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SATURATION PROPERTIES OF

IDEALS IN GENERIC EXTENSIONS. II

BY

JAMES E. BAUMGARTNER1 AND ALAN D. TAYLOR2

Abstract. The general type of problem considered here is the following. Suppose /

is a countably complete ideal on <o, satisfying some fairly strong saturation require-

ment (e.g. / is precipitous or w2-saturated), and suppose that P is a partial ordering

satisfying some kind of chain condition requirement (e.g. P has the c.c.c. or forcing

with P preserves w,). Does it follow that forcing with P preserves the saturation

property of /? In this context we consider not only precipitous and u2-saturated

ideals, but we also introduce and study a class of ideals that are characterized by a

property lying strictly between these two notions. Some generalized versions of

Chang's conjecture and Kurepa's hypothesis also arise naturally from these consider-

ations.

0. Introduction. This paper continues the study begun in [BT] of saturation

properties of ideals in generic extensions. The distinction between the present work

and its precursor is that the saturation properties of ideals that we now consider are

all strong in the sense of implying the consistency of some large cardinals.

Our notation and terminology is explained in §1, while the main results of the

paper begin in §2 with a consideration of the following question. Is the w2-saturation

of a countably complete ideal on w, preserved under countable chain condition

forcing? Although this question is still open, we formulate some rather useful

equivalents involving Boolean ultrapowers, a generalized version of Chang's conjec-

ture, and a generalized version of Kurepa's hypothesis.

Using these equivalents, we show in §3 that one obtains an affirmative answer to

the above question if "c.c.c." is replaced by "a-finite c.c". Unfortunately, it turns

out that the variant of the Galvin-Hajnal ordering which we used in a similar

situation in [BT] will not suffice to settle the present question. §3 also contains the

following "nonpreservation" result: if one forces with the partial ordering for adding

a closed unbounded subset of to, with finite conditions, then in the extension there

are no w2-saturated countably complete ideals on w,.

In §4 we study the class of countably complete ideals on w, that are (simulta-

neously) precipitous and "w2-preserving" (i.e. forcing with <3)(cO|)/7 does not col-

lapse w2). We refer to these ideals as " presaturated", and some of their basic

properties are established here. For example, we show that every presaturated ideal
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on w i is a weak F-point and (hence) if there is a presaturated ideal on w,, then there

is a normal presaturated ideal on w,.

§5 is primarily concerned with the preservation of presaturation. For example, it is

shown here that the existence of a presaturated countably complete ideal on w, is

preserved when forcing with the ordering for adding a closed unbounded subset of

w, with finite conditions. This result, when combined with the "nonpreservation"

theorem in §3, shows that the existence of a presaturated ideal on <o, does not entail

the existence of an co2-saturated countably complete ideal on ux. (It also turns out

that the existence of a precipitous ideal on w, does not imply the existence of a

presaturated ideal on «,.) The main theorem in §5, however, is sufficiently general to

yield several additional results of interest. For example, we also obtain here a

strengthening of Kakuda's recent result that the precipitousness of a «-complete

ideal on k is preserved under k-c.c. forcing.

§6 contains several questions suggested by the considerations in this paper.

We would like to thank the referee for several suggestions that have been

incorporated into the final version of this paper.

1. Notation and terminology. Our set-theoretic notation and terminology is stan-

dard. If X is a set, then 6}(X) is the power set of X and | X\ is the cardinality of X. If

X is a set and k is a cardinal, then [X]K = {Y G X: \Y\= k) and [X]<K = {Y G X:

I Y\<K)-
A partially ordered set P satisfies the p-chain condition (/x-c.c.) iff every pairwise

incompatible subset of P is of cardinality less than p. The «,-chain condition is

called the countable chain condition (c.c.c). P has the ¡^.-finite chain condition iff there

is a function/: P -» jti such that for each a < p, every pairwise incompatible subset

of f~x({a}) is finite. The w-finite chain condition is usually called the a-finite chain

condition ( a-finite c.c).

An ideal 7 on k is said to be X-complete if it is closed under unions of size less than

X. If 7 is w,-complete, then 7 is also called countably complete. Unless explicitly

stated otherwise, we will use the phrase " ideal on k " to mean one that is countably

complete, proper (i.e. k G 7 ), and contains all singleton subsets of k. If 7 is an ideal

on k, then 7+ denotes the collection of sets of positive 7-measure; i.e. 7+ = 9J(k) — 7,

and 7* denotes the collection of sets of 7-measure one; i.e. 7* = {X G k: k — X G I}.

If A G 7+ , then the restriction of I to A is the ideal I\A - {X Gk: X ^ A G 7}. An

ideal 7 on k is said to be normal if every regressive function defined on a set of

positive 7-measure is constant on a set of positive 7-measure. If k is a regular

uncountable cardinal, then 7K denotes the ideal consisting of all subsets of k of

cardinality less than k, and NSK denotes the (normal) ideal of all nonstationary

subsets of k. Notice that (NSK)* is the filter generated by the set of closed

unbounded subsets of k.

If I is an ideal on k, then two sets A and B in 7+ are said to be I-almost disjoint iff

A n B G I. The ideal 7 is X-saturated iff every pairwise 7-almost disjoint collection

F G I+ is of cardinality less than À. Note that 7 is X-saturated iff the Boolean

algebra <íP(k)/7 satisfies the X-chain condition. For more background on the theory

of ideals, see [BTW, JP, T,] or [T2].
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Our forcing notation is reasonably standard, but notice that we write p < o to

mean that p contains more information than a. We also freely pass from a partially

ordered set to its completion, thus taking arbitrary infs and sups in forcing

arguments whenever it is convenient. We generally discuss forcing as if it is taking

place over the universe of set theory V. The reader uncomfortable with this approach

can easily recast these results in terms of a sufficiently large fragment of ZFC. If

x G V, then we will use x itself as a term of the language of forcing to denote x.

Other terms, i.e. terms not denoting specific elements of V, will be denoted by letters

with a dot over the top. If i is a term, then the object denoted or represented by x in

the generic extension V[G] is written xV[G\

Of course, several rather elementary facts from the theory of forcing will be used

throughout this paper with very little comment. One such fact (which is crucial for

our present considerations) is the observation that if 7 is a countably complete ideal

on k, then 7 generates a countably complete (proper) ideal on k in any c.c.c. generic

extension. This observation is elaborated on in the beginning of §5.

On several occasions, we will refer to the ordering P for "adding a closed

unbounded subset of w, with finite conditions". This is an ordering invented by the

first named author to settle some questions in general topology [B,]. There are

several (equivalent) ways to describe 7*; perhaps the simplest is to let P consist of all

finite functions p mapping w, into w, for which there is a countable closed set

C G u>x so that if h enumerates C in increasing order, then p G h. (Of course, for

px, p2 G P we set px < p2 iff px D p2.) It is, however, sometimes useful to have the

following alternate characterization of P. If a is an 'ordinal let a = «"' 4 w°2

4 • • • 4 wa" be the unique decomposition of a as a sum of indecomposable ordinals

(powers of co) with a, > ■ ■ ■ > an. If ß = co^1 4 • • • +ufc, then we say a dominates

ß iff an s* ßm. Now P may be defined as the set of all finite increasing functions

from w, to w, such that, for all ß,p(ß) dominates ß. Since ordinal exponentiation is

absolute, so is the dominance relation; hence so is the definition of P. This shows

also that ifp G P, range(/>) G y and y is indecomposable, then/7 U {(y, y)} G P.

We will include here (for the sake of completeness) a proof that forcing with P

does not collapse to,. It should be remarked that the following proof easily extends

to show that P is proper (i.e. that forcing with P does not destroy any stationary

subset of [k]u for k > w); for this extension one uses the fact that for every closed

unbounded set C G [k]" there is a function /: [tc]<w -» k so that {A' G [k]": X is

closed under/} G C. (See §3 of [BT].)

So suppose that p G P and p II-/: w -* «,. We inductively construct an increasing

sequence (yn: n G w) of indecomposable ordinals as follows. Let y0 be any counta-

ble indecomposable ordinal so that y0 > sup(range(p)). Given yn, choose y„+1 to be

an indecomposable ordinal greater than y„ and large enough so that for any q < p

with range(a) G yn, and for any k G « there is some q' < a with range(a') Ç y„+x

and such that q'Wf(k) < yn+1. Now let y = sup{y„: n G u). Then y is indecom-

posable and so p U {(y, y)} G P. But now it is a straightforward matter to verify

that/7 U {(y, y)} |h"VAr G «(/(*) < y)".

