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STAR-FINITE REPRESENTATIONS OF MEASURE SPACES

BY

ROBERT M. ANDERSON1

Abstract. In nonstandard analysis, "-finite sets are infinite sets which nonetheless

possess the formal properties of finite sets. They permit a synthesis of continuous

and discrete theories in many areas of mathematics, including probability theory,

functional analysis, and mathematical economics, "-finite models are particularly

useful in building new models of economic or probabilistic processes.

It is natural to ask what standard models can be obtained from these '-finite

models. In this paper, we show that a rich class of measure spaces, including the

Radon spaces, are measure-preserving images of "-finite measure spaces, using a

construction introduced by Peter A. Loeb [15]. Moreover, we show that a number of

measure-theoretic constructs, including integrals and conditional expectations, are

naturally expressed in these models. It follows that standard models which can be

expressed in terms of these measure spaces and constructs can be obtained from

"-finite models.

1. Introduction. One of the first goals of nonstandard analysts was to develop a

theory of measure and integration based on *-finite sets, replacing set functions by

point masses and integrals by sums.

Allen R. Bernstein and Frank Wattenberg [5] constructed Lebesgue measure on

[0,1] in the following way. They constructed a *-finite subset F of *[0,1] with the

property that, for any Lebesgue measurable A G [0,1], °(| F C\*A \/\ F\) is the

Lebesgue measure of A. They also showed that F can be chosen so that

°(| F C\*A l/l F\) is a translation-invariant finitely additive measure defined for all

subsets of [0,1].

A number of papers have pursued the approach initiated by Bernstein and

Wattenberg. For example, Ward Henson [9] extended their procedure to represent
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essentially every finitely additive probability measure. Rohit Parikh and Milton

Parnés [19, 20] showed that the technique could be used to define the conditional

probability P(A\B) for any pair of subsets of [0,1], retaining translation invariance.

In a series of papers [12-14], Peter A. Loeb showed how to represent a measure

space (X, <$>, p) by an essentially *-finite space. He constructed a *-finite algebra 6?

such that {*B: B G %} G & G *%, and replaced integration in X by summation in

(*X,&,*p).

The emphasis in the above papers is on applications of the transfer principle to

relate the properties of A'and *X. For example, properties of A G % or f: X ~> R are

related to properties of *A and */. This use of the transfer principle leads to some

difficulties. The basic problem is that countable unions are not preserved under

transfer. For example, U"=] *A„ ¥= *(U"=] A„). Indeed, a countable union of

internal sets is never internal unless it reduces to a finite union.

However, all set theory is preserved under inverse images of functions, and a good

part of set theory is preserved under direct images. Measure-preserving maps are a

natural way to handle measure-theoretic problems because they preserve the struc-

tures important in measure theory.

There are a number of situations in which measure-preserving maps have resolved

problems where transfer-based arguments failed. Loeb [16] extracted standard

harmonic measure on an ideal boundary and maximal representing measures for

positive harmonic functions as distributions of internal measures. The author [1]

constructed Wiener measure on C([0,1]) as the distribution of an internal measure v

on *C([0,1]); this was possible even though there is a countable B G C([0,1]) such

that v(*B) = 1. It is highly doubtful that either of these constructions could be

carried out usefully without the use of measure-preserving maps.

In [1], the author constructed a Brownian motion as the standard part of a *-finite

random walk x defined on a *-finite space fi. He then considered the problem of

defining an Itô integral with respect to this Brownian motion. This involves

considering functions on Ü X [0,1]. Using the measure-preserving map st: *[0,1] -»

[0, 1], any such function can be lifted to a function on Í2 X*[0,1]. In this setting, the

special *-finite properties of x can be used to full advantage.

Based on this experience, we believe that measure-preserving maps form a more

satisfactory basis for nonstandard measure theory than transfer-based methods.

Hence, this paper concentrates on generalizing the specialized techniques used by

Loeb [15, 16] and the author [1] to permit applications to a wide class of problems.

In [15], Loeb showed how to convert a nonstandard measure space (Y, tí, v) to a

standard measure space (Y, L(tf ), L(v)). The theory of these Loeb spaces was

further studied by the author [1]. We shall show that, under suitable hypotheses, the

standard part map st: (*X, L(*$), L(*p)) — ( X, %, p) is measure-preserving. In

particular, this is true if X is Radon, confirming a conjecture of Donald J. Brown.

Moreover, *"& may be replaced by a *-finite algebra (?, making *X in effect *-finite.

Thus, we shall see that most measure spaces, including all Radon spaces, can be

represented by *-finite Loeb spaces. In §§5-7 we discuss a number of techniques for

representing standard measure-theoretic constructs and manipulating Loeb spaces.
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Among the items considered are integration, measurability, and conditional expecta-

tions. These techniques are abstracted from special techniques used by Loeb [15] and

the author [1]. In a number of cases, they were developed specifically in response to

problems in mathematical economics posed by Brown.

In §7, we also show that any martingale can be represented by a *-finite

martingale. This representation takes a special form if the underlying probability

space is Radon. Douglas N. Hoover and Edwin Perkins [25] and Tom L. Lindstrom

[26] have recently developed stronger representations for martingales appropriate to

the theory of stochastic integration.

In §8, we study a special class of internal measures, which we call standardly

distributed. These measures have many of the properties of the stars of standard

measures. Almost all ""-finite samples from a standard distribution are standardly

distributed. The original motivation for the study was a problem in core theory in

mathematical economics [3], but we anticipate the notion will be useful in other

contexts.

In another article [4], Salim Rashid and the author have given a nonstandard

characterization of weak convergence.

H. Jerome Keisler has proposed the extensive use of *-finite sets for building

models in probability and the social sciences. Our results show that the class of

models which can be obtained in this way is at least as rich as the class obtainable

through the measure-theoretic constructs we have represented. Applications to

mathematical economics are given in Chapter V of the author's dissertation [2], in

[3], and in Rashid [21].

Keisler [11] and Douglas N. Hoover [10] have studied the model theory of *-finite

probability spaces, concentrating on properties expressible in certain formal lan-

guages. Their results apply to a wider class of measure spaces and give a more

systematic characterization of the properties preserved. However, certain properties

expressible in terms of our constructions are not expressible in those languages, and

are important in applications to economics. Thus, our results complement theirs.

2. Loeb spaces. In this section, we sketch and extend Loeb's construction for

converting a nonstandard measure space (X, &, v) to a standard space. Assume that

we are given a structure including the real numbers and a fixed denumerably

comprehensive enlargement of this structure. Let X be an internal set in this

enlargement, & an internal algebra of subsets of X, and v: 6E -> *[0, oo] an internal,

additive set function. Then X, 6B, and °v are respectively a set, algebra, and set

function in standard set theory. Let a(6E) denote the standard a-algebra generated

by (Î. Using the Carathéodory Extension Theorem, Loeb showed that °v has a

unique extension L(v) to a(&).

