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MINIMAL IMMERSIONS OF CLOSED RIEMANN SURFACES
by
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Abstract. Let M be a closed orientable surface of genus larger than zero and N a

compact Riemannian manifold. If u: M -> N is a continuous map, such that the map

induced by it between the fundamental groups of M and N contains no nontrivial

element represented by a simple closed curve in its kernel, then there exists a

conformai branched minimal immersion s: M — N having least area among all

branched immersions with the same action on it¡(M) as u. Uniqueness within the

homotopy class of u fails in general: It is shown that for certain 3-manifolds which

fiber over the circle there are at least two geometrically distinct conformai branched

minimal immersions within the homotopy class of any inclusion map of the fiber.

There is also a topological discussion of those 3-manifolds for which uniqueness

fails.

Introduction. In a previous paper we obtained results on minimal immersions of

the two-sphere into compact Riemannian manifolds [18]. Here we extend some of

these results to surfaces of higher topological type. The main idea is to reduce the

minimal area problem for such surfaces to a variational problem on a moduli space

for conformai structures on the surface. The main technical difficulty to overcome is

the fact that the moduli spaces are not compact. We overcome this by using a

standard compactification of the Riemann moduli space (see Bers [5, 6] and Abikoff

[2]) and controlling the behaviour of our variational problem near the boundary

points.

Our main result, Theorem 4.4, proves the existence of a conformai branched

minimal immersion of a surface M with genus larger than zero corresponding to

every homotopy class of maps u: M -* N which induces an injection u^: ttx(M) -»

77,(jV). Here N is any compact Riemannian manifold of dimension larger than two.

If tt2(N) = 0, then the minimal immersion is actually homotopic to u. It was

conjectured that in the case where N is hyperbolic, any such minimal immersion

would have to be unique within its homotopy class. Surprisingly, this is not

necessarily true, as we prove in Corollary 5.5, in which we show that for certain

hyperbolic 3-manifolds N and u: M -» N, there are at least two geometrically distinct

minimal immersions homotopic to u. This nonuniqueness result is obtained by

developing a Ljusternik-Schnirelman theory for minimal immersions of surfaces of

higher topological type.
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In §1 we discuss the existence theory and properties of harmonic maps and recall

results from our earlier paper [18]. In §2 we state some convergence properties of

sequences of harmonic maps proved in [18] and extend earlier results to the case of

variable conformai structures on the domain surface in Theorem 2.3. In §3 we prove

a version of our main result for the special case of genus one, where the argument is

technically somewhat different, but the result, Theorem 3.3, is essentially the same as

the main Theorem 4.4, which is proved in §4. A synopsis of definitions and theorems

needed from Teichmüller space theory is presented at the beginning of §4. The

earlier mentioned nonuniqueness result, Corollary 5.5, is proved in §5 after the

required Ljusternik-Schnirelman theory is developed. In §6 we give a topological

discussion of the nonuniqueness result for a class of compact 3-manifolds. This

chapter is in the spirit of topological 3-manifold theory and links up with the work

of W. Thurston on 3-manifolds (see [20, 19]).

Theorem 4.4 was also obtained by R. Schoen and S. T. Yau in [17] using

somewhat different techniques. In our proof, a minimizing sequence for the varia-

tional functional on Teichmüller space is allowed to have a limit on the boundary in

order to obtain a contradiction, thus proving the theorem. They used this result to

prove that 3-manifolds whose fundamental groups contain surface groups cannot

carry a metric of positive scalar curvature.

We would very much like to thank W. Abikoff for teaching us Teichmüller theory

and for patiently answering questions and asking fruitful ones of his own. It is also a

pleasure to acknowledge very helpful discussions with R. Schoen and S. T. Yau and

W. Thurston's assistance in investigating minimal immersions in hyperbolic 3-mani-

folds.

1. Properties of harmonic maps. Throughout this paper, M will denote a compact

orientable surface with a conformai structure p, and N a compact C°° Riemannian

manifold of dimension at least 3. In this section we outline the results on harmonic

maps that we shall be using in the rest of the paper. A more detailed account and

proofs are contained in [18].

Let s: M -> N, s G CX(M, N) and consider ds(x) G T*(M) ® Ts(x)(N). Using

the inner product given by the Riemannian metric on N and the conformai structure

p on M, we may define I(s)(x) = (ds, ds)s(x) G T*M ® T*M. We say s is harmonic

with respect to p if 5 is a critical point of the energy integral

E(s, p) = j   tracel(s) * 1.

Here trace and * can be taken in any metric compatible with p. We say that a

branched immersion s G CX(M, N) (see [10] for a definition) is a branched minimal

immersion if 5 is a critical point of the area integral

A(s)= f (det I(s)y/2* 1.