Notice that if G is a P-generic set for the ordering P described above, then U G is

the enumerating function for a closed unbounded set C G co, in the extension V[G].



590 J. E. BAUMGARTNER AND A. D. TAYLOR

One of the crucial properties of this type of forcing is that this new closed

unbounded set C contains no countable set in V as a subset.

We will make considerable use of the so-called "generic ultrapower" (or "Boolean

ultrapower") construction originally introduced by Solovay [S]. We will fix our

notation regarding this here and mention a couple of rather crucial basic facts; the

reader desiring a more thorough background should consult [J, JP], or [S].

If 7 is an ideal onto,, then we can force with the Boolean algebra B(I) = 9(ux)/I

to obtain a generic ultrafilter U. If X G I+ then [X] will denote the corresponding

equivalence class in 77(7). Now, in V[U], we can form the ultrapower V*</U made

up of equivalence classes [ / ] where /: w, -» V and / G V. The ideal 7 is said to be

precipitous iff this ultrapower is always well founded, and in this case we identify

V*'/U with its transitive collapse. The letter/ will denote the canonical elementary

embedding of V into V"'/U; i.e. j(x) = [/J where fx(a) = x for every a < «,.

Finally, in extended discussions (e.g. §5) where we have under consideration a fixed

ideal 7 and a fixed B( I )-generic ultrafilter U, we will (for typographical conveni-

ence) use "A/ " in place of " Vu'/U".

If the ideal I is w2-saturated, then there are several nice properties arising in the

above construction. For example, B(I) is a complete Boolean algebra and Vu,/U is

well founded (i.e. 7 is precipitous). Moreover, V[U] and (the collapse of) V'/U

have the same countable sets of ordinals, and if X G I+ and [X] II-j G V*]/U, then

there is some/: w, -> F so that [AHIi-j) = [/]. Proofs of all these assertions can be

found in [J].

2. Equivalents for preservation of w2-saturation. In this section we investigate the

preservation of w2-saturated ideals on w, under partial orderings P with the

countable chain condition. That is, for such 7 and 7*, we ask when it is true that

\rP "The ideal generated by 7 is w2-saturated".

There are two main results. The first considers both the Boolean ultrapower

construction and a generalized version of Kurepa's hypothesis in order to give

necessary and sufficient conditions for a given c.c.c. partial ordering to preserve the

w2-saturation of a given ideal on ax. The second uses a generalized version of

Chang's conjecture to give necessary and sufficient conditions for the w2-saturation

of a given ideal /on«, to be preserved by every c.c.c partial ordering.

If 7 is an ideal on «,, then the transversals hypothesis for 7, denoted 777(7), is the

assertion that there is a family {ga: a < w2} of functions mapping w, tow such that

if a < ß then {££«,: ga(£) = gßU)} £ I- The transversals hypothesis for <o, is just

777(/u ); it follows easily from Kurepa's hypothesis, but it is known to be strictly

weaker. It is well known and easy to see that if 7 is w2-saturated then 77/(71 A) fails

for every A G I+ . For more on 77/(7), see Chapter 3, §4 of [BTW].

The following further weakening of Kurepa's hypothesis will yield a purely

combinatorial equivalent of the preservation of the w2-saturation of an ideal by a

c.c.c. partial ordering.
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Definition 2.1. If 7 is an ideal on w, and P is a partial ordering, then 777(7, P)

denotes the assertion that there exists a family {ga: a < co2} of functions mapping w,

to P such that if a < ß < w2 then {£ < «,: ga(ü) is compatible with gß(£)} G I.

Notice that if P is a countable antichain, then 777(7, P) reduces to just 77/(7).

We will make use of the trivial observation that for 77/(7, 7) to hold it suffices to

have each ga defined only on a set of 7-measure one.

Theorem 2.2. Suppose I is an u2-saturated ideal on <o, and P has the countable

chain condition. Then the following are equivalent:

(a) \rP"I generates an u2-saturated ideal ".

(b) 77/(71 A, P) fails for every A G 7+ .

(c) \rB,¡"j(P) nas the countable chain condition".

Proof, (a) implies (b): Suppose that A G I+ and {ga: a < w2} shows that

77/(71 A, P) holds. Let G denote the canonical 7-generic set over V. For a < u2, let

Äa = {£ < co,: ga(£) G G), and let 7 denote the ideal generated by 7. Then clearly

\rP"(Àa: a < w2) is an /-almost disjoint family".

We assert that for each a < u2 there is pa G P such that pa\vÂaG i+ . Let

((q„, Bn): n G w) be a maximal family such that B„ G I, qn \\- Aa G B,„ and if m ¥" n

then qm and q„ are incompatible. Choose £ E. A — U {B„: n G u] and let pa = ga(£).

Then pa works.

Since P has the c.c.c. we know Ay3<U)2(V B<a pa) ^ 0. Choose p «£

/\/3<w2(V ß<apa)- Then it is easy to see that for every q < p and ß < u2 there is

some a < us2 such that ß < a and a is compatible with pa. But then

p\\-\i+ n [Àa: a < w2) |= w2,

contradicting (a).

(b) implies (c): If A G 7+ , let [A] denote its equivalence class in /?(/). Let X = u2.

Then if U is 7i( 7)-generic over V, X is the w, of V[U]. Now suppose that (c) fails and

[A]\r"{pa: a < X) is a sequence of pairwise incompatible elements of j(P)". For

each a <X there is/a: w, — P such that </„: a <X)G Fand [A]\h\fa(pa - [/«]).

But then since A G (I\A)*, it is easy to see that (/„: a < w2> shows that TH(I\A, P)

holds, and hence (b) fails.

(c) implies (a): Suppose that (a) fails. Then for some p G P we have p\r"(Aa:

a < w2) is a family of 7-almost disjoint elements of 7+ ". For each a < co2, let

5„ = {£ G w,: 3q^p(q\\-£ G Àa)}. Since /7lh/i G 7+, we must have Ba G 7+ .

Since 77(7) has the w2-chain condition, it follows that we can choose [A] <

A^<W2(V ̂ „[TJJ) so that [^] * 0. Then

(.) (V[B] « [A])(Vß < co2)(3« < tó2)(/J < « and [77] A [T7j # 0).

But now if/a: w, ^ 7 is defined so that for every £ G Ba,fa(£) < /> and/Q(£) Ih £ G /ia,

then since p\rÄa H Aß G Í for a ^ ß, we have [5a] A [Tip]In"[/J and [/^] are

incompatible", assuming Ba H Bß G I+. On the other hand, if Í7 denotes the

canonical 7?(7)-generic set, then by (*), [,4]li-"X= {a: [Ba] G Ü) is uncountable".

But then [^1] !!-"<[/„]: a G A") is an uncountable antichain in7'(7)", as desired.    D
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Remarks. 1. A still further (apparent) weakening of these Kurepa-type properties

is also possible. That is, let wTH(I), "w" for "weak", denote the modified assertion

obtained by replacing "ga: «, -> u" by "ga: Aa -» w and Aa G 7+ ", and let

wTH(I, 7) denote the corresponding modification of 777(7, 7). The interest in these

notions is that we then have the following:

(a) wTH(I) fails iff / is w2-saturated.

(b) w 7/7(7, 7) fails iff 7 is c.c.c. and \rP"I is w2-saturated".

The proof of (b) involves showing that if wTH(I \ A, P) holds and 7 is w2-saturated,

then 777(7 \A,P) holds for some A G I+ . We leave the details for the reader.

2. The equivalence of (a) and (c) can be restated in a way that emphasizes the

symmetry involved. That is, if 7 is an ideal on to, and 7 is a partial ordering, then the

following are equivalent:

(i) B(I) has the w2-c.c. and B(I)\\-"j(P) has the «,-c.c".

(ii) 7 has the w,-c.c. and P\v"B(i) has the to2-c.c".

Notice that in this restatement, we have moved the chain condition requirements on

B( I ) and 7 from the hypothesis of the theorem to a part of the equivalences in the

conclusion. The required addition to the proof is trivial and omitted.

We now turn our attention to the question of what conditions on an ideal 7 on w,

are sufficient (and necessary) to insure that the to2-saturation of 7 is preserved when

forcing with any c.c.c. ordering 7. Our starting point is a discussion of Chang's

conjecture and its generalization to the context of ideals.

Chang's conjecture may be stated in combinatorial terms as w2 -» [co,]^"1 , i.e. iff:

[w2]<w -» to, then there is A" G [w2]W| such that \f([X]<u) |< a. It seems to be part

of the folklore that this is equivalent to the weaker-looking proposition w2 -» [w,]^ .

