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THETA-CHARACTERISTICS ON ALGEBRAIC CURVES

BY

JOE HARRIS1

Abstract. The theory of theta-characteristics is developed algebraically, so that it

may be applied to possibly singular and/or reducible algebraic curves. The config-

uration of theta-characteristics on a curve is described in terms of its singularities,

with applications to the geometry of plane quartic curves and the problem of

Appolonius. Some results on Gorenstein local rings are appended.

0. Introduction. The theory of theta-characteristics has been studied from different

points of view, and often inadvertently (cf. for example the 19th century literature

on bitangents to smooth plane quartic curves, e.g., [4 and 10]). Until recently,

however, virtually all treatments of theta-characteristics per se involved the transcen-

dental theory of the theta-function associated to a compact Riemann surface. Then,

in 1971, Mumford in [8] gave a completely algebraic treatment of the subject,

formulating the main results and proving them without reference to the transcenden-

tal theory. This in turn suggested that theta-characteristics could be studied in a

more general context—for example, on possibly singular and/or reducible algebraic

curves. In this paper, we undertake such an analysis.

In §1, following Mumford, we establish some of the basic facts about theta-char-

acteristics algebraically, so as to apply to more general curves. (In fact, (1.10(i)) and

(1.13) in their present generality are due to Mumford: while he assumes throughout

[8] that his curve X is smooth, his proof seems to apply as given. The argument for

(1.13) here is somewhat different in order to make the proof more elementary and

self contained.) One bonus is the result (1.11) on the subvariety of the moduli space

911 consisting of curves with large semicanonical linear series; this fact seemingly

can be proved only via the algebraic set-up.

In §2, we investigate the number and configuration of odd and even theta-char-

acteristics on a singular curve. The results are expressed in the two main Theorems

(2.12) and (2.22), giving a more or less complete answer to these questions in terms

of the singularities of the curve. Interestingly, a recurrent motif in these arguments is

one introduced by Mumford in [8]: the behavior of the maximal isotropic subspaces

for a nondegenerate quadratic form on an even-dimensional vector space. Here, the

mainspring of Theorems (1.13), (2.12) and (2.22) is assertion (1.4) below: that the

sum of the dimensions of the pairwise intersections of any three such subspaces is

congruent to n mod 2.
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In §§3 and 4 we consider applications of the theory of theta-characteristics in very

classical settings: the geometry of plane quartics and the circles of Appolonius. In

the former case, this yields a number of classical theorems on the bitangents to plane

quartics and verifies some conjectures of C. T. C. Wall [11]; in addition, we establish

the elementary but little-known "two-conic" Theorem (3.3). In the latter case, we

obtain an apparently new result on the configurations of solutions to the problem of

Appolonius.

In making the calculations involved in Theorems (2.12) and (2.22), a description is

needed of the conductor/adjoint ideal in the local ring of a curve C at a Gorenstein

singular point p, specifically with respect to the individual branches of C at p. This is

worked out in §5. Hopefully, the formulas there may be of interest apart from their

present application.

It is a pleasure to thank Steven KJeiman for the many fruitful conversations which

gave rise to this work.

Note. It has come to my attention during the preparation of this manuscript that

some of the results here—notably Theorems (2.12) and (2.22) in the case of an

irreducible curve with nodes and cusps—were obtained by G. Angermüller in 1979,

but not published.

1. The theory in general. In this section we establish some of the basic facts about

theta-characteristics, using arguments applicable to any reduced algebraic curve with

reasonable singularities (cf. le). We begin in the first two subsections by recalling

some elementary facts about quadratic forms, and some less elementary but still

well-known facts about the Weil pairing. In subsections c and d we combine these to

deduce our results, most notably the Riemann-Mumford relation (1.13).

la. Quadrics. Let Kbe a 2«-dimensional vector space overC. By a quadratic form

Q on V we mean a symmetric bilinear pairing

Q: VX V-+C,

or equivalently, a symmetric map Q:   V-> V*; modulo scalars, Q may also be

thought of as the associated quadric hypersurface

Q= {v:Q(v,v)=0} GPV

in the projective space PV. Q is called nondegenerate if Q is an isomorphism, or,

equivalently, if Q is smooth.

We say that a linear subspace A C F is an isotropic subspace for Q if, equivalently,

0(A,A) = O;       £>(A)cAnn(A)       or       AgQ.

We note that in case Q is nondegenerate, the second of these conditions implies

immediately that if A C V is isotropic for Q, dim A < {- dim V — n. On the other

hand, it is easy to see that a nondegenerate quadric Q on V will possess «-dimen-

sional isotropic subspaces; and it is the behavior of these maximal isotropic

subspaces that underlies much of the analysis in this paper. For the remainder of

this section, then, we will assume Q is nondegenerate, and let

2 = 2(F,Ô)= {A:ß(A,A)=0} c G(«,2«)
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be the variety of its maximal isotropic subspaces. The basic facts about 2 are:

(1.1) 2 is smooth of dimension n(n — l)/2;

(1.2) 2 has exactly two connected components 2, and 22;

and

(1.3) if A G 2,, A' G 2 are two maximal isotropic subspaces for Q, then

dim A n A' = « mod(2)    «■ i = j.

These three facts are standard (cf. for example [3]); we note that except for the

dimension statement they all follow from the observation that the orthogonal group

0(V, Q) of automorphisms of F preserving Q acts transitively on 2, and that for any

A G 0(V,Q) and A G 2

dim A n A A = « (2)    <=> det 4 = 1.

(This in turn follows from the elementary fact that if A D A A = 0, then det A =

( — 1)".) 2, and 22 may thus be realized as orbits under the action of SO(V, Q).

A useful consequence of (1.3) is the statement

(1.4) 7/A,, A 2, A 3 G 2 are any three maximal isotropic subspaces for Q, then

2 dim A,, n Ay = «(2).

This will be handy because it makes no reference to the connected components of 2.

A less standard but equally elementary result is

(1.5) 7/A0 G 2 and we set

dim A D A0 5* k,     1

' dim A n A0 = 7c (2) J

then 2A.( A0) is closed and irreducible of codimension k(k — l)/2 in 2.

To prove this last statement, let Y G 2 X G(k, A0) be defined by

r= {(A, A): AC A; dim AD A0 = k(2)}.

Then the fiber of Y over any A G G(k, A0) is just one component of the variety

~S,(W, Q') of maximal isotropic subspaces of the vector space W = Ax/A for the

quadratic form Q' induced on W by Q. Thus Y is closed and irreducible, and

checking that the projection Y -» 2¿(A0) C 2 is generically 1-1, statement (1.5)

follows.

Finally, we note that (1.3) and (1.5) may be expressed in the following form.

(1.6) 7/A is an irreducible analytic variety, £->Äa vector bundle of rank 2« with

nondegenerate quadratic form Q (i.e., a nondegenerate symmetric isomorphism Q:

E -» 7?*) and A, A' G E subbundles of rank « isotropic for Q (i.e., such that

Ö(A) C Ann(A)), then

(i) the function p(X) = dim Ax n A'A mod (2) is locally constant; and

(ii) the locus

dim AA n A'A>r+ 1,     1

' dim AA n A'A = r + 1 (2)}

is either empty or of codimension at most r(r + l)/2 everywhere.

2*(A0)

A  =
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lb. The Weil pairing. Let C be any reduced curve over C. We consider here the

group of line bundles of order 2 on C, that is, line bundles L -» C such that

L® L s 0C. Equivalently, these may be realized as Carrier divisor classes [D] on C

with 2D ~ 0; or points of order 2 on the Jacobian of C. We will denote this group

J2 = J2(C).

In case C is smooth since

J(C) =H°(C,Slx)*/Hx(C,Z)

we have

J2(C) = 77,(C, iZ)/ff,(C,Z) = 77,(C,Z/2),

and via this identification the intersection pairing on 1-cycles on C gives a bilinear

form J¡X /2 -» Z/2. This pairing is defined directly on J2 in the general case as the

Weil pairing, which we now describe.

To begin with, some notation: for/a rational function on C and D a divisor on C

with supp D disjoint from the zeros and poles off, we set

f{D)= n f(p)muKD-

p(EC

In case/and g are two rational functions on C whose divisors have disjoint support,

we have the

(1.7) Weil Reciprocity Law f((g)) = g((f)).

