AF) C* algebras, with A

nonunital and C unital; suppose that either (i) A is the algebra of compact operators,

or (ii) both A, C are simple. The classification of extensions of A by C is studied

here, by means of Elliott's dimension groups. In case (i), the weak Ext group of C is

shown to be Extz( K0(C),Z), and the strong Ext group is an extension of a cyclic

group by the weak Ext group; conditions under which either Ext group is trivial are

determined. In case (ii), there is an unnatural and complicated group structure on

the classes of extensions when A has only finitely many pure finite traces (and

somewhat more generally).

Our motivating theme is to consider extensions of C* algebras by other than the

algebra of compact operators. Because AF algebras are describable in terms of

partially ordered groups, they seem particularly suitable for this extension theory. As

the ordered groups arising from simple AF algebras are fairly well understood, it

turns out that one can solve completely the problem of classifying simple by simple

AF algebras, when the finite trace space of the bottom AF algebra has finite

dimensional dual. In the course of doing this, we establish formulae for the usual

strong and weak Ext groups of AF algebras; our homological approach to this

differs from the computational viewpoint of Pimsner and Popa [14, 15].

We consider short exact sequences ("extensions") of C* algebras, A -> B -> C,

with B an AF algebra. There is a translation to extensions within a class of partially

ordered abelian groups and distinguished subset, known as dimension groups with

interval, via the functor K0. This translation is reversible (owing to a recent result of

L. Brown that an extension of an AF algebra by an AF algebra is AF), so all C*

extensions are represented as dimension group extensions.

With the appropriate notion of equivalence (extending strong equivalence as

defined in [3, p. 268], when A is the algebra of compact operators on a separable

Hubert space), the equivalence classes admit a limited additive operation, often

forming a disjoint union of groups. A single group results if, for example, both A

and C are simple (with A unitless, but not necessarily stable).

§1 deals with the appropriate definitions of extensions, dimension groups, equiva-

lence, and the translation between AF algebras and dimension groups. Much of this

is well known. In the second section, it is shown that if A is simple stable, and C is
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simple, or if A = % (the algebra of compacts), then the dimension group extension

equivalence classes' group is given by a formula and depends only on the group

structures underlying KQ(C) and K0(A). In particular, if A =%, the weak Ext group

of C is simply ExtZ(K0(C), Z), the group extensions of Z by K0(C). The strong Ext

group of C is an extension of a cyclic group by the weak Ext group; roughly

speaking, the cyclic group measures the presence of matrix units. When C is simple

and A is simple and stable (but different from the compacts), the extension classes

form a group with Extz(7i0(C), K0(A)) appearing as a direct summand.

§§III through VI essentially discuss the situation that C be simple and A be simple

and admit a finite trace. In §111, there is given a construction for extensions of the

dimension groups; these arise out of closed faces of the state space of the bottom

group. Once the face F is fixed, these extensions may be listed as elements of the

group of homomorphisms Homz(K, Aff(F)), where K is the top dimension group.

In §IV, a converse of the construction in §111 is shown; namely, if the bottom

group has finite dimensional dual space (or more generally, if F above is finite

dimensional), then all extensions arise out of the construction in §111. Unfortunately,

if the finite dimensional hypothesis is dropped, other extensions may arise, and these

appear to be beyond classification.

Equivalences (among the dimension group extensions) and how they are imple-

mented among the previously constructed extensions are the main topic of §V. These

equivalence classes form a disjoint unit of groups (one for each face of the state

space of the bottom group). These classifying groups may be written down.

§VI employs the results of the previous three sections to discuss extensions of

dimension groups with interval—corresponding to the original problem in AF

algebras. The choice of interval fixes the face of states that is to be lifted, and the

possible disjoint union of groups obtained in §V is reduced to a single group. This

group (differing somewhat from that in §V, as in this context an equivalence must

preserve a fixed element known as an order-unit) is computed. While it is frequently

of tremendous size, if for example K0(A) and K0(C) are both finitely generated, the

classifying group is not intractable. As a specific example, if A is a unitless universal

Glimm algebra (not necessarily the stable one), and C is the unital universal Glimm

algebra, there is exactly one equivalence class of extensions of A by C.

§VII contains an example of a partially ordered abelian group which is a simple

by simple partially ordered group extension of a dimension group by another

dimension group, which is not itself a dimension group. This is of some technical

interest.

There is an appendix, which contains a somewhat different approach to the result

of §11, that for AF algebras, the weak Ext group is Extz(K0(C), Z).

I would like to thank George Elliott for many interesting conversations during the

preparation of this paper, and his useful comments afterwards.

I. 7<0-AF connections. The purpose of this section is to relate extensions of C*

algebras to extensions of their corresponding Grothendieck groups. We also intro-

duce some of the definitions and properties useful in studying both AF C* algebras,

and partially ordered groups.
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The definition of K0 for C* algebras is given in several sources (for example, [12,

p. 430]) and of course agrees with the usual ring-theoretic version of K0 [2, Chapter

9]. If 7? is a unital ring, then K0(R) admits a natural ordering making it into a

partially ordered (abelian) group, provided all matrix rings over R satisfy xy = 1

implies yx = 1 [10]. Since we shall be dealing with AF C* algebras, this latter

condition is satisfied in our context, and this ordering on K0 agrees with that

established by Elliott in his fundamental paper on AF algebras [7]. For another

approach to K0 restricted to AF algebras, see [4, §3].

When 7? is a unitless C* algebra, K0(R) is defined by forming R, the unique C*

unitification of 7?, and setting K0(R) to be the kernel of the induced mapping

K0(R)^Z = K0(C), obtained from R -> C.

A partially ordered group is a group together with a subset, called the positive

cone, that is closed under addition. All of our partially ordered groups are abelian,

and if G denotes the group, the positive cone will be indicated by G+ . A closed

interval in a partially ordered group G will be a subset of G+ of the form

{g G GI 0 < g < x) - [0, x]    for some x in G+ .

An interval will be a directed convex subset of G+ , with 0 as least element (directed

means if a and b are in the interval, there exists c greater than or equal to both a and

b in the interval). Intervals are sometimes referred to as hereditary subsets.

A partially ordered group G is called simplicial if G is order-isomorphic to the free

abelian group Z", with the coordinatewise ordering. A partially ordered group is

called a dimension group if it is a direct limit (over a directed set) of simplicial

groups. In some references there is a countability condition imposed on dimension

groups, but we shall not require dimension groups to be countable. By [5, Theorem

2.2], a partially ordered group G is a dimension group if and only if it satisfies the

following three properties.

(i) G is directed: That is, G = G+ - G+ .

(ii) G is unperforated: If for a positive integer «, and an element x of G, nx belongs

to G+ , then x also belongs.

(iii) G satisfies the (Riesz) interpolation property: For quadruples of elements of G,

a, b, c, d satisfying a, b < c, d, there exists e in G with a, b < e < c, d.

If A is a C* algebra, consider the set of projections in A; each projection yields an

element of K0(A), and we refer to the set of such images in K0(A) as D(A). Then D

can be thought of as a set function D: {projections in A) -» K0(A).

The symbol % will denote the C* algebra of compact operators on a separable

Hubert space.

The following theorem summarizes many standard results for AF algebras.

Theorem 1.1 [7]. (i) Given an AF algebra A, D(A) is a generating interval in

Kq(A); it is closed if and only if A is unital.

(ii) Given a countable dimension group G, and generating interval I, there exist an

AF C* algebra A and an isomorphism of partially ordered groups <p: K0(A) -> G so

that(pD(A) = I.
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(iii) Given two AF algebras. A, A', then A — A' if and only if there is an

order-isomorphism q>: K0(A) — K0(A') such that <pD(A) — D(A').

(iv) Given two AF algebras A, A', and an order-preserving group homomorphism <p:

K0(A) -» K0(A') with <pD(A) C D(A'), there exists a C* algebra homomorphism ip:

A — A' (not necessarily unital) such that KQ(\p) = <p; if both D(A) and D(A') are

closed intervals, and the interval generated by <pD(A) in K0(A') is all of D(A'), then ip

is unital.

(v) Two AF algebras A, A' are stably isomorphic (that is, A <S> %" = A' ® %) if and

only if KQ(A) ^ K0(A') as partially ordered groups.

An element x of a partially ordered group is called an order-unit if G+ =

Un6N[0, nx]\ if G is directed, this is the same as

for all g in G, there exists a positive integer « such that g < nx.

If A is a unital AF algebra, then the image of 1 in K0(A), call it [1^], is an order unit,

and D(A) is precisely the closed interval generated by [1^].

A subset H of a partially ordered group G is said to be an order-ideal (or a convex

directed subgroup) in G if 77 is a directed subgroup and 77+ is an interval. For groups

satisfying the interpolation property, this is the appropriate notion of ideal, and one

can easily show that if G is a dimension group, and 77 is an order-ideal in G, then

both 77 and G/77 (endowed with the quotient ordering, (G/77)+ = (G+ +77)//7)

are dimension groups (but not conversely, even when 77, G, G/77 are all real vector

spaces, §VII). There is a natural bijection between order-ideals of KQ(A) and closed

two-sided ideals of A, when A is an AF algebra. We outline a slightly nonstandard

proof of this in the following three results, Theorems 1.2,1.3 and 1.4.

We may assume A is unital, by forming A, in what follows.

Sitting inside the (for the moment, unital) AF C* algebra A is a limit of

semisimple finite dimensional algebras, call it 7?. Then R is a unit regular ring:

for all r in R, there exists an invertible element u such that rur = r.

Theorem 1.2 [Glimm: Thesis]. The embedding R G A induces an isomorphism of

partially ordered groups, K0(R) -> K0(A), sending D(R) onto D(A).

Theorem 1.3 [Bratteli: Thesis]. Every closed two-sided ideal of A is the closure of

its intersection with R; if I is a two-sided ideal of R, then the closure of I (in A), I,

satisfies I D R = I.

Theorem 1.4 [8, 15.20 and 5.2]. Let R be a unit regular ring.

(a) Given a two-sided ideal I of R, the subgroup 77 of K0( R ) generated by

{[eR]\e = e2Gl) G K0(R)

is an order-ideal in K0( R ).

(b) Given an order-ideal H of Kf)( R ), the subset of R defined as

I = {r G R\ [rR] G 77}

is a two-sided ideal of R.

(c) The assignments I \-> 77, 77 i-> I of (a), (b) respectively, are mutually inverse

lattice isomorphisms.
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If A is a unitless C* algebra, and C is a unital C* algebra, we define an extension

of A by C to be a unital C* algebra B together with maps

a        ir

A ^B-*C

so that a, ir are C* homomorphisms, with a one-to-one, ir onto, a(A) an essential

ideal of B, ker ir = im a, and ir unital; loosely speaking, A is an ideal of B, and C is

73/A
An automorphism ß of a unital C* algebra B is approximately inner if there is a

sequence of inner automorphisms ßn such that for all b in 7?, {/?„(£)} converges to

ß(b) in the norm topology. If B is not unital, we may take as definition that the

extension of ß to É is approximately inner (for AF algebras, this coincides with the

usual notion of approximately inner for unitless C* algebras [4, Theorem 3.8]).

Given two extensions A -» Bx -> C, A -» B2 -» C of A by C, we declare them to be

equivalent if there exists a (unital) isomorphism of C* algebras, \p: Bx -» 2?2 such that

^a,(^) = a2(^), and so that the induced automorphisms r: A -* A, \p: C -> C are

approximately inner; in other words, the diagram

A      -*     52     -»      C
«2 "2

commutes, where t = a^'^a, (this makes sense since ^a,(/l) = a2(/l)), and ip is

defined as ip(c) = ir2\p(b), where 7r,(¿>) = c. This notion of equivalence is an enlarge-

ment of the usual homological notion of equivalence which allows only the identity

down the sides.

Because of the following result (based on a suggestion of George Elliott; the proof

below is a modification of the argument in [6, Theorem 2.5]), we may assume that \p

is the identity map.

Theorem I.4A. If B is an AF algebra, A a closed ideal, and C = B/A, then

approximately inner automorphisms of C can be lifted to approximately inner automor-

phisms of B.