We recall the following relations between the two integrals. Theorem 1.2 lies at the

basis of our method.
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Theorem 1.1. Let s: M -» TV be a conformai branched immersion with respect to the

conformai structure ¡i on M. Then s is harmonic with respect to p if and only if s is a

branched minimal immersion.

Theorem 1.2 [18, Theorem 1.8]. Let s: M -» TV be harmonic with respect to the

conformai structure p and suppose that p is a critical point of E(s, ■) with respect to all

C°° variations of p. Then s is a conformai branched minimal immersion of M into N.

The next theorem is the basic existence theorem we shall be using to get minimal

immersions of Riemann surfaces into certain compact Riemannian manifolds. For a

fixed conformai structure p on M, let E(s) = E(s, ¡u). We shall say that s: M -» N

has the same action on -rrx(M) as u: M -» TV if, for a fixed z G M with

s*: itx(M, z) -» 77,(/V, s(z))    and    u^: irx(M, z)-> itx(N,u(z)),

there exists a path a from s(z) to u(z) such that a* conjugates trx(N, s(z)) to

77,(7V, u(z)), i.e., s* = a„ ° m* ° a*1.

Theorem 1.3 (Theorem 5.2 of [18] and Theorem 2.1 of [17]). Let u: M — N be

continuous. Then there exists a harmonic map s: M -> N with the same action on

ttx(M) as u. Moreover, s may be chosen to take on the minimum of the energy integral

among all such maps.

Theorem 1.3 implies the following generalization (for domain manifolds of

dimension two) of the well-known result of Eells and Sampson (see [8]).

Corollary 1.4 (Theorem 5.1 of [18]; see also [15]). Ifir2(N) = 0, in particular,

if N has nonpositive sectional curvature, then there exists a minimizing harmonic map

in every homotopy class of maps in C°(M, N).

Corollary 1.5. If the map s of Theorem 1.3 is also a minimum of E with respect to

all smooth variations of p preserving the action on ttx(M), then A(s) < A(s') for all

branched immersions s' having the same action on ttx(M) as u.

Proof. Suppose that A(s') < A(s) for some s' as in the statement. Then the

immersion s' induces a conformai structure on M, and 2A(s') = E(s') for E defined

by this conformai structure. Let s: M -» N be the minimizing map for this conformai

structure with the same action on -nx(M) as u. Then E(s) < E(s') = 2A(s') < 2,4(5)

= E(s), a contradiction.

Finally, in examining the behaviour of the energy integral near boundary points of

Teichmüller space, the following extension theorem will be used.

Theorem 1.6. Let D denote the open unit disk in the complex plane. If s:

D — {0} -» N is harmonic with finite energy, then s extends to a C°° harmonic map s:

D - TV (see [18, Theorem 3.6]).

2. Convergence of sequences of harmonic maps. In §§3 and 4 we shall need to

examine the convergence of certain sequences of harmonic maps. In this section we

state the necessary convergence theorems. Their proofs are identical to those of

similar theorems in §4 of [18]. The only (inessential) difference is that in the present
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context we deal only with harmonic maps rather than with the critical maps of a

perturbed energy integral, i.e., the numbers a 3* 1 of [18] are always taken to equal

one. For % C M any open set we denote by L^(%, RA) the usual Sobolev space of

functions which are in L2 and whose (weak) first derivatives are also in L2.

Lemma 2.1 [18, Theorem 4.1]. Let s¡: % -» N be a sequence of harmonic maps with

E(s,)< B for i = 1,2,— Then there exists a subsequence {s¡} G {s¡} such that s¡

converges to a limit s weakly in L,(%,,R*) and lim,^00E(s'¡) > E(s).

Theorem 2.2 [18, Theorem 4.4]. Let s¡: % -> N be a sequence of harmonic maps

such that E(Sj) < B for i = 1,2,..., ands¡ converges weakly in L](%, R*). Then there

exists a subsequence {s¡} G (j,.} and a finite set of points zx,...,z   in M such that s¡

converges to s in Cx(Gil — {z,.zq}, N) and s: <?1 -» N is a Cx harmonic map.

Moreover, E(s) < liminf/_00£(i,I').

We need an extension of Theorem 2.2 in which the metric on M is varied. Assume

that a convergent sequence p,■ — p of conformai structures on M is given, corre-

sponding to a sequence of metrics converging in the C°° topology.

Theorem 2.3. Let s¡: M ^ N be harmonic for the conformai structure ¡i¡ on M, with

Pi -» p and E(st, p¡) < B. Then there exists a subsequence {s'¡} G {s¡} which converges

to a harmonic map s in CX(M — {z,,... ,z }, N) and E(s, p) < lim inf,-^ „.£(.$/, p¡).