Proof. This may be verified directly for C = P1: if/(z) = 11,1, (z - a¡)/(z — b¡)

and g(z) = n%, (z - c,)/(z - d,), then

In       m     c. — a.\       ¡n       m     A   _ Q   \ ~ '

/«*))= n nfrt • n n^
\ 1=1   7=1      ' J I       \ (=1   7=1       ' 7 /

/    n        m      a—c\i"        "'      b—c\~l

In general, for any C, / and g, if we let 77: C -» P1 be the map defined by / and

write/= W, Nm,g = g, we have/((g)) =/((g)) = g((/)) = g((/)).    Q.E.D.
Now suppose that we have elements of J2 represented by divisors D and E on C

with disjoint support. Writing 27) = (/), 2E — (g) we have

/(2£) = //(£)\2_1

g(2Z>)      \g(D)/

and correspondingly we may define the Weil pairing X: J¡ X J¡ -» Z/2 by

(1.8) X(D,E) =^log^GZ/2.

Note that this does in fact depend only on the divisor classes of D and E: if, for

example, D' = D + («) then 2D' = (fh2) and

fh2(E) = f(E) ■ h(2E) =f(E)

g(D')       g(D)-g((h))      g(D)-
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There is another way of realizing the group J2 of a curve C: as the set A — A(C) of

unramified double covers of C. The correspondence is easily described: to an

element D G J2 with 2D — (f) we associate the double cover C -> C with function

field K(C') = K(C)(JJ). In the other direction, if C -»*C is any double cover with

t: C -» C the involution exchanging sheets, then we can find g G K(C') anti-in-

variant under t—i.e., such that g = -g ° t—and associate to C -^*C the class of

the divisor D such that 2D = (Nm g).

What we want now is a way of expressing directly the map

X:J2 X A -* Z/2

defined, via this correspondence, by the Weil pairing. We may do this as follows:

suppose we are given an element D G J2, and an unramified double cover C -»*C.

Say 27) = (/). Since the norm map K(C')* -* K(C)* is surjective (cf. [7]), we can

write /= Nm«, « G K(C'). The divisor ir*D — («) on C is then anti-invariant

under the involution r. C -* C exchanging sheets, and so we can write 77*7) — (h)

— B — tB for some divisor B on C. We claim then that the pairing À between D

and 77 is given by

(1.9) X(D,it) = deg 77.

Proof (Mumford). If we suppose g G K(C') is anti-invariant under t and let E

be the divisor on C with 2E — (Nm g), then by definition

On the other hand, we have

f(E)       = h{**E) = «((g)) _ g(T77) = degg

(Nmg)ffl)      g(77*7))      g((«) + 77-T73)       g(77)       l      '

since g = -g o t.    Q.E.D.

lc. Theta-characteristics. Let C again be a reduced curve over C, and <¿c its

dualizing sheaf. We make the following

Definition. A theta-characteristic on C is a line bundle L on C such that

L <8> L s o)c. The set of all theta-characteristics will be denoted S(C) = S.2

Any two theta-characteristics differ by tensor product with a line bundle of order

2, so that S is a principal homogeneous space for.72; in particular, #5 = #J2.

We say that a theta-characteristic L is even (resp. oûW) if «°(C, L) is; the sets of

even and odd theta-characteristics are denoted S+ and S~ respectively.

To describe the space of sections of a theta-characteristic, we can use the following

set-up, due to Mumford. We choose a divisor B — p, + • • • +p„ on C of large degree

on each component of C and total degree «, and let F be the 2 «-dimensional vector

space

F=77°(C,L(77)/L(-77))

2 Cf. le for a discussion of this definition.
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of local sections of L with poles on B modulo those vanishing on B. On F we may

define a quadratic form Q: V X V -» k by setting

Ô(a,r) = £ Restar),
i

where or G 77°(C, L2(2B)/L2) = H°(C, (¿C(2B)/(¿C) is viewed as a rational sec-

tion of wc around B with poles on B; Q is clearly nondegenerate. Let A, C F be the

«-dimensional subspace A, = 77°(C, L/L( — B)) of regular sections of L around B;

A, is an isotropic subspace for Q. On the other hand, we let A 2 C F be the image,

under the restriction map, of the space 77°(C, L(B)) of global sections of L with

poles on B. By the residue theorem, if a, t G H°(C, L(B)), the sum of the residues

of or is zero, so that A2 is also an isotropic subspace for Q; and by the Riemann-Roch

theorem and the fact that « > g — 1,

dim A, = h°(C, L(B)) - «°(C, L(-B)) = «°(C, L(B))

= deg L(B) - g + 1 = g - 1 + « - g + 1 = «.

Finally, we observe that the image in F of H°(C, L) is just the intersection of A,

and A2, i.e., «°(C, L) = dim A, D A2. Putting this together with (1.6), we may

conclude that

Theorem (1.10). Let A be any irreducible variety, S^'Aû proper map with fibers

CA = 77~X(X) reduced curves, and L -» S a line bundle such that if Lx = L\c ,

L\= (¿c . Then

(i) the function p(X) = «°(CA, LA) is constant modulo 2; and

(ii) the locus Ar = {X: p(X) = r + 1} CA« e/i«e/- empty or of codimension at most

r(r + l)/2 in A.

Proof. This follows immediately from the above and (1.6), if we choose a curve

BGS, proper of degree « » 0 over A, and set

E = -n,L(B)/L(-B),       A =*,L(5)

and

A' =77,L/L(-77).

One consequence of the first part of the theorem is that in a connected and

equisingular family {CA} of curves, both the order and the configuration of the

subsets S+ , S~ will be the same for all smooth curves of genus g, and likewise for

all curves of arithmetic genus g having one node, one cusp, two nodes, etc.

Another immediate consequence of Theorem (1.10) is

Corollary ( 1.11 ). 7/ 911 is the moduli space of curves of genus g and '311', the locus

of curves possessing a theta-characteristic L -» C with

«°(C, L)^r+l        and       h°(C, L) = r + 1 (2)

then 9R/ is either empty or of codimension at most r(r + l)/2 in 911 .
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This statement has in turn some rather unexpected offshoots. For example, if in

91t6 we let 'Dltg 2 be the locus of hyperelhptic curves, and 'Sit2 5 the locus of plane

quintics, we can establish readily that

dim91t6 = 15,   dim91t¿2 =11,   dim91t625 = 12

and

91t2 = 91t62,5u9It^2.   _

Applying (1.11), then, we may conclude that 9IL¿2 c9ß-6 5> i-e-> every hyperelhptic

curve of genus 6 is a specialization of a plane quintic Exactly how such a specializa-

tion may occur is not a priori clear (in fact, they have only recently been given

explicitly by Ed Griffin, [2]), and it is not known whether any or all hyperelhptic

curves of genus g — ((d — l)(d — 2))/2 are specializations of plane curves of degree

d for d > 6.

Many questions remain about the subvarieties ty!Lr of moduli: what is their

dimension—in particular, is it the case that if g s> r then (ÜU has codimension

r(r + l)/2 in "DIL ?—are they in general irreducible, etc.?

Id. The Riemann-Mumford relation. Using the set-up of the first two subsections,

we may now give a proof "in situs"—i.e., not using deformations of the objects

involved—of the basic Riemann-Mumford relation describing the configuration of

S+ andS~.

To begin with, given any theta-characteristic L on C, we may define the " theta-

form" qL: J2 -* Z/2 by setting, for any divisor class w = [D] G J2,

(1.12) qL(cc) = h°(L(D)) - h°(L)

modulo 2. In terms of the theta-form, we have

Theorem (1.13) (The Riemann-Mumford relation). For any choice of L, the

function qL is a mod 2 quadratic form on J2 whose associated bilinear form is the Weil

pairing X.

Alternatively, we may state this as the formula: For any theta-characteristic L on C

and any divisor classes u — [D], tj = [E] G J2 of order 2,

(1.14) h°(L(D + £)) + h°{L(D)) + h°(L(E)) + h°(L) = X(D, E) mod 2.