In [1], the author considered the measure space (X, L(&), L(v)), which is defined

to be the completion of (A', a(&), L(v)). It is now convenient to introduce a new

a-algebra L'(&), satisfying o(t£) G L'(â) G L(&), so that points not separated by &

are not separated by L'(&). A special case of this construction was introduced in the

definition of óDf in [1, §4]. Since the proofs are straightforward, they will be omitted;

the interested reader may refer to [2, §111.2].
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Definition 2.1. Let ~ be the equivalence relation on AT defined by x ~ y if x and

y are not separated by &. In other words, x ~ y if and only if, for each A G tí,

x G A exactly when y G A. Let [x] be the equivalence class of x. Let 911(6?) be the

algebra of unions of equivalence classes. In other words, 911(6?) = {B G X: B =

Ux(EB[x]}. Let L'(cí) = L(t?) n 911(6?.).

Theorem 2.2. L'(tt ) is a standard o-algebra, and a(6?) C L'(6?) C L((S).

Definition 2.3. Let X/~={[x[: x G X}, •n: X^X/~ the quotient map

ir(x) = [x].

Lemma 2.4. B G 9íi(ií) if and only if^x-n(B) = B.

Definition 2.5. Let 6?/~= {■n(A): A G &}, and let (v/~): £?/--> *[0, oo] be

defined by (v/~)(ir(A)) = v(A).

Theorem 2.6. (í/~ is an internal algebra, and v/~ is an additive set function.

Theorem 2.7. 77: (X, L'(&), L(v)) -* (X/~ , L(&/~), L(v/~)) is a measure

isomorphism in the sense that

v(L'(&)) = L(&/~),       L'(&) = *-\L{&/~)),

L{v)=L{v/~)it,       L{v)ir-x=L{v/~).

Remark 2.8. All the results in [1, §2] remain true with¿'(6?) substituted for L( cf ),

as is readily shown using the isomorphism given by Theorem 2.7. This is of primary

interest if (Í is *-finite. In this case, X/~ is a *-finite set, and we have the following

corollary.

Corollary 2.9. //6? is *-finite, (X, L'(6F), L(v)) is measure isomorphic to the Loeb

space of a *-finite space, namely (X/~ , L(t(/~), L(v/~)).

3. Radon measures. In this section, we show that a large class of measure spaces

are measure-preserving images of *-finite Loeb spaces. We begin by recalling some

definitions and results of Abraham Robinson [22, pp. 90-94].

Let A' be a Hausdorff space, with 5" the collection of open sets. For x G X, the

monad of x is defined to be

m(x) =     H     *N.
A-e/VEïi

If y G *X and y G m(x) for some x G X, we write x = ° y = st(y) and say that x is

the standard part of y. °y is unique. Any y having a standard part is called

near-standard; the collection of near-standard points in *X is denoted ns(*A). A

subset A of Xis compact if and only if °a G A for all a G *A. A is closed if and only

if °a G A for all a G *A n ns(*A). A is open if and only if m(a) C *A for all

a G A.

Next we need some measure-theoretic notions. Since terminology varies in the

literature, we include definitions. Suppose that (X, <3>, p) and (X1, <i>', p) are mea-

sure spaces. A map T: X' -* X is called measure-preserving if T is measurable and

p'(T~ X(B)) = p(B) for all B G %.
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A probability space (X, %, p) is called Radon if

(i) A1 is a Hausdorff space, <$> the Borel a-algebra (i.e., the a-algebra generated by

5", the class of open sets),

(ii) for all B G %,

p(B) = sup{p(C): C G B, C compact} = inf{p(7" ): ÍD B, T G 5"}.

Most common probability spaces are Radon. For example, it is shown in

Billingsley [6] that any probability measure on the Borel a-algebra of a complete

separable metric space is Radon. A probability measure p is said to be tight if

sup{p(C): C compact} = 1. Any tight probability on the Borel a-algebra of a metric

space is Radon.

Definition 3.1. Let 6? be an internal algebra of subsets of *X. Recall the

equivalence relation ~ of Definition 2.1. 6? is said to be 5-separating if [x] G m(°x)

for all x G ns(*AT).

Remark 3.2. It is easily seen that 6? is 5-separating if and only if st '(^4) e 911(6? )

for all A C X. If X is metric, 6? is S-separating if and only if the diameter of [x] is

infinitesimal whenever x G ns(*Ar).

The following theorem was conjectured by Donald J. Brown.

Theorem 3.3. Let (X,%,p) be Radon, with completion (X,Q,p). Let 6? be any

internalsubalgebra of *$ such that, for any T G S", either *T G 6? or si~\T) G L(&).

Then L(*p)(ns(*X)) = 1, and st: (*X, L(&), L(*p)) ->(X,6, p) is measure-preserv-

ing. If, in addition, 6? is S-separating, we may replace L(&) by L'(â).

Proof. Suppose B G Q. We may find sequences C„ of compact sets and Tn of

open sets such that Cx G C2G • ■ ■ G B G ■ ■ ■ G T2G Tx and such that p(T„ — C„)

-0.

Since C„ is compact and Tn is open, *C„ G st~'(Cn) C st~x(B) G st_1(rn) C *T„.

*p(*Tn-*Cn) = p(T„ - C„) -> 0. Moreover, either *C„ G <3 G L(<3) or st_I(C„) G

L(Ôl) and L(*p)(st"'(CJ) > °(*p(*Cn)) = p(C„); note that *p(*C„) is defined even

if *C„ £ &, since p is a Borel measure and C„ is compact, hence closed. Either

*r„G6?CL(6?) or st~x(Tn)GL(&) and L(*p)(st~x(Tn)) *i °(*p(*T„)) = p(Tn).

Hence st~x(B) G L(â) and L(*p)(st~x(B)) = p(B). This shows that L(*p)(ns(*X))

= 1 and that st is measure-preserving.

Suppose that 6f is 5-separating. Then srx(B) G 911(6?). Therefore st~x(B) G

911(6?) n L(6P) = L'(&), so the theorem is true with L(&) replaced by L'(â).

Corollary 3.4. Let (X, %, p) be Radon with completion (X,6, p). Then there is a

"-finite probability space (Y, 6?, v) and a measure-preserving map S: (Y, L(&), L(v))

^(x,e,p).

Proof. Loeb [13] observed there is a *-finite algebra 6E, such that {*C: C G Q} G

6?, G *G; to see this, note that for any finite collection {C,,...,C„} C Q, there is a

finite algebra 6?2 such that C, G 6?2 C Q, and use the enlargement property.