Proof. Cover M with a finite set of coordinate charts %,, each mapped conform-

ally onto the open unit disk in the complex plane and each isothermal with respect

to the conformai structurep on M. Let C?L; denote the coordinate chart %, provided

with the conformai structure p¡. By the Riemann mapping theorem there exist

conformai maps py,: %. ¡ -» %, fixing three given points. Since p¡ -> p, we may

assume that p,¡ converges to the identity in Diff x(Gll..).

Since p¡ -» p, we can assume that {s¡} G L2x(M,Rk) is weakly convergent with

respect to the conformai structure p on M. Then s¡ ° p~f ' : %■ -» N is a sequence of

harmonic maps satisfying the hypothesis of Theorem 2.2. Thus a subsequence {s-}

exists such that s¡ ° pfx converges in Cx(G)lJ — {zx,...,zq}, N). Finally, since

M = U . % , we get the result on all of M.

We note in passing that for /' sufficiently large, s'¡ and s must induce the same

action on itx(M), since one can simply choose representative loops generating ttx(M)

which avoid the points {z,,... ,z }.

3. Minimal immersions of tori. We prove our theorems separately in the case of the

torus for two reasons. Firstly, the moduli space for conformai structures on the torus

is familiar, and the proofs can be done without any appeal to the more complicated

theory of moduli spaces for Riemann surfaces of higher genus. Secondly, since the

universal covering space of the torus is the plane, and not the open unit disk, there is

a technical difference in the proofs, although there is none in the statement of the

theorems.

The moduli space for conformai structures on tori is the upper-half plane U,

which is the Teichmüller space for closed surfaces of genus one (for a definition of
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Teichmüller space see §4). We identify £ G U with the torus

M¿ = R2/ {z = z + 1 and z = z + £}.

Here two generators of 77,(S' X Sx) have been distinguished. If we do not dis-

tinguish generators, two elements £,, £2 G U represent conformally equivalent tori if

£2 = t£, for some t G PSL(2, Z) = SL(2, Z)/{ ±7}, the modular group of the torus.

For | G U, let E(s, |) denote £(j) defined on the torus M(. Given«: Sx X Sx ^ N,

define

É(£) = min{£(í, ¿): í has the same action on ttx(M) as «}.

Lemma 3.1. There exists a harmonic map s: A/¿ -» A/ vvvi« i«e sawe action on irx(M)

as u for each £ G U. Moreover, E is a continuous function on U.

Proof. The existence of 5 follows from Corollary 1.4. The continuity of E implies

that of É.

Theorem 3.2. Let N be a compact Riemannian manifold and let u: Sx X Sx -» N be

such that u^: itx(Sx X Sx, z) -» irx(N, u(z)) (here z is a base point on Sx X Sx)

contains no generators of trx(Sx X Sx, z) in its kernel. Then if ¿, G U is a sequence

such that E(ii) < B, there exist elements t,- G PSL(2, Z) and a bound b(B) depending

only on B such that t,£, lies in the fundamental domain of PSL(2, Z) and Im(T,£,) <

b(B).

Proof. The existence of j, follows from the definition of fundamental domain.

Suppose there is a sequence £, such that k, = Im(T,£,). Let tj, = t,£,. By Lemma

3.1 there exist harmonic s^: M^ -> N with the same action on 7r,(M) as u. Then

*i = *íl°TrI:JÍ,,|-*JV

is harmonic and E(s¿, tj,) = E(s^, £,) = É(^) < B.

Let s¡ be the restriction of s¡ toS] X [-k¡/4, k,-/4]. Then E(s¡) < E(s¡, tj,) < B. By

Theorem 2.2, on any cylinder Sx X (-k, k) we can find a subsequence of s, \ Sx X

(-K, k) which converges in CX(SX X (-k, k) — (z,,... ,zq}, N) to a harmonic map s:

Sx X (-k, k) -> N with E(s) ^ 77. Since k is arbitrary, s: S] X R - S2 - {px, p2} -»

N is harmonic with E(s) -» B. By Theorem 1.6, s extends to a C°° map s: S2 -» A,

providing a homotopy of 5,(5' X {a}) = s(Sx X {a}) to a point for suitable a. This

implies that the generator r/x(Sx X {a}) of Mj. is mapped by s,, and hence also by

u, to a loop homotopic to zero, which contradicts the assumption on the kernel of

"*•

Theorem 3.3. Let N be a compact Riemannian manifold of dimension > 3 and let u:

Sx X S' -> N be such that u^: trx(Sx X Sx, z) -» 7r,(A, u(z)) has no generators of

77,(5'' X Sx, z) in its kernel. Then for some £ G U there exists a conformai branched

minimal immersion s: M^ -» N with least area among branched immersions with the

same action on irx(M) as u.