Proof. To reduce somewhat the length of the left-hand side of (1.14), we let

C -*"C be the unramified double cover associated to E. The pullback line bundle

L — tt*L being invariant under the involution r: C -» C exchanging sheets, t acts

on H°(C, L), the + 1-eigenspace being ir*H°(C, L) and the — 1-eigenspace

77*77°(C, L(£)).Thus

(1.15) h°(C, L) = «°(C, L) + «°(C, L(E))

and similarly

(1.16) «°(C, L(-n*D)) = «°(C, L(D)) + «°(C, L(D + £)).

Now, if 27) = (/), we can, as in lb, write/= Nm « and

(1.17) 7r*7) - («) = B - tB
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for some divisor B on C; we can also assume that B and tB have disjoint support

and large degree «. We then define V to be the 2 «-dimensional vector space

V = A, © A2, where

A, = H°(C, L(B)/L),       A2 = H°(C, L/L(-rB)).

Noting that, via the map tr, A, may be naturally identified with 77°(C, L(-n^B)/L)

and A2 with 77°(C, L/L( — tt^B)), we may define a nondegenerate quadratic form Q

on F by

Q(ax © a2, t, © t2) = 2 Res(a,r2 + o2t,);

and that A, and A2 are «-dimensional isotropic subspaces for this quadratic form.

Let A j now be the image in V, under the restriction map p, of the space

H°(C, L(B)). Since for any global section a of L(B) on C, Nm a G

77°(C, L2(tt*B)) = H°(C, wc(77#5)) is a global rational differential, and

Q{p(a),p(a)) = 2 ResNma = 0,

A 3 is an isotropic subspace for Q. The dimension of A3 may be computed by

Riemann-Roch: since « = deg B > 2g — 2, p is injective and hx(C, L(B)) = 0 so

that

dim A3 = «°(C, ¿(77)) = deg ¿(77) - g(C') + 1

= 2g-2 + «-(2g- 1) + 1 =«;

so that A 3 is again a maximal isotropic subspace for Q. We observe now that the

subspace A2 n A3 corresponds exactly to global regular sections of ¿, while

A, nA3 corresponds to global sections of ¿ with poles on B and zeros on tB, so

that

(1.18) dimA2n A3 = h°(C, L)

and

(1.19) dim A, n A3 = «°(C, L(B - tB)) = «°(C, L(ir*D))

by (1.17). Since dim A, n A2 = 0, we may combine (1.15), (1.16), (1.18) and (1.19)

with ( 1.4) and ( 1.9) above to write

«°(C, L) + «°(C, L(D)) + «°(C, £(£)) + «°(C, L(D + £))

= h°(C, L) + h°(C, L{tr*D))

= dim A, n A2 + dim A, D A3 + dim A2 n A3

= «mod2 = X(D, £).    Q.E.D.

le. A note on hypotheses. We want to consider here briefly what is the correct

definition of theta-characteristic on a singular curve. The point is, all the basic

setting-up theorems proved in the first subsection remain true if the definition of

theta-characteristic is broadened to " torsion -free sheaf *$ of rank 1 such that

S7® ÇFs coc"; and indeed, an analysis of such sheaves in general would seem to be

of interest. In this case, however, the set of theta-characteristics on a singular curve

C would not necessarily form a principal homogeneous space for the group J2(C) of
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line bundles of order 2 on C, and this fact is crucial to the analysis in §2 below.

Thus, we made the relatively restrictive definition requiring our theta-characteristics

to be locally free.

This restriction has one immediate consequence: clearly, if C possesses a locally

free sheaf L with L ® L = coc, then the dualizing sheaf (¿c must itself be locally free.

This is equivalent to saying that C is Gorenstein, that is, that the local rings 0C of C

are all Gorenstein rings. Thus, all the curves we will be dealing with in §§2, 3 and 4

will be Gorenstein curves.

The Gorenstein condition is a relatively mild but certainly nontrivial condition.

For example, any local complete intersection curve (and in particular, any curve

lying on a smooth surface) is Gorenstein. On the other hand, the union of the three

coordinate axes in A3 is not. An alternative expression of the Gorenstein condition is

expressed in (2.16) and (2.17), and in §5.

2. The singular case.

2a. Theta-characteristics on singular curves: the linear part of the theta-form. Let C

be any reduced Gorenstein curve, and let 77: C -» C be the normalization of C. Then

the group J2 of line bundles of order 2 on C may be broken up as follows: we

consider the exact sheaf sequence

0-6* ->mß* -»#-0,

where § is a sheaf supported exactly at the singular locus Csing of C. We have then

the exact sequence

o-r-y(c)-y(c) -»o,

where Y = 77°CíF)/Im H°(irflï) is the group of line bundles L whose pullback m*L

to C is trivial. Correspondingly, we have

(2.1) 0-» r2-»/2(C)-»/2(C),

where r2 C Y are the elements of order 2.

We note first

Proposition (2.2). T2 is the nullspace of the bilinear form X.

Proof. By the definition (1.8) of the Weil pairing, we see that for «,, w2 G J2(C),

X((¿x, (¿2) = X({n-*(¿x, w*t¿2).

Recall now the definition (1.12) of the theta-form q¡ on J2(C). By the above and

the Riemann-Mumford relation, we have

Proposition (2.3). The restriction qL \T of qL to Y2 G J2(C) is a linear functional.

Proof. We have for w,, <o2 G T2,

qL((¿x + (¿2) = qL((¿x) - qL(u2) = X((¿x,(¿2) = 0.

And finally, we have

Proposition (2.4). qL \Ti is independent of L.
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Proof. For any U = L <S> rj G S and w = [D] G J2(C), we have

qL,((¿) - qL{(¿) = h°(L'(D)) - h°(L') + h°(L) - h°(L(D))

= qL((¿ + 7¡) - qL((¿) - qL(v\)

= X(w,7j) = 0.

This then prompts the

Definition (2.5). The restriction qL \Vi will be called the linear part of the

theta-form, and denoted /.

The determination of / is our first goal; before proceeding to this, however, we

first mention some consequences of the propositions so far.

Corollary (2.6). If the normalization C of C has only rational components, then the

sets S+ and S~ form cosets of subgroups of J¡; i.e., the sum of any three even

theta-characteristics is even and the sum of three odd is odd.

Since here T¡ = J2; and letting g be the sum of the genera of the components of C

and k the rank of Y2 over Z/2,

Corollary (2.7). If l s 0, then

#S+ = #S~ = A#S = 22g+k~x.

Proof. This follows because the fibers of the map J¡ -» J2(C) each lie half in S+

and half in 5~ .

Corollary (2.8). If I = 0 then either

(2.9) #S+ = 2ê+k~x(2ê + I),       #5" = 2«+A-1(2«- 1)

or

(2.10) #S+ = 2s+*-'(2* - 1),        #S~ = 2s+k~x(2s + 1).

Proof. See the discussion in 2e below.

2b. 77ie group Y¡; statement of the first theorem. The group Y2 may be readily

described, being more or less locally defined. First, for each singular point p G C, let

Yp denote the points of order 2 in YC3p). Then if qx,...,qh are the points of C lying

overp, we have a map

Y{9p)^(C*)b~l

obtained by comparing the values of/ G (irßc)p at the b points q,. Since the kernel

of this map is torsion free, and since the points of order 2 in (C*)*~ ' all lift to points

of order 2 in IX^) (specifically, the elements/G (itß^)p identically 1 on some

branches, — 1 on others), we have Yp ~ (Z/2)*-1.

Definition (2.11). We denote by eq the image in Y2 of the sections of irß^

assuming the value — 1 in a neighborhood of q¡ and 1 in a neighborhood of q^j =£ i

—in other words, the line bundle obtained by taking the trivial bundle L on C and

identifying the fibers at the points qa via multiplication by — 1 on Lq.
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Indeed, if we adopt Definition (2.11) then Yp is generated by the eq¡ with the one

relation

«e. \p)

According to the exact sequence (3), then, we see that T2 is generated by the

images of the groups r , with the additional relations that for any irreducible/con-

nected component C0 of C, 2iGCo eq = 0.