Proof. Adding an identity if necessary, B contains an ascending chain of unital

finite dimensional C* subalgebras, {Bk}, whose union is dense. Let ir: B -» C be the

quotient map, and set Ck = ir(Bk). If a is the automorphism of C, we may find

uni taries {y/} in C such that

(*) ||(Ad yj - «)/C,-,| < 2-<;+i+2>   for / > i

(this is possible, since the unit ball of C, is contained in the set {Sa^JA,. G C,

|AJ|< l}, where {es} is a complete set of matrix units). By approximating by

unitaries of U Ck (easily done), we may suppose that each y, belongs to UQ. By

refining the index set (for {Ak}, {Bk}), we may assume that yk lies in Ck for all

k>2.
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Write ekBk -A ílfi,, where ek is a central projection of Bk. Then ir induces a

""-isomorphism (1 - ek)Bk -» Q; in particular, eachyk may be lifted to a unitary zk

in 7?A. We observe that ek < ek+x.

Define unitaries xk of Bk inductively via

*i = (1 ~ex)zx +ex,

k-\

xk = (! - **)** +  2   (<v+i - */)*; + ex;
i

thenxA + l = (1 — ek+x)zk+x + ek+xxk. In particular, xk — zA belongs to .4.

For b in ekBk, a simple computation using the centrality of e, in B¡ yields that

Ad xk+p(ekb) — Ad xk(ekb) for all/; in N.

Next for b in (1 — ek)Bk, withy > /:, we deduce from jc +, = (1 — e +1)z-+l +

e,+ xXj, that

Adx/+1(¿>) = (1 - eJ+x)zJ + xbz*+x + ej+xXjbxf

(ase/+, is central), so (Ad xJ+, — Ad xy)(b) = (1 — eJ+])(zJ+xbz*+x — Xjbx*).

Since 77 restricts to a ^isomorphism (1 — eJ+x)BJ+x -* C, it is an isometry, and

thus

|(Adx/+l - Ad Xj){b)\=\yj+Xir(b)yj*+X - ylir(b)y*\\

= |(Ad^+1-Ad^H6)|<2-<>+*)||*||.

(The latter inequality holds, as ir(b) lies in Ck.)

It follows that for all b in Bk, (Ad Xj(b)} converges in norm. Since U Bk is norm

dense, {Ad xk) converges in the point norm topology to an automorphism of B; this

f\fis a, as ir(xk) = yk.    D

Returning to the diagram above, lift the inverse of \p to an approximately inner

automorphism of B2 and compose with \p. We observe that approximately inner

automorphisms automatically leave invariant all closed ideals, and their restrictions

are also approximately inner [4, Theorem 3.8]. There results a diagram in which the

vertical map C — C is the identity.

When A is the algebra of compact operators (and C is AF), this notion of

equivalence agrees with Brown-Douglas-Fillmore strong equivalence [3, 1.1, Defini-

tion], because every automorphism of A is then approximately inner. Also note that

the concept of extension defined here agrees, because of our use of essential in the

definition.

Two extensions of C* algebras A^B^C (B,,ir¡ unital) are said to be stably

equivalent if there is an isomorphism

xP: Bx ®%-* B2 ®%

so that

ypax(A ® ÍH.') = a2(A ® fK"),
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and so that the induced

T.A®%^A®%,       ,p~:C®%-> C®%

are approximately inner. When A = %, and C is AF, then stable equivalence of

extensions agrees with weak equivalence, as is implicit in the proof of II.9 or A-2.

Lemma 1.5. Let B¡ be unital A F C* algebras, and let A -» B, -* C be extensions of A

byC.

(a) Then both A, C are AF algebras, and the functor K0 induces an extension of

dimension groups with interval,

(**) (K0(A), D(A)) -»(*„(*,), [\B]) - (K0(C), [lc]).

(b) The two extensions of dimension groups with interval are equivalent if and only if

the extensions of C* algebras are equivalent.

(c) Removing the intervals and order-units from (**) to obtain an extension of

dimension groups, then the extensions of dimension groups are equivalent if and only if

the extensions of C* algebras are stably equivalent.

Proof, (a) This is well known, and is implicit in [7].

(b) If the extensions of C* algebras are equivalent, then since approximately inner

automorphisms induce the identity on K0, the "if portion of the statement is

immediate.

Suppose the extensions of the 7<0's are equivalent as dimension groups with

interval, say with y: (K0(BX),[1S|]) -» (K0(B2),[lB ]) implementing the equivalence.

By [7], there exists a C* algebra homomorphism 8: Bx -> B2, that is a unital

isomorphism with K0(S) — y. Since the diagram of dimension groups commutes, we

obtain side mappings A -> A, C -» C which induce the identity on K0; by [4,

Theorem 3.8], they must be approximately inner.

(c) Tensoring with the compacts destroys the interval, and (b) or the methods

involved therein apply.     □

A defect in 1.5 is that it does not translate extensions of K0(A) by K0(C) back to a

unique AF C* algebra B. This is remedied by the following recent theorem of Larry

Brown.

Theorem 1.6 [16]. Let A be an AF C* algebra that is an ideal in a C* algebra B; set

C = B/A, Then

(a) projections in C lift to projections in B;

(b) if C is AF, then so is B.

That (a) implies (b) is Corollary 3.3 of [6A].

Because K0 with order-interval (or order-unit, in the unital case) is a complete

invariant of AF algebras, we deduce from Brown's Theorem that KQ and the

order-unit determine uniquely the extension that arises from the extension of

dimension groups with interval. We need only construct an AF algebra B corre-

sponding to the dimension group extension of K0(A) by K0(C).
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Proposition 1.7. Given an extension of countable dimension groups with interval,

(H,N)^(G,u)^(K,w),

there exists an extension of AF C* algebras A -» B -* C, together with order-isomor-

phisms (vertical, in the diagram) so that the diagram

(K0(A),D(A))     -     (K0(B),[lB])      -     (K0(C),[lc])

(H,N) - (G,u) - (K,w)

commutes.

Proof. By [7], there exists an AF algebra B' with K0(B') order-isomorphic to G.

Form B" — B ® %; we may find a projection/7 in B" such that DB.(p) is sent to u

under the isomorphism. Set B — pB"p. Since order-ideals correspond to closed

two-sided ideals and K0 behaves well on the quotient C* algebras, the rest is clear.

D
Having made a complete translation of the extension problem from AF C*

algebras to dimension groups with interval, we can now begin our study of the latter,

via extensions of dimension groups. In §11, we study (essentially) the case of the

interval being all of 77+ ; this will include the case of the algebra of compacts, and in

this case, the BDF-Voiculescu Ext groups of AF algebras can be written down.

The stable equivalence classes behave in a peculiar manner when A is not the

compact algebra; if C happens to be simple and AF, then these equivalence classes

form a disjoint union of groups (§§III through VI).

Now, there are corresponding definitions of extensions of dimension groups. If H,

K, and G are dimension groups (and we usually require that G and K possess
a 71

order-units), then a dimension group extension of 77 by K is a sequence 77 -> G —Tí,

with

a an order-embedding (meaning a is one-to-one, a(77+ ) C G+ , and a~x(G+ ) =

H+);

ir onto, order-preserving, and ir   X(K+ ) = G+ +77;

ker ir = im a;

a(H) an order-ideal in G; and

a(77) n L ¥= {0} for all nonzero order-ideals L of G.

If TV is an interval in the dimension group 77, and w is an order-unit for K, then we

say a sequence (77, TV) -» (G, u) -* (K, w) is an extension of dimension groups with

interval if

77 -» G -> K is an extension of dimension groups;

ir(u) = w, and u is an order-unit for G; and

a(N) = [0, u] C\a(H).

The notion of equivalence, either for dimension group extensions, or for exten-

sions of dimension groups with interval, is the obvious one, with only identity maps

allowed down the sides, and intervals, order-units sent to the appropriate objects.

Extensions of dimension groups with interval correspond exactly to extensions of

AF algebras. It is much easier to work with extensions of dimension groups first, and

then deduce the desired results for extensions with intervals.
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II. Lexicographie extensions. A (directed) partially ordered group is simple, if it

has no order-ideals other than the group itself and {0}; what amounts to the same

thing is that every nonzero positive element be an order-unit.

If (G, u) is a partially ordered group with order-unit u, then we define a state

(normalized) to be an order-preserving group homomorphism from G to the additive

group of the reals, sending u to 1. Sometimes, the notion of state does not require the

condition that it send a specific order-unit to 1 ; this will be clear from the context.

An extension of partially ordered groups 77 -» G -» K is said to be lexicographic if

G+ = ir~x{K+- {0})Ua(77+);

that is, an element g of G is positive if either ir(g) is nonzero and positive in Tí, or if

g = a(h) for some h in 77+ . This generalizes the usual notion of lexicographic

product, in that, in this case we do not require the extension to split as groups.

Lemma ILL Let 77 -» G -» K be an extension of partially ordered groups, with both

77, K dimension groups. If the extension is lexicographic, then G is also a dimension

group.

Proof. By [5, Theorem 2.2] (see the introduction to §1), we need only check that G

is unperforated and satisfies the interpolation property, and this is routine.    D

If 77 is an order-ideal of the dimension group G, and v, u are order-units for 77, G

respectively, we say a state f on (77, v) extends to G if there exists a state p on (G, u)

such that p(H) + {0} and / agrees with p/p(v) on 77. Not all states of 77 extend;

for example if the ordering is lexicographic, no states extend, and this is frequently a

characterization (II.5 below). Since the definition does not depend on a specific

order-unit of 77, but merely that one exists, we usually say the state / on 77 extends.

Lemma II.2 [5, Theorem 1.4]. Let G be an unperforated directed group with

order-unit. Then an element g of G is positive and an order-unit if and only iff(g) is

strictly greater than zero for all pure states f.

Lemma II.3.'Lei G be a dimension group, and suppose x,y are positive elements of G

satisfying

0 < z < x, y   implies z = 0.

Then the order-ideals generated by x and y have zero as intersection.

Proof. Define 7(a) = {g G G\ —na < g «S na for some « in N} for a positive

element a of G. Then 1(a) is easily seen to be an order-ideal, and is the order-ideal

generated by a. We check that the intersection of two order-ideals /, J is itself

directed, hence an order-ideal.

Select f in 7 n 7; we may write t — a — b = c — d, with a, b in I+ , and c, d in

J+ . Applying Riesz decomposition to a + d = b + c, we may write a = bx + cx

with 0 < bx < b, and 0 < c, *£ c, and so d = (b — bx) + (c — cx). Since/ is convex,

c, belongs to 7, and the first equation yields that c, is a member of the intersection;

similarly, b - bx belongs to / n 7. Thus t = a ~ b = (a — bx) - (b — bx) = cx —

(b — bx) represents t as a difference of two elements of (7 n 7) + , so 7 n I is an

order-ideal.

The hypothesis clearly implies I(x)+ (M(y)+ — {0}, so I(x) fl I(y) is zero.    D
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Lemma II.4. Let (G, u) be a noncyclic dimension group with order-unit. If v is an

atom of G+ , then Zv is an order-ideal. If Zv is essential, then nv *S u for all positive

integers n.

Proof. That Zv is an order-ideal is straightforward. Suppose nv ^ u for some «.

Since u is an order-unit, there exists m so that v < mu; from the atomicity of v and

Riesz decomposition, v < u. If k is the largest integer such that kv < u, we see that

0 < z < u — kv, v implies z = 0. By II.3 and essentiality of Zv, u = kv; as Zv is an

order-ideal this implies G = Zv, so G is cyclic, a contradiction.    D

Lemma II.5 Let 77 -> G -> Tí be an extension of dimension groups, and suppose 77

has an order-unit of its own, as does G.

(a) If the extension is lexicographic, no states of H extend to G.

(b) Suppose either (i) or (ii) hold.

(i) 77 = Z or

(ii) K is simple, and no states of 77 extend to G;

then the extension is lexicographic.

(c) If the extension is lexicographic, then for any order-unit u of G,

H+ = 77D [0,u].

Proof. If v, u are the selected order-units for 77, G respectively, and (a) applies,

then nv < u for all integers «, whence any state of G must send v to 0, and thus

annihilate all of 77 (since [0, v] generates 77 as an ordered group).

(b) Select an element g such that g + 77 belongs to 7i+ — {0}. There thus exists an

element « in 77 with g + « in G+ ; as v is an order-unit, there exists a positive integer

« so that g + nv is positive in G. Let /be a state on (G,u); the hypothesis implies

/(77) = {0}, so/induces a state/on (K, u + 77); conversely, any state of (Tí, u + 77)

induces a state on (G, u). We shall show g is positive in both cases (i) and (ii), by

applying II.4 and II.2 respectively.