Proof. By Theorem 1.2, Corollary 1.5 and Lemma 3.1 we need only find a

minimum of É on U. Let £, E i/be such that lim,^«,£(£,) = inf {£(£): I G Í/}. We
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may assume that É(i,) < B uniformly in i. As in the proof of Theorem 3.2 we can

obtain harmonic maps s¡: Mv¡ -* N with Im(T),) « b(B) and such that s¡ has the same

action on 7r,(M) as u ° t~x. Choose a subsequence of {tj,} which converges to tj. By

Theorem 2.3, we may pass to a further subsequence s¡ which converges to j in

CX(M1I — {zx,...,zq}, N) with s harmonic and E(s, tj) < liminfj_ooJE(i/, tj,) =

lim,_, „,£(£,). Since convergence in C1 fails possibly only at the points z , it follows

that s, = s( ° r~] has the same action on irx(M) as 5 for i sufficiently large. Thus

s ° t, is a harmonic map from M7 i, , into N which has the same action on 7r,(A7) as

u, and such that lim^^TsXs ° t,, t/'(tj)) = lim/-0O £(£,.).

4. Minimal immersions of surfaces of genus larger than one. The technique for

obtaining our main theorem in this section, Theorem 4.4, will be to use the

dependence of E on conformai structure and Theorem 1.2 to transfer our variational

problem to a suitable space of moduli for conformai structures on a surface of fixed

genus. We simply state the necessary results about moduli spaces for Riemann

surfaces and refer the reader to Bers [4] for general background and to Abikoff [1,2,

3] and Bers [5, 6, 7] for the theory of the boundaries of these spaces.

Given a closed Riemann surface M of genus larger than one, one can define the

Teichmüller space 'îï(M) to be the space of all equivalence classes of pairs (A/', a),

where a is a quasi-conformal bijection from M onto M'. Two pairs (M',ax) and

(M", a2) are equivalent if and only if a2 ° ax x is homotopic to a conformai map. If

we "mark" M by choosing a set of simple closed curves on M whose homotopy

classes generate ttx(M), then ?i(M) can be considered as the space of all equivalence

classes of marked Riemann surfaces. The mapping class group of M, Y+ (M), is the

group of all orientation-preserving homeomorphisms of M modulo the subgroup of

homeomorphisms isotopic to the identity. The Teichmüller modular group of M,

denoted Mod(M), is the mapping class group of M modulo its subgroup of

ineffective elements. Mod(M) acts on 'ö(M) by pulling back conformai structures.

If t G Mod(M) and M" = r(M') as a Riemann surface, then M' and M" are

conformally equivalent but have different markings.

A Riemann surface with nodes is a connected complex space M such that every

point z on M has a neighbourhood isomorphic either to the open unit disk (with z

corresponding to the center), or to two unit disks, with centers identified and

corresponding to z. Riemann surfaces with nodes are obtained by passing to the Bers

boundary of Teichmüller space (the latter is diffeomorphic to an open cell of real

dimension 6g — 6, g — genus of M) by "pinching" some set of admissible simple

closed curves on M to nodes. See Bers [5, 6].

Let R(M) = y(M)/Mod(M). Then R(M) is the classical Riemann moduli space

for conformai structures on M. The following result is contained in Abikoff [1].

Theorem 4.1. There exists a compactification R(M) of R(M) such that the

boundary points R(M) — R(M) correspond precisely to the Riemann surfaces with

nodes that can be obtained from M by "pinching" a set of admissible closed curves on

M.
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R(M) is called the augmented Riemann space for the genus of M. When genus

M = 1, 5(M) is the upper half-plane U and Mod(M) = PSL(2,Z). R(M) is then

obtained by compactifying Í//PSL(2, Z) by adding one point at infinity so that

R(M) is a sphere with a pair of nodes.

Now let M0 be an arbitrarily chosen fixed Riemann surface of genus g > 2, and let

M0 be a base surface for the Teichmüller space SY A/0) for surfaces of genus g. Since

E is conformally invariant we can define an energy integral on $(M0) as follows:

Let M denote the marked Riemann surface represented by the point p G bJ(M0).

Define, for a fixed map u: M -» N, É(p) — inf{7s(s, p): s has the same action on

77,(Af) as w}.

Lemma 4.2. E(p) is attained on each M^ by some s^ which has the same action on

•nx(M) as u, and E is continuous on §(M0).

Proof. The existence of sß follows from Corollary 1.4. The continuity of É follows

from that of E.

Theorem 4.3. Let st: M^ -> N be a sequence of maps harmonic in the conformai

structure p¡ on M with E(s¡, p¡)< B. Suppose also that tr(M ) -» Mx where m:

?F(A/0) -» R(M0) is the quotient map and Mx G R(M0) - R(MQ). Then for i suffi-

ciently large, (s¡)t(y) = 1 for at least one y G 77,(M) represented by a simple closed

curve.