We can now state our first theorem. Our goal is now to determine the values of /

on the generators eq of T2 in terms of the type of the singularity p — ir(q) of C, and

without regard to the global geometry of C. This we may do as follows: first, if

p G C is a Gorenstein singularity, C ->" C the normalization of C at p, we will

denote by 7 C 0C the conductor, or adjoint, ideal of the map <n; that is, the

annihilator of the 0c-module wj£)¿/Bc; writing the pullback 7 = 77*7 = 6¿( — D), we

call D the adjoint divisor of it: C ^ C. We have then

Theorem (2.12). Let C be a Gorenstein curve, l: Y¡ -* Z/2 the linear part of the

theta-form on C, tt: C -» C the normalization of C and D the adjoint divisor on C. If

p G C is any singularity, q G tt ~ ' ( p ) and eq the corresponding element of Y2, we have

l(eq) = multq(D).

Thus, for example, if p is an ordinary node of C, then 1(e) = 1; more generally, if

p is a double point consisting of two smooth branches with contact of order «,

1(e) = « while if p is an ordinary m-fold point of C, then for any of the elements

e¡ G Y2 associated to the branches, l(e¡) = m — 1.

Note also that as a corollary, if C possesses one or more ordinary nodes then

/ s 0; so that we have

Corollary (2.13). If C has a node, then #S+ = #S~ = {-#S.

2c. Proof of the first theorem: node case. We will prove the first theorem in the case

of a nodep of C, where the principal ideas of the argument will be clearly visible.3 In

this case, if p G C is an ordinary node, e the corresponding element of J2 and Le the

line bundle of order 2 associated to e, the theorem states that 1(e) = 1; this will

follow in turn from the slightly stronger

Theorem (2.14). With C and Le as above, if L -» C is any theta-characteristic, and

L' = L® Le, then h°(L') = h°(L) ± 1.

Proof. Let C -**C now be the normalization of C at p only, qx, q2 the inverse

images of p in C, and L = tt*L = tt*L'. We have then an isomorphism

¿2 = ir*(¿c~(¿¿(qx + q2)

and, correspondingly, identifications r¡: (L2)q sC given by taking residues. Let t:

(¿2)9 -^ (¿2)?2 be the composition — t2 ° t,. Then any section o of ¿2 satisfies

3 We note that this case suffices for all the applications explicitly worked out in the following sections.
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a(q2) = T(a(qx)) since, viewed as a meromorphic 1-form on C with poles at qx and

q2, 2 Res(a) = 0.

We also have identifications <p, <p': (L)q¡ A (L) coming from the isomorphisms

L s 7T*L, ¿ s -n*L'; since L' = L <S> Le, by definition (2.11) of Le

* = -*'   and   <í>®<í> = <í>'®<í>' = t: (¿2)„ -(¿2)92.

Finally, we can identify the sections of ¿ which descend to sections of L or L': we

have

h°(L) = dim{o G Y(L): o(q2) = <f>(o(qx))},

h°(L') = dim{o G Y(L): o(q2) = <l>'(o(qx))}

so that in particular 7r*r(L) and 77*r(L') both contain all sections a G Y(L)

vanishing at both qx and q2. Clearly then the relative dimensions of Y(L) and Y(L')

will depend only on the values assumed at qx and q¡ by global sections of ¿; the

theorem in fact will follow from

Lemma (2.15). The image of the restriction map

Y(L) -1¿9,©¿,2

is exactly l-dimensional, and is the graph of either $ or $'.

Proof of Lemma (2.15). The first statement follows from Riemann-Roch: re-

calling that ¿2 = (¿c(qx + q2) so that L( — qx — q2) = (¿¿® L~x and in particular

deg L = pa(C)v/e see that

dim(Imp) = h°(L) - h°{L(-qx - q2)) = h°(L) - hx(L)

= deg¿ -pa(C) +1 = 1.

This established, the second statement follows readily: if a G Y(L) is any global

section, then r(o2(qx)) = a2(q2) so that either <¡>(o(qx)) = a(q2) or <p'(o(qx)) =

a(q2); whichever holds will of course be the case for the entire image of p. This

proves the lemma and Theorem 2.14.

2d. Proof of the first theorem: general case. The computation of / on the image in

F2 of T for more general p proceeds similarly; the principal new ingredient is the

description of the maximal linear spaces on a smooth even-dimensional quadric

given earlier, which allows us to generalize (2.15).

As in the node case, we let p G C be a singular point and C -> " C the normaliza-

tion of C at p; let ir~x(p) = {<?,,.. .,qb} and let Ä, and A, denote neighborhoods of

the points q¡ and their images in C respectively. Again, we let L — C be an arbitrary

half-canonical line bundle, L¡ -> C the line bundle of order 2 associated to the

generator e   G J2 and L' — L® L,; we want to evaluate

l(eq) = h°(L')-h°(L).

To do this, as before we look at the space of sections of the pullback line bundle

¿ = tt*L = tt*L' on £; we want to compare Y(L) and T(L') as subspaces of Y(L).

Here, however, we do not have such an explicit condition for a section of L to
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descend to a section of either L or L'. What we do have is the Gorenstein condition:

if we set

n =Pa(c) - Pa(c) = dim r(»js¿/ec)

and let 7 C 0C be the conductor of the map ir, I = 7r*7 = <Q¿( — D) the adjoint ideal

sheaf, then

(2.16) deg7) = 2«;

i.e.

(2.17) dim r(0c/7) = dim y(ttJ3¿/6c) = «;

this is in fact equivalent to the condition that 0C   be Gorenstein.

Now, since any section of L( — D) descends to both L and £', we will be

concerned only with the values of global sections of ¿ modulo the ideal 7; we

accordingly set F = Y(L/L( — D)) and let 2 C F be the image in F of T(¿) under

the restriction map p. If we set A = tt*Y(L/IL) and A' = 7r*Y(L'/IL'), then, by

the Gorenstein condition (2.17) we have

dim A = dim A' = «,       dim F = 2« ;

clearly

77*r(L)= {aGT(¿):p(a) G A},

7T*r(L') = {o GY(L):p(a) G A'}

and correspondingly

(2.18) h°(L') - h°(L) = dim(A' n 2) - dim(A n 2).

We observe that we have an identification ¿2 = tt*L2 = tt*(¿c = (¿¿(D) between

sections of ¿2 and meromorphic forms on C; and in terms of these we may define a

quadratic form on F:

Ô(o-,T) = 2ResJa-T).
i

Note that this is well defined, since if either a or t is in ¿( — D) the product will lie in

K¿, i.e., will be holomorphic; and it is clearly nondegenerate: writing D — 2 a,g,,

choosing local coordinates z, around q¡ and sections p, of ¿ around q; with

p2 = z/a,dZi, and writing any element a G Fas

(2.19) a = (ax,...,ah),        a¡= (a/0 + olXz,+ ••• +oia_xzp-x)p,

we have

b     a,—I

Q(o,t) =22    °i,jTi,a,-\-j-
i=I   y=0

What is the relationship between Q and the subspaces 2, A and A'? Well, since

the product of any two elements of A (resp. A') is the pullback from C to C of a

regular differential on C and so has total residue 0, we see that A and A' are

isotropic subspaces for Q; and likewise since the product of any two elements of 2 is
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the restriction to 7) of a global rational differential on C holomorphic away from 7)

and hence has total residue zero, 2 also is an isotropic subspace. What finally

cements the whole configuration is the computation, analogous to the one made in

the node case, of dim 2:

dim 2 = h°(L) - h°{L(-D)) = h°(L) - h°(L2(-D) 9 L~x)

= h°(L)-h°(uc® ¿-') = deg¿-pa(C) + 1

= pa(C)- 1 +n-Pa(C)+ 1 =«

from which we conclude that 2, A and A' are all maximal isotropic subspaces for Q.

We may now apply ( 1.4) to conclude that, mod 2,

l(eq) = h°(L') - h°(L) = dim(A n 2) + dim(A' D 2)    (by (2.19))

= dim(A n A') + «.

The point is that dim(A D A') has nothing to do with L, L' or any global

phenomena as C or E; it depends only on the local ring 0C Specifically, we see

that a section a G F of ¿ over 7), written as in (2.19), descends to a section of both L

and L' if and only if the sections (ax,...,ah) and (a,,..., — a¡,...,ab) both descend,

i.e., if and only if the sections (a,,. ..,0,...,ah) and (0,... ,a¡,... ,0) both descend.