We now show that 6?, is 5-separating. Suppose x G ns(*Af). Let T be an open

neighborhood of °x. Since T is open, m(°x) G *T. Therefore x G *T; since *T G 6?,,

[x] C *T. Therefore [x] G n„vere,5*r = m(°x). Thus, 6?, is 5-separating.
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Therefore, st: (*X, L'(Cix), L(*p)) -» (X, Q-, p) is measure-preserving by Theorem

3.3. Let Y = *X/~ , 6? = 6?,/~ , v = *p/~ , and m the quotient map it: *X -> Y.

Let 5 = st°7r~': Y — X. One easily verifies that 5 is well defined except on the

L(v)-null set 77(*A^ — ns(*A')). Then since st is measure-preserving and Ci is a

measure isomorphism by Theorem 2.7, 5 is measure-preserving.

Corollary 3.5 [1, Theorem 14]. Let ([0,1], 6, p) be the Lebesgue measure space,

and pick « G *N — N. Let 6? be the *-algebra of subsets of *[0,1] generated by the

partition {[0, 1/to),. . . ,[(w - l)/w, 1]}. Then st: (*[0, 1], L'(Ci), L(*p)) -*

([0,1], 6, p) is measure-preserving.

Proof. Since each equivalence class mod ~ has diameter 1/co, 6? is 5-separating.

6? C *e. p is Radon. If a < b G [0,1],

OO

srx((a,b))=  U [an/w,bn/u)

n=\

where an = [(a + l/n)u] and b„ = [(b — l/n)u], where [•] denotes the greatest

integer function. Since [an/a, b„/u>) G 6?, st^'((a, b)) G a(Ci). Since any open set T

is a countable union of open intervals, st~x(T) G o((l). Therefore, st is measure-pre-

serving by Theorem 3.3.

Theorem 3.6. Let (X, <$, p) be Radon with completion (X,6, p). Let Ci be any

internal algebra containing {*T: T G 9"}. Then,for any B G Q, st~x(B)A*B G L(Ci)

and L(*p)(st~x(B)A*B) = 0.

Proof. Let Tn, C„ be as in the proof of Theorem 3.3. Then *C„ G st~'(£) C *T„

and *C„ C*SC *T„. Thus

st~x(B)A*BG*Tn-*Cn,    and    *p(*T„ -*C„) = p(Tn - C„) - 0.

Since L(6?) is complete, stx(B)A*B G L(&) and L(*p)(st~x(B)A*B) = 0.

The following is an analogue of Lusin's theorem and can be used in situations in

which Lusin's theorem is used in standard treatments. A nonstandard proof of

Lusin's theorem itself is given in Loeb [14]. I am grateful to the referee for pointing

out the converse part of the theorem.

Theorem 3.7. Let (X, %, p) be Radon with completion (X, Q, p), and suppose f:

X^ Y.

(i) // Y is a Hausdorff space with a countable base of open sets and fis (^measurable,

then °(*f(x)) = f(°x)for L(*p)-almost all x. In particular, if Ci is any internal algebra

containing {*T: T G fí}, st ° */is L(Ci)-measurable, and st ° */ = /° st except on a

null set in L(Ci).

(ii) Conversely, if X is uniform, Y is metric, and °(*f(x)) = f(°x)for L(*p)-almost

all x, then f is (^measurable.

Proof, (i) Let {Un}n(=N be a countable base for Y, with Í/, = Y. Note that

L(*p)(*r'(*i/jA(/o st)-'(l/j) = L(*p){*(r](Un))Ast-x(r](U„))) = 0
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by Theorem 3.6. Let

00

x'= \j{*rl(*un)A(fosty\u„)).
n=\

YhusL(*p)(X') = 0.

Ux£X',xG nfCx)eUn*yx(*Un),so

*f(x)G     H     *U„ = m(f(°x)).
f(°x)<EU„

Therefore °(*f(x)) = f(°x) for all x G A", st ° */is L(Ci)-measurable because f° st

is.

(ii) Let d be the metric on Y, and % the uniformity on X. Fix n G N. There exists

B„ G *e with *p(*X- B„) < 1/2" and Bn G {x: °(*f(x)) =f(°x)}. If x, y G B„
and x ~ y, then *f(x) = *f(y). Thus, there exists (/,£*! such that if (x, y) G Un,

x, y G Bn, then d(*f(x), *f(y)) < l/n. By transfer, there exists Bn G 6 and Un G %

with piA' - £„) < 1/2" such that, if (x, y) G Un and x, y G Bn, then d(f(x), f(y))

< l/n. p(X- iln>m Bn) < l/2m. / is continuous on (ln>m B,„ since (x, .y) G U„

implies d(f(x), f(y)) < l/n for « > m. Define /Jx) to be f(x) if x G n„>ffl 5„,

and 0 otherwise. Then fm is measurable, and f„, ->/ on Um f\>m Ä„, a set of full

measure. Therefore/is (3-measurable.

The previous results show that Loeb algebras are big enough to represent standard

Radon probabilities. The next two results show that Loeb algebras are not too big.

The first theorem of this type was proved by Ward Henson. He showed that, if 6? is

an internal algebra of subsets of a compact Hausdorff space X and B G a(Ci), then

st(B) is in the Souslin closure of the closed subsets of X. The following theorem is an

easy corollary of that result. Edward Fisher later constructed a direct proof of the

theorem in the case that X is the Lebesgue space. The proof we give is essentially

Fisher's, in a more general setting.

Theorem 3.8. Let (X, %, p) be Radon with completion (X, Q, p). Suppose *X is

taken in a K-saturated enlargement where every x G X has a neighborhood base of

cardinality < k. Then {B G X: st-'(£) G L(*6)} = 6.

Proof. Theorem 3.3 shows that {B G X: st~x(B) G L(*6)} D G. We now pro-

ceed to show the reverse inclusion.

Supposed C AT and stx(B) G L(*6). Fixe G R+ . There exists ,4 G *£such that

A G st'x(B) and *p(A) > L(*p)(srx(B)) - e. Let C = st(A). C is closed by [17,

3.4.2].

Since C is closed, C G Q. Therefore, by Theorem 3.3, sr'(C) G L(*(?) and

L(*p)(st~'(C)) = p(C). Since st"'(C) = st"'(st(^)) Z) A,

p(C) = L(*p)(sr'(C)) > °(*p(A)) » L(*p){st-X(B)) - e.

Finally, C = st(^) C st(sr'(£)) = B.

We have shown that there exists C closed, C G B, p(C) > L(*p)(stx(B)) - e.