The proof runs as follows: First, for each a G w2 fix a well-ordering <0 of a in

order-type *£ to,. Now, given /: [wj*^ -> w,, define g: [w2]2 -» to, as follows. If

a < ß and the set of <^-predecessors of a is the (countable) set Xaß, then let

g({a,ß}) = sup{f(x): xG[XaßU {a,/J}]<1"}. Suppose X G [w2P, £<<o„ and

g([X]2)Gt Let x = {a,,...,<*„} G [A]<M. Assume that max(x) = a„ and the

<Q -largest element of x — {a,,} is a¡. Then clearly f(x) < g({a,, a,,}), sof([X]<a)

QÍ
Thus the next definition is a generalization of Chang's conjecture to the context of

ideals.

Definition 2.3. Suppose 7 is an ideal on w,.

(a) «2 -> [to,]2, means: if /: [w2]2 -» 7* then there exists X G [w2]"' such that

n/([A]2)^o.
(b) We say that 7 satisfies Chang's conjecture iff w2 -» [w,]2/^,, for every A G 7+ .

It is easy to see that Chang's conjecture holds iff I0j satisfies Chang's conjecture.

This is the motivation for Definition 2.3, except that this would also have been

achieved if we had chosen to replace " ¥= 0" in 2.3(a) with " G 7*". The following

observation of Laver dictated our choice: there is a function/: [w2]2 -» NS*t such

that for every X G [a2]0> we have | D/([X]2) |< 1. (To see this, let </„•«< w2> be

functions from w, to w, so that if a ^ ß then Aaß = {£: fa(£) = fp(£)} G I. For

a < w, let Ca be closed unbounded so that each £ G Ca is closed under fa. Now set
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f({a, ß}) = (Ca n Cß) — Aaß.) Another observation (whose proof is left for the

reader) is that if 7 is co2-saturated, then w2 -» [a]2, for every a < w,. The notation

here should be obvious. The question of whether this result, or Laver's result above,

can be strengthened in the obvious way leads us to the second main theorem of this

section.

Theorem 2.4. For an u2-saturated ideal I on ux, the following are equivalent.

(a) I satisfies Chang's conjecture.

(b) For every c.c.c. partial ordering 7, lh/'7 generates an cc2-saturated ideal".

Proof, (a) implies (b): Suppose that (b) fails and that 7 is a c.c.c. ordering that

does not force the ideal generated by 7 to be co2-saturated. Then by Theorem 2.2, we

know that 777(71 A, 7) holds for some .4 G 7+ . Let (ga: a < w2) witness this. Now

define/: [<o2]2 - (I\A)* by/({a, ß}) = {£ G «,: ga(0 ¡s compatible with g/j(|)}.

Then/shows that w2^[w,](2/|/(). (and hence 7 does not satisfy Chang's conjecture),

since if X G w2 and £ G H/([A]2) then {ga(£): a G A} is an antichain in 7 and

hence it (and X) must thus be countable.

(b) implies (a): Suppose 7 does not satisfy Chang's conjecture. Fix A G I+ and/:

[co2]2 -> (71 A)* such that Pi/([A]2) = 0 whenever X G [w2]"'. For each ß < w2, let

kß. ß -» w, be one-to-one. If a < ß < w2 then let

g({a,ß})= H {f({a,y}):kß(y)<kß(a)}nf({a,ß}).

Note that g({a, ß}) G(I\A)* and that if a < ß < y then either g({a, y}) G f({a, ß})

org({ß,y})Gf({a,ß}).

Now we will generically add a sequence (Aa: a < w2) that will witness the failure

of the w2-saturation of the ideal generated by I in the extension. A condition will be

a finite piece of information about which £'s from u, will be in which Aa's. Trivial

density arguments will insure that each ,40 is of positive measure, but to guarantee

that Aa n Aß G I for a ¥= ß, we will add the stipulation that if some condition forces

£ G Àa and | G Aß for a ¥= ß, then £ £ g({a, ß}). Of course the crux of the matter is

to verify that this notion of forcing has the c.c.c; this is why the "counterexample"/

was replaced by the stronger "counterexample" g.

More formally, let 7 = {x G [A X u2]<a: if (£, a), (£, ß) G x and a ^ ß, then

£ G g({a, ß})}- Let x < y iff y G x. Suppose we know that 7 has the c.c.c. If G is

7-generic over V, then in V[G] define (Aa: a < w2) by setting ^a = {|<w,:

(|, a) G U G}. It is clear by genericity that if / is the ideal generated by 7 in V[G],

then (Aa: a < w2) is a/-almost disjoint family of elements of/+ .

Thus, we need only show that 7 has the c.c.c. Suppose Z = {zp: ß < w,} is an

uncountable antichain. Without loss of generality we can assume that the elements

of Z all have cardinality n. Say zß — {(£f, af ),... ,(££, a£)}. Furthermore, we may

assume that if 1 *£ ; < n then either all the af are equal or else ß < y implies

af < a}; similarly for the £f. Note that since zß and zy are incompatible there must

be i,j such that £f — £] and £f G g({af, aj}). We say zß, zy disagree at (i, j).

Let D be a uniform ultrafilter on w, and for 1 < i,j < «, let 77, = {ß: {y: z^ and

zy disagree at (/, j)) G D). Since the union of all the 73,.. is to, there must be z,y such
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that B,j G D. In particular, | Biy |= <o,. Note that there is £ such that £ = £f for every

ß G Bij, for if ß, y G B¡j and 8 is such that zß, zs and zy, zs both disagree at (;', /)

then £f = £f = £/.
Claim. If ß, y G BtJ then there is 8 such that zß, zs and zy, zs disagree at (/', /) and

af, a] < a*.

Proof. Suppose not. Then without loss of generality we may assume that B = {8:

Zß, zs disagree at (/', /) and a® < af] G D. Since £s = £ for every 8 G B we have

£f = £. It follows that the a8 for 8 G B are all distinct since otherwise they would all

be equal to af and zß would disagree with itself at (i, j), which is impossible. But

now if 8, e G B and 8 ¥= e we must have £ G g({aj, af}) n g({a"j, af}). Since

f({aSj, a)}) contains either g({a^, af}) or g({a*, af}) we have £ G /({a®, a)}). Thus if

A = {a®: ô G 7} then £ G H/([A]2), contradicting the choice of/and proving the

claim.

But now using 8 as in the claim, we may repeat the last part of the proof of the

claim to show that if ß, y G BtJ and ß ¥= y then af, aj are distinct and £ G f({af, a]}).

This also contradicts the choice of /, and proves the theorem.    D

A consequence of the next result in this section is another characterization very

similar to that in the previous theorem. This result, however, may be of some

independent interest because of what it says about Chang's conjecture.

Theorem 2.5. For any ideal I on w,, the following are equivalent:

(a)w2 - [w,]2.,

(b) co2 -> [w, : w,]2,; i.e. if g: [w2]2 -» T* then there exist A, B G [w2]W| such that

Pi {g({a, ß}): a G A and ß G B} ¥= 0.

Proof. Only (b) implies (a) requires proof. Suppose then that (b) holds and /:

[w2]2 -» 7* is given. For each ß < w2 let hß: ß -> w, be one-to-one. Now define g:

[w2]2 — 7* as follows. If a < ß then set

g({a,ß})= H {/({£,, Z2}):hß(Zx),hß(t2)<hß(a)}.

Notice that g({a, ß}) G I* since 7 is countably complete. Now, since we are

assuming (b), there are sets A, B G co, such that both have order-type w,, A n B = 0

and fi {g({a, ß}): a G A, ß G B} ¥= 0. Choose /x in this intersection and assume

(without loss of generality) that sup(7) > sup(A). To complete the proof, it will

suffice to show that ¡x G P\f([A]2). So suppose {a,, a2} G [A]2. Choose ß G B such

that ß > max{a,, a2}, and assume (without loss of generality) that hß(a2) < hß(ax).

Then ft G g({ax, ß}) so p Gf({ax,a2}) since hß(ax) < hß(ax) and hß(a2) < hß(ax).

D

Corollary 2.6. w2 - [w,]21Ai í//w2 -* [w, : w,]2l/u.

Proof. Apply Theorem 2.5 to the ideal Iu¡.    D

We conclude this section with a final set of equivalences involving Martin's

Axiom.
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Theorem 2.7. The following are equivalent:

(1) ZFC I- For every (¿-¡-saturated ideal on w,, there exists a c.c.c. partial ordering 7

so that \\-P "the ideal generated by I is not (¿-¡-saturated ".