Proof. The sequence M provides a deformation of M0 onto a Riemann surface

with nodes Mx corresponding to "pinching" a set of homotopically nontrivial

simple closed curves ym to nodes wm; m= l,...,n. A sequence {Dm} of closed

annular neighbourhoods of ym can be chosen so that Df" converges to the node wm of

Mx and, for each fixed j, the change in conformai structure on A/0 as M — Mx is

restricted to the interior of Um Df (see Bers [5]). Let Af,- = A/0 - Um T)/1. Then, for

fixed j, {í, | Mj} is a sequence of harmonic maps on Mj which by Theorem 2.3

converges in CX(M¡ — {z,,...,zq}, N) to a smooth harmonic map s(j): Mj -> N. By

the unique continuation property for harmonic maps (see [12]), s(k) extends s(J) from

Mj to Mk for each k > j. Now let j -» oo to get a smooth harmonic map 5: M'x -» N,

where M'x is the punctured Riemann surface A/0 — {wx,...,w„} and s(J)-> s in

CX(MX - {zx,...,zq}, N). Since E(s¡)*zB for all i, E(s) *£ B. By Theorem 1.6, s

can be extended to a smooth harmonic map s: Mx -* N, where Mx = Mx U

{(x,, xj),...,(x„, x'„)} is the closed Riemann surface obtained by adding a pair of

points (xm, x'm) at the two punctures of M'x corresponding to each node wm G Mx.

Choose any curve y homotopic to ym, for any fixed m between 1 and «. Clearly, y

can be chosen so as not to contain any of the points z,,... ,zq and to lie in Dm for

some large j. Since y C Mx is homotopically trivial, it follows that s(y) is homotopi-

cally trivial. But lim,J0Oi,(y) = s(y), so that s¡(y) is homotopically trivial for i

sufficiently large.
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Theorem 4.4. Let M be a closed topological surface of genus larger than one and let

u: M -» N be a continuous map such that «*: ttx(M) -» trx(N) contains no nontrivial

element represented by a simple closed curve in its kernel. Then there exists a conformai

branched minimal immersion s: M -> N with the same action on 7r,(A/) as u such that

A(s) < A(s'), for all branched immersions s': M -> N with the same action on ttx(M)

as u. If ir2(N) = 0, then s can be chosen homotopic to u.

Proof. By Theorem 1.2, Corollary 1.5 and Lemma 4.2, it is sufficient to show that

a minimum of £ is attained at some point in 3YA/). Let ¿, G 5YA7) be a minimizing

sequence for £. By Lemma 4 of Abikoff [1], there is a subsequence of {£,} (denoted

again by {£,}) and elements t, G Mod(M) such that p, = t,(£,) either converges to a

limit in 57A/) or Mß converges to a surface with nodes. Let s, be a minimizing

harmonic map in the homotopy class of u ° t~ ' relative to the conformai structure

Pi = t,(£;). Note that E(s¡, p,) = £(£,) is bounded. Therefore, since no nontrivial

simple loop in M maps onto a homotopically trivial loop in N, Theorem 4.3 implies

that lim^oop, = p G 5"(M). By Theorem 2.3, there is a subsequence {s-} G {s¡}

such that si -» s in C](M — [zx,...,z }, N), s harmonic with respect to p and

liminf,_oc£(i',', Pj) = liminf,-_oo £(!,-) > E(s, p). Since the convergence of s, to j is

valid away from the isolated points z-, s has the same action on 77, (A/) as s¿ for ;

sufficiently large and therefore s ° r¡ has the same action on ttx(M) as u. Finally, the

inequalities

É(r-X(p)) < E(s o T,(p), rr'OO) = E(s, p) « liminf £(£,)
i-* 00

show that the minimum is taken on at t~ x(p).

If 772( A) = 0, then by Corollary 1.4 each s¡ can be chosen homotopic to u, and a

similar argument as before gives s homotopic to u.

5. Morse theory. It has been known for some time that when N has negative

sectional curvature, harmonic maps into N from a Riemannian manifold Af are

essentially unique within their homotopy class [11]. The corresponding question for

uniqueness within a homotopy class of minimal immersions of surfaces into an N

with negative sectional curvature has been open for some time. W. Thurston pointed

out a counterexample which suggested to us a means of proving the nonuniqueness

result of this section, Corollary 6.5, which is an application of Ljusternik-Schnirel-

man Theory and Morse Theory to situations similar to that of Thurston's example.