If (ii) holds, g + 77 is automatically an order-unit in 7Í, so for all states /of 7Í (and

we know all such states are induced from G), f(g + H) > 0; thus /(g) is strictly

greater than zero, so from II.2, g is positive.

If (i) holds, set x = g + (« + l)v, and we may as well assume v is the atom. Form

I(x), the order-ideal generated by x (as in the proof of II.3). As 77 is essential and v

is an atom generating 77, I(x) D 77, and obviously x is an order-unit for the

dimension group I(x). By II.4, mv ^ x for all positive integers m, so that x >

(n + l)v, so g is positive.

Hence in either case, G+ D a(77+ ) U ir~ X(K+ — {0}). If g is a positive element of

G, and 77(g) = 0, then g belongs to 77+ . Thus equality holds, so the extension is

lexicographic.

(c) This is a tautology.    D

If A is a stable C* algebra (that is, A - A ® %), and is AF, then the 7i0-sequence

derived from an extension of A by any AF algebra C must be

{k0(A),K0(A)+)^(G,u)^(K0(C),[Ic})
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simply because D(A) is all of Ti0(^4)+ in this case. Hence if either A is the algebra of

compacts, or C is simple, the only extensions of the corresponding dimension groups

are lexicographic. In particular, this means that the usual Ext theory (with A being

the compacts) is particularly straightforward.

Given any two abelian groups X, Z, recall from the standard texts the definition

of Extz(Z, X); this is a group structure on the set of equivalence classes of abelian

group sequences {0} -» X — Y -» Z -> {0}; one definition for the group operation

will be given in the course of the proof of II.6. The subscript Z is employed to

remind the reader that only the group structures of X and Z are being considered

(cf., the statement of II.6).

If X, Z are abelian groups, then the set of group homomorphisms from Z to X is

also an abelian group, and will be denoted either Homz(Z, X) or [Z, X].

Theorem II.6. Let H be a simple dimension group, and (K, w) a dimension group

with order-unit. Suppose that either 77 is cyclic, or K is simple. Then the equivalence

classes of extensions of dimension groups with interval of (H, H+ ) by (K, w) form a

group isomorphic to an abelian group extension of

H/([K,H](w))    byExtz(K,H),

where [K, H](w) = {t(w) \ t G Horn z( Tí, 77)}.

Proof. Given a group extension G (that is, a representative of an element of

Extz(7i, 77)), we can construct an extension as follows. Select any element « of G

such that ir(u) = w, and impose the lexicographic ordering on G; then u is an

order-unit. By II. 1, this yields an extension of dimension groups with interval

(77,77+) -*(G,u) ->(K,w).

It follows from 11.5(b), (c) that every extension must be of this form. We thus have

freedom in choosing from Extz(7i, 77), and then from ir~x(w) (of course, ir: G -» Tí

comes as part of the choice of G).

To determine the group structure on the equivalence classes, we first recall the

group operation on Extz(7i, 77). If

a,        7if

77^G,-»7i,        i= 1,2,

are two group extensions, first form the pullback of the mappings ir¡: G¡ -» Tí, i.e., we

obtain D = {(gx, g2) G G, © G21 irx(gx) = 7r2(g2)}. Then let d: 77 © 77 -* 77 be the

mapping d(h) = («, —«). As d(H) is contained in D, we may form the group

G = D/(d(H)). Let a: 77 ̂  G be the map 77 ̂  77 © 77 given by «k>(«,0),

composed with d and the quotient map D -> G. The mapping ir: G -» Tí is the

obvious one. This constructs an extension of groups 77 -* G -> K, and this defines

the addition operation in Extz(7i, 77).

On the G, of the preceding paragraph, impose the lexicographic ordering, and

suppose u, are corresponding order-units, so that ir¡(u¡) — w. Then («,, u2) lies in D,

and we may add (Gx, «,) and (G2, u2) by setting the sum equal to (G,(ux, u2) +

d(H)).
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Two extensions of this form are equivalent precisely when there exists an

order-isomorphism (¡p; (G, u) -> (C, u) inducing the identity on 77 and 7Í; in

particular, G = G' (as group extensions). Let us show that any equivalence of the

extensions within the category of abelian group extensions, that sends u to «',

actually implements an equivalence in the category of dimension groups with

interval.

Given <p: G -> G such that the diagram

G

commutes, we see that m must be a group isomorphism. Since the ordering on G is

lexicographic, it follows that g G a(H+) if and only if <p(g) G a(H+), and that

77(g) G 7i+ if and only if ir<p(g) G K+. Hence <p must be an order-isomorphism,

and so implements an equivalence of extensions of dimension groups.

Next, the group automorphisms of G that permit (***) to commute are in

bijection with Homz(7i, 77). Given the automorphism 9, form / = <p — id, and

observe that t(H) = 0 (more accurately, ta = 0). Hence t induces a homomorphism

t: K -> G, satisfying tir = t. Since ir<p = it, ttt — 0; hence t(K) G H (more accu-

rately, t(K) G a(H)). Conversely, given s: K -» 77, define t: G -» 77 C G, via t = sir.

Observe that if qp = / + id, (***) commutes, and furthermore, <p~' = -t + id, as

t2 = 0.

Hence two pairs of the form discussed above (Gx, ux), (G2, u2), are equivalent if

and only if G, = G2 and there exists s: K -> 77 such that s(w) = u2 — ux. It is

routinely verified that this equivalence relation is compatible with the operation

defined above on the extensions, and the induced operation on the equivalence

classes is associative and commutative. There is an obvious semigroup homomor-

phism onto Extz(7i, 77) (sending the class of (G, u) to the class of the extension

determined by G in Extz(7i, 77)), and it is routine to verify that the whole

semigroup is cancellative.

The kernel of this mapping to Extz(7i, 77) consists of pairs of the form (77 ©

K,(h,w)) (or rather, their equivalence classes). The operation restricted to this set

simply adds the 77-coordinates, and two choices for the 77-coordinate will yield

equivalent extensions if and only if the difference belongs to [7Í, H](w). Thus the

semigroup is cancellative abelian, and is exhibited as an extension of two groups,

H/([K, T7](w)) by Extz(7i, 77). It follows that the semigroup is actually a group.

D

Corollary II.7. Let C be a unital AF C* algebra. Then the strong Ext group of C

is an abelian group extension of

Z/([7i0(C),Z]([lc]))    byExtz(K0(C),Z).

Proof. The comments followng I.4A show that the equivalence used in II.6 agrees

with strong equivalence, and now one checks that the addition of the equivalence
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classes of extensions used in the proof of II.6 agrees with that induced by the

addition in Ext(C) (viz., [3, p. 270]) (see also the proof of A-3).    D

Corollary II.8. Let C be a simple unital AF algebra, and A a stable simple AF

algebra. Then the equivalence classes of extensions of A by C are completely classified

by the elements of a group extension of

K0(A)/ {[K0(C), K0(A)]([lc]))    by Extz(/i0(C), K0(A)).

There is a more complete and explicit description available for the classifying

groups in II.6, IL7 and II.8. Given an extension

77     -»     (G,u)     ^     (K,w)

I I I p

77     -        X *      K/Zw

we can create a second line by defining X to be G /Zu. The kernel of the map

X -> K/Zw is a natural copy of 77, so we obtain an extension of 77 by K/Zw.

Conversely, given a group extension

77 - X - K/Zw

a group extension of H by (K,w) with a specified element u sent to w is determined

uniquely by the pullback of the maps X -» K/Zw, K -* K/Zw, G = {(x, k) | ir(x)

= p(k)}, with u — (0, w). One checks in a straightforward fashion that this identi-

fication is a group isomorphism between the group described in II.6 and

Extz(7i/Zw, 77).

Thus II.6 gives the complete classification of the dimension group extensions as

the group, Extz(Ti/Zw, Z); II.7 yields that the strong Ext group of C is

Extz(Ti0(C)/Z • [lc],Z) (but see the comment below), and II.7 results in the

classification being given by

Extz(/v0(C)/Z-[lc],/C0(^)).

I should point out that this formulation was suggested by D. Voiculescu in an

address at Queen's University in August 1980, in pointing out that Pimsner and

Popa had (effectively) computed the strong Ext group as Extz(7i0(C)/Z • [lc], Z)

[14].
If C = M„C, then (K0(C) ■ [lc]) = (Z, «), so the strong Ext group is Z/«Z. If C

is a finite direct sum of Afn(()C, i=l,2,...,k, then (K0(C), [lc]) = (Z*,

(n(l),...,n(k))). Let m = gcd«(j); then [K0(C),Z]([lc]) = mZ, so by II.7 (as

stated), the strong Ext group is Z/mZ. Both of these results are well known.

In case C is the unital/j00 UHF algebra, then (7i0(C),[l0]) = (Z[l/p\, 1) (with the

ordering as a subring of the real numbers). Then using Z[l/p\/Zl =¡ Z <» (the Prüfer

group), the strong Ext group is Extz(Z »,Z), which is known to be the completion

of the integers localized at p, in the /7-adic topology. (This example appears in

unpublished notes of George Elliott, and can also be computed as proj limZ//7"Z;

essentially this had been obtained in [15].)
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On the other hand, if C is, for example, the AF algebra defined by the single

matrix [2,] repeated infinitely often, then 7i0(C) = Z + 21/2Z (as a subgroup of the

reals) is a simple dimension group free of rank 2, so that the group extensions are all

trivial. If we select w = [lc], then w can be extended to a basis for Ti0(C), and thus

[KQ(C),Z](w) is all of Z. Hence there is only one strong equivalence class of

extensions of this algebra (or of any simple unital AF C* algebra whose dimension

group is free, and such that the algebra itself is not a matrix ring of any size over

another ring).

To describe the weak equivalence classes of extensions of AF algebras, we show

that the cyclic portion of II.7 becomes zero, as the dependence on the choice of

order-unit is eliminated.

Lemma II.9. Let C be a unital AF algebra.

(a) Two extensions of C by the compacts are weakly equivalent if and only if there is

an order-isomorphism <p: Tv0(7?,) -> K0(B2) so that the diagram

Z     =K0(%)     -     K0(BX)     -     K0(C)

II if II
Z -*     K0(B2) KQ(C)

commutes.

(b) Given a dimension group extension Z

algebra B, and an extension of % by C, 5\

isomorphic to Z — G -» TÍ0(C).

Proof, (a) Two weakly equivalent extensions, after tensoring with the compact

algebra, become strongly equivalent (with the appropriate notion of strong equiva-

lence for unitless extensions), and the only if portion of the statement is straightfor-

ward.

On the other hand, any order-isomorphism lifts to an isomorphism of the stable

C* algebras, and this may be restricted to a weak equivalence.

(b) G must have the lexicographic ordering by II.5. Pick any element of G in the

pre-image of [lr], and call it u. We obtain an extension of dimension groups with

interval

(Z,N)-(G,«)-(/i0(C),[lc]);

now 1.7 applies.    D

Corollary 11.10. For C a unital A F algebra, the weak equivalence classes of

extensions of C by the compacts are classified completely by Ext z(7í0(C), Z), and this

is isomorphic to ExtM,(C).

Proof. The change of order-units is measured by the cyclic portion of II.7 in the

case of strong equivalence. However, the extensions with the same element of

Extz(TÍ0(C), Z) but corresponding to different order-units are all weakly equivalent

by II.9; so the cyclic contribution disappears, and it is routine to check that this is

precisely the kernel of the map Ext^C) -» Extw(C).    D

* G — T\0(C), we may find an AF C*

^ B ~> C so that KQ(%^ B -> C) is
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Without the hypothesis of II.6 (that either T7 = Z or K is simple), the extensions

of (T7, 77+) by (K, w) can still often be listed but rather than having a group

structure, they may be listed as a disjoint union of groups. An example illustrating

this phenomenon is exhibited below. This may be translated back to AF algebras,

and it follows that the classification of simple stable AF algebras (other than the

compacts) by nonsimple AF algebra extensions is not given by a group, but a

disjoint union of them. This renders complicated the possible prolongation of the

theory of extensions to incorporate simple algebras unequal to the compacts, on the

left.

Example. This is an extension of dimension groups with interval of the form

(77,T7+)-(G,w)-(Ti,w),

where 77 is simple, but the extension is not lexicographic.

Set G = R3, with

G+= {(x,y, z): z > 0, or all of x>0,y>0,z = 0) U {(0,0,0)}.

Set 77 = {(.x,0,0)}, and 77+ = G+ DH; then 77 = R with the usual ordering. With

u = (0,0,1), we see that no states of 77 can extend to G as «(1,0,0) < u for all n.