(2) ZFC 4 MAU Y There are no (¿-¡-saturated ideals on to,.

(3) ZFC 4 MA 4 2*° = S31- There are no (¿2-saturated ideals on <¿x.

Proof. (1) -» (2). Assume that (1) holds, MAU holds, and I is an to2-saturated

ideal on to,. We seek a contradiction. Choose 7 (by (1)) so that \vp "The ideal

generated by I is not to2-saturated". Then by Theorem 2.2 we know that 777(7 | A, P)

holds for some A G I+ . Without loss of generality, assume that A = <¿x and, thus,

777(7, 7) holds. Now it is easy to see that we can get a subordering 7' of 7 so that

| 7' |= to2 and 777(7, 7') holds also. Using MAU, it is now easy to show that 7' is

a-centered.

Looking ahead to Theorem 3.1 we see that \\-P, "7 generates an to2-saturated ideal

on ux". Hence, by Theorem 2.2 again, 777(7, 7') fails. This is the desired contradic-

tion.

(2) -> (3). Trivial.

(3) -> (1). Suppose that (1) fails. Then there is a model V of ZFC containing an

to2-saturated ideal 7 on to, having the property that 7 generates an to2-saturated ideal

in any c.c.c. generic extension of V. By Theorem 2.4 it follows that 7 satisfies

Chang's conjecture. Now, it is easy to see that Chang's conjecture for an ideal is

preserved when forcing with an to2-complete partial ordering (i.e. the ideal I

generated by 7 in the extension will also satisfy Chang's conjecture). Hence, we can

extend V to V by collapsing 2"2 to (¿3 via conditions of size w2 and we will have, in

V, an to2-saturated ideal 7' which generates an to2-saturated ideal in any c.c.c.

generic extension of V (this uses Theorem 2.4 again). But now we can do a c.c.c.

iteration over V of length (¿3 to obtain a model contradicting (3).    D

3. Preservation of to2-saturation. Some preservation (and nonpreservation) results

follow rather easily from the equivalents obtained in §2. For example, one im-

mediately obtains the following.

Theorem 3.1. 7/7 is an (¿-¡-saturated ideal on ccx and 7 has the a-finite chain

condition, then

\rP "7 generates an (¿-¡-saturated ideal on <¿x".

Proof. Let U be B(I)-generic over V. Since/ is elementary,/(7) has the a-finite

c.c. in V"</U. But then clearly j(P) has the a-finite ex., hence the c.c.c, in V[U\.

D

Corollary 3.2. If the existence of a huge cardinal is consistent with ZFC, then CH

is consistent with and independent of the existence of an (¿-¿-saturated ideal on (¿x.

The consistency half of Corollary 3.2 is due to Kunen, since CH holds in his

original model [Ku2] containing an to2-saturated ideal on to,. The independence

follows from Theorem 3.1 since the orderings for adding (say) Cohen reals and

random reals satisfy the a-finite chain condition. The independence was noticed
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independently by Richard Laver and a similar result follows immediately from Van

Wesep's observation that 2*° = 2N' in his model [VW] where he gets the (^-satura-

tion of NSU (but starting with a model of AD etc. instead of "just" a huge cardinal).

It also turns out that the usual c.c.c. partial ordering for forcing a-linked MA has

the a-finite chain condition. Moreover, a-linked MA implies the well-known combi-

natorial property P(c): if k < 2*° and {Xa: a < k} g9(u) is such that finite

intersections of the Aa's are infinite, then there is A" G [to]" such that X — Xa is

finite for each a < k. Hence, assuming the consistency of an to2-saturated ideal on

to,, we obtain the following.

Corollary 3.3. o-linked MA (and hence P(c)) is consistent with 2N° > N, and the

existence of an (¿¡-saturated ideal on to,.

In fact, as was remarked by the referee, Corollary 3.3 may be extended to include

MA for partial orderings with the a-finite chain condition, since if 7 is any finite

support iteration of orderings with the a-finite chain condition theny'(7) has the

same property in V"]/U. An easy argument now shows that/(7) has the c.c.c. in

V[U],

It should be emphasized that we have been unable to find any c.c.c. partial

ordering which fails to satisfy Theorem 2.2(c), so it is conceivable that to2-saturation

is always preserved by c.c.c. orderings. One of the most likely candidates for a

counterexample is the ordering for adding a generic path through a Souslin tree. If

the Souslin tree 7 is obtained generically with finite conditions (see [J]; the

construction is due to Tennenbaum, but amounts to adding <¿x Cohen reals), then we

can show that for any to2-saturated ideal on V, its canonical extension in V[T]

remains to2-saturated after adding a generic path G through 7. Essentially, the reason

is that both V[T] and B[T, G] are a-centered extensions of 7. Details are left to the

reader.

Our final two results in this section are in part motivated by our consideration of

a-finite c.c. orderings in [BT]. The situation that occurred there was the following.

We showed that if one forces over a model of GCH with a a-finite c.c. ordering, then

in the extension every ideal on to, is to3-saturated. There, however, we were able to

sharpen this result considerably. That is, "a-finite c.c." could be replaced by

"cardinal-preserving to,-finite c.c" but not by "c.c.c". This latter observation used a

variant of a partial ordering invented by Galvin and Hajnal. It turns out that the

situation for preservation of to2-saturation is somewhat different, both for cardinal

preserving to,-finite c.c. orderings and for the Galvin-Hajnal ordering; this is the

content of the following two results.

Theorem 3.4. If 7 is the variant of the Galvin-Hajnal ordering used in §6 of [BT],

then the (¿-¡-saturation of any ideal on (¿x is preserved when forcing with P.

Proof. We need only show that 7 satisfies condition (c) of Theorem 2.2, and for

this we assume that the reader is familiar with the construction of 7 in [BT]. Now,

since 7 is built up from the graphs Ga = (k, Ea) the same is true of j(P) in V"l/U.
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But the crucial property of the graphs Ga (namely that for any £ < k, {-q < £:

{t), £} G Ea} has order-type at most a) requires only countable sets of ordinals for

its statement, and it is well known that V"'/U and V[U] have the same countable

sets of ordinals. Hence j(P) has the c.c.c in V[U].    □

Finally, we show that "a-finite c.c." cannot be replaced by "cardinal preserving

to,-finite c.c." in Theorem 3.1. We should remark here, however, that our real

interest in the next result stems primarily from the considerations to come in §§4

and 5.

Theorem 3.5. Let P be the partial ordering for adding a closed unbounded subset of

(¿x with finite conditions. Then |7|=to, (and so P has the (¿x-finite c.c), 7 is

cardinal-preserving (in fact "proper"), and

\rP "There are no (¿-¡-saturated ideals on (¿".

Proof. Suppose that G is 7-generic over V and assume, for contradiction, that 7 is

an to2-saturated ideal in V[G\. Let Ube B(I)-generic over V[G] and let/: V[G] -* N

be the associated elementary embedding. Now, working in V[G][U], let M =

U {j(Va): a G OR}. Since/ is an elementary embedding, it follows that N —

M[j(G)] where/(G) is/(7)-generic over M.

Now, it is easy to see that/(7) is just the partial ordering for adding a closed

unbounded subset of <¿2 by finite conditions. Hence, j( 7) is an element of V.

Since/(to,) = (¿2 we see that/(G) gives us, in M[j(G)], a closed unbounded set

C G u,^[j(G)] = tof. Now, because 7 is to2-saturated we know that V[G][U] and

M[j(G)} have the same countable sets of ordinals and so C is a closed unbounded

subset of (¿yxiG]lu] = (¿v2 in V[G][U]. Now notice that V[G][U] is an w^-c.c. extension

of V(since \P\= w, and 7(7) is to2-saturated), and so there is a closed unbounded

set C, G V such that C, G C.

By the fundamental property of adding a closed unbounded set with finite

conditions, we know that no countable subset of C is an element of M/ and so, a

fortiori, no countable subset of C, is an element of M. In view of this, the desired

contradiction is an immediate consequence of the following claim.

Claim. Suppose that/: V -» M is an elementary embedding such that y | ux is the

identity and j(ux)> (¿2. Then for any bounded subset A ç to2, if A G V then

XGM.

Proof. If A Ç u>\, then A =/( A") n to, G M. If a < (¿v2 and A Ç a, then there is

Y G (¿\ such that F G F and A G L[Y). Then Y G M, so A G M also.