Thus A n A' is the direct sum of the subspaces A, A' of F of sections vanishing on

the branch A, containing q,, and those vanishing on all the remaining branches,

respectively. Now, the first of these subspaces is isomorphic to the subspace 7, of

r(Gc/7) of functions whose restriction to the branch A, = 77^) of C lies in the

adjoint ideal, and the second to the subspace DJ¥¡i I} of functions whose restriction

to each of the others does; putting together what we have so far with (5.10) and

(5.11) of Lemma (5.9) we have

l(eq ) = « + dim(A D A') = « + dim A + dim A'

= « + («- multjT)) + Si) + 8, = multjD) (2).   Q.E.D.

2e. The case / = 0. As we have already seen in Corollary 2.7, and as will be amply

illustrated in the following sections, our general theory so far enables us to describe

fairly explicitly the configuration of odd and even theta-characteristics on a curve

for which IzO; it is not so successful in the case / = 0. The reason is straightfor-

ward enough: while a quadratic form q on a vector space (Z/2)" over Z/2 whose

associated bilinear form À is degenerate and which is not identically zero on the

nullspace of À may always be normalized to be

A n

?(*,,...,*„) =   2  *2/-l*2/+        2       X2,
(=1 i=2*+1

there are two distinct isomorphism classes of quadratic form with nondegenerate

bilinear form, represented by the forms

n

q   (xx,... ,x2„) = ¿i x2t-ix2f
/=i

n

q-(xx,...,X2n) =X2 + X2¡+   2  *2/-|*2í.
;=l
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which are distinguished by the fact that q+ has 2" '(2" + 1) zeros while q' has

2"-1(2" ~~ 0- Thus, if / z 0, we have in effect described not just the orders #5,+ and

#S~ , but their configurations in J2. In case / = 0, however, the theta-form q¡ is the

pullback to J2 of a nondegenerate quadratic form q, on J2(C), which in turn may be

either q+ or tjT . By way of notation, we will set q(C) = 0 (resp. 1) if qL s q+ (resp.

q~ ) for any theta-characteristic, i.e., we may say q(C) = 0 if (2.9) above holds and

q(C) = 1 if (2.10) holds instead. We are left, then, with the

Problem. To determine, for a given curve C for which 1 = 0, the sign ofq(C).

As it turns out, q(C) may also be described in terms of local contributions arising

from the singularities of C. Explicitly, suppose p G C is a Gorenstein singularity,

with / |r =0. Let C —" C be the normalization of C at p, I the adjoint ideal of -rr and

D the adjoint divisor on C, so that 77*7 = Q¿( — D). Then by Theorem 2, D is

divisible by 2; write

(2.20) D = 2£.

Let T g6c p be the ideal of functions whose pullback to C lies in the ideal &¿:( — E);

if we make the definition

(2.21) £(p) = dimr(0c/7')

then we have

Theorem (2.22). If C has Gorenstein singularities and 1 = 0, then

q(C)=    2    e(p).

Proof. Letp G C be any singular point of C, and let C -»" C, 7, 7), £ and 7' be as

above. Then for any semicanonical line bundle L -* C, the line bundle M =

ir*L( — E) is semicanonical on C; we have in this way a 2*~'-to-one map 5(C) -»

S(C).
Since q(C) = 0 in case C is smooth, to establish the present theorem, it will suffice

to show that with C, C, p, L and M as above,

h°(L)=h°(M) +e(p).

The ingredients of the proof are exactly the same as last time: again, we want to

consider the space of sections of the bundle ¿ = <n*L on £, and look at their values

modulo the adjoint ideal; accordingly we take

V=Y(L/L(-D)) = Y(M(E)/M(-E))

and let

2 = Im(r(¿))       and       A = tt*Y(L/IL).

As before, these are «-dimensional isotropic subspaces for the nondegenerate

quadratic form Q on F; and h°(L) = h°(L(-D)) + dim(2 n A). Now we intro-

duce a third maximal isotropic subspace of F: this is

A = Y(L(-E)/L(-D)) = Y(M/M(-E)).
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We then have h°(M) = h°(L(-D)) + dim(2 n A) and correspondingly

h°(L) - h°(M) = dim(2 n A) - dim(2 n A).

By (1.4), this may in turn be evaluated mod 2 as

dim(2 n A) + dim(2 n A) = « + dim(2 n A)

= « + dim r(77^0c-(-£) n 0c/7')

= dimY{ec/I')=e(p).    Q.E.D.

The invariant e(p) of a singularity (where defined) is usually computable, al-

though I know of no way of expressing it in terms of more standard ones. For

example,

(a) if p is a double point, with two smooth branches meeting with multiplicity

« = 2m at p—that is, « consecutive double points of which the last is a node—then

7' is just the ideal of functions vanishing to order m along each branch; thus

e( p) = m = x¡n.

(b) If p is an «-cusp—that is, « consecutive double points of which the last is a

cusp—then 7' consists of functions whose pullback to the normalization C->"Cof

C at p vanishes to order « at q = 77~'(p); since 0C contains functions whose

pullbacks vanish to orders 0, 2, 4,... ,2«, 2« + 1,..., this has codimension e(p) =

[(« + l)/2].
(c) If p is an ordinary planar «-fold point, « = 2«i + 1, then 7' consists of

functions vanishing to order (« — l)/2 = m along each of the branches of C at

p—that is, the wth power of the maximal ideal at p; this has codimension

e(p) = m(m + l)/2.

These three types cover all the applications given in the following section, with the

exception of the last two: curves with a triple point (no infinitely near points) having

one or two branches; for completeness we note that in both these cases I' is simply

the maximal ideal atp, so that e(p) = 1.

3. Applications: plane quartics. Our first group of examples will be plane quartics.

As indicated in the first section, if C C P2 is a reduced plane curve of degree d, the

dualizing sheaf of C is just that predicted by the adjunction formula, that is,

Gc(d — 3); in particular, if C is a plane quartic wc = 0C(1). We note also that by the

vanishing

T7'(P2, 3c(Jfc)) = T7'(P2, 0(* -</)) = 0,

the linear series cut on C by plane curves of any degree k is complete; in particular,

a plane quartic C is canonical. Half-canonical divisors Dona plane quartic C are

thus divisors 7) such that 27) is cut on C by a line in the plane; noting that

(i) since C (being canonical) cannot be hyperelhptic, no half-canonical divisor D

on C (having degree 2) can move in a pencil; and that

(ii) no divisor on C cut by a line passing through an ordinary node or cusp of C is

divisible by 2 (as an effective Cartier divisor).
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(3.1)

We conclude that for any plane quartic C possessing only ordinary nodes and cusps

and containing no lines, we have one-to-one correspondences

S~ s (effective half-canonical (Cartier) divisors}

ss ("honest" bitangent lines; i.e., lines LcP2

tangent to C at two smooth points or having

contact of order 4 at one smooth point}.

As one further point, we remark that since the complete series 2KC is cut on C by

conies in P2,

(3.2) if Dt — p\ +p2, i — 1, 2, 3, 4, are effective semicanonical divisors on C then

0(27),) = (¿2C if and only if the eight points {pj} lie on a conic.

3a. Pairs of conies. We consider first the case in which C is the sum of two conies

C,, C2 C P2 meeting transversely. In this case we have

r2 = y2 = (z/2)3;

with generators o,,... ,o4 corresponding to the four nodesp,,... ,p4 G C, n C2 of C,

modulo the relation 2a, = 0. Corollary (2.6) and Theorem (2.12) above then tell us

that of the eight theta-characteristics on C, four are odd, and these form a coset of a

subgroup of J¡. The first part of this statement is clear: the set of lines tangent to

both C, and C2 is just the intersection of the dual curves C*, C* C P2*, and since

these are by hypothesis conies meeting transversely, there will clearly be four such.

The second part, however, is not so obvious: via the remark (3.2), it translates into

the classical (cf. [9])

Theorem (3.3). Let Cx, C2 G P2 be plane conies meeting transversely, £,,... ,L4

their four common tangent lines. Then the eight points {pj = L, fl C¡) of tangency lie

on a conic.