However (0,1,0) becomes positive modulo 77, yet is not positive in G—hence the

extension is not lexicographic. To obtain a countable example (of relevance for AF

algebras), simply replace the reals by the rationals.

This is a simplification, due to the referee, of my original example.

From II.7 and 11.10, we can determine which AF algebras have trival weak or

strong Ext groups (11.12).

Lemma II. 11. If C is a unital A F algebra, and C is an « X « matrix ring, then

[7i0(C),Z]([lc])c«Z.

Proof. If C is an « X « matrix ring, then [lc] = np for some/7 in 7i0(C), so that

for all/in Homz(7i0(C),Z),/([lc]) = nf(p) G «Z.    D

(The converse is certainly not true: Take for 7i0(C) any torsion-free indecomposa-

ble rank 2 abelian group embedded in R.)

Corollary 11.12. Let C be a unital A F algebra. Then

(a) Ext^C) = {0} if and only ifKQ(C) is free as an abelian group;

(b) Ext S(C) = {0} if and only if K0(C) is free and C is not an n X « matrix ring for

any n greater than 1.

Proof, (a) By 11.10, Ext„(C) = {0} if and only if Extz(7i0(C),Z) is zero; since

Ti0(C) is countable, this is equivalent to K0(C) being free (see any text on infinite

abelian groups, under the Whitehead problem).

(b) If ExtiC) is zero, by II.7, Extz(7i0(C),Z) = {0} (whence Ti0(C) is free), and

[7i0(C), Z]([lc]) = Z; by II.11, C is not an « X « matrix ring.

On the other hand, Ti0(C) being free implies Extz(7i0(Ç), Z) is zero, and the

matrix ring hypothesis translates to

[lc] ¥= np    forall«inZ - { + 1}, all/7 in K0(C).
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Since 7Í0(C) is free, it easily follows that {[lc]} can be completed to a Z-basis for

K0(C), andso[7i0(C),Z]([lc]) = Z, whence by II.7 ExtS(C) = {0}.    D

It also follows from II.7 and 11.12, that Ext/C) = Z is impossible for any unital

AF algebra C; other impossible groups include all noncyclic countable abelian

groups.

III. Simple by simple extensions of dimension groups. For suitable dimension

groups 77, K, we classify the dimension group extensions of T7 by Tí. This will be

used in subsequent sections to determine the extensions of dimension groups with

interval, to yield results about the corresponding extensions of AF algebras.

In the treatment of lexicographic extensions, we saw there was a group structure

imposed on the extensions. In this section, we see that there is a structure of some

sort that can be imposed on the extensions, but rather than being a group, it is a

disjoint union of groups. When we specialize these results to extensions of dimension

groups with interval, we will be selecting one of the groups appearing in the disjoint

union, adding an extension and factoring out a subgroup.

Here T7, 7Í will be simple dimension groups. What turns out to be the important

factor in this classification is which face of states extends from 77, and how it

extends.

On a first reading of this section, it might be practical to ignore the extra

complication of the group obstruction to splitting, Extz(K, H), and simply assume

that all the extensions of dimension groups split as groups; then the mysterious

Lemma III.4 has a particularly transparent form.

a it

Lemma III. 1. Let H, K be simple dimension groups, and 77 — G — Tí an extension of

dimension groups. Then

(i) G+ = a(T7+ ) U {order-units ofG).

(Ü)

7r(g) G Tí+- {0},andf(g) > 0 for all states /l

of G that are extensions of states of H.

Proof, (i) Certainly the inclusion D holds, as a(H) is an order-ideal of G. Select

g in G+ — a(H); if g were contained in a proper order-ideal 7, we would have

a(H) + J = G (since a(T7) is a maximal order-ideal); as T7 is simple, a(T7) n 7 =

{0}, contradicting the essentialness of a(T7). Thus g must generate an improper

order-ideal, and so g is an order-unit.

(ii) Since A" is a simple dimension group, by Lemma II.2, K+ —{0} is the set of

elements of K that are strictly positive at all states of K; since a state of G either

annihilates a(H) (in which case it induces a state of K) or restricts to a state of 77,

the elements of the form indicated that are not in a(T7+ ), are strictly positive at all

states of G. By Lemma II.2, these constitute exactly the set of order-units of G, and

(i) applies.    D

For the rest of this section, continuing our tacit policy, we regard T7 as an

order-ideal of G (and so suppress the a, except when convenient), and K as the

quotient group G/77, with the quotient ordering.

G+ = a(T7+)U |gGG
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Since knowledge about K, 77 and how the states of 77 extend determines the

ordering on G completely (by III. 1), it is crucial to show that the restriction to 77 of a

pure state of G, is either zero or pure.

Theorem III.2 [11, Theorem 3.1]. Let (G, u) be any dimension group with

order-unit, and suppose f is a state of (G,u). Then f is extremal if and only if for all

e > 0, and for all x, y in G+ , there exists z in G such that 0 *£ z =£ x, y and

f(z) + e>min{f(x),f(y)}.

Corollary III.3. Let G be a dimension group with order-unit, and let 77 be an

order-ideal which possesses an order-unit of its own. If f is a pure state of G, and

f(H) ^ {0}, then after renormalization, the restriction of f is a pure state of H.

Proof. Let v be an order-unit for 77. Then f(v) ^ 0, so t = f/f(v) is a (normal-

ized) state for (H,v). Now III.2 is a two-sided criterion, and it easily follows that t is

pure.    D

From now on, 77 will be assumed a simple dimension group, with a fixed

order-unit v. We shall also assume T7 is not cyclic, since the extension problem for

77 = Z has already been solved (II.6).

Let S(H,v) denote the state space of 77, computed with respect to the order-unit

t>. Let F be a closed face of 5(77, v); we wish to extend the states of F to states on a

larger group G, so that G/77 is a given dimension group, and 77 -> G -» G/77 is an

extension of dimension groups, with the only extendible states of 77 arising from F.

We will obtain a general construction (III.5), and it will be shown that in many cases

this is the most general construction possible.

71

Lemma III.4. Let L -» M -»TV be a short exact sequence of torsion-free abelian

groups, and let A be a torsion-free divisible group. Let a: L -» A be a group

homomorphism. Then, the collection of group homomorphisms y: M -» A such that

L->M

commutes is nonempty, and has an unnatural group structure isomorphic to that of

[TV, A).

Proof. Since A is divisible, and is thus injective (as a Z-module), at least one such

extension y exists. Fix a specific extension y0. We can impose a group structure on

the extensions y, by means of

Yi ffl y2 = Ti + y2 - y0;

then y0 is the zero element.

Then observing that (y - y0)(T7) = {0}, the mapping

y-> (y-Vo)

(where (v — Y0) ' 7r — (Y ~ Yo)) is readily verified to be a group embedding from

the group of extension maps to [N, A]. We check the map is onto.
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Find a subgroup Vof M such that L n V- {0}, and M/(L © F) is torsion. If A:

N -> A is an element of [N, A], define yx : L + V -» A via

yx(s + v) = y0(s) + Xir(v)        (sinL).

Then y, extends a and as A is divisible, yx can be extended to y: M -> A.

Now (y — Y0) agrees with A on ir(V). Observe that

M     _     (M/L) N

L+V~(L+ V)/L ~ ir(V)'

so N/ir(V) is a torsion group. Since (y — y0) — A takes values in a torsion-free

group (v4), it must be zero, so y h-» A, and thus the map is onto.    D

If L is a compact convex set, denote by Aff(L), the collection of continuous

convex-linear ("affine") real-valued functions on L. Equipped with the pointwise

ordering, Aff(L) is an archimedean partially ordered group. If L is a Choquet

simplex, and we impose the strict ordering on Aff(L), namely g in Aff(L) is positive

if either g is zero or g is bounded below by a positive scalar, then Aff(L) becomes a

simple dimension group [5, Lemmas 3.1 and 3.2]. We write g » g' if g — g' is not

zero but is strictly positive on L.

With (77, v) a noncyclic simple dimension group having v as order-unit, 5(77, v)

is a Choquet simplex. Let F be a closed face of S(H,v). Define the natural

mappings

0 = 0„: 77 -»Aff 5(77,1;),

hv^h, h(f)=f(h),
0 = 6F: 77 - Aff(F), the restriction of 0 to F.

Now select any abelian group extension of 77 by 7Í (a representative of an element

of Extz(7i, 77)), h'-^G^K. Applying III.4 to the diagram

1 71

77      -* G -      K

0\

Aff(F)

(of course, Aff(F) is a real vector space, so is a divisible abelian group), we obtain a

family of maps y: G -» Aff(F), extending y, indexed unnaturally by [7Í, Aff(F)].

Notice that all group homomorphisms, not just order-preserving ones, from 7Í to

Aff(F) are admissible.

Define a candidate partial ordering for each choice of y, by declaring

(1) G+ = í(77+)U {gGG|y(g)»0and77(g)G7i+- {0}}.

It will be shown that G, with this ordering, is a dimension group, t(H) is the only

order-ideal, 77 -» G -» Tí is an extension of dimension groups (so the given ordering

on 7v agrees with the quotient ordering), and the states of 77 that extend to G are

exactly the points of F. In subsequent sections, we shall show that (for example) if F

is finite dimensional, all dimension group extensions of 77 by 7Í with F the face of

liftable states arise in this manner, and then determine which of the extensions are

equivalent.
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We shall refer to G with its potential ordering as described in (1), as the extension

group determined by the data

{77, F;7í,y;G}.

Sometimes the G will be suppressed. We fix v as the order-unit of 77 with respect to

which its states are computed. To avoid excess notation, we shall usually refer to 77

as a subgroup of G, and 7Í as the quotient group.

With the face F and the group extension G fixed, the possible choices for y form a

real vector space

Homz(7T,Aff(F)).

Each choice for y will be shown to yield a dimension group extension, so our

construction yields such extensions in bijection with the disjoint union of groups

Extz(7i, 77) X lj Homz(7v,Aff(F)).
IF closed face of S( H,v)}

For those confused by the construction, let us see what happens if we pick G to be

the trivial group extension G = 77 © Tí (as groups), F finite dimensional, with the

maps 77 -» G -» Tí the obvious ones. If we select deF = {/}■'=, in deS(H), then

define y0 to be the projection onto 77 followed by (/,, f2,...,/): 77 -» Rs. Selecting

the same number of jc's, x¡: K -» R, y is defined in the obvious way,

y(«, *) = (/,(«) + *,(*), f2(h) + x2(k),...,fs(h) + *,(*));

and the positive cone is relatively easy to visualize.

Theorem III.5. Let 77, 7Í be simple dimension groups, with 77 not cyclic. Let F be a

(possibly empty) closed face of 5(77, v), and suppose that G is an abelian group

extension of H by K, and let y be a group homomorphism from G to Aff(F).

Then the potential ordering on G determined by the data (viz. (1)) {77, F; K, y; G} is
71

a partial ordering making G into a dimension group, and causing 77 -> G -» Tí to be an

extension of dimension groups. An order-unit u may be selected from ir~ x(w).

The states of 77 that extend to G are exactly the points of F, and their image ( under

the map f\-+8fy/8jy(u), where 6y is evaluation at f) is a closed face, which is the

complement to Hx . In particular, the extreme points of S(G, u) are precisely

(i) the p reimages of the extremal states of (K,w) and

(ii) the renormalized extensions of extremal points of F.

The proof of this theorem will occupy the rest of this section.

Until further notice, we assume 7Í is not cyclic.

Lemma III.6. Let H be a noncyclic simple dimension group, and let F be a closed face

of the state space of 77. Then the mapping

0:H -> Aff(F),

av+ä,       ä(f)=f(a),

has dense image. Furthermore, if Y belongs to Aff(F), and 1" » 0, then for all e > 0,

there exists « in H+ so that Y » 6(h) and \\Y - 0(h)\\ < e.
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Proof. The second statement would imply the first, and we restrict our attention

to that one. We may assume e is sufficiently small so that Y s> 2e. The mapping (via

restriction) Aff(5(77, v)) -> Aff(F) is just the quotient mapping with kernel Fx [1,

11.5.19], so there exists «, in Aff(5(77, v)) with hx> 2e, and hx/F = Y. Consider the

open neighbourhood in Aff(5(77, v)),

U = {«0 G Aff(5(77, o))|A, - e/2 » «0 » «, - 3e/2).