4. Basic properties of presaturated ideals. In this section we consider a class of

ideals on to, characterized by a property that lies (strictly) between the notions of

precipitousness and to2-saturation. This fact suggests the term "presaturated" for

ideals in this class.

Definition 4.1. If 7 is an ideal on to,, then 7 will be called

(a) (¿-¡-preserving iff \rB{l) "(¿2 is a cardinal".

(b) presaturated iff 7 is precipitous and to2-preserving.
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It is, of course, well known that an to2-saturated ideal on to, is both precipitous

and to2-preserving; hence, to2-saturated =» presaturated => precipitous. It will be

shown in §5 that these implications are nonreversible (in a rather strong sense).

Here, however, we concentrate on some structural properties of presaturated ideals,

beginning with the following combinatorial equivalent of Definition 4.1(a).

Theorem 4.2. For an (¿^saturated ideal on to,, the following are equivalent.

(a) I is (¿-¡-preserving.

(b) \\-B{l)"cf((¿v2)^(¿".

(c) If for each n G (¿we have that {Aa : a < to2} is a set of pairwise I-almost disjoint

elements of I+ , then for every A G I+ there is B G 9(A) n 7+ so that | {a < to2:

A,;' n B G I+ } |« to, for each « G to.

Proof, (a) -» (b). This is obvious.

(b) -> (c). Suppose (b) holds and that for each ai G to we have {A"a: a < (¿¡} as in

(c). Define /: <¿ -» c¿2 so that [X£]\rf(n) = a. By (b), we know that lhB(/) "(3a <

to2)(V« G (¿)(f(n) < a)". Now suppose A G I+ is given. Then there is 7 G 9(A) D

7f and a < to2 such that [7] lh"(V« G (¿)(f(n) < a)". But now it is easy to see that

if X'ßl n 7 G 7+ then ß < a, and so 7 shows that (c) holds.

(c) -» (a). Suppose / is not to2-preserving. Then for some A G I+ we have that

[A] lh| (¿2 | = to. This is a consequence of the observation (see Proposition III.4.1 of

[BTW]) that ux is always collapsed when forcing with 7(7) where 7 is any ideal on
onto

to,. So let / be a term such that [^4]li-/: ic -» (¿2. For each n let P„ be a maximal

family of subsets of A whose equivalence classes in 7(7) force different values for

f(n). Infinitely many of the 7„'s must have size to2, so, for simplicity, assume they all

do. But now if 7 G 9(A) n 7+ and 7 hits only (¿x of the sets in each 7„ in a set of

positive T-measure, then clearly [B]\\-"fis bounded". This contradiction completes

the proof.    D

It may be that the requirement of precipitousness in the definition of presaturated

is redundant. That is, it seems plausible that every to2-preserving ideal on ux might of

necessity be precipitous, although we are unable to prove this. We do, however, have

the following partial result along these lines.

Theorem 4.3. Suppose that I is an (¿-¡-preserving ideal on c¿, that is (¿^-saturated and

is such that for every m < (¿, ^B(!)cf((¿y,) ¥= to. Then I is precipitous and hence

presaturated.

Proof. Suppose that 7 is a counterexample, and let k be the least cardinal for

which 7 is /(-saturated. Then k < wu and it is well known that k must be regular;

hence k = (¿„ for some n with 2 =£ n < (¿. By assumption, there is a set A G 7+ so

that [A] \rB(l)"([fj]:j G to) is a descending sequence in the generic ultrapower".

Now, for each A G I+ and each such sequence we can choose, for / G to, a

maximal family {A~a: a < X;} G I+ of /-almost disjoint subsets of A so that for some

f¿ G F we have [AQ][|-/ = f¿. It is easy to see that such a family is really a maximal

/-almost disjoint family in (/1 A)+ , and so for each/ we have Xy < (¿,t. Without loss



IDEALS IN GENERIC EXTENSIONS. II 599

of generality, assume that Xy = (¿m for every j < (¿, and among all such sets A G I+

and all such sequences that we have chosen the ones yielding the smallest possible

value for m.

We claim now that m < 1. Suppose not. Let/be a term defined so that for/ G to

and a G (¿m we have [XJa]\\-f(j) = a. Then [A\\v"domain(f) G (¿", and so, since

/1A satisfies the same conditions imposed on 7, we have some set 7 G (/1 A)+ and

some ordinal y < (¿m so that [7] lh"range(/) G y". But now it is easy to see that the

sequences {Aa (~l 7: a < y, / < to} contradict our choice of A, thus showing that

m «s 1 as desired.

To complete the proof, we need only note now that since m < 1, it is easy to find

a function gy G F so that domain(g-) = A and [A] W-f- = g.. Then, except for a set

in /, we have that for every £ G A, gJ+ ,(£) < gy(£); contradiction.    D

A version of Theorem 4.3 is implicit in the work of Balear and Franek [BF]. They

show there that if 7 is nowhere precipitous (i.e. no /1 A is precipitous) and if 7(7)

has a dense set of size (¿2, then 7(7) is isomorphic to the usual Levy collapse of (¿2 to

(¿. It turns out that if 7 has a dense set of size (¿2, then / fails to be presaturated iff

B(I | A) is isomorphic to this Levy collapse for some A G I+ . In fact, let Col(to, k)

be the complete Boolean algebra corresponding to adding a surjection /: to — k by

finite conditions, let 7 be a complete atomless Boolean algebra and let k be a regular

uncountable cardinal such that \\-B cf(ic) = to. Then 7 s Col(to, k) iff 7 has a dense

set of size k. The proofs are left for the reader.

The last two results in this section require some concepts from the structural

theory of ideals (e.g. see [BTW]). First of all, if 7 is an ideal on k, A G I+ and /:

A -> k, then / is called I-small iff f~x({a}) G I for every a < k, and in this case

/*(/), which denotes {Aç k: /"'(A) G 7}, is an ideal on k. The Rudin-Keisler

(pre-) ordering <RK of ideals on k is defined by J <RK I iff J =/»(/) for some

/-small /: k -> k. Two ideals / and J on k are said to be isomorphic (denoted / s J )

iff J = /*(7) for some bijection/: k -» k.

An ideal 7 on k is said to be a P-point (local P-point) iff for every /-small/: k -> k

there exists a set A G 7* (A G 7+ ) such that/| A is less than k to one. 7 is a weak

P-point iff 71A is a local 7-point for every A G I+ . (Hence, 7-point => weak

7-point => local 7-point.)

It is known [T,] that if 7 is an to2-saturated ideal on to,, then 7 is a 7-point. This

fails badly for precipitous ideals, and there can even be precipitous ideals on (¿x that

are not weak 7-points. For presaturated ideals, however, we have the following.

Theorem 4.4. 7/7 is an (¿-¡-preserving ideal on to,, then I is a weak P-point.

Proof. Suppose that 7 is not a weak 7-point. Then for some A G Iy , the ideal

/ | A is not a local 7-point. Since an ideal is to2-preserving iff every restriction of it is

to2-preserving, we lose no generality in assuming that A = »,, and hence 7 is not a

local 7-point. Now Theorem III. 1.1 and Corollary III.4.11 of [BTW] show that

777(7) holds whenever 7 is an ideal on to, that fails to be a local 7-point. That is,

there exists a family {ga: a < to2} of functions mapping to, to <¿ such that if

a<ß<u>2 lhenAaß = {£<(¿x: ga(£) = gj8(£)} G 7.
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Now let U be 7(7)-generic over V and consider the generic ultrapower V"'/U.

For a < (¿2, each [ga] represents an element of to in V"</U and for a ¥= ß we have

[ga] ¥= [gß]. Thus, in V[U], | to21 = to and hence 7 is not to2-preserving.    D

Solovay proved [S] that if there is an to2-saturated ideal 7 on to, then there is a

normal to2-saturated ideal J on to,, and in fact / can be taken to be below 7 in the

Rudin-Keisler ordering of ideals on (¿x. It is not known if the existence of a

precipitous ideal on (¿x implies the existence of a normal precipitous ideal on to,, but

for presaturated ideals we have the following.

Theorem 4.5. // there is a presaturated ideal I on to,, then there is a normal

presaturated ideal J on (¿x.