Now note that

st~x(X- B) = ns(*A-) - st~x(B) G L(*6);
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hence we can apply the same argument to X — B to find C closed, C C X — B,

p(C') ^ L(*p)(srx(X- B)) - e. Therefore X - C is open, ï-C'Dfi, and

p(A-- C')< 1 - L(*p)(st~x(X- B)) +s = L(*p)(st-X(B)) + e.

This shows that B is in the completion of <$ with respect to p, i.e. that B G Q.

Definition 3.9. Let S = {st" '(£>): D C A'}, and§(6?) = § n L(Ci). S(6?) will be

called the standard Loeb algebra determined by Ci.

Note that S(6?) is a a-algebra of subsets of ns(*Ar). Note also that, if 6B is

5-separating, §(6?) = S n L'(6?).

Theorem 3.10. Suppose (X,%, p) is Radon with completion (X,Q, p), and that *X

is taken in a K-saturated enlargement where every x G X has a neighborhood base of

cardinality < k. Then if Ci satisfies the assumptions in Theorem 3.3, st:

(*X, %(&), L(*p)) -» (X, Q, p) is a measure isomorphism. There is a *-finite probabil-

ity space (Y, 6?,, v) and a measure isomorphism 5: (Y, S(6?,), L(v)) -» (X, Q, p).

Proof. Theorems 3.3, 3.4, and 3.8.

Theorem 3.11. Let (X, <$, p) be Radon with completion (X,6, p). Let *X be taken

in a K-saturated enlargement, where every x G X has a neighborhood base of cardinal-

ity < k. Let (Y, 6D) be any measurable space. If g: *X -> Y is L(*Q)-measurable, and

g(x) = g(°x) for L(*Q)-almost all x, then f — g \x is (^measurable and has the same

distribution as g. Moreover, if 6D is the Borel algebra of a Hausdorff topology with a

countable base on Y, then °(*f(x)) = g(x) for L(*p)-almost all x.

Proof. Let g': ns(*A) -» Y be defined by g'(x) = g(°x). Then g'(x) = g(x) for

L(*p)-almost all jc, so g' is L(*(3)-measurable and has the same distributions as g.

But g' is S-measurable, so g' is S(*C)-measurable.

f= g\x = S'\x = 8' ° st-1. Since st: (*X, S(*C), L(*p)) -> (A', S, p) is a measure

isomorphism,/is ^measurable. If D G 6D,

p(r\D)) = L(*p){st-x(yx(D))) = L(*p)(g'-X(D)) = L(*p)(g~x(D))

so g and / have the same distribution.

If öD is the Borel algebra of a topology with a countable base, then by Theorem

3.7, °(*f(x))=f(°x) for L(*p)-almost all x. Therefore °(*f(x)) = f(°x) = g(°x) =

g(x) for L(*p)-almost all x.

We close with a note on a-finite measure spaces. It is easy to see that no nonfinite

Loeb space is a-finite. However, if (X, bS>, p) is a countable union of Radon spaces,

we can construct representations on each Radon piece, then glue them together.

Alternatively, we can extract a a-finite subset of (*X, L(*6), L(*p)). The details are

left to the reader.

4. Non-Radon measures. The representations of §3 are no longer possible if

(X, %,p) is not Radon. For example, let c be the first uncountable ordinal,

X = {1,... ,c}, ?T the order topology on X, % the Borel a-algebra. A' is a compact
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Hausdorff space. It is well known [18, Problem 17, p. 58] that there is a probability p

on <?B such that for A G $,

, ...       il     if A contains a closed cofinal subset of X — {c},
p(A) = \ l '

[ 0    otherwise.

It is not hard to see that L(»(st~'({c})) = 1, while p({c}) = 0.

However, if we restrict p to the Baire sets, one easily sees that the standard part

map is measure-preserving. This observation provides the point of departure for this

section.

The basic approach will be to embed (X,GJb, p) in a compact Hausdorff space X;

we induce a Baire measure p on X and show that this induced measure is represented

in a natural way by a Loeb space on *X.

Definition 4.1. Suppose (X, ?T ) is a Hausdorff space. Let C(X) denote the space

of all bounded continuous real-valued functions on X. The Baire algebra on X is the

smallest a-algebra such that every/ G C(X) is measurable.

We shall first study compactifications. Our result is an easy extension of results in

the nonstandard literature. Since no new ideas are involved in the proof, we omit the

details and refer the interested reader to [18, §§7, 9; 17, 3.15.4; 13, p. 77; and 24,

8.4.34, 9.2.5].

Definition 4.2. Let X be any set, S any collection of bounded real-valued

functions on X. Let *X be the extension of X in a K-saturated enlargement, where

max(| ÍF| , | A |) < te. Define an equivalence relation oc on *X by x ce y <=> °*f(x) =

°*f(y) for all / E f. Let X = *Ar/cc . Let /: X - R be defined by f(x) = °*f(x).

Set S — {/: / G <$}. Let 5be the topology on X generated by the subbase {{x G X:

f(x) GT}:fG§,TGR,Topen}. Let I: X^ Xbe defined by I(x) = *x. Let n:

*X -* X be the quotient map.

Theorem 4.3. (i) I(X) is a dense subset of (X,§ ), which is a compact Hausdorff

space. Iff G '3, fis the unique continuous extension of f to X.

(ii) If S separates points in X, I is an injection.

(hi) If'S is an algebra containing 1, % is dense in C(X).

Theorem 4.4. Suppose 'S is an algebra of bounded functions containing 1. Let <J> be a

positive linear functional on 'S with $(1) = 1. Then there is a unique Radon probability

p such that, for all f G S, $( / ) = Jx f dp.

Proof. Define 4>(/) = $(/) for/G <S. Since $ is positive and &(l) — 1, 4> is

bounded. Since itis dense in C(X), $ extends to a unique bounded functional 4> on

C(X).

X is compact Hausdorff. Hence [7], there is a unique Borel measure p such that

Ô(g) = fx g dp for all g G C(X), and such that p satisfies conditions (i) and (ii) in

the definition of Radon; since p is also obviously a probability, it is Radon and we

are done.

Remark 4.5. Using Theorem 4.4 and the results of §3, we can get a *-finite

representation of p. However, if the original functional $ arises as the integral with
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respect to a measure p on X, we can do better. The quotient map Yl: *X -> X will be

measure-preserving provided that we restrict p to the Baire sets.

Theorem 4.6. Let (X, <&, p) be any probability space, 'S any algebra of bounded

measurable functions containing I. If & is an internal subalgebra of *Í1d containing

{*yx(a,b): /GÍF, a,bGR}, and S' is the Baire algebra of (X,S), then Yl:

(*X, a(Ci), L(*p)) -» (X, %', p) is measure-preserving.