From the density of 0(77) [11, Corollary 4.10], there exists « in 77 so that 0(«) lies

in U, and so «, »©(«)» e/2; in particular, by II.2, « lies in 77+ . Thus Y » 0(«)/F,

but since 0(«)>>«, - 3e/2, \\6(h) - Y\\ < 3e/2.    D

Now let our group G be endowed with the potential ordering described in (1). It is

clear that G+ +G+ G G+ , and G+ D(-G+ ) = {0}, so G+ is a cone for a transla-

tion invariant partial ordering. Since 77, and Tí are unperforated, it follows easily

that G is as well in this ordering.

Next we show that the combined mapping

(7,0*77): G- Aff(F)©Aff(5(7v,w))

has dense image (in the max-sup norm). From [11, Corollary 4.10], &K(K) is dense

in Aff(5( K, w)) so P = @Kir maps G densely to Aff(5(7i, w)), and 77 C ker P. Since

y/77 = 6,y(H)is dense in Aff(F), and it easily follows that (y, P)(G) is dense.

The following is a restatement of (1).

(2) G+ = 77+ U {gGG|(Y, F)(g)»0inAff(F)© Aff(5(7i,w))}.

From the density of (y, P)(G), we may find u0 in G with (y, P)(u0) » 1 (the

constant function), so w0 is an order-unit by (2). Thus G is directed, and in fact every

element of G+ — 77+ is an order-unit. It follows immediately that 77 is an order-ideal

in G.

Now we show that G satisfies the interpolation property. Given a, c,y in G with a,

c > y, 0, we must find e in G so that a, c s» e > y, 0. There are a number of cases.

I. Either a or c belongs to 77. We may assume a belongs to 77, and that at least one

of c, y does not (if all belong to 77, we are reduced to interpolation within 77). We

may also assume a ¥= 0, a ¥= y, c =£ 0, and c ¥= y.

I(i). c G 77, y G 77. We have (y(c), P(c)) » 0, y(c) » y(y); and 0(a) » 0, 0(y).

Since 0(77) is dense in Aff(5(77, v)), and y(c) is strictly positive we may find « in

77+ with 2e » y(c) — y(«) » e for some e greater than zero, such that y(c) > 2e,

y(y) + 2e(lll.6).

Now allow Aff(S(H,v)), Aff(F) to be equipped with their usual pointwise

ordering, and observe that the mapping Aff(5(77, v)) -> Aff(F) is just the quotient

mapping for a suitable order-ideal, L. Then 0(«) + L » 0, ®(y) + L. We may thus

find «' in Aff(5(T7, v)) with «' » 0, Q(y) and «' - 0(«) G L. Then we may find h"

in 77+ so that 0(«") » «'and II«'- 0(«")ll <e/2. As«'/F= 0(«)/F, we have

\\y(h") - y(«)|| =||tf(A" - h)\\F<\\h' - 0(«)|U + ||«' - 0(«")|U

<0 + e/2;
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as h" belongs to 77+ , 0(«") » 0. Also, 0(«") » ®(y), and thus

0(«"),0(a)»O,0(>>).

From the density of 0(«), we may find e in 77 so that

0(«"), 0(a) »0(e) »O,0(j).

Hence, «", a > e > 0, y in 77. Now P(c) » 0 = P(e) (as e lies in 77), and y(c) »

y(«) + e » y(h") + e/2 = 6(h") + e/2 » 0(e) + e/2 = y(e) + e, so (y, P)(c) »

(y, P)(e).Thusc>e.

I(ii). c G 77, y G 77. Reduce to case I(i), by observing that a — y, a > 0, a — c,

and a, a — c both belong to 77, but a — y does not. If a — y, a » b » 0, a — c, then

a, c » a - b » 0, y.

I(iii). c G 77, y G 77. Since P(a) = 0, and 7>(a) » 7>(>>), we have F(y) « 0. Thus

c — y does not belong to 77 (else P(y) = F(c) » 0), so y(c) » y(j>), 0. We also have

y(a) = 6(a) » 0, y(y). The density of 6(H) yields an element «0 in 77 so that

Y(c),Y(a)»0(«o) = Y(«o)»O,Y(jO.

As in the proof of I(i), there exists h' in Aff(5(77, v)) so that h'/F = 6(h0) and

0(a) » «' » 0. We may find e > 0 so that 0(a) - e » «' » e and y(c) - e, y(a) - e

» y("o) » E> y(j0 + e, and then pick e in 77 so that 110(e) - h'\\ < e/2. Then

II6(e) -h'/F || < e/2, and so

y(c),y(a)»y(e)»0,y(y).

As P(c) » 0 = 7>(e) » P(y), we have (y, P)(c) » (y, 7>)(e) » (y, P)(y),0; so c > e

^y; also 0(e) » e/2 so e s* 0. On the other hand, 0(a) - 0(e) » «' + e - 0(e)

» e/2, whence a 3* e.

II. Neither a nor c lies in 77. If either a — 7 or c — y- belongs to 77, we reduce to

case I by subtracting y from all the terms. So we may assume neither occurs, and

thus

(y,F)(a),(y,F)(c)»(Y,F)(v'),0.

From the density of (y, P)(G) and interpolation in Aff(F) © Aff(5(T7, u)) there

exists e in G so that

(y, F)(a),(y, P)(c) » (y, P)(e) » (y, 7>)(>>),0

whence a,c > e > y,0.

Since any question of interpolating A, C > Y, Z can be reduced to interpolation

of A — Z, C — Z > Y — Z, 0, cases I and II constitute a complete proof that

interpolation holds. By [5, Theorem 2.2], G is a dimension group.

Since the positive elements of G not in 77 are order-units, any proper order-ideal

of G must be contained in 77; since 7/ is simple, 77 is thus the only order-ideal of G.

Now we are in a position to show that the quotient ordering on K = G/H agrees

with its original ordering.

Lift a fixed order-unit w of Tí (with respect to which the states of Tí, and the

natural map 0*: 7Í -> Aff(S(K,w)) have been computed) to an element x of G.

From the density of 6(H) in Aff(F), we may find y in 77 so that for u = x + y,

y(u) » 0, and so u is an order-unit for G. Of course, ir(u) = w.
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If g lies in G+ -77, certainly P(g) » 0, so 0A(g + 77) > 0, whence g + 77 G 7Í+,

by II.2. On the other hand, if g is an element of G, and g + 77 lies in 7i+ —{0},

certainly 7*(g)»0. Since y(77) is dense in y(G), we may find z in 77 so that

y(g + z) » 0, whence g + z 3s 0 in G, and thus g belongs to G+ +77. Therefore the

two orderings on 7Í are equal.

It follows that 77 — G -» Tí is an extension of dimension groups, and that the pure

states of (G, u) that annihilate 77 are precisely the pre-images of the pure states of

(Tí, w). Now we can determine among other things, the rest of the pure states. To

begin with we show that only members of F extend to states of G.

Let t be a state of (G, u) with t(H) ¥= {0}. Let t be the restriction of t to 77; we

show that / = t/t( v ) belongs to F.

Certainly/is a state of (77, v). If/does not lie in F, consider

Fx= {m GAff(S(H,v))\m/F=0}.

By [1, 11.622], F = {/ G 5(77, v) \ m(j) = 0 for all mini1} (that is, F = Fxx).

Since/does not lie in F, there exists m in F± with m(f)>0. We may thus find m in

Aff(5(77, v)) so that m/F = 0, but «?(/)> 3. Subtracting 3/2 from m, we find m'

so that m'(f) > 1, but m'/F« -1. From the density of 0(77) in Aff(5(77, v)), we

can find hin H so that 0(«) approximates m', and so/(«) > 1, but y(h) = 6(h) <■

-1. Select a positive integer « such that t(v) > 1/«. From the density of (y, P)(G),

there exists a in G+ —77 with na ^ u. Set z = a — h. Then F(z) = P(a) » 0, and

y(z) = y(a) — y(h) » 0, so z is positive in G. However, t(z) = t(a) — t(h) < \/n

— t(v)f(h) < 0, a contradiction, since t is supposed to be a state of G.

On the other hand, any point in F extends to a state of G (after renormalization):

Simply observe that y(G) is a subgroup of Aff(F), so the function 8fy: G — R (6y is

the evaluation at/) makes sense, is positive, and since y extends 6, 8fy/H = f.

We shall now check that the collection of normalized states of (G, u), Fx —

{8,y/8ry(u) |/G F} is a closed face and is also the complementary face to 77x in

5(G, u).

Given an unperforated group with order-unit, (L, u), the mapping

0,: (L,u) -(Aff(5(L, «)), l),

ih>¿,       b(p)=p(b),       pGS(L,u),

is referred to as the canonical map, and induces a (pseudo-) norm on L,

\\b\\ = sup{\b{p)\ ,pGS(L,u)}.

The image of L under 0 is denoted L.

Lemma III.7. Let (L, u) be a dimension group with order-unit, and suppose 77 is an

order-ideal.

(a) If p is any state on (L, u), p extends uniquely to a state on Aff(5(L, u)), and the

extension is continuous and real linear.

(b) If q is a ( pseudo-metric) bounded continuous additive mapping q: L -» R, q is a

difference of (unnormalized) states on L.

(c) If q is as in (b), and additionally q(H) = {0}, then q is a difference of

unnormalized states each annihilating 77.
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Proof, (a) This is well known.

(b) Since a is continuous, a must annihilate the closure of {0} in L, namely ker 0.

Hence a induces a continuous mapping on the normed subgroup of Aff(5(L, u)), L.

Now the norm on Aff(5(L, u)) agrees with that on L by (a); since q obviously

extends to L ■ Q, the rational vector space generated by L inside Aff(5(L, u)), it

does so in a continuous manner, and thus extends to a continuous group homomor-

phism from the closure of L ■ Q to R. Since the rationals are dense in the reals,

L ■ Q is dense in Aff(5(L, u)) [1, §1], so a extends to a continuous, hence linear,

homomorphism q0: Aff(S(L, u)) -* R—that is, a0 is an element of the dual space of

Aff(S(L, u)); but the dual space is lattice-ordered since S(L,u) is a Choquet

simplex [1, p. 84]; and (b) follows immediately.

(c) Since (as in (b)), the dual of Aff(5(L, «)) is a lattice, we may write the a()

obtained there as the difference of two unnormalized states a — b, with a A b = 0.

Certainly, if for some « in 77+ — {0}, a(h) i= 0, then a(h) = b(h) ¥= 0, and similarly

a and b agree on the closed interval [0, «]. But the ordering on the dual space, as

described, for example, in [11, Proposition 2.6] precludes this, so that a(H+) =

b(H+ ) = 0; as 77 is directed, a(77) = b(H) = {0}.    D

Now a sequence of short arguments (a) through (e), completes the proof of III.5.

(a) 77x n¥ace(8fy/8fy(u)) = 0 for all / in F. Pick x in the intersection. Then

7c(77) = {0}, but there is a positive real number r so that x < r8fy [11, Proposition

2.5]. Given e > 0, find « in 77+ so that y(u) » 6(h) but IIy(u) - 6(h)\\ < e8fy(u)

(III.6). As P(u) » 0, u > h, and « > 0 by construction. Thus (8fy/8fy(u))(u - h) <

e but x(u — h) — x(u) = 1. Thus 1 < r'e (r' = 8j(u)r) for all e > 0, a contradiction.

(b) Fx G U {faces of 5(G, u) disjoint from H±). This is an immediate conse-

quence of (a).

Let F2 denote the complementary face of 77± ; F2 is the union of the faces disjoint

from 77-1 [1, II.6.22], so Fx G F2.

(c) Fx = F2. Select / in F2. Then t does not belong to 7/x , so //77 = df for some/

in F, some positive real number d. Setting r = d8fy(u), we have

(t-r8fy/8fy(u))(H)={0},

so by III.7, there exist a, b, unnormalized states of G, with a(77) — b(H) = {0} and

/ — r8fy/8fy(u) = a — b. Hence t + b = r8fy/8fy(u) + a. Since F2 is the comple-

mentary face to Hx , the decomposition of t + b is unique. Thus / = r8fy/8fy(u);

applying u, r — 1, so / belongs to Fx.

(d) F2 is closed. Pick / in the closure of F2. Decompose t with respect to the facial

decomposition of S(G, u) obtained from 77x and F2,

d8,y
t=  B   ',   ,  + (1 - d)a,       0<o"< 1, a G 77x , using (c).