Both T. Jorgensen [14] and W. Thurston [20, 19] constructed compact hyperbolic

3-manifolds which fiber over Sx. Consider such a 3-manifold N with fiber a closed

orientable surface M0 of genus larger than one. By Theorem 4.4 there exists a

conformai branched minimal immersion of A/0 into N in the homotopy class of any

fixed inclusion map of M0 in N. Let Ñ -» N be the double covering of N correspond-

ing to the subgroup of ttx(N) which maps onto even elements of 77,(5') under the

fibering of N over S[. Thurston pointed out that the two preimages A/, and A72 in N

of M0 are homotopic minimal immersions. In this fashion we can construct any

finite number of minimal immersions in the homotopy class of the inclusion map of

the fiber.
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For the remainder of this section we shall assume that N is compact with negative

sectional curvature. We shall also assume that u: M -* N is given and that u^:

irx(M) -» irx(N) is injective. Let £: 5"(M) -* R+ be as in §4.

Theorem 5.1. There exists a unique s^ homotopic to u such that É(p) = E(s , p).

Moreover, E is smooth as a function on bl( M ).

Proof. The existence of s follows from Corollary 1.4 and Lemma 4.2. By the

Cartan-Hadamard theorem, all maps homotopic to u have the same action on irx(M)

as u. The uniqueness of s is a result of P. Hartman [11]. In this case, the critical

points s of £ are nondegenerate, and an application of the implicit function

theorem proves that s is a smooth function of p G 'Vi(M) (see, for example, [21]).

The smoothness of Ë(p) = E(s , p) follows.

We observed earlier that if t G Mod(M), then E(s, p) = E(s, t(¡u)), which sug-

gests the possibility of reducing our variational problem to one on R(M) =

y( M )/Mod(Af ), the Riemann moduli space for the genus of M. There are two

obstructions to doing this. Firstly, R(M) is not a manifold, but an analytic space,

and secondly, Mod(M) does not leave the homotopy class {u} invariant. However,

there are subgroups of Mod(Af) which, for certain N, do not present these

difficulties.

Unfortunately, we cannot consider only the orientation-preserving diffeomor-

phisms of M. Let Diff0(A7) be the subgroup of Diff(Af) consisting of diffeomor-

phisms isotopic to the identity. Then r(Af) = Diff(A/)/Diff0(A7) is called the

extended mapping class (or homeotopy) group of M. The mapping class group

Y+(M) = Diff+(M)/DiffQ(M), where Diff+(Af) are the orientation-preserving

diffeomorphisms of Af. Y+ (M) has index two in Y(M). Both T+(Af) and T(Af) act

in a natural way on SYAf ) by pulling back conformai structures. If Af has genus two,

there exist ineffective elements of Y+(M), accounting for the only difference

between r+ (Af ) and Mod(Af).

For u: M -» N such that «„: irx(M) -» w,(7V) is an injection, define the subgroup

KG Y(M)by

K = K(u) = {t G r(Af ): u ° t is homotopic to u}.

First we shall show how this group fits into the Morse Theory and then we shall

describe the possible K for certain 3-manifolds N.

Proposition 5.2. £: f(Af) -» R+ is the lift of a function Ê: bl(M)/K -> R+ .

Proof. We need only show that É(p) = £(t(p)) for any t G K. Since {u ° t"'}
= {«}.

Ë(p) = min{£(í, p): s G {u}} = min{£(s ° t, r'x(p)): s G {u}}

= min{E{s,T-x(p)):sG {u°T-'}} = £(T-'(p)) = É(r(p)).

Theorem 5.3. The map Ê is proper on 6J(M)/K.
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Proof. The proof is a variation of the proofs of Theorems 4.3 and 4.4. Let

S = £~'[0, B]. We show that S/K is sequentially compact. Given {£,.} C S, by

passing to a subsequence if necessary, we may assume that there exist t, G Mod(Af)

such that p, = t,(£,) converges to p G6J(M). Let s¡ be the unique harmonic map in

the homotopy class {u ° t/'} with respect to the conformai structure p,. Pass again

to a subsequence if necessary and get j, -» s in C'(Af — {zx,...,z }, A), s: M -^ N

harmonic and {s ° r¡) = {u} for /' sufficiently large. It follows that rf ' ° r,■ = k, G X

for i andj sufficiently large. Here the difference between Mod( Af ) and T+ ( Af ) is of

finite index and is not relevant to this proof. For fixed t;, t~ x(p¡) -> t¡~ x(p) = £, say.

But k,7(|,) = rfx ° t,(£,) = T~\Pi) -» £ for k,7 G /Y, so that S/K is sequentially

compact.

Theorem 5.4. If the elements of K G Y(M) act without fixed points, then E is a

smooth proper map on bl(M)/K. Every critical point of E corresponds to exactly one

branched minimal immersion of M into N homotopic to u and conversely, every

geometric unramified branched minimal immersion of M into N homotopic to u

corresponds to exactly one critical point of E.

Proof. bJ(M)/K is a manifold since all the elements of K are assumed to act

without fixed points. By Theorem 1.2, every critical point of £ corresponds to a

conformai branched minimal immersion of M into N. We need to show that every

geometric unramified branched minimal immersion corresponds to only one critical

point of £.