Proof. Suppose g G C(X). Then there is a sequence /, f2,... ,f„ G S such that

Wfn-g\\x<\/n.\fa,bGR,

Yl-x(g-x(a,b)) = n-xl\JV(a + -n,b--n))

-Ün-(£-'(. + i.»-¿))
n= 1

= Ü    Ü  '/T'ia+ - + -,*----) G a(ffi).
, \        n      m n      m I

n=\   m—\

Therefore {5 C X: Yl~x(B) G o((i)} is a a-algebra containing g~x(a, b) for all

a.b G R,g G C(X). Hence it contains $', so n is measurable.

For B G %', define v(B) = L(*p)(Yl~x(B)). Thus, v is a Baire probability mea-

sure. Let g, /„ be as before.

fgdv= lim   /7„<ïV= lim   í  ¡n°YldL(*p)= lim  °(   */„¿*M
JX n^oo  '.y n —oo  •'•Jf n^oo     J*X

= lim   í f„dp= lim   f fndp= f gdp.
n-»oo  •'A' n-»oo  •'.Y •'A'

Thus  Jx gdv = Jx fdp  for all g £ CfJÍ),  so  j' = ju|„ñ..  This  shows  that  n  is

measure-preserving.

Remark 4.7. As in §3, we can establish the existence of a *-finite algebra with the

properties required of 6?. If, in Theorem 4.6, we take ^fto be the class of all bounded

measurable functions on (X, 65, p), then "íFis closed with respect to the sup norm.

Hence S = C(X). Hence the theory of integration of bounded measurable functions

on X is transformed into the theory of integration of continuous functions on X, and

we have a *-finite Loeb representation for this theory. Thus, statements about

integration of bounded measurable functions on an arbitrary probability space can

be represented as statements about Loeb spaces. What we are doing, of course, is

moving from the integration of measurable functions on the original space to

integrating continuous functions on the Stone space for L00. Our construction of X,

the Stone space, is the same as Loeb's [13, p. 77]. We could also take ?7to be C(X),

provided X is Hausdorff. Then S= C(X), and again a *-finite Loeb representation

results. In a special case, a stronger result holds.

Corollary 4.8. Let (X,S ) be compact Hausdorff, p a probability measure on the

Baire algebra %' on X. If Ci is any internal subalgebra of *%' containing {*f~ x(a, b):

fGC(X),a,bGR}, then st: (*X, o(&), L(*p)) -> (X, <$', p) is measure-preserving.
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Proof. X is the Stone-Cech compactification of X, so we can identify X and X.

Suppose x G *X. °*f(x)=f(°x) for all /G C(X). Hence Yl(x) = °x. Therefore

Il = st. Using Theorem 4.6, we obtain the desired result.

5. Lifting and pushing down. In this section, we relate measurability properties in

internal spaces (X, Ci,v), their Loeb spaces (X, L((i), L(v)), and the standard

measure spaces which are measure-preserving images of these Loeb spaces. We

assume that ( X, 6?, v) satisfies the conditions given in the first paragraph of §2.

Integration properties in Loeb spaces were studied in [1, §2], to which the

interested reader is referred. It is shown there that, for 1 *£p < oo, there is a nice

subspace of *LP(X, 6?, v) which is isometrically isomorphic via the map f -> °f to

LP(X, L((i), L(v)). In this section, we shall concentrate on measurability properties

for more general range spaces.

Loeb [15] shows that, if Y is compact metric and/: X -> *Y is 6E-measurable, then

°f: X^Y is L(6?)-measurable. Conversely, if °v(X)< +oo and g: X^RU

{-oo, +00} is L(6?)-measurable, then there exists /: X -» *R, f is internal and

6?-measurable, and °f — g almost everywhere. It is these results that we generalize.

Definition 5.1. A topological space y is regular if:

(i) points are closed;

(ii) for any closed set A and any x & A, there exist M and A neighborhoods of A

and x such that A D M = 0.

Theorem 5.2 (Pushing down). Let (Y,S) be a regular topological space. Suppose

that (X,Ci, v) and *Y are taken in a K-saturated enlargement, with k >| ?T| . Suppose

°v(X) < +00. ///: X - *Y is immeasurable and L(v)(fx(ns(*Y))) = L(v)(X), then

°f is L'(Ci)-measurable.

Proof. Suppose A G Y is closed. Let {Ux}XeA be the collection of open sets

containing A. If y G Y, y G A, there exist disjoint open T and M with T D A and

y G M. Thereforem(y) D*T = 0. Thus (f\eA *UX) n ns(*F) = st"'(^).

Let s = inf{°v(yx(*Ux)): A G A}, and suppose e G R+ . Define Sx = {B: B G

*S, B G *UX, p(f~\B)) > s - e}. Note that *UX G Sx.

If A,,... ,A„ G A, then Ux n • • • n Ux is an open set containing A, so it equals

Ux for some A G A. Therefore *UX G ?FA n • • • f)Sx , so this last set is not empty.

Thus, (fx}XeA has the finite intersection property. By saturation, there exists

B G nxSx. That is, B G *S, B G DX*UX, v(f~x(B)) > s - e. Since L(Ci) is com-

plete with respect to L(p),yx(C)*Ux) G L(Ci). Butyx(ns(*Y)) G L(CÍ), so

(°/)"'(^)=r1((n*í/x)nns(*r))

= r'(n*<yA) nf(ns(*y)) GL(6E).

Moreover, °f is defined L(p)-almost everywhere, so °f is L(6?)-measurable. Since

x ~y implies/(x) = f(y) implies °f(x) = °f(y), °fis L'(Ci)-measurable.

Theorem 5.3 (Lifting). Suppose °v(X) < +00 and Y is a Hausdorff space with a

countable base of open sets. Ifg: X -» Y is L(d)-measurable, there exists an internal f:

X -» *Y, f (immeasurable such that °f(x) = g(x) for L(v)-almost all x. In particular,

°f is L(d)-measurable and has the same distribution as g.
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Proof. Let UX,U2,... be a countable base of open sets for Y, with Ux = Y.

g~ '(£/„) G L(&). Therefore we may select^; G Ci, such that L(v)(A'„ Ag~ '([/„)) = 0.

We can also take A\ = X. We want to show there is a function /„: X -> *Y so that

f,(A'k) G *Uk for k < «. However, we could run into trouble if r\iesU¡ = 0 for

some 5 C {1,...,«}, while (~}iesA'j ¥= 0. We rectify this situation by defining

A„ = A'„-       U DA].
SC(1_«}    1ËS

n/est/(=0

Note that, if n,es(/,= 0, n^g-'it/,) = g-'(n,eSc7.) = 0,sov(n,esA'i)^O.