8fy(u)

By III.6, given e > 0, there exists « in 77+ so that y(u) » 6(h) (and thus u > h, as

7>(«) = 0)andifÄ: = \nf[8f,y(u) \f G F),

y(u) - y(«)|| <e • k        (k >0 since y(u) »0).
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Then

t(h) = d8,y(h)/8,y(u) = df(h)/8fy(u)

d{8fy(u) + e ■ k)

8fy(u)
d(l +e).

But for s in F,, 8sy(h)/8sy(u) = s(h)/8sy(u) > 1 — e. Since t lies in the closure of

F2, by (c), t(h) > 1 - e, and thus 1 - e < í/(1 + e) for ail e > 0. Hence d > 1, so

d—\, whence / = 8fy/8jy(u).

(e) The mapping F2 -* F, 8fy/8jy(u) i->/ is a homeomorphism inducing a bijec-

tion deF2 -> deF. This mapping is just the restriction map renormalized. Since F2 is

compact, and the mapping is one-to-one (c), onto (only states in F extend), and

continuous, the mapping is a homeomorphism. By III.3, deF2 is mapped to deF

( F2, F are both faces). On the other hand, if t belongs to F2 and maps to an extreme

point of F, then an easy application of III.7 yields that t is itself extremal, so belongs

to deF2.

The equivalence relation obtained between the two faces F2 and F in (e) is the best

possible, in the sense that it is equivalent to Aff(F2) being order-isomorphic to

Aff(F).

Now suppose 7Í = Z. Then (y, P)(G) is dense in Aff(F) © Z; this density allows

the same processes to be carried out (and note that in this case, Extz(7i, 77) = {0},

so there is no interference from the group extensions).

This completes the proof of Theorem III.5.

IV. The converse. We wish to show that Theorem III.5 has a valid converse; when

F is, for example, finite dimensional, the construction of III.5 yields all equivalence

classes of extensions. This essentially amounts to showing that the states of an

order-ideal in a dimension group that extend form a face of the states of the

order-ideal, when the latter has an order-unit (IV.2)

To establish this, we require results on extensions of states in the style of [10].

Recall therefrom that given a partially ordered group (G, u) and a subgroup H of G

that contains u, a formula was established for extending states of (77, u) to states of

(G, u), where extend is used in the strict sense. Our present problem revolves around

u not belonging to 77 (with a corresponding relaxation of the notion of "extend"—we

do not require that the extended state be automatically normalized). However, if we

can extend the state to (77 + Z • u, u), then we can extend all the way to (G, u) by

[10]. The following extracts the idea of the argument in [10, Lemma 3.1].

Lemma IV. 1. Let (M, u) be a partially ordered abelian group with order-unit u, and

let L be an order-ideal of M. Let f: L -» R be an order-preserving group homomor-

phism. Then f may be extended to a state of M (after possible renormalization) if and

only if the member ofR+ U oo defined by

/(«)
p(f) = sup

is finite.

« G L, n G N, « *s nu
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Proof. If p(f) is finite, define g: L + Z ■ u -> R via g(u) = p(f) and g/L = f;

this extends to a group homomorphism, since L C\Z ■ u— {0} (else L would

contain an order-unit of M). The method of [10, Lemma 3.1] shows that g is an

unnormalized state of L + Z • u, so g/g(u) extends to a normalized state of (M, u)

by [10, Theorem 3.2]. Hence, after renormalization, / may be extended.

On the other hand, if / extends to a state g of (M, u), then g/L = df for d a

positive real number. Then « < nu implies « > g(h) = df(h), so f(h) < n/d, whence

/»(/)< 1/rf.    □

Corollary IV.2. Let (M,u) be a dimension group with order-unit. Let L be an

order-ideal of M, and suppose v is an order-unit for L. Then the collection of

(normalized) states of (L,v) which extend to M is a face of S(L, v).

Proof. By IV. 1, F = {/ G 5(L, v) \p(f) < 00} is precisely the set of states that

extend. Clearly convex combinations of extendible states are extendible, so F is

convex. By [11, 2.5], to show F is a face, we need only establish that

/'G5(L,u),   fGF,   dGR+,    and   f < df

imply/' G F.

But/' < df implies that whenever « < nu, f'(h) < df(h) < ndp(f) so that p(f') <

dp(f); thus/' GF.    D

Corollary IV.3. Let 77 -» G -> K be an extension of dimension groups with both 77

and K simple, but 77 not cyclic. Then G has an order-unit, call it u, and if the

complementary face to 77""" in S(G, u) is closed, the extension arises as described in

III.5, that is, it is equivalent to the extension given by the data {77, F; Tí, y; G} for

some F, y.

In particular, if only finitely many pure states of H extend, the extension is as

described above.

Remark. Thus IV.3 and III.5 are mutually converse.

Proof. Select an order-unit v for 77. Let w be an order-unit for 7Í, and lift it back

to a positive u' in G. Set u — u' + v; one checks routinely that u is an order-unit

(this process will work for any extension with both ends possessing an order-unit).

Let F, be the complementary face to 77x in 5(G, u). Considering v as an element

of G, its image acting on S(G, u), v, cannot vanish on F, (for if f(v) = 0, then

/(77) = 0, whence/lies in H±). Since Fx is closed, v is bounded below, and the map

<p:     F,     -.     5(77, v),

f    ^     7TT'

is one-to-one and continuous. Since F, is compact, the image is also; on the other

hand, the image is obviously the face of extendible states of (77, t>) (since any state

of (G, «),/, decomposes as afx + (1 — a)f2, with/, in Fx, and/2 in H±). So the face

of extendible states of (77, v), F, is closed, and <p is a homeomorphism from F, to F.
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Define a group homomorphism y: G — Aff(F) as follows. As Fx is compact, v is

bounded below on it (since/(u) ^ 0 for all / in F, and so the same holds for all

/(£)); thus t;, = t3/F, is an order-unit for Aff(F,). There is a natural affine

homeomorphism between the state space of (Aff(F,), vx) and the face of 5(77, v), F.

This yields an order-isomorphism p: Aff(F) -» Aff(F,) (under which the image of

the constant function 1 need not be constant). Define y: G -» Aff(F) via

G -» Aff(5(G, «)) - Aff(F,)-Aff(F).

Observe that g/Fx » 0 if and only if y(g) » 0.

In view of III.5, we need only check that (1) below holds.

(1) G+ = 77+U {gGG|ii)»0,y(g)»0}.

If g belongs to G+ -77+ , then 77(g) lies in 7i+ -{0}, so 77(g) » 0; since 77 is the

only proper order ideal of G) g/Fx » 0, and thus y(g) » 0. On the other hand, the

reverse inequality is straightforward, using II.2 and that 5(G, u) is the convex hull of

77x and F,.

Now suppose that F has only finitely many pure states, and let F, be as above.

From II.3, pure states of F, map to pure states of F; but F, -» F is one-to-one, so F

has only finitely many pure states. Being a complementary face, F, is dense in the

closed convex hull of its pure states. Thus F, is finite dimensional, so is closed, and

the previous paragraph applies.    D

Professor E. G. Effros has given an example of a simplex 7Í with the property that

G = Aff(7í ) (usual ordering) has a closed order-ideal 77 with an order-unit of its

own, without 77x having closed complementary face. One can now construct a

simple by simple dimension group extension which does not arise from the construc-

tion of §111.

Let G1 be the collection of bounded sequences of real numbers (a,, a2,...) such

that lim an — (a, + a2)/2; with the pointwise ordering G, becomes an order-unit

space, archimedean, and satisfying the Riesz interpolation property. Let 77, be ker/,

(/ is the valuation at the /th component); then 77, is a norm closed order-ideal and

(0,1, 1, 1/2,1/2,...) is an order-unit for 77,. Define the simple group 77 to be 77,

with the strict ordering, and let G be G, with the ordering given by

G+ = /7+ U {(a,) I a,>0 for all/}.

Then G is a dimension group, 77 is an order-ideal, and G/77 is order-isomorphic to

the reals, so G is simple by simple. However the complementary face to HL has as its

extremal points {/2, f3,...} = 5 so the face cannot be closed, as (l/2)(/2 + /3) is a

limit point of 5. A countable example may also be constructed, by taking suitable

countable dense subgroups of 77 and G.

V. Equivalence. Given the data {77, F; 7Í, y; G} and {77, F'; Tí, y'; G'}, we decide

when the corresponding dimension group extensions are equivalent, and how these

equivalences may be implemented. Certainly for equivalence to hold, we must have

G equivalent to G' as group extensions of 77 by 7Í. Thus we may assume G = G' (as

groups). Now the obvious theorem holds.
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Theorem V. 1. Let 77, Tí be simple dimension groups, and suppose 77 is not cyclic.

Fix an order-unit v of H with respect to which states and faces are computed. Then the

extensions of H by K given by the data

{77, F;7i,y; G}        and       {H,F; K,y';G'}

are equivalent if and only if F — F', and there exists a group homomorphism X: K -» H

so that

Y^y =ox.
In particular, the equivalence classes of dimension group extensions of 77 by K are in

bijective correspondence with a disjoint union of groups,

Extz(7i, 77)X (J [K,Aff(F)]/6F[K,H\.
{F closed faces ofS(H.v)}

Remark. The quotient group measures how far y' — y: 7i->Aff(F) is from

factoring through 6.

Proof, (a) Suppose the extensions given by the data are equivalent. Then there is

an order-automorphism qp so that

77     i      G       "      Tí data:      F, y;

Il W II

77     -      G 7Í F', y';

commutes. As qp~'a = a, precisely the same states of 77 must lift in the first

extension as in the second (since <¡p is order-preserving, and sends states to unnor-

malized states) so it follows from the last paragraph of 111.5, that F = F'.

Consider <p ' — id: G — G; since <p~xa = a, (qp~' — id)a = 0, and thus there

exists \p: K -* G so that \p(g + a(H)) = (<p_1 - id)(g); that is, \pir = <p~x- id.

Since 77 = ir<p~x, ir<pir = 0; since a(77) = ker77, \pir(G) G a(H). Thus X = a~x\p

makes sense and is a group homomorphism from 7Í to 77.

As rjp is an order-isomorphism, it sends (for example) pure states to (unnormalized)

pure states. Since <p induces the identity on 7Í, for all a in («(77))""", a = a<p~ ', so

P = P' (cf., the discussion in §111). As <pa = a,/qp_l/a(77) = /for all/in F. Hence,

there exists a positive real number d = a/so that (¿yy)<p_1 = d(8fy'). Applying this

to our fixed order-unit v, we obtain d — 1, and so in fact y<p~ ' = y'. Hence

y(<p_i - id) = y' - y.

But  (<p~' - id)(G) C 77,   and   y/77 = 6.  Thus   from   the   definition   of   X,   6X
= (y'-y) •

(b) Now suppose such an X exists. Define the group homomorphism qp: G -» G as

qp = id — aXir; then qp is invertible with qp~ ' = id + aXir. From &X = y' — y and

the definition of qp, it follows that y = y'qp, and it is also clear that ir = ir<p and

qpa = a. Since the orderings are determined by 0(77), y, y', and 7Í, qp and <p~l are

both order-preserving, hence are order-automorphisms, and yield an equivalence

between the two extensions.
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We have shown that for each closed face F of 5(77, v), for each representative G

of an element of Extz(7i, 77), equivalence of the two extensions is determined by

whether or not y' — y: K -» Aff(F) factors through 6. Since the y's may be added

and the equivalence relation is compatible with this operation, the equivalence

classes are classified by the quotient group, as displayed.    D

In particular, if F is finite dimensional, say with s pure states, then [Tí, Rs] is a real

vector space of dimension equalling s ■ (rank 7Í ), and [7Í, 77] tends to be fairly small

(especially if 7Í and 77 are both countable, as occurs if they emanate from AF

algebras).

Examples V.2. (a) If 7Í = Q = 77, Extz(Ti, 77) consists only of the split group

extension (since 77 is divisible), and as Q has just one state, only two possibilities

arise for F: Either F = 0, in which case the extension is lexicographic and has been

dealt with in §11; or F — {id}, so that 6 = id, and [7Í, 77] = Q, and so these

extensions are classified by R/Q.

(b) If 7Í = Z + 21/2Z (with the total ordering as a subgroup of the reals), and

77 = Q, then since Extz(7i, 77) = {0}, only the split group extension occurs. If Fis

not empty, from the formula, the classification is R2/A(Q), where A is the diagonal

embedding.

(c) If 7Í = Q and 77 = Z + 21/2Z, then [7Í, 77] = {0}, so we obtain that the

nonlexicographic extensions are classified by

Extz(Q,Z)2 X R.