Suppose sx: Af-> A and s2: M -> A are both branched minimal immersions

homotopic to u, and sx(M) = s2(M). We need to show that s2 = sx ° t for some

t G r(Af). By a theorem of R. Gulliver, R. Osserman and H. Royden (3.12 of [10]),

if j, is unramified, then no two disjoint open disks in Af are isomorphic to the same

disk in N under the immersion sx. Define t: Af -» M as follows: t(x) = {y G

sx~x(s2(x)): s2(%J FI s,(%x) is an open set for every pair of neighbourhoods % of

y and 6iix of x}. Then t(x) is nonempty because sx~x(s2(x)) is a nonempty finite set

and sx and s2 are immersions away from branch points. The hypothesis that sx is

unramified ensures that t(x) is unique and that t is continuous. Let p, and p2 be the

conformai structures induced by sx(M) G N and s2(Af) C A, respectively. Then t:

Af -> Af is conformai away from the branch points of sx and s2. Since t is either

holomorphic or antiholomorphic, these singularities are removable and t is confor-

mai. By the same argument, t~ ' is conformai. It follows that s2 = sx ° t.

We now ask whether there are examples where K acts without fixed points and

V(M)/K is an interesting space. The hyperbolic 3-manifolds of Jorgensen and

Thurston, which fiber over the circle, provide essentially all the interesting examples

(for a justification of this statement see §6). These 3-manifolds are the mapping tori

for certain diffeomorphisms r G Y(M). Namely,

A = MX R/ {(x,t) = (r(x),t+ l)}

as a differentiable manifold. If /: Af ■=-> N is an inclusion of the fiber, then K — Z -

{t"; « an integer}.
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Corollary 5.5. Let N be a hyperbolic 3-manifold which fibers over Sx and let i:

M ■=-» A be an inclusion of the fiber. Then there are at least two geometrically distinct

minimal immersions of M into A which are homotopic to i.

Proof. Here K = Z and K acts without fixed points on bJ(M), and there is no

ramified immersion homotopic to /'. By Theorem 5.4, the conformai branched

minimal immersions of Af into A homotopic to i are in 1-to-l correspondence with

the critical points of the proper smooth function E: bJ(M)/K -* R+ . Since ?i(A/) is

diffeomorphic to a cell, b7(M)/K has the homotopy type of 5' and therefore

cat(?T(Af)/Ä") = cat(S') = 2. Here cat denotes the Ljusternik-Schnirelman cate-

gory. By Ljusternik-Schnirelman theory, every smooth proper map on bJ(M)/K has

at least cat(S') = 2 critical points [16].

6. The subgroup K G Y(M). Given a map u: M -» A, we defined the subgroup

K = K(u) G r(Af)as

K= {tGY(M): m°t G {«}}.

Note that K depends only on Af, A and the homotopy class of u. In this section we

give an alternative description of K and work out some basic examples. We assume

throughout the rest of this section that the following general properties hold:

(a) u^: 77,(A/) -> 77,(A) is an injection. We shall identify irx(M) and its image

W*77,(M)in77,(A).

(b) 7T,(A) is torsion free.

(c) A is atoral, i.e., irx(N) contains no subgroups isomorphic to Z © Z.

(d)772(A)  = 0.

Note that if N has negative sectional curvature, then (b)-(d) are automatically true.

Define.fi as the stabilizer of u^irx(M) G irx(N):

K= {à G trx(N): äirx(M)ä~x =wx(M)}.

Theorem 6.1. 7/(a)-(d) hold, then K = K/mx(M).

Proof. There is a natural homomorphism j: K -» T(Af ). For à G K and y G

77-,(Af), let à(y) = âyâ~'. Thus 5 can be regarded as a map á: 7r,(Af) -» ttx(M).

Since Af is a K(tt, 1), the map a: trx(M) -* ttx(M) is induced by some /„: M -> M.

Lety(â) = a be the projection of/a into Y(M). We need to show that kery = irx(M)

and thaty is surjective onto K G Y(M).

First note that tt,(M) C ker j, for if àG77,(Af), then the induced map á:

7T,(Af ) — 77,(A/) is an inner automorphism and fa: M — Af is isotopic to 1. Con-

versely, if j(a) = 1, then «: itx(M) -» 7r,(M) is an inner automorphism and âyâ-1 =

ßyß~x for ally G irx(M) and someß G irx(M). It follows that (ß~xa)y(ß~xä)~x = y

in 77,( A) for all y G itx(M). Since irx(N) is atoral, this is impossible unless ß~ xà = 1,

i.e., ß = à G 77,(Af ). Thus kery = vrx(M).