Hence, ^,A4)^0, so L(e)K, Ag~\U„)) = 0. For any 5C{l,...,w} for

which r\¡esU¡ ¥= 0, select ys G n/est/,. Define fn(x) — ys, where 5X. = {/ *s n:

x G Ai}. Note that this defines/, on all of X, since Ax = A\ = X and ri(6Ç,4, = 0

if n/esc/ = 0. Hence, we have found /„: X -» *7, /„ internal and 6?-measurable,

and/„(^)C*l4forA:<n.
By denumerable comprehension, we may extend {/„: n G N}, {A„: n G N}, and

{*U„: « G A} to internal sequences {/„: n G *N}, {A„: n G *N}, and {Vn: n G *A},

where Vn = *U„ for « G A.

{«: /„ immeasurable, k < « =-f,(Ak) G Vk} is internal and contains all « G A;

hence it contains some w G *A — A. Let/ = fu.f is immeasurable.

Thus, for any k G A, x G Ak =*/(*) G *£/t. Let AT' = X - U™=x(An Ag~x(U„)).

Then X' G L(&), and L(^)(A - X') = 0. Suppose x G X'. Since x G

fW^g-VU *e ns(i)e[//(, Therefore f(x) G Oglx)^Un = m(g(x)).

Thus x G X' implies °f(x) = g(x).

Remark 5.4. In Theorems 3.7, 3.11, and 5.3, the assumption that Y has a

countable base excludes many common spaces. This assumption can be weakened as

follows. It clearly suffices to assume that there exists a set B G L(Ci), L(v)(X — B)

= 0, such that g(B) has a countable base in the subspace topology induced by Y. In

particular, if Y is metric, it suffices to have such a set B with g(B) separable. This

will always occur unless measurable cardinals exist. In any case, g(B) will be

separable for any reasonable metric space Y. For more details, see Billingsley [6,

p. 235].
So far, we have considered lifting and pushing down between the internal space X

and its Loeb space. Suppose now that (Z, %, p) is any standard measure space,

(A', L(6?), L(v)) any Loeb space, and II: X -» Z any measure-preserving map. In

particular, we might be in the situation of §3, with X = *Z, (Z, ®, p) Radon, and

n = st. We can lift and push down between X and Z in the following way.

Let (Y, 6îi) be any measurable space and/: Z -» Y measurable. Then/ ° Yl: X ^ Y

is L( 6? )-measurable, and has the same distribution as/. Thus/° n is a lifting of /to

(X, L(Ci), L(v)). Moreover, if Y = R U {+cc, -oo}, f° Yl G LP(X, L(&), L(v)) if

and only iff G LP(Z, % p).

Pushing down in this situation is possible, at least in a weak sense. Suppose that g:

X -> Y is n~'(üi!i)-measurable. Then g°n~': Z -» Y is ^-measurable and has the

same distribution as g. Theorem 3.11 is a special case of this situation in which

n~ X(6A) has an especially nice form, and where the result is most satisfying.
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But now suppose that g is only L(6?)-measurable. If Y = RL> {+00,-00} and

g G LX(X, L(Ci), L(v)), and conditional expectation / = E(g\ Yl~x(%)) is defined

and is n~'CiÔ)-measurable. Hence/0 II-1 G LX(Z, <$>, p) and has the same distri-

bution as /. This gives us a weak push down of g to Z which may prove useful in

some situations. Note that the same procedure works if Y = R" or any space in

which conditional expectations are defined.

6. Uniform integrability. Uniform integrability is a standard condition on sets of

functions. It is useful because it permits a generalization of Lebesgue's Dominated

Convergence Theorem. In this section, we shall see that uniform integrability has a

simple nonstandard characterization closely related to the integration theory devel-

oped by the author in [1, §2]. This characterization was discovered independently by

Loeb and the author; see Loeb's article [28]. We assume throughout that (X, Ci, v)

satisfies the conditions in the first paragraph of §2.

Definition 6.1. Let {(A',, iß,., p¡): i G /} be a family of measure spaces, and /:

X,. -> R U {+00, -00} "^-measurable. We say that {/},e/ 's uniformly integrable if

(i) lim7-00 sup, fVA>y\fi I dp, = 0,

(ii)supj|/|i/p,< +00,

(hi) limY^0 sup, fVi<y \ft I dp, = 0.
{/},e/ is said to be uniformly Lp if {\f \p} is uniformly integrable.

Remark 6.2. If supp^A",) < +00 and, in particular, if each Xt is a probability

space, (iii) is automatically satisfied and (i) implies (ii).

Definition 6.3 [1, Definitions 3 and 10]. Suppose/: X -» *R is 6E-measurable.

We say that/is 5-integrable if

(0 71/1 <*'<+«>,
(ii) A G Ci, v(A)^0^SA\f\dv^0,

(iii) A G &,f(A) G m(0) => fA l/l dv - 0.
/is said tobe SLp (\ ^ p < oo)if\f\p is 5-integrable.

Remark 6.4. If °v(X) < +00, (iii) is automatically satisfied; if, in addition, A'has

no atoms of noninfinitesimal measure, (ii) implies (i). It is shown in [1, Theorem 11]

that the map /— V determines an isometric isomorphism of SLP(X, Ci, v) and

Lp(X, L(Ci), L(v)).

Theorem 6.5. Suppose f: (A,, <3>¡, p¡) — R. Then {/} is uniformly Lp (1 <p < 00)

if and only if *f G SLP(*X„ *%, >,) for all i G *I.

Proof. Since/ is ^-measurable for all / G /, *f¡ is ^-measurable for all ; G */.

Suppose {/} is uniformly Lp. Then {l/^} is uniformly integrable. Then there

exists a < 00 such that sup,e// |/ Y dpt < «• Hence, for /' G */, °f \ *f \p d*p¡ < a.

Supposed G *%, *p,(A) - 0. For each y G R+ ,

(\*f,\pd*Pi^y*p,(A) + f       \*f\pd*p,.
JA •/|*/,I>Y

The first term is infinitesimal and the second term tends to zero as y -» 00; hence
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fA | */ \" d*p, ^ 0. Suppose A G *®„ *f(A) G m(0). For each y G R+ ,

f\*f\p d*p, - ( |7 \p d*p, ̂  0    as y - 0.
JA J\*f,\P<7

Hence fA \ *f \p d*p, ^ 0. Thus, {/} uniformly Lp implies *f G SLP for ail i G *!.

Conversely, suppose */ G SLP for each ; G */. Then supie,/j \ *f¡ f d*p¡ is less

than any infinite y, so it must be finite. Hence sup,e// | */ \p d*pt < +oo. Suppose

yG*Ä+. Let Ai,= [x G *X¡: \f(x)f>y}. If y is infinite, */i,.(y4(.) = 0, so

¡a, I 7 \" d*Pi - 0. Therefore sup,£,IfA¡ | *f \p d*p, - 0. Thus

lim   sup f | 7 \" d*p, = 0.