3b. Unicursal quartics. We consider next rational quartics with traditional singular-

ities—that is, a cusps and 3 — a ordinary nodes. In each case, of course, Y2

and we can list our conclusions here:

#5"

J,;

(Z/2)3

(Z/2)2

Z/2

{0}

Here the order of S    follows immediately from Theorem (2.12) in the first three

cases, and from Theorem (2.22) in the last case a = 3.

Again, Corollary (2.6) yields some further information: specifically,

Theorem (3.4) (cf. [10]). If C G P2 is an irreducible quartic with 3 nodes, then the

eight points of contact of C with its four bitangent lines all lie on a conic.

A quartic C with a triple point provides another example of our general set-up.

We have r2 — J2 = (Z/2)2, and since there are no other singularities, by Theorem
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(2.12) above, / = 0, from which we may conclude that all four theta-characteristics

on C have the same parity; from Theorem (2.22) we see that in fact all four are odd.

As before, then, we have

Theorem (3.5) (cf. [10]). An irreducible quartic with a triple point has four bitangent

lines, whose eight points of contact lie on a conic.

3c. Quartics of genus one and two. We consider next an irreducible quartic curve C

with two ordinary nodes. Here we get our first genuinely "mixed" J2: both

J2(C)~ (Z/2)2 and F, s (Z/2)2 are nontrivial.

Our general theorem immediately tells us in this case that / = 0 and consequently

#S+ = #S~ = 8; but more can be obtained by an explicit analysis of J2 and q.

Specifically, letting a, and o2 be the two generators of T2 -» J2 associated to the two

nodes of C, we can then choose our odd theta-characteristic L on C and two further

elements a3, a4 G J¡ completing a,, a2 to a basis for J2 such that the theta-form

<7l(2«,°,) = h°{L®^a,o,) =a2 + a2 + a3a4.

Fhe odd theta-characteristics on C then are L ® co, where to is one of the eight

elements of J2,

0, a, + a2,

a3, a, + a2 + o"3,

a4, ox + o2 + a4,

ox + o3 + a4, o2 + o3 + a4.

Looking at these, we note that each row consists of a pair a, u> + v where

v = a, + a2. The sum of any such pair is thus v, and the sum of any two such pairs

is 0; conversely, these are all the 4-tuples of odd theta-characteristics adding up to

2KC. Since the line <7,<72 cuts on C a divisor in the system | 0C(1) | supported only at

qx and q2, and since there does exist a divisor of degree 2, supported at q¡, differing

from the divisor cut at q¡ by the line <7,(7 by exactly a, we see that for any pair of

theta-characteristics tj, = tj + «, rj2 = tj + w + v the divisor 2KC — tj, — r;2 = 7),

+ D2 is supported at the nodes of C, i.e. the four points of the divisors tj, and t\2 he

on a conic with qx and q2. Indeed, since the only pairs in the list above whose sum

lies in T2 are those of the form w, w + v, these are the only pairs of theta-characteris-

tics with this property.

Fhe conclusion of the above discussion can all be expressed without reference to

theta-characteristics, as

Theorem (3.6) (cf. [10]). Let C be a plane quartic with two ordinary nodes qx, q2.

Say two bitangent lines to C are associate if their four points of contact lie on a conic

with <7, andq¡. Then

(i) C has exactly 8 bitangent lines, consisting of 4 associate pairs L¡, Mi, with no

other pairs associate;

(ii) for any two associate pairs L¡, M¡, L , M¡ their 8 points of contact with C lie on a

conic; and conversely

(iii) these are the only conies containing the points of contact of three or more

bitangent lines to C.
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Now let C be a quartic with just one ordinary node. Both the analysis and the

resulting story are similar: we have clearly Y2 = Z/2, J2(C) = (Z/2)4, and by our

general theorem / s 0 so that #S+ = #S" = 16. Again, we can write down the

theta-form q explicitly: letting a be the generator of T2, we can choose L G S and

r,, t2, p,, p2 G J2 forming, with a, a basis for72 such that

qL(ao + bxrx + /72T2 + c,p, + c2p2) — a2 + bxb2 + cxc2.

The 16 odd theta-characteristics of C are thus L® (¿, where co is one of the 16

elements of J2

0,   r¡,   Pi,

Pi + Tj,

p,  + p2 + T,  + T2,

a + p, + p2 + t,, + T2 + Pi

and after considering this configuration one may conclude

Theorem (3.7) (cf. [3]). If C is a quintic with one ordinary node, then C has 16

bitangent lines; there are a total of 60 conies passing through the eight points of contact

of four of these bitangent lines, with every pair of points of contact of a bitangent line

lying on 15 such conies and every four-tuple of points of contact of two bitangent lines

lying on 3 such conies.

singularities g = g(C)   k = rkT2 /   q(C)    #S    #S'

smooth

one node

one cusp

two nodes

tacnode

one node; one cusp

two cusps

ramphoid cusp

three nodes

one node; one tacnode

one oscnode

two nodes; one cusp

one tacnode; one cusp

one node; two cusps

one node, one ramphoid cusp

three cusps

one cusp, one ramphoid cusp

one hyper-ramphoid cusp

one ordinary triple point

one triple point, two branches

one unibranch triple point

0

0

0

0
0
0

0
0

0
0

0
0

0

0
1

0

2

1

1

0

0
3

2

1

2

0
7^0

0

0
¥= 0

0

0
=£0

^0

7^0

7^0

0

#0

*=0

0

0

0

0
0
0

64

32

16

16

8
8

4

4

8

4

2

4

2

2

2

1

1

1

4

2

1

28

16

10

8

6
4

1

3
4

2

1

2

0

1

1

1

0

0
4

2
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3d. Other quartics. We list here some of the relevant data for the quartics not

mentioned above. While only the orders of S+ and S~ are listed in the preceding

table, the configuration may in each case be analyzed as above; we mention only one

further case, as a break from the monotony of Theorems (3.3)—(3.7).

Theorem (3.8). If C is a plane quartic with an ordinary node and a cusp, C has

exactly 4 bitangents; and their 8 points of contact do not lie on a conic.

4. Applications: Appolonius' problem.

4a. Appolonius and theta-characteristics. The problem of Appolonius is simply this:

given three circles C,, C2, C3 in the plane, to find the circles tangent to all three.

That there are eight solutions to the problem is not hard to see—it is obvious to

anyone who draws three circles in R2 exterior to one another and who does not

worry about the possibility of additional pairs of complex conjugate solutions; nor is

it difficult to locate these solutions, either by geometric constructions or algebrai-

cally. What is of interest is the symmetry displayed by the configuration of

solutions; and we hope to shed some light on this by using the theory of theta-char-

acteristics developed in the first section. In particular, we will determine the Galois

group of the Appolonius problem, and try to explain a related theorem of Hart.

To begin with, recall that if XQ, Xx, X¡ are coordinates on P2 with X0 = 0 the line

at infinity, then a circle is a conic curve passing through the two circular points at

infinity [0, 1, ±/]. The sum of three circles C„ then, is a sextic curve, triple at these

two points and double at six more points (generically) in the finite plane; we let C be

this sextic curve, normalized at the two circular points at infinity. C is then a curve of

genus 4; the canonical series on C is cut out by cubics double at the two circular

points at infinity—that is, since the line at infinity meets C, + C2 + C3 only at these

two points, by conies passing simply through these two points; or in other words,

circles. By the same token, the bicanonical series |2.ric| is cut on C by bicircular

quartics, that is, quartics double at the circular points at infinity.

Note that we may blow up the two circular points at infinity and blow down the

line at infinity, and embed the resulting surface as a quadric Q GP3; the plane

sections of this quadric then project from the point of Q corresponding to Lx onto

circles in the plane. The curve C is then just the transform of 2C, in Q—that is, the

union of three plane sections of Q— and is represented in this way as a canonical

curve of genus 4. This is in fact the approach taken by Baker in [1].