Proof. We will show that if / is presaturated, then / is, in fact, "densely

isomorphic" to a normal ideal. That is, for every A G I+ there is some 7 G 9(A) D

7+ such that 71 7 is isomorphic to a normal ideal (which must then also be

presaturated). So suppose that A G I+ is given. Then, since / is precipitous,

Theorem III.3.4 of [BTW] guarantees that for some B g9(A) n I+ we have that

71 7 is isomorphic to some ideal J extending NSU . But 71 7 (and hence J) is a weak

7-point by Theorem 4.4 and so the desired result now follows from the observation

(Lemma III.1.11 of [BTW]) that any weak 7-point extension of NSU is a normal

ideal.    D

Notice that the above proof does not yield a normal presaturated ideal J that is

7T< below the given presaturated ideal 7. We do not know if Theorem 4.5 can be

strengthened to yield this.

5. Further preservation results. In this section we will extend Theorem 2.2 to cover

a larger class of ideals, including the precipitous and presaturated ideals, as well as a

larger class of partial orderings.

Enlarging the class of orderings, however, leads to the following difficulty. Let I

be a countably complete ideal on u, and let 7 be a partial ordering. If G is 7-generic

then in V[G] we may form the ideal 7 = {A G u>vx: 37 G 7 (A G B)}. Now if 7 has

the countable chain condition, then 7 will be countably complete, but this is not true

for arbitrary 7. Since we are only interested in countably complete ideals, we need a

condition on 7 to guarantee the completeness of 7.

Perhaps the most natural such condition is

(*) if p G P and p lh"ó is a countable subset of V", then there is countable b G V

and q < p such that q\v à G b.

Every proper partial ordering satisfies (*), and (*) clearly implies that forcing with

7 preserves to,.

Although we will not use it here, there is another way to handle the difficulty

above which might be mentioned. Instead of using 7 one can simply use the a-ideal J

generated by 7 in V[G\. Of course, if 7 collapses ux, then J is not even a proper

ideal, but this raises the following question, which we have been unable to answer. If

7 preserves (¿,, does it follow that J is always a proper ideal?

Throughout the rest of this section, 7 is a countably complete ideal on to,, U is

7(7)-generic (over V), M is the ultrapower Vu'/U (formed in V[U}) and/: V -> M
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is the canonical elementary embedding. If / is precipitous then M is well founded,

and in this case we identify M with its transitive collapse. We will freely confuse U,

M and/ with the names for them in the language of forcing with respect to 7(7).

Definition 5.1. (a) If 7 is a partial ordering and a Gj(P), then 7 is regular below

a iff for any dense D G 7, D G V, and any r < o, there is p G D such that/( p) and

r are compatible (in/(7)).

(b) P is I-regular iff H-ß(/)V/7 G 7 3a G j(P) (a *s /( p) and 7 is regular below a).

Note that 7 is regular below a iff in V[U], q\rJ(P)"j~x(H) is 7-generic over F",

where 77 is the canonical name for the set/(7)-generic over V[U].

It is not hard to see that if 7 has the countable chain condition, then 7 is /-regular

for all /; this will be verified in the course of proving Theorem 5.7 below. A

consequence of Theorem 5.8 below is that if 7 is the ordering for adding a closed

unbounded subset of (¿x with finite conditions, then 7 is /-regular for every

precipitous ideal 7. Moreover, it is consistent that the Cohen ordering for adding a

subset of to, with countable conditions is /-regular for certain 7. The same applies to

the Sacks ordering and to Axiom A orderings of cardinality < 2K° in general. There

are more complete remarks following Lemma 5.13 below.

Now suppose 7 satisfies (*) and 77 is/(7)-generic over V[U]. Let G =jx(H).

Suppose also that a G 77 and 7 is regular below a. Then G is 7-generic over V. Let 7

be the ideal in V[G] generated by 7, and let Ü = {A G 7+ : if A = ÀV[G] then

3r G 77 (M\r"r\Y [id] Gj(À)")}. Here [id] denotes the equivalence class of the

identity function on to, in the ultrapower M. It is not difficult to see that U is an

ultrafilter in 9(ux) n V[G], although of course (7G V[U][H]. It turns out that

even more is true.

Theorem 5.2. U is B(I)-generic over V[G]. Moreover, if I is precipitous then j:

V -» M may be extended toj: V[G] -* M[H], and Ü= {A Gux: [id] Gj(A)}.

Proof. Without loss of generality, we may assume that 7 is a dense subset of a

complete Boolean algebra 7. If A G T+ and /: X—B then let esssup(/) =

AC6/.(V„ejrnc/(a)).

Lemma 5.3. Suppose A G 7+ , /: to, -> 7 and [A] II-7 is regular below [/]. Then

esssup(/| X)¥=0.

Proof. Suppose ess sup(/| A) = 0. Then

D = [p G 7: (3C G I*)p A (V aexncf(a)) = 0}

is dense in 7. But if C G /* and p A (V a(EXncf(a)) = 0, then clearly

[A] \rj(p) and [/] are incompatible.

But this contradicts the assumption that

[A] Ii-7 is regular below [/].    □

If $ is a sentence of the language of forcing with respect to 7, then ||$|| will

represent the Boolean value (in 7) of $. If/: to, -> 7 then clearly there is a term

X(f) such that for every a < (¿x, \\a G X(f)\\ = f(a).
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Lemma 5.4. Iff: to, ̂  7 then p W X(f) G I+ iff p < esssup(/).

Proof. Suppose a < p < esssup(/). Let C G /*. Then there is some a G C so

that qAf(a)¥=0. Choose r<qAf(a). Then rWX(f) D C ^ 0, so pli-VCG

7*(Ä(/)n C^O), i.e.,/7|i-Á(/) G7"+.

Suppose p 4 ess SUP( / )• Then there is CGI* and a</7 such that a A

(V aec/(«)) = 0-But clearly aH-Â(/)Ç to, - C,so pWX(f) G ï+ .    D

Now we return to Theorem 5.2. All we need prove is that if ( A£: £ < X) is a

maximal sequence of 7-almost disjoint elements of 7+ (i.e., the intersection of

distinct elements lies in 7), then A£ G t/ for some £ < X.

Let (Á£: £ < X) be a term denoting ( A£: £ < X) and letp G G be such that

p W- (Á£: £ < X) is a maximal /-almost disjoint sequence from 7+ .

Let/£(a) =p A ||a G Á£||. Note thatplh À(/£) = Á£.

Since p G G we have j(p) G 77. Hence there must be a' < q,j(p) with a' G 77.

Then 7 is regular below q' also. Let £={/-< q': 3£(r < [/£])}-

Lemma 5.5. E is dense below q' inj(P).

Proof. If not then there is r < q' which is incompatible with all [ft\. Say r — [/].

There must be A G U such that

[A] lh"7 is regular below [/], [/] is incompatible with all [/£], and [/] <j(p)"-

By Lemma 5.3, esssup(/| A) ¥= 0, and clearly esssup(/| A) *£/?. If p' G P and

p' < esssup(/| A) then by Lemma 5.4, p'\r"X(g) G 7+ ", where g | A = /| A and g

is 0 on (¿x — A. Since p' li-"( A£: £ < X) is maximal", there is p" «£ p' and £ so that

p" W Á£ n X(g) G /+ . But then if Y = {a G X: f(a) (= g(a)) is compatible with

fç(a)}, we must have Y G I+ . The same argument would work if A were replaced by

any A' Ç A with A' G 7+ . Thus there must be a F as above in U. But then

[Y] li-"[/£] and [/] are compatible", contradiction. Hence E is dense below a'.    D

Thus, there exists £ such that [/£] G H. We claim that A£ G U, which will

complete the proof of Theorem 5.2. But this is easy, since for every a we have that

/£(a)lha G À£, soJWV'[/£]ll-[id] G/(Á£)", and A£ G Ü.

If now I is precipitous then we may define j: V[G] -* M[H] by j(XylG]) =

j(X)M[H]. Since p G G iff j(p) G 77 it is straightforward to see that/ is elementary

and extends/. Finally, using the definition of/ above, it is clear that U = {A C to,:

[id]G/U)}.    D
Definition 5.6. A countably complete ideal 7 on to, is strong iff 7 is precipitous

and li-B(/)/(«ï) = w2.

It is easy to see that every presaturated ideal is strong. Moreover, in Kunen's

proof in [Ku,] that the existence of an to2-saturated ideal on (¿x implies the

consistency of the existence of many measurable cardinals, only the fact that the

ideal was strong was required. Since the existence of a precipitous ideal is equicon-

sistent with the existence of a single measurable cardinal [JMMP], it follows that

precipitous does not imply strong.
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One reason for introducing strong ideals is that they occupy a natural place in

Theorem 5.7 below. Unfortunately we know rather little about them. It is conceiva-

ble that strong ideals coincide with presaturated ideals, although we doubt it. On the

other hand we conjecture that the consistency of the existence of a strong ideal is

equivalent to the consistency of the existence of an to2-saturated ideal. We have also

been unable to prove that the existence of a strong ideal implies the existence of a

normal one.