Essentially the same argument shows that

lim   sup f       \f,\pd*p, = 0.
y-°   ,e; J\f,\p<y

Hence */ G SLP for all / G */ implies {/},e/ is uniformly Lp.

Corollary 6.6. Suppose f G LP(X, iß, p). Then *f G SLP(*X, *<$>, *p) (I < p <

oo).

Remark 6.7. The definition of SLP does not generalize readily top = oo; it seems

that each possible definition has some undesirable properties. Some thoughts on this

question are given in §111.8 of Anderson [2].

7. Conditional expectations and martingales. Conditional expectations and

martingales are important tools in probability theory. Brownian motion and Itô

integrals, particular examples of martingales, were treated in [1]. We shall see that

general martingales can be represented naturally in *-finite spaces. Lindstrom [26]

and Hoover and Perkins [25] have recently developed the nonstandard theory of

stochastic integration with respect to local martingales. The appropriate notion of

representation of martingales in the context of stochastic integration involves path

properties which are not considered here. Thus, readers interested in stochastic

integration should consult Lindstrom [26] and Hoover and Perkins [25] rather than

this section. The theorems we give are considerably simpler, and may still be of

interest for purposes other than stochastic integration.

Suppose Ci' is a *-finite subalgebra of 6?. Then there exists a *-finite partition

9 G 6?' which generates 6?'. In other words, E G 6?' » E = Uxe£./JA where Px is the

element of i? containing x.

Suppose more generally that 6?' is the *-a-algebra generated by a *-countable

partition of X. Iff G *LX(X, Ci, v) the conditional expectation is given by

E(f\Ci')(x)=^-)jpfd,.

Note that p(UHP)=oPx) = 0.
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Theorem 7.1. Suppose Ci' is a *-o-algebra contained in (i. If h G SLP(X, 6?, v),

then E(h\d')GSLp(X,Ci',v) and °E(h\Ci') = E(°h\ L(Ci')) = E(°h\ L'(Ci'))

L(v \&,)-almost everywhere.

Proof. This is proved in [1, Theorem 12(h)] in the special case that Ci' is *-finite.

The same proof works if Ci' is the *-a-algebra generated by a *-countable partition of

X.

Let g = E(h | Ci'), and w G *A - A. Let Ci" be the *-a-algebra generated by the

♦-countable partition {g~x([i/u, (i + l)/w)): i G *Z}. Thus E(h \ Ci") G

SLp(X,Ci",v). But \g(x)~ E(h\(i")(x)\<l/o)~0 for all x G X, so g G

SLp(X,Ci',v). The same argument used in [1, Theorem 12(h)] shows that °g =

E(°h | L(Ci')). But °g is L'(6?')-rneasurable and L'(Ci') G L(Ci'), so

°g = E(°h | L'(Ci')).

Definition 7.2. Let (Z, G, p) be a probability space. Let / be a directed set,

called the set of time parameters. Let {%},<=, be an increasing family of a-algebras

contained in 6 (i.e., s < t => Ss G St). We say that M is an {<St}-martingale if M is a

collection {A/,},6/ C LX(Z, Q, p) satisfying E(M, \ Ss) — Ms whenever s < t. M is

said to be uniformly Lp if {Af,},e/ is uniformly Lp. Two martingales M and M' are

said to have the same finite-dimensional distributions if, for any tx,...,tn G I and

ax,...,a„GR(nGN),

p({z: M,(z) < a¡, 1 </<«}) = p({z: M;(z) < a„ 1 < i < «}).

Any element of the nonstandard extension of the class of martingales is called a

*-martingale. A ""-martingale M is called *-finite if there is a ""-finite algebra 6? such

that every M, is 6?-measurable and such that, for any internal totally ordered set J of

time parameters, there is a ""-finite collection -oo = f, < r2 < • • • < ru = +oo C J

U {-oo, +00} such that M, = Ms whenever s, t G (t¡, r1+1). If / is any partially

ordered set, t G */ is said to be finite if there exists s G I,s'> t.

We shall first study the relationship between the ""-martingales on (X, Ci, v) and

the martingales on (X, L'(&), L(v)). The uniform integrability condition in the

following theorem was pointed out by K. D. Stroyan.

Theorem 7.3 (Pushing down for martingales). Suppose I is an internal

directed set, {6?,},6/ an internal increasing family of *-a-algebras with 6?, C Ci for all t.

If Y is an {6?,}-*-martingale and Y, G SLX(X, Ci, v) for all t G I, then °Y is an

{L'(6?,)}- and an {L(Ci,)}-uniformly integrable martingale.

Proof. First note that {L'(Cit)} is an increasing family of a-algebras contained in

L'(6?). Since Y,G SLx(X,Ci,v), °Y, G LX(X, L'(Ci), L(v)) by [1, Theorem 9]. If

5 < t, E(°Y, I L'(Cis)) = °E(Yt I Cis) = °YS by Theorem 7.1. Hence °Y is an {L'(Cit)}-
martingale. The argument for {L(6?,)} is the same. If y is infinite,

sup  (       \Yt\dp = 0,
t<E/   V,l>7

since / is internal. Hence limY_00 sup,e//|y|>y \Yt\ dv = 0. Since v( X) — 1, {°Yt} is

uniformly integrable.
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Theorem 7.4 (Lifting for martingales). Suppose that I is a directed set and

{d,}ie, is an increasing family of *-o-algebras contained in Ci. Let M be a uniformly

integrable {L'(dt)}- or {L(Ci,)}-martingale.

(i) If I and the map t -» dt are internal, there is an {Ci,}-*-martingale Y such that

°Yt = MtL(v\s )-almost everywhere.

(ii) // X and the elements of I are taken in a K-saturated model and \I\< k, there is a

*-finite internal directed set J D I, an increasing family of *-o-algebras {6?,},ey C 6?,

and an {(if)-*-martingale Y such that, for t G I, °Y, = Mt L(v \& )-almost everywhere.

Proof. We shall give the proof for M an {L(6?,)}-martingale. The proof for an

{L'(6?r)}-martingale is the same.

(i) Note that I is a set in standard set theory. Hence / is a standard directed set.

Since M is uniformly integrable, there exists Mx G LX(X, L((i), L(v)) such that

Mt = E(Mac | L(d,)) by the Mean Martingale Convergence Theorem (Helms [8]).

By [1, Theorem 11(h)], there exists Yœ G SL](X, (i., v) such that °YK = M L(v)-

almost everywhere. Define Yt = E(Y00\dl). Then Y is an {Ci,}-""-martingale. By

Theorem 7.1,

°Y, = °£(X | (it) = E(°YX | L(d,)) = £(A/J L(d,)) = M,

L(v \& )-almost everywhere.