Now, since C is a nonhyperelliptic curve of genus 4, the pencils of degree 3 on C

are just those cut by the pencils of lines in the plane through the circular points at

infinity; in particular, no semicanonical divisor on C may move in a pencil. The odd

theta-characteristics on C thus correspond one-to-one to the effective semicanonical

divisors, which in turn correspond to circles in the plane tangent to each of C,, C2

and C3—that is, solutions of Appolonius' problem. Since we have clearly on C

r2 = j2 = (z/2)4

and by Theorem (2.12) / z 0 we may conclude that there are exactly eight solutions

of Appolonius' problem. Moreover, by Corollary (2.6) these form a coset of a



theta-characteristics on algebraic curves 631

subgroup of J2 in S. Thus, for any three effective semicanonical divisors on C, there

is a fourth such that the sum of the four is 2KC; or in other words,

Theorem (4.1). 7/C,, C2, C3 are circles, and £,, £2, £3 circles tangent to each of the

Ci, then there is a bicircular quartic curve F passing through the 9 points of contact

£, • C/, and the residual points of intersection of F with the curves Ci are the points of

contact of a fourth circle £4 tangent to each of the Ct.

We may use this description of the solutions to Appolonius' problem to determine

the Galois group G of the problem. (For a general discussion of Galois and

monodromy groups arising in similar contexts, see [5].) To start, we note that since

the set S~ (C) of solutions to Appolonius' problem is a principal homogeneous

space for the subspace Y' = ker(l) GY2 — J2(C), the action of G on S induces an

action of G on Y', the kernel 77 of this action consisting of the translations of S by

elements of Y' G J2 in the action of G. To see first the action of the quotient group

G/77 on T', we note that the group T2 is generated by the six elements e¡, f¡, i = 1,2,

3, where e, and / are the generators corresponding to the points of intersection of C

and Ck, with the relations e, + f■ + ey + f■ = 0. The linear part / of the theta-form

being given by

l(2a,e, + 2b, f) = la,. + 2Z>„

the kernel Y' = ker(l) may be realized as the three-dimensional vector space over

Z/2 with basis

ax=ex +/,,    a2 = ex +/2,    a3 = ex +/3.

Now, the Galois group of C acting on T(£)2 clearly preserves the pair of

generators [e¡, /}; and may interchange each pair: if two of the circles C and Ck

become tangent, the corresponding element of the monodromy/Galois group clearly

exchanges e, and / and leaves the remaining generators alone. Since the automor-

phism of T(£)2 exchanging each of the three pairs [e¡, /} is the identity on the

quotient T2 of T(£)2, we see that the action of G on Y' has order 4: it is the group of

automorphisms

cxax + c2a2 + c3a3 -» cxax + c2a2 + c3a3 + l(c2, c3)ax,

where / is a linear function Z/2 X Z/2 -> Z/2; we will call this group Aut Y'.

We now consider the action of G on S~ (C); G is a priori a subgroup of the group

generated by Aut Y' (which acts on S~ after fixing i|0£r) together with transla-

tions of 5" by elements of Y'. But now G acts transitively on S —this may be seen

geometrically: the incidence correspondence

{(CX,C2,C3; C): C tangent to C,-, i = 1,2,3}

consisting of triples of circles and  solutions of the corresponding Appolonius

problem is irreducible. Since the subgroup of G fixing a given t/ G S    surjects onto
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Aut f'—starting with the configuration

we simply let each pair of circles in turn become tangent; the corresponding

monodromy actions leave fixed the common tangent circle containing all three—it

follows that G is the full group generated by Aut Y' and Y' acting by translation on

S~ . In particular, G has order 32 and may be seen to be isomorphic to the group of

4X4 matrices of the form

\

0

0

\ 0

with entries in Z/2.

We note that the description of G is partially reflected in, for example, Baker's

explicit algebraic solution of the problem. In his notation, [1, p. 69] the field

generated by the pairwise ratios of the quantities Ax/2, Bx/2, C1/2 is the fixed field

of the subgroup H G G introduced above—that is, the field of definition of

T' G J2(C)— and over this field each of the individual solutions has degree 2. What

is not so clear from Baker's description is that the four additional quantities M

introduced do not generate independent quadratic extensions of this field—i.e., that

given three solutions of Appolonius' problem a fourth is rationally determined.

4b. Hart's theorem. We may use the description of the configuration of circles

tangent to three given circles C, to help explain a theorem of Hart, which says that

given C,, C2 and C3 there are fourteen circles C4 such that C,,..., C4 are all tangent

to each of four other circles £,,..., £4.

To see why this should be the case, start with C,, C2 and C3, and choose three of

the eight circles tangent to all three (there are (3) = 56 ways of doing this); call them

£,, £2 and £3. As we have seen above, then, there is a unique circle £4 tangent to

each of C,, C2 and C3—the one corresponding to the sum of the theta-characteristics

on C represented by £,, £2 and £3—such that there exists a bicircular quartic F

passing through the 12 points of contact of the £, with the C. By the same token,

since the C, are three of the eight circles tangent to each of the £,, there is likewise a

unique Q tangent to £,, £2 and £3 such that the 12 points CiEj lie on a bicircular

quartic G. We claim now

Theorem (4.2). £4 and C4 are tangent.
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The proof is straightforward: first of all, we note that if p¡j = C¡C¡, the bicircular

quartics Fand G, having the nine points {/>,7}x,,7«3 in common, are identical; thus

£ contains all 15 pointsptJ, (i, j) =£ (4,4), and we can write

FC=       2       Pu + a>
(i,7)#(4,4)

where C = 24=, C¡. On the other hand, if we let £4 • C4 = r + s then we have

£ ■ C = 2      2       Pij + r + s
(i,y')#(4,4)

and since £ ~ 2£ in P2, we conclude that, as divisors on C, 2q ~ r + 5. But C is not

hyperelhptic—the canonical series on C, cut by bicircular quartics, certainly sep-

arates points—and hence we conclude that q = r = s i.e., £4 is tangent to C4.

Q.E.D.
Since any three of the circles E, determine the fourth, this gives us our ^ — 14

circles Q. Note that there are six distinguished ones: those for which the form

theta-characteristics £, differ in pairs by one of the standard generators v of Y'; these

are the six Hart circles orthogonal to the orthogonal circle of C,, C2 and C3.

5. Some lemmas on adjoint ideals. In the following C will denote a reduced curve

with a singular point p (not necessarily Gorenstein unless specified), C ->" C the

normalization of C at p, qx,... ,qh the points of 77~ '(p), A, a neighborhood of q¡ and

A, its image in C. We will set

8 = 8(C, p) = dim r(vj3ç/Bc)

and

ô, = S(A„p) = dimr(77,0A/0AJ.

We let 7 C 0C be the conductor ideal of m: C -» C, and write 7 = 77*7 = 6¿(-D).

Finally, for any union C = A, + • • • +A, of branches of C atp, we denote by

¿C' = ^A, 4-     •+A,,  C "c
'1 'k

the ideal of functions/ G 6C vanishing on A,,..., A, .

Our goal in this section is essentially just to prove statements (5.10) and (5.11) of

Lemma (5.9). On the way there, however, we will establish a number of relations

between the numbers 8,-, the divisor D, and the intersection numbers of the various

branches of C.

To start with, we recall the classical formula (cf. [6])

(5.1) s=2«/+ Í>„k-2A/)
1=1        i=l      v       />/    '

where for C, C" G C unions of branches of C atp, we define

(5.2) mp(C ■ C") = dim r(0c//c, + Ic„).
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This formula is readily obtained by normalizing and separating the branches

A,,... ,Afc one at a time, in that order: at the ith step, 8 is decreased by

8, +mp(Ai-Ai+x + ■■■+&,).

Next, we want to describe the divisor 7). In general, the best we can do is the

inequality expressed in

Lemma (5.3).

multj7)H28, +«Ja, • 2 A,   .

Proof. We remark first that the multiplicity multq¡(D) of D at q¡ is simply the

smallest number a such that every function/ G 0A vanishing to order a or more at

q¡ is the pullback to Ä, of a function g G&c p vanishing identically along A2,..., Afc.

Writing m for m (A, ■ 1j=2 A •), we suppose that

(5.4) multjT)) = a>28, + m

and derive a contradiction. To do this, we note that by (5.4) and our first remark no

function /e6¡ vanishing to order exactly a — 1 is the pullback to Ä, of a

function g G 7¿2+... +A  C 0C  . We set, accordingly,

^{ord>*g);gG0C/,}cZ-0

and

77= {ordj7T*g):gG7A2+...+AJ C?°.