(d) If [7Í, 77] are both totally ordered and free of rank 2 subgroups of the reals,

then Extz(7i, 77) = {0}, and [7Í, 77] maps to all of 77, so the extensions are

classified by a torus R2/Z2, with Z2 embedded as a lattice.

VI. Extensions of dimension groups with interval. Here we use the results of the

previous two sections to classify the simple by simple extensions of the title, and

hence by §1, the simple by simple extensions of AF algebras.

Given a simple dimension group with interval (77, TV), and a simple dimension

group with order-unit (K,w), we find that only certain of the dimension group

extensions 77 — G -» Tí are extensions of dimension groups with interval ( 77, N ) -»

(G, u) -» (Tí, w). In particular, we see that once the TV is chosen, only one of the

possible closed faces of 5(77) will be allowed to extend. Thus the disjoint groups of

§111 are reduced to a single group.

We summarize several results implicit in the proofs of previous results.

Lemma VI.1. Let (77, TV) -» (G, w) -» (Tí, w) be an extension of dimension groups

with interval, with 77 and K simple, and 77 not cyclic. Define a subset of 5(77) (with

respect to some fixed order-unit, v),

F= {/G5(77)|sup{/(«)|« G N) < oo}.

Then

(a) the members of F are precisely the states of 77 that extend to G, and F is a face of

5(77);
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(b) // the extension is as constructed in §111 and y: G -» Aff(F) is the function

extending 6 (viz. IV.3, III.5 and III.4), then for all fin F,

8fy(u) = sup{f(h)\hGN};

further y(u) » 6(h) for all h in N, and there exists a sequence {«„} G N so that

y(u) = limf?(«„) uniformly.

Proof, (a) Since N = 77 n [0, u], F is precisely the set of states of 5(77, v) that

extend IV. 1, and by IV.2, Fis a face,

(b) Since u > h for all « in N, and P(h) = 0 by III.5 and IV.3, y(«) » 6(h). On

the other hand, by III.6 we may find, for arbitrarily small e, « in 77+ so that

y(w) » 6(h) but Hy(h) - 6(h)\\ < e. Since P(h) = 0, (y, P)(u) » (y, P)(h), so u 3=

«, whence « G TV. Now (b) follows immediately.    D

Thus, specifying the interval actually determines which face of 5(77) is to be

lifted, and somewhat more. To motivate VI.2, let us consider the example 77 = 7Í =

Q, with TV varying over all possible intervals of 77; here we select w the order-unit of

Tí, tobe 1.

For each real number greater than zero, r, define an interval Nr of T7,

N,= {qGH+\0^q<r}.

The extensions must be of the form Q © Q, with two pure states,

(a,b)^b ER,

(a, b) ^a + x(b) G R,    for some x: K - R.

As the values of r vary, only particular functions x are admissible.

(a) ris rational: We must be able to find an element (a, 1) so that a + x(l) = r (in

order that (a, 1) will play the role of u in VI.1); since a is rational, this means that

x( 1 ) rational is necessary (and sufficient).

(b) r is irrational: Here we must be able to solve a + x(\) = r so x(\) = /-mod(Q).

We also see that once x is determined (and it must satisfy x(l) G r + Q), the

choice for the order-unit (a, 1) = u is uniquely determined. So given two extensions

of (77, 7Vr) by (Q, 1), the choices for x, x' are

x(l) = r — a       and       x'(l) = r — a';

and now define X: K — TT, by X(b) = (a' — a)b. Then the map

qp: {77, {id}, Nr;K,x} - {77, {id}, Nr; K, x'},

<p(h,k) = (A4- X(k),k)

defines an order-isomorphism. So we have established, for every order-interval N of

77 = Q, and for every order-unit w of K = Q, there is exactly one equivalence class

of extensions of dimension groups with interval of ( 77, N ) by (7Í, w) (this includes

the case N = H+ discussed in §11). As a corollary, we deduce that there is exactly

one extension of a unitless universal Glimm algebra by the unital universal Glimm

algebra.
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An interval N of a dimension group 77 is open if there exists an extension of

dimension groups with interval (77, N) -» (G, u) -> (K, w), for some (K, w), with

the complementary face to 77"1 closed.

Lemma VI.2. Let (77, u) be a noncyclic simple dimension group with order-unit, and

let N be a subset of H. The following are equivalent.

(a) There exist a closed face F of S( 77, v), and a strictly positive Y in Aff(F), so that

with 6 the restriction of 0 to F,

N= {h GH\0<handY»6(h)},      "N = N(F,Y)".

(b) N is an open interval of 77.

Additionally, when (a) holds, the F and Y are uniquely determined.

Proof, (a) => (b) We construct an extension of (77, N) by (Tí, w) = (Q, 1). Form

the direct sum of groups G = 77 © Q, and define y: G -» Aff(F) via

y(«,a) = «4ai     for q G Q.

Form the extension of dimension groups given by the data {77, F; Q, y; 77 © Q}. In

this case, the element u = (0,1) has value Y at y, and 1 at the one state from 7Í, so is

an order-unit; clearly, 77 n [0, u] = N.

(b) =» (a) This is Lemma VI. 1.

Finally, F is simply the face of extendible states, so is uniquely determined by the

extension, and uniqueness of Y follows from the final portion of VI. 1.    D

Theorem VI.3. Let 77, Tí be simple dimension groups with 77 not cyclic. Let N be an

(open) interval, and affiliated to N, the face F of S(H,v) and the element Y of

Aff(F)+ + . Let w be an order-unit for K. Then, if F is finite dimensional (or more

generally, the complementary face to 77 in the state space of the extension group is

closed; this cannot be expressed a priori ), every extension of dimension groups with

interval, (77, N) by (K,w), is obtainable from the following process, and all outcomes

of the process are such extensions.

(i) Select a representative of an element of Extz( 7Í, 77 ),

77^ G- 7Í;

(ii) select u in ir~xw;

(iii) select y: G — Aff( F), a group homomorphism, so that

y/H = 6,       y(u) = Y;

(iv) define the ordering on G from the data {77, F; 7Í, y; G} (§111);

(v)  then  (77, N) -» (G,u) -» (7Í, w) is an  extension  of dimension groups with

interval.

These constructions may be indexed by the elements of the group

Extz{K, 77) X Homz(Ti/Z • w,Aff(F)) X 77.

Proof. Let us first show (i) through (iv) yield the desired extension. By III.5,

77 -» G -» Tí is an extension of dimension groups. Since y(u) = Y » 0 and y(u) = w,

u is an order-unit for G, and by VI.1, 77 n [0, u] = N.



EXTENSIONS FOR AF C* ALGEBRAS AND DIMENSION GROUPS 567

Conversely, suppose an extension of dimension groups as displayed in (v) is given,

with the complementary face to Hx closed. Certainly (i) occurs; by IV.3, we know

such a y exists to determine the ordering as in (iv). By VI. 1(b), y(u) = T; thus (iii)

holds.

To describe the (noncanonical) group structure hinted at in the final statement,

pick a fixed w0 in ir~xw. Select a fixed y0: G -» Aff(F), extending 6f : 77 -» Aff(F),

such that Y0(«o) = T.

Define

y = {(y, h) I y: G -> Aff(F), y/77 = 6, y(u()) = Y-6(h)}.

We can define a group structure on Y,

(y,h) + (y',h') = (y + y'-y0,h + h').

Clearly the projection on the 77-component of y is a group homomorphism; it will

be shown to be onto.

Given « in 77, define ß: 77 © Zw0 -» Aff(F), a group homomorphism with ß/H =

6, and ß(u) = Y — 6(h). As Aff(F) is divisible, we may extend ß to an element y:

7Í -» Aff(F); then (y, «) belongs to Y, so the projection, call itp, is onto.

Now

ker/7 = {(7,0) | 7: G - Aff(F), Y/77 = 6, y(«0) = 1}.

The function q: ker p -» Homz(Ti/Ziv, Aff(F)) defined by

(y,0) h- 7,    where7((g 4 77) 4 Zw) = (y - y0)(g)

is a well-defined group isomorphism (onto, from the divisibility of Aff(F)). So we

have exhibited Y itself as an extension of groups

{0} -Homz(7i/Zw,Aff(F)) - Y - T7 - {0} ;

since the left side is a real vector space, it is divisible, and so the extension splits. The

elements of Y describe completely the extensions obtained in (i) through (iv), since if

u belongs to 77 ~ xw, u — w0 lies in 77.    D

We can now describe when two extensions as described above are equivalent as

dimension groups with interval. We maintain the notation of the proof of VI.3.

For two equivalent extensions given by y, 7', and order-units u, u', by V.l, there

must exist a group homomorphism X: K -» 77 so that

y - y' =6X       and        (id - aXir)(u) = u'.

The second condition translates to X(w) = u — u'. If we view u as w0 4 h, u' as

w0 4 «' (with h, «' in 77 necessarily), then it becomes clear that equivalence is

compatible with the group operation as defined in the proof of VI.3. Now the

identity element of the group Y defined there is (y0,0). The subgroup of Y consisting

of those extensions equivalent to that defined by ( y0,0) is

Z= {(yo4 0AV, X(w))\X:K-> H);

thus the complete classification of equivalence classes is given by

Extz(Ti, 77) X Y/Z.
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In particular, X(K) G ker6 if and only if (y0, X(w)) G Z. If [7Í, 77] = {0}, then

obviously Z = {0}, and thus all the extensions obtained in VI.3 are inequivalent. On

the other hand, if [7Í, H](w) = 77, then we obtain an exact sequence of groups

{0} -> Zn ker/7 -> Z ^ 77-*{0},

so that in this case, Y/Z =* [K/Zw,Aff(F)]/6{X: K - 771 X(w) = 0}. The bottom

group tends to be quite a bit smaller than the top.

Examples VIA (a) 77 = Z 4 bZ, K = Z 4 aZ, with a, b in R - Q, with the total

orderings inherited from the reals. Both groups being free, Extz(7i, 77) = 0, so as

groups we obtain only the split extension. Suppose 7V={«G77|0<«<1}, and

suppose w = 1; then y(u) = 1. Set G = 77 © Tí (as groups); let 70 be defined via

y0(«, fc) = ^A + jk G R; the admissible homomorphisms (VI.3) are listed, [aZ, R]

= R. Let u0 = (1,1), so Y0(w0) = L Clearly 6: 77 -* R is the identity. Since Tí is free

and w (= 1) may be extended to a basis, [7Í, 77](w) = 77, so

Y/Z^[aZ,R]/6[aZ,H] = R/(Z + bZ),

that is, the reals modulo a free dense subgroup of rank 2. The dependence on b is

illusory: for any b' in R — Q,

R/ (Z 4 bZ) =* (Q/Z)2 © R = R/ (Z 4 ¿>'Z)

as abelian groups.

(b) 7Í = 77 = Q, N ¥= Q+ . Then the group extensions are trivial, and K/Zw is

torsion, so Y = Z — 77, and there thus is just one equivalence class of extensions of

dimension groups with interval. This verifies our previous computation. Similarly, if

7\ is any rank 1 dimension group, [K/Zw, R] — {0}, and the classification simplifies

to Extz(7i, 77) X 77/[7i,T7](vv).

By 1.5, 1.6 and 1.7, the classification of extensions of AF algebras by AF algebras

is equivalent to the classification of the corresponding dimension groups with

intervals (K0(A), D(A)) by (Ti0(C), [lc]). So when/I is simple, and C is simple and

unital, VI.3 completely classifies a significant class of extensions.

If instead of considering the equivalence classes of extensions (either of AF

algebras, or of dimension groups with intervals), one were interested in merely the

isomorphism classes of the extensions, then some information is readily obtainable,

and in many cases this will be complete. To obtain the isomorphism classes, widen

the notion of equivalence to allow arbitrary automorphisms down the sides. In

general, one does not obtain any sort of group of semigroup structure on the

resulting equivalence classes. However, if for example, neither 7i0(C) admits any

order-automorphisms fixing [lc] nor does K0(A) allow any order-automorphisms

fixing D(A) globally, then the equivalence classes of extensions, and the isomor-

phism classes of extensions, coincide.