Theorem 5.7. Let 7 be I-regular.

(a) If I is precipitous then

\\-P3A G 7+ (Î\A is precipitous).

(b) 7/7 is strong and 7 does not collapse (¿2, then

\YP3A G 7+ (J\A is strong).

(c) If I is presaturated and \rB(l)"j(P) does not collapse io2", then

\\-P3A G 7+ (Î\A is presaturated).

(d) If I is (¿-¡-saturated and \rB(!"j(P) has the c.c.c", then

\YP I is (¿¡-saturated.

Moreover, in (a), (b) and (c) if 7 has the countable chain condition then we may take

A — to,.

Proof, (a) By Theorem 5.2, j: V ̂  M may be extended to j: V[G] -> M[77].

Hence V[G]U'/U is well founded, so there is A G U such that

[A] W- V[G]a'/Üis well founded.

But then 11A is precipitous. Hence there is p G G such that

p ll-3/4 G 7+ (Î\A is precipitous).

But since for any p G 7 we can always find q </( p) so that 7 is regular below a, we

can work below any given p G 7 as above. Hence \\-P 3 A G 7+ (7 | A is precipitous).

In case 7 has the countable chain condition, note that 7 is regular below every

element of j(P), for if D G V is a maximal incompatible set then since D is

countabley'(Z)) = {j(p): p G D} and j(D) is maximal incompatible in/(7).

Now suppose p \rp C G I+ . We claim there is a *£ p such that a \y"3A G C(A G 7~+

and 71A is precipitous)". This implies immediately that \\-PFis precipitous.

For each a < to, let f(a) — \\a G C\\. Then p < esssup(/) by Lemma 5.4. Let

C0 = {a: p A/(a) ¥= 0}. Then C0 G /+ and [C0]\\-"j(p) and [/] are compatible".

Now let U be 7(/)-generic with C0 G U and let 77 be/(7)-generic over V[U] with

a' G 77, a' <j(p), [/]. 7 is automatically regular below a'. Now clearly

M \r"[ f]\YAP) [id]  G j(C)",

so CvlG] G U. Now, working as before, we can find A =s Cy[G], A G U, such that

7 | A is precipitous (in F[G]); hence there is a =s p, a G G, such that

all- 3A G C(a G 7+ and 71A is precipitous)

as desired.
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(b) is easy since (¿¡[G^ = (¿2 and/ extends/.

(c) is also easy since (¿2 remains a cardinal in V[U][77], hence in F[G][i/].

(d) is part of Theorem 2.2 and is included here only for completeness, since the

techniques behind Theorem 2.2 have here been generalized.    D

Remark. Theorem 5.7(a) extends Kakuda's theorem [K] that if 7 is a precipitous

K-complete ideal on an uncountable regular cardinal /c and 7 has the K-chain

condition, then \\-PI is precipitous, at least for the case k = to,. In fact it is easy to

see that all the results of this section may be straightforwardly generalized to regular

uncountable k, so we have a genuine extension of Kakuda's result. Details are left to

the reader.

We have already seen in the proof of Theorem 5.7(a) that any partial ordering

with the countable chain condition is /-regular for all 7. It follows that such

orderings preserve precipitous and strong ideals. We do not know whether they

always preserve presaturated ideals.

Now we turn to other orderings.

Theorem 5.8. Let 7 be the partial ordering for adding a closed unbounded subset of

(¿x with finite conditions. If\YB(l)Vu'/Uhas an (¿\th element, then 7 is I-regular.

Proof. We may assume that u>\ + l G M = Vu'/U. Let a = {((¿yx, (¿yx)}. Since u\

is countable in M we have a G/(7). Also, if D is dense in 7 then it is easy to see

that for any r < a, if p G D is such that/? <rd (to'j' X uyx), then r andp = j(p) are

compatible. Hence 7 is /-regular.    D

Theorem 5.9. Let 7 be the ordering of Theorem 5.8.

(a) If I is precipitous, then \vP3A G I+ (I \A is precipitous).

(b) If I is strong, then \\-P 3 A G /+ (/1A is strong).

(c) 7/7 is presaturated, then \\-p3A G I+ (I | A is presaturated).

If I is normal, G is P-generic and C = {a: {(a, a)} G G}, then in (a), (b) and (c) we

may take A = C. Moreover, in this case

\YPI | C is normal,

where C is the canonical name for C.

Proof, (a) follows immediately from Theorems 5.7(a) and 5.8.

(b) is similar, using the fact that | 7 | = to,, so forcing with 7 preserves u2.

(c) is also similar, but we must observe that/(7) is simply 7 as defined in V[U]

(or M); hencej(P) must preserve to'j'1'71 = (¿y.

Now suppose 7 is normal. Since C is closed unbounded in to, we have \vPC G I+ .

Suppose p 11- À G C, À G I+ . For each a < to, let/(a) = p A || « G À\\. Then A0 —

{a: /(a) is compatible with {(a, a)}} G I+ since clearly \\a G C\\ = {(a, a)}. As in

the proof of Theorem 5.7 we have [A0] li-"[/] and {((¿y, (¿\)} are compatible" (for if

g(a) — {(a, a)} then [g] = {(to^, (¿\)} by the normality of 7). Hence if U and 77 are

chosen so that A0 G U and [/], {(uy,coy)} G H we may conclude as before that

there exists q<p such that olh"37 G À(B G 7+ and 7| 7 is precipitous)". Hence

\YPI\ C is precipitous. The argument for strong and presaturated ideals is left to the

reader.



IDEALS IN GENERIC EXTENSIONS. II 605

Finally, let us verify that \rPï\ C is normal. Let À be as above, and suppose p \\-"h

is regressive on À but h~ '({a}) G /for all a". Now for each a G to, let Da — {a < p:

3N(q, a) G I (all- h~x({a}) C N(q, a))}. By hypothesis, Da is dense below p. For

each a let Na = U {A(a, /i): ß < a, q G Dß, q GaX a}. Then Na G I so by

normality N = U {/Va - (a 4 1): a G to,} G 7.

Let 7 = {a G to,: V/3 < a Va <p if a Ç a X a then 3/- < q(r G a X a and r G

Dß)}. Then E is closed unbounded so £ G 7*. Let f(a) — p A ||a G À\\ as before,

and let A0 — {a: f(a) and {(a, a)} are compatible}. We can find a G (A0 C\ E) — N.

Fix a G 7 and ß such that q<f(a), {(a, a)} and q\vh(a) = ß. If q' = q n (a X a)

then since a G E and /J < a there is r < a' such that r G a X a and r G Dß. Then

A/(/% ß) G Na so a G N(r, ß). But r and g are compatible (since q(a) = a and we

may assume a is indecomposable) so r U g\\- a G N(r, ß), contradiction. Hence

\YPI\C is normal.    D

Theorem 5.10. (a) If ZFC 4 "there is a presaturated ideal on (¿x" is consistent, then

so is ZFC 4 "there is a presaturated ideal on (¿x but no (¿¡^-saturated ideals on (¿".

(b) If ZFC 4 "there is a precipitous ideal on (¿" is consistent, then so is ZFC

4 "there is a precipitous ideal on (¿x but no strong ideals (and hence no presaturated

ideals) on to,".

Proof. For (a), let / be presaturated and force with the ordering 7 for adding a

closed unbounded subset of to, with finite conditions. By Theorem 5.9, some

restriction of / is presaturated, but by Theorem 3.5 there are no to2-saturated ideals

on to, in the generic extension.

(b) is included here only for completeness; it follows immediately from the

remarks in the paragraph after Definition 5.6.    D

Theorem 5.10(a) yields a negative answer to the question asked following Corollary

III.4.8 of [BTW].
In Theorem 5.9 we say that if / is precipitous and normal and 7 is the ordering for

adding a closed unbounded subset of to, with finite conditions, then \\-PF\C is

precipitous. It is natural to ask whether \rPFis precipitous, as would be the case if 7

had the countable chain condition. The following theorem shows that this is not

true.

Theorem 5.11. Let 7, G and C be as in Theorem 5.9. If I is a normal ideal on (¿x,

then li>"/| ((¿x — C) is nowhere precipitous".

Proof. Let J = /1 (to, — C) and note that J is a proper countably complete ideal

on to,. It will suffice to show in V[G] that

\rB(J) "there is no to^'^hh element in the generic ultrapower of F[G]".