We have #{ZS"° — A} = dim r(7r„0A /0A ) = 8, and since by definition

dimr(0Ai/42+...+AJ=m,       #{Z^°-B} =m + 8x.

Thus #({0,1,...,a - 1} HA)^a - 8, and #({0,1,...,a -l}n#)3*a-m-

8,; since by hypothesis (5.4) a — 8, + a — m — 8, > a, we conclude that at least

one of the pairs (a — i, i — 1) must lie in A X B; i.e., a — 1 G A + B, and we have

our contradiction.    Q.E.D.

We can do much better if we assume now that p is a Gorenstein singularity. This

is equivalent to the relation

dimr(0c~/0c~(-7))) = 28

and yields a string of inequalities

22«, + 2>„U * 2 A, W 2 mult J7)) = dim(0r-/0c-(-7))) = 28
i i * j¥=i       ' i

(5.5)

= 25, + 2%( a, • 2 a,) + 2«,■ + 2%( a, • 2 a,).,
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where the last step is obtained by applying (5.1) twice to 28, using opposite

orderings of the branches. But we do have in general for C, C" and C" unions of

branches of C

mp(C ■ C") + mp(C ■ C") > mp(C ■ C" + C")

and applying this, we conclude that equality must hold throughout (5.5). We express

this with the following two lemmas.

Lemma (5.6). If p G C is Gorenstein, then for each i,

multj7)) = 28, + m Ur 2 A,).

Lemma (5.7). If p G C is Gorenstein, then for any ordering of the branches and any i,

mp(A,-2Ay)=mÍA,-2A,)+«1p(A,-2A7)
v j¥=i       ' v j>i       ' v j<i       '

We remark that the formulas in Lemmas (5.6) and (5.7) (for any one ordering)

together are equivalent to the condition that p G C be Gorenstein.

These lemmas, together with formula (5.1), are the tools we need to analyze, in

case p G C is Gorenstein, our principal objects of interest: that is, the ideals

7, = 7 + 7A of functions satisfying the adjoint conditions on the *th branch, and

their intersections. To state the result, choose again an ordering of the branches A, of

C atp, and consider the following filtration of the sheaf 0C modulo the conductor:

(5.8) 0 = V0 G F, C V2 G ■ ■ ■ G Vb_x G Vh = 0c/7,

where

vk = h+i n • • • n ib/i.

We have then

Lemma (5.9). If p G C is Gorenstein, the successive quotients in (5.8) have dimension

dimY(Vk/Vk_x) = 8k + mp\àk-k^\J

\ 7=1

i.e.,

dimr = (Vk) = 2 8,+ 2 mU, ■ 2 A,) = s(( 2 A,
(=1 1=1 V /</       ' \ \ ;=1

7« particular,

(5.10) dimF, = 8,

and

I        /,-,     \

(5.11) dimr(0c/Fj = 8b + m\ AA •  2 A J = multjT)) - 8h.
\ 7=1        /
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Proof. If we let Ck — 2f=Jl+, A,, and Trk: Ck -* Ck its normalization, then since

Ik+X n • • • C\Ib is certainly contained in the conductor of irk we have

dim r(0r/7,4, n • • • n7„) = dim T{eck/7t*(ik+x n • • • nih)) - 8(Ck, p)

b

=    2    multjT)) ~8(Ck,p)
i    A •  1

= 2   2   «,+    2    m U.-Ia]
i = k+\ i=k+\ V j¥=i       '

h b , .

2   fi,-"    2   wJA,-2A7      (by formulas (5.6) and (5.1)
/     A  •   I i = A+1 ^ />;        '

2    fi,+    2    mÍA,-2Ay)
L 4- 1 .'= i-4- 1 ' /<ri        ';=A + 1 ; = A+I /</

by (5.7). Thus

dimY(Vk/Vk_x)= i 8,+ ímU,- 2 A,)
¡=k i=k V j<i       '

2 «,-   2 »Ja,-2a,)
,=A+1 ;=A+1 V /</       '

= fiA+^(^'    2   A>)
7<*

and the remaining parts of the lemma follow immediately from (5.8).

As a final note we may point out, although it is not required for present

applications, that Lemmas (5.3), (5.6) and (5.7) above may be broadened by

replacing the branches A, with arbitrary unions of branches of C. To see how this

goes, we observe first that formula (5.1) has an obvious generalization: if 7?,,... ,Bk

are curves with a common pointp and no branches in common, and B = IB,, then

(5.12) 8(B,p)= Í8(B„p)+ I miß,- ^ b\.
í=l ;=1 V />/       '

The proof is the same: we just normalize the singularity of 77 at p by separating and

normalizing the B/s one at a time. Note in particular that in case b = 3, we may

compare (5.12) with the formula obtained from (5.12) by interchanging Bx and B¡ to

arrive at the formula

(5.13) «7,(77, ■ B2 + 773) + mp(B¡ ■ B3) = mp(B2 ■ 73, + 773) + mp(Bx ■ 733).

We consider now the curve C = 2f=, A, of the previous discussion. Setting, for

each k,

Ek= 2 A,,        Ck=    2    A,
1=1 i=A+l
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we claim that

A

(5.14) 2 multjT)) < 28(Ek, p) + mp(Ek ■ Ck).
i=\

To prove this, we use an induction as k: for k — 1, this is just (5.3); while if we

assume it for k we may write

A+l b

2   multj7))= 2 mult J 7)) +mult ^,(7))
/=! i=l

<28(Ek,p) + mp(Ek-Ck)

+ 28(Ak + x, p) + mp(Ak + x, Ek + Ck + X)

by (5.3) and induction;

= 28(Ek+x,p)-2mp(Ak+x-Ek)

+ mp(Ek-Ck) + mp(Ak+x,Ek + Ck + x)

by (5.12) applied to Bx = Ek, B2 = Ak+X; and now applying (5.13) with 7?, = Ek,

B2 = Ck+X and 7?3 = Ak + X, we see that this

= 28(Ek+x,p) + mp(Ek+x ■ Ck+X)

+ mp(Ak+x, Ek + Ck+X) - mp(Ak+x, Ek) - mp(Ak+x,Ck+x)

< 28(Ek + x, p) + mp(Ek+x,Ck+x)

so (5.14) is proved for k + 1.

We may express (5.14) without reference to irreducible branches as

Lemma (5.15). 7/7?,, B2 are reduced curves meeting at p and having no components

in common, Bt ->v,Bj their normalizations, B = Bx + B2 and I the conductor ideal of B

at p, then

(5.16) dimr(0ß-/7r,*7) « 28(B„ p) + mp(Bx ■ B2)

or, equivalently,

(5.17) dim r(0B/7) < 8(77,, p) + mp(Bx ■ B2).

Lemmas (5.6) and (5.7) likewise have their analogues: first, if in the situation of

Lemma (5.15) we assume that 77 = TJ, + 772 is Gorenstein, then we have by (5.16)

28(77, p) = dim r(0B-/</) + dim r(0ß-/77*7)

^28(BX, p) + 28(B2, p) + 2mp(Bx ■ B2)

and comparing this with (5.12) we conclude

Lemma (5.18). If, in Lemma (5.15) B is Gorenstein at p, then equality holds in (5.16)

and (5.17).
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Similarly, if Bx, B2 and 773 are three curves whose sum is Gorenstein, then

applying (5.12) and (5.12) with 77, and B2 interchanged, we have

28(77, p) = 228(77,, p) + mp(Bx ■ B2 + 773) + mp(B2 ■ 773)

+ mp(B2-Bx + B3) + mp(Bx • 773)

<2{2»(B„p) + mp(BrBj + Bk))
i

= 2dim(0B-/77,*7) = 28
/

by the Gorenstein condition. We conclude, then, that equality holds throughout, i.e.

Lemma (5.19). If Bx, B2, B3 are reduced curves meeting at p and having no common

components and B = 73, + B2 + B3 is Gorenstein at p, then

mp(Bx + 772 • 773) = «7,(77, • 773) + mp(B¡ + B3).
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