Having few or no automorphisms is a fairly frequent occurrence. For example, no

totally ordered subgroup of the reals can have any (nonidentity) order-automor-

phisms with a fixed point; more generally, this is true of any dense rank « 4 1 free

subgroup of R" [13] (such groups, with the strict ordering, are simple dimension

groups)—in fact almost all of these have no nontrivial order-automorphisms

whatever.
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On the other hand, some classes of dimension groups allow an unpleasantly large

collection of order-automorphisms, with plenty of fixed points, fixed order-units,

etcetera. Let Tí be any noncyclic simple dimension group such that 0^ is an

embedding, and let M be any torsion-free abelian group. Form the direct sum,

N — K® M, with the ordering given by

7V+= {(k,m)\k GK+ - {0},w G M) U {(0,0)};

the N is a simple dimension group [5, 3.1 and 3.2], and its automorphisms are of the

form (p(k, m) = (y(k), 8(k) 4 r(m)), where y: K -> K is an order-automorphism, 8:

K -» M is any group homomorphism, and t: M -* M is a group automorphism. Even

if K has no nontrivial order-automorphisms, the order-automorphism group of N is a

semidirect product of [Tí, M] by the (possibly) huge group GL(A7). In this case,

7Í © {0} is pointwise fixed.

Other types of automorphisms move the states around. Let L be any real (i.e.,

totally real) finite dimensional Galois extension field of the rationals, and define L+

to be the set of sums of squares. Then viewing L as a subfield of R (via a fixed

embedding), the Galois automorphisms are the pure states of L (viewing them as

maps L -» L G R). By the Artin-Schreier Theorem, L+ is exactly the set of elements

that are strictly positive at every pure state (in fact, because the states are multiplica-

tive, their kernels are zero), so that the ordering on L is given by that of the strict

ordering on a dense subgroup of R" (density follows from L being a rational vector

space). Viewing Galois automorphisms as automorphisms of L, we see that they act

transitively on the states. These automorphisms are precisely the order-automor-

phisms of L that have fixed points (others include multiplication by positive

elements of L), and the fixed subgroup under them all is of course Q.

VII. A nondimension group extension of dimension groups. Throughout this paper,

we have required, when dealing with extensions of dimension groups, that the

middle group be a dimension group—this does not follow from the two ends being

dimension groups. An easy example, with both ends cyclic, is 77 = Z = Tí, and

G = 77 © Tí with G+ = {(«, 0) | « > 0} U {(a, b)\a>0,b>0}. But this example

is slightly fraudulent, in that having a cyclic group at the left is a special case (cf.

II.5(b)(i), and the characterization that simple dimension groups are either cyclic or

dense). We present a simple by simple example, with both ends real vector spaces,

and the middle not a dimension group. This is also an example to show that the

extremal criterion of III.2 does not apply when the group is not an interpolation

group.

Set 77 = R2 with the strict ordering, 7Í = R with the usual ordering. Then the

extremal states of 77 are (up to normalization) {e,,e2} the coordinate projections.

Set/ = e, 4 e2, form G — H ® K, and define G+ so that/extends, as follows,

G+ = {(a,b,0)\a>Q,b>0) U {(a, b, c) \ a 4 b > 0, c> 0} U {(0,0,0)}.

Certainly G+ is a bona fide partial ordering, G is directed in this ordering, 77 © {0}

is an order-ideal (the only one), and the quotient is order-isomorphic to 7Í. Note also

that/extends to a state on G, namely/© 0.
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We observe that

(0,0,0), (2, -2,0) < (3,1,0), (1,0,1)

cannot be interpolated.

It is also possible to prove that / © 0 and the projection on the third coordinate

are the only pure states of G (with respect to the order-unit u = 4(1,1,2)); however,

the former does not restrict to a pure state of 77. This shows that the 'only if portion

of the criterion in III.2 fails if interpolation is deleted from the hypotheses. Of

course, R may be replaced by Q if a countable example is desired.

Appendix. Weak equivalence and K0. If one is only interested in computing the

weak equivalence classes of extensions of % by an AF algebra, there is a general

approach available using the (abelian group) functor, Ti0.

A (unital) C* algebra C is stably finite if for all «, for all X, Y in M„C,

XY= 1„    implies YX = l„.

For general C* algebras (i.e., not necessarily unital), C is stably finite, if in the stable

C* algebra, C ® %, if p is a proper subprojection of a, then a is not equivalent to p.

The two definitions are easily seen to be consistent. All AF algebras, commutative

algebras, and many others are stably finite.

Let C be a C* algebra, and let Bx, B2 represent two extensions, i.e., CKX -^ Bx G

5(7/,), %2 — 52 C B(H2), and there are *-isomorphisms <p¡: B¡/K, -» C. One forms

the sum of the two extensions [3, p. 271], by defining a subalgebra D of 5(77, ) ©

B(H2) C 5(77, © 772),

D={TX<BT2\T,E B„ and (p,(r,) = qp2(F2)},

and then setting B = D 4 %(HX © 772). (Note that D is isomorphic to the ring-theo-

retic pullback of the maps qp,: B, -> C.) The natural and obvious map qp: D -> C

extends to the map <p:B -> C, with kernel %(HX ffi 772).

Then Ext„(C) is obtained by imposing the weak equivalence relation [3, p. 270]

and the addition defined above is compatible with it, so Ext^C) becomes an

additive semigroup, and in many cases (e.g., C is nuclear), Ext„,(C) is a group.

Let us assume C is stably finite (and unital, although this is not really crucial), and

Extw(C) is a group. Given an extension 3C-»5 -» C, of % by C, there is an induced

map on 7i0,

,_-. Ko(')      .    , *o(<P)      .    ,
K0(%) = Z  - K0(B)   -  K0(C).

Now projections lift modulo the compacts, so 7i0(qp) is onto. Next, the sequence is

exact at the middle term, by [2, p. 448]. Finally, the kernel of K0(i) is of the form «Z

for some unique nonnegative integer «, and we thus obtain the short exact sequence

{0} -z/»z-*0(ä)-j:0(c)-{o}.

We would next like to show that weakly equivalent extensions, Bx, B2 yield equal

sequences when 7i0 is applied. If 7?, C 5(77,), and if V is the partial isometry from

77, to 772 with finite dimensional kernel and cokernel that implements the weak
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equivalence, then with VV* = p, V*V = q, we see that p is a cofinite dimensional

projection in 5(772), and thus p belongs to 52; similarly, a belongs to 5,, and V

induces a strong equivalence between the corner algebras, qBxq and pB2p, acting on

their respective cut-down Hilbert spaces. Now strong equivalences are easily seen to

induce equivalence of the corresponding extensions of the abelian groups arising

from 7v0. On the other hand p, q are full projections in their C* algebras, i.e.,

BpB — B, so, by the usual Morita equivalence arguments, cutting down by p

(respectively, a) does not affect the 7i0-induced sequence. Thus the two sequences

K0(%i) -» K0(B,) - Ti0(C) are equivalent.

With this in mind, we define a subset of Ext„(C), for each nonnegative integer «,

En(C) = {equivalence classes of extensions % -* B -» C, with KerTi0(/) = «Z}.

Lemma A-l. E0(C) = {equivalence classes of extensions % ^ B -^ C with B stably

finite}.

Proof. Suppose the equivalence class of the extension % -> B -» C lies in E0(C).

Since C is stably finite, we may tensor with another copy of the compacts without

changing the hypotheses. Suppose p < q, both are projections in 5, and p is

equivalent to a. Then the stable finiteness of C ensures that a — p must lie in the

kernel, DC, and so must be a finite dimensional projection. From the relation

a = (a — p) 4 p, we see that the image of (q — p) in K0(%) is in the kernel of

K0(i), a contradiction unless a = p, whence 5 must be stably finite.

Conversely, if the intermediate term in the extension, 5, is stably finite, if some

finite rank projection goes to zero, we have a + p ~ p for a, p orthogonal projec-

tions in 5, with nonzero a of finite dimensional range, contradicting stable finite-

ness. Hence no finite rank projection may go to zero in K0(B), and since the

elements of KQ(%) are either ± the image of a projection, we see that Ker7i0(/')

must be zero.    D

Lemma A-2. E0(C) is a subgroup of Extw(C).

Proof. We have to check E0(C) is closed under addition and subtraction. To

check addition, in view of the lemma above, we need only check that the sum of

stably finite extensions is still stably finite. If as in the definition earlier on, 5,, 52

are stably finite, so is the pullback D. Now if F belongs to D 4 9C(77, © 772), and T

is right invertible, but not left invertible, then its index is negative. A compact

perturbation will yield an element Tx © T2 of D, with the same index, so both T, are

Fredholm on their respective Hilbert spaces, and at least one has nonzero index; a

compact perturbation will yield a one-sided invertible element with negative index in

one of 5,, a contradiction. Thus 5 is directly finite, and since we can go up to matrix

rings and apply the same argument, the sum 5 is stably finite.

If fK -» 5, -» C lies in E0(C) (or more precisely, its equivalence class does), and

9( — 52 -» C lies in En(C) for some « greater than zero, we must show the sum is not

stably finite. (For then E0(C) will be closed under additive inverses.) Going up to

matrix rings and cutting down by projections if necessary, we may assume 52 is not
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finite, so there exists T2 in 52 with T2T2* = 1, but T2*T2 ¥= 1. Select any element F, of

5, with qp,(F,) = qp2(F2) (such exist, since qp, are onto). Then F, is Fredholm, but as

in the previous argument, its index must be zero, so the index of the direct sum

F, © T2 is not zero, and a compact perturbation will yield a one-sided invertible

element, so 5 is not stably finite.    D

Lemma A-3. The set map

F0(C)-Extz(/i0(C),Z),

DC- 5 - C^ ({0} - Z -» K0(B) - K0(C) - {0})

is a group homomorphism.

Proof. We have already seen that the assignment indicated above is well defined.

We need only check that it preserves addition.

With 5,, 52 extensions of DC by C, form D 4 DC (77, © 772) = 5 as described

earlier. Since the maps on 7i0 are onto (7i0(5,) -> 7i0(C)), it is straightforward to

check that K0(D) is the pullback of the maps 7i0(5,) -> Ti0(C). Identifying 7i0(DC,)

with Z, and regarding K0(D) as a subgroup of K0(BX) © K0(B2), one easily checks

that

ym- *o(j>)+ {(*,, "2)}

{(«,-«)}

and the corresponding extension is thus

^0)M(",";)) (c)_{0)i       „M(„>0)
{(«,-«))

But this is exactly the sum of the two extensions {0} -> Z -» 7i0(5,) -» Ti0(C) -» {0}

as computed in Ext Z(AT0(C), Z).     □

For C an AF algebra, all extensions of DC by C are AF, hence are stably finite, and

thus E0(C) = ExtM,(C); we thus obtain a homomorphism

ExtK(C) - Extz(Ti0(C),Z).

This is onto (as indicated in §11); given an extension of abelian groups {0} -» Z -> G

-» 7Í0(C) -» {0}, impose the lexicographic ordering on G. Then G is a dimension

group, and there corresponds an AF algebra, 50 such that 50 has an ideal isomorphic

to DC with the quotient Morita equivalent to C. Then tensor 50 with another copy of

DC, and one may find a projection P such that if p = P 4 DC, />(50/DC ® DC)/7 = C;

then F(50®Di)5 is the right choice for 5. On the other hand the map from

Ext„(C) is one-to-one, since in view of II.2 and II.3, the ordering on any inter-

mediate K0(B) must be lexicographic, and so the ordering is determined by the

ordering on 7i0(C) and the group extension.

In general, Ea(C) may be trivial with Extw(C) not trivial; the simplest example

occurs in the commutative case, with C = C(T). Then each E„(C), for « s* 1,

contains exactly two equivalence classes, and E0(C) contains only the trivial

extension. It would be interesting to decide if the map from E0(C) to the group

extensions is always one-to-one, or onto.
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To try to use 7i0 to study the elements of En(C) (n fixed) for « greater than 0 is

pointless when K0(C) is torsion-free: The extension 5 lies in E„(C); we obtain the

short exact sequence

{0} -Z/«Z-»7Í0(5)-7Í0(C)-{0}.

Since 7i0(C) is assumed torsion-free, and the left side is finite, the sequence splits, so

K0(B) — K0(C) © Z/«Z. In other words, 7i0 does not distinguish elements of

En(C) from each other if « ^ 0. The subset EX(C) appears to be particularly

interesting.

One property of stably finite C* algebras that will guarantee that E0(C) is all of

Extw(C), is that Hom^TijC,Z) = {0}, (here, 7Í, refers to the topological Ti-group

Tí,). In particular, if the stable unitary group of C is connected (so 7i,C = {0}), we

obtain a natural group homomorphism, ExtH,(C) — Extz(7í0(C), Z). Presumably,

this need not be either one-to-one or onto, but I have no examples.
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