To show that j is surjective, assume that a G K is represented by a basepoint

preserving diffeomorphism fa: M -> M. Since a G K, there exists a homotopy F:

M X [0,1] -> A with £(z,0) = u(z) and £(z, 1) = u(fa(z)). Let à G ttx(N) represent
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the curve F(zQ, t), 0 < t =£ 1, where z0 is the chosen basepoint of Af, given by

àyôT' = (/J*y. Theny(à) = a.

Example 6.2. Let a G T(Af) have infinite order and be represented by a base-

point preserving map /„: Af -> Af such that (/„)*: irx(M) -» 7r,(Af ) leaves no sub-

group invariant. The mapping torus for fa is the compact 3-manifold which fibers

over Sx obtained from Af X R by identifying (x, t) with (fa(x), t + 1), i.e., N = M

X R/{(x, t) = (fa(x), t + I)}. Here irx(N) is generated by the subgroup ttx(M) and

the element á represented by the loop (z0, t), where z0 is the chosen basepoint. The

relations are áya~' = (/a)*y, for y G ■nx(M). Let u: M -» Af X R -» A be in the

homotopy class of an inclusion map of the fiber. Then K = 77,(A) and 7C —

K/mx(M) = Z.

Example 6.3. Let ü = u ° h factor through a regular covering «: A7 -> Af where h:

Af -> A induces an injection on the fundamental group. Then the group of deck

transformations itx(M)/irx(M) is a finite group which maps into T(Af). The image

of 77,(Af )/tt,(M) in Y(M) lies in K.

We assert that Examples 6.2 and 6.3 are essentially the only examples. Assume

that a =j(â) G K is the image of à G K G w,(A) and let K G K be the subgroup

generated by à and the image of ttx(M) in irx(N). Example 6.3 describes what

happens when a has finite order and Example 6.2 is typical of what happens when a

has infinite order.

Theorem 6.4. If a G K has finite order p, then under the assumptions (a)-(d), w:

M -» A is homotopic to u ° h, where h: M -> Af is a regular p-sheeted covering and u:

M-A.

Proof. Recall that by Nielsen theory [3, 7], a may be realized as a conformai map

fa: M -> M for some conformai structure on M. Let Q be the subgroup of isometries

(possibly orientation reversing) of the universal covering 772 of M generated by a lift

fa: H2 -> 772 of/„: M -» M and the deck transformations itx(M) on 772. Up to inner

automorphism, conjugation by fa and á are the same on mx(M). Thus,/, ° y ° /T' =

(áx)y(áx)~x for some x G ttx(M) and all y G irx(M). Note that àx G trx(N) has

infinite order. Certainly fa has infinite order, since (äx)py(äxy — y implies that

(ax)p = 1 also. Therefore, fa is fixed-point free and Q — K by identifying the

subgroups 77,(Af ) C Q with irx(M) G K and/, with àx. It follows that M -» M/fa —

M is a regular covering with deck transformation group Z ^ K/mx( M). We know

that ü^: ttx(M) -* tx(N) factors through a map into irx(M), that M is a K(ir, 1) and

772( A) = 0. Hence, this factoring at the fundamental group level can be realized by a

factoring on the space level.

Lemma 6.5. Suppose a G K has infinite order, tr3(N) = 0, and let Na = M X

R/{(x, t) = (fa(x), t + 1)}. Then under the general assumptions (a)-(d), trx(Na) — K.

Moreover, u: M -» A is homotopic to a map ù: M -> Na -> N, where M =-» Aa is

inclusion of the fiber and Na -> A is some map.



MINIMAL IMMERSIONS OF CLOSED RIEMANN SURFACES 651

Proof. Observe that K/irx(M) =* tTx(Na)/tTx(M) — Z, and that conjugation by ä

in K agrees with conjugation represented by the loop (z0,t) in Na, and the groups

have identical descriptions. The map u^: -nx(M) -> itx(N) factors through trx(M) -*

ttx(Na) -» 77,(A). Since Af and Aa are 7í(tt, 1)'s and tt2(A) = 773(A) = 0, this factori-

zation can be realized by a map on the space level.

Theorem 6.6. Suppose that N is a compact 3-manifold with negative sectional

curvature, u: M -» A induces an injection on the fundamental group and a G K has

infinite order. Let Na be as in Lemma 6.5. Then there is a finite-sheeted covering

Na -» A such that u: M — N is homotopic to a map which factors through the inclusion

of the fiber M -» Na.

Proof. Both A0 and A are K(tt,1)'s, prime and irreducible. By 9.11 of [13],

77,(Aa) ̂  K G 77,(A) is a group of finite order in ■nx(N). It follows that Aa and the

covering of A corresponding to K are compact, prime, irreducible 3-manifolds with

the same fundamental group. Therefore, they are diffeomorphic.
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