For this, it will suffice to show that if A G J+ , f: A -» to, and f~x({a}) G J for

every a < to,, then there exists B G A and there exists g: 7 -» to, such that 7 G J+ ,

g~x({a}) G J for every a < ux and g(a) <f(a) for every a G 7. Moreover, without

loss of generality we may assume A (~) C = 0 and /(a) < max{/i < a: ß G C} for

every a G A, since otherwise we could replace f(a) by min(/(a), max{ß < a,

ß G C}). Hence/(y) < y for every y G A.
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Suppose PqG P forces all the information about A and / in the preceding

paragraph (with names À and / for A and /).

Lemma 5.12. Vp <p0Va3/7 > a{y: 3a<palhy G À and /(y) = ß} G I+ .

Proof. Suppose not. Let/7 and a be a counterexample, and for ß > a let A» = {y:

3a«=palhy G À and /(y) = ß}. Let A= U {Xß - (ß + 1): ß > a}. Since 7 is

normal, A G 7. But nowp0li- Vy G Áf(y) < y, so we must havep II-/: À — X -+ a + I

a contradiction since /?0 If " Vy8/^ '({/3}) G/ and J is a countably complete proper

ideal".    D

Now, working in V, let E = {a < to,: Vp <7()V/J < a if /7 Ç a X a then 3y/3 < y

< a and Ay = {Ö: 3g < p gli-Ô G ,4 and/(ô) = y} G 7+ }. Then £ is easily seen to

be closed unbounded. If E is the set of limit points of E, then E is also closed

unbounded.

Lemma 5.13. p0lt {y G À: f(y) G 7} G J+ .

Proof. Let p < p0 and Z G 7. Choose a G £ so large that p G a X a. Since £ is

the set of limit points of £, there is ß G E — E with p G ß X ß. By definition of £

the set of y < ß such that Xy G 1+ is cofinal in ß and since ß is a successor point of

£ there is such y G £■ Thus we can find ô G Xy — Z and a < /> such that g lh/(o) =

y G £• This proves the lemma.    D

But now we are done, since in V[G] we may let 7 = {y G A: f(y) G £} and

define g(y) = max{a G £: a </(y)}. It is easy to see that 7 and g are as desired,

thus completing the proof of Theorem 5.11.    D

We conclude this section with a brief discussion of the Axiom A orderings. Recall

that (7, *£) satisfies Axiom A iff there exist partial orderings <„, « G to such that

(I)/? <qiffp <0q,

(2)p «:„+, a implies/7<„a,

(3) if A C 7 is pairwise incompatible, p G 7 and « G to, then there exists a *£ p

such that q «£„ p and {r G A: r, q are compatible} is countable,

(4) if (p„: n G to) is such that p„+, ^„ p„ for all n, then there exists p G P such

that p =£„ p„ for each n G (¿.

If 7 is countably closed or has the countable chain condition, then 7 satisfies

Axiom A. Other examples of Axiom A orderings are those due to Sacks, Silver,

Mathias and Laver for adding real numbers. Further details are in [B2].

It will be convenient to have some ad hoc terminology.

Definition 5.14. If 7 is a countably complete ideal on to,, then we say 7 has

property A iff

(5) M has an (¿\th ordinal, and

(6) (3/, G G M) f: (¿ -» <¿\ is a bijection and G is 70-generic over V[f], where 70

is the Cohen ordering for adding a subset of (¿ with finite conditions.

(Of course we really mean that (5) and (6) are forced by the ordering 7(7).)

An example of an ideal with property A is the one constructed by Woodin in [W].

There 7(7) has a dense subset isomorphic to the standard collapse 7, of to, onto to

with finite conditions. Since forcing with 7, is the same as forcing with 7, X 70, and
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since for this ideal V[U] and M have the same reals, it is easy to see that the ideal

has property ,4.

Theorem 5.15. /// has property A, 7 satisfies Axiom A, and | 7 |< to,, then 7 is

I-regular.

Proof. It will suffice to prove the theorem under the assumption that 7 Ç. 77C,

the collection of hereditarily countable sets.

Lemma 5.16. If (R, <) is an arbitrary partial ordering with | 7 |= to,, R G HC,

then 3G G M (G is R-generic over V).

Proof. Clearly (7, =£) G M. If (3r G 7)(Vg,, g2 «s r)(qx and g2 are compatible),

then G = {g G 7: q is compatible with r} will work. Otherwise, there is a one-one

mapping h carrying R into a dense subset of 70 such that h is constructed from the /

of (6) and h is sufficiently canonical so that h G M n V[f]. But now if G G M is as

in (6) then G gives rise to a set G G M which is 7-generic over V.    D

Now construct a partial ordering 7(7) as follows. Let 5 G 7(7) iff s G

U {"P: « G to} and (Vi 4 1 G domain^ )X¿(¿ 4 l)<¡s(i)). Let s < t iff s Dt.

Then Lemma 5.16 applies to 7(7) so there is a set G G M which is 7(7)-generic

Let (p„: n G to)= U G. This sequence satisfies the hypothesis of (4) in/(7), so

3qGj(P)Vnq<nPn.

Lemma 5.17. 7 is regular below q.

Proof. Let D G F be dense in 7 and let A G F be a maximal incompatible subset

of D. Let D' = {s G 7(7): 3i{p G A: s(i) is compatible with/?} is countable}. By

(3), D' is dense in 7(7). Hence if (p„: n G to) = U G as above, then for some n and

some countable X G V, {p G A: pis compatible withp„} G X. Now j(A) is maximal

incompatible in M, and {p Gj(A): p is compatible with/(pn) = p„} Gj(X) — X.

Hence (3p G A)p( = j(p)) is compatible with q, and 7 is regular below q.    D

Remarks. 1. Theorem 5.15 is only meaningful if CH holds in V (as it does in

Woodin's model) since all the interesting Axiom A orderings have cardinality 2".

2. We do not know of any ideal satisfying (5) which does not have property A. On

the other hand there is a partial ordering 7 which collapses to, (the Namba-style

ordering of to,-branching trees of height (¿), yet does not introduce any sets generic

with respect to the Cohen ordering for adding a subset of (¿x with countable

conditions. If there were an ideal 7 such that 7(7) and 7 had isomorphic dense

subsets, then 7 could not have property A.

6. Questions. In this final section we gather together several questions alluded to

earlier in this paper. A reasonable starting point is with the single question that

inspired much of our work here, but yet remains open.

Question 6.1. Is the to2-saturation of a countably complete ideal on <¿x preserved

under c.c.c. forcing?

Of course, the results of §2 give several equivalent versions of this question. We

explicitly state here only the following two.



608 J. E. BAUMGARTNER AND A. D. TAYLOR

Question 6.2. Can (¿x carry a countably complete to2-saturated ideal satisfying

Chang's conjecture?

Question 6.3. Does MAU imply that there are no to2-saturated ideals on (¿xl

Theorem 2.2 suggests a general type of question which asks about the relationship

between Vu'/U and V[U] for the case where U is 7( 7)-generic and 7 is to2-saturated.

For example, the following does not seem to be obvious.

Question 6.4. Suppose that I is to2-saturated and that S is a stationary set in (the

transitive collapse) of V"</U. Is 5 stationary in F[i/]?

The considerations of §4 leave open several questions; we mention the following

three.

Question 6.5. Is every to2-preserving countably complete ideal on to, precipitous?

Question 6.6. Can one prove that an to2-preserving countably complete ideal on (¿x

must be a 7-point?

Question 6.7. If / is a presaturated ideal on to,, can one find a normal presaturated

ideal J on to, so that./ ^RKn

§5 yields even more, the first of which is particularly tempting.

Question 6.8. Suppose that 7 is a partial ordering so that forcing with 7 preserves

(¿x. Does it follow that every countably complete ideal on to, in the ground model

generates a proper countably complete ideal in the extension?

Note that for a negative answer we must have 2"] > <¿u, since condition (*) at the

beginning of §5 holds whenever a < to^ and/7 lh à G a.

Recall that a countably complete ideal 7 on to, is strong if I is precipitous and

^B(I)ÄUl) = w2-

Question 6.9. Is every strong ideal presaturated?

Question 6.10. Does the existence of a strong ideal imply the existence of a normal

strong ideal?

Question 6.11. Is the consistency of the existence of a strong ideal on to, equivalent

to the consistency of the existence of an to2-saturated ideal on (¿x1

Question 6.12. Is the presaturation of a countably complete ideal on to, preserved

under c.c.c. forcing?
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