(ii) Let S = {(J, £); J is a ""-finite internal directed set, {l7}yey is an internal

increasing family of *-a-algebras contained in Ci}. For t G I, let §t = {(J, £) G §:

r G/, £, = d,}. If n G N andtx,...,tn G/,

({tx,...,t„},^ = Citi)Gêln---n@,n,

so this intersection is not empty. By saturation, there exists some (J, |) G níe/Sr.

Define 6f, = ¿, for t G J. Thus, J is ""-finite and {Ci,} is an internal increasing family

of *-a-algebras contained in 6?.

As in (i), there exists Mx G L](X, L(d), L(v)) such that E(MX \ L(d,)) = M, for

each t G I. For any tGj, define A, = E(MX \ L(dt)). With this extension, J,

{6?,},e/, and {A,},eJ satisfy the hypotheses of (i). Hence there is an internal

6?,-*-martingale Y such that, for all t G J, °Y, = N, L(v \& )-almost everywhere. Thus,

for t G I, °Yt = Mt L(v \s )-almost everywhere.

Now we turn to the problem of representing arbitrary standard martingales. The

representation will take a strong form if the underlying probability space is Radon.

The neat construction for obtaining the algebras 6?, in the proof is due to Loeb.

Theorem 7.5. Let (Z, Q, p) be any probability space. If M is any {St}tel-martingale,

there is a *-finite martingale Y such that, for each t G I, f \Y, —*M, \ d*p — 0. In

particular, °Y\, and M have the same finite-dimensional distributions.

Proof. Find a ""-finite algebra 6? such that {*C: C G (3} C d G *Q. For / G */, let

d, = *St n 6?. Thus, each 6?, is ""-finite. If / is any internal totally ordered subset of

/, {6?,: t GJ} is a totally ordered class of ""-subalgebras of 6?. Since 6? is ""-finite,

there are only ""-finitely many such ""-subalgebras. Hence there exist -oo = tx <

•■• <tu= +00 G / U {-oo, +00}  (w G *N) such that 6?5. = 6?, whenever s, t G
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LetY, = E(*M,\d,).lfs<t,

Ys = E(*MS \ds) = E(E(*M, \*%)\ d,) = E(*M, | ds)

= E(E(*M,\d,)\ds)=E(Y,\ds).

Hence {Yt}ie., is an {6?;}-*-martingale.

If tx,...,tu are as above, and s, t G (r,, i,+ 1), s < t,

Ys = E(Yl\ds) = E(Yt\d,)=Yl.

Since 6? is also ""-finite, F is a ""-finite martingale.

Now suppose t G I.M,G LX(Z, 6, p), so *M, G SLX(*Z, *S, *p) by Corollary 6.6.

Hence Y, G SLX by Theorem 7.1. Therefore f\Y,-*Mt\ d*p =* /° | Yt - *M, \ dL(*p)

by [2, Theorem 9]. But Yt = E(*M, \ d,) and *M/\a, b)G*F,nd= d, for all

a, b G R. Thus Yt(z) — *Mt(z) for L(*p)-almost all z (namely all z for which

*M,(z) is finite). Thus ° | Y, — *M, | is zero almost everywhere, so / | Yt — *Mt \ d*p

^0.

Thus °F|/ and °*M\, have the same finite-dimensional distributions. Using the

Transfer Principle, it is easy to see that °*M\, and M have the same finite-dimen-

sional distributions. Thus °Y\, and M have the same finite-dimensional distribu-

tions.

Theorem 7.6. Let (Z,%, p) be Radon with completion (Z,Q,p). Suppose {íF,}re/ is

an increasing family of a-algebras contained in Q. If M is an {fS/¡-martingale, there is a

*'-finite martingale {Yt}te,, on *Z such that, for all t G I, Yt — M,°st L(*p)-almost

everywhere, and st is measure-preserving.

Proof. Form 6?, and Y as in the proof of Theorem 7.5. Since 6? D {*C: C G 6}, it

is 5-separating. Hence st: (*Z, L'(d), L(*p)) -» (Z, 6, p) is measure-preserving by

Theorem 3.3. For any t G I, M, is "^-measurable, so °*M, — M, ° st L(*p)-almost

everywhere by Theorem 3.7. But °Yt = °*M, almost everywhere by Theorem 7.5, so

°Y, = M, ° st almost everywhere.

Remark 7.7. We could replace *Z by the ""-finite space *Z/~ as in Corollary 3.4.

8. Standardly distributed measures. Let A' be a Hausdorff space, and v an internal

nonnegative Borel measure on *X, °v(*X) < oo. v is said to be near-standardly

concentrated if L(v)(st~x(X)) = °v(*X). This property is intimately related to weak

convergence of measures, as discussed in Anderson and Rashid [4].

In this section, we discuss a stronger property of measures. The study is motivated

by an application to core theory in mathematical economics (Anderson [3]), but it

may well have application to other problems. In Theorem 8.7, we shall see that

measures obtained by sampling with replacement have this property.

Definition 8.1. We say v is standardly distributed if, for all standard Borel sets

B G X,v(*B) ^ L(v)(srx(B)).

There are a number of natural examples of standardly distributed measures. The

first two—those with finite standard support and the stars of standard measures—

clearly have many special properties. However, most of these special properties carry

over to all standardly distributed measures, so these examples may be regarded as

prototypical.
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Example 8.2. Suppose B is a finite or countable set of standard points, and v is

concentrated on B (i.e., p(*A' — B) ~ 0). For any standard Borel set A, *A n B —

s\r\A) n B, so

v(*A) = L(iO(M) = L(v)(*A HB) = L(v){srx(A) (1 B) = L(v)(sri(A)),

so v is standardly distributed.

Example 8.3. Let p be a Radon measure on X. For any Borel B, *p(*B) = p(B)

= L(*p)(st~x(B)) by Theorem 3.3, so *p is standardly distributed.

I am grateful to the referee for pointing out an error in part (ii) of the following

proposition, and for pointing out that part (i) follows (at least in the compact

Hausdorff case) from Corollary 3 of Loeb [27].

Proposition 8.4. (i) Suppose v(*B) =* p(B) for all Borel B, where p is a Radon

measure. Then v is standardly distributed, and p(B) = L(p)(st~ x(B))for all Borel B.

(ii) Suppose v is standardly distributed. If we define p(B) — L(v)(st~ x(B))for Baire

B, then v is in the weak-star monad of p, i.e. j,x*fdv — jxfdp for all bounded

continuous f: X — R. If X is completely regular, p(B) = L(v)(st~x(B)) is defined for

all Borel B, and p is a Radon measure.

Proof. If K G X is compact,

p{K)~v{*K)^L{v){*K)<L{v){sl-\K)),

so p(K) =£ L(v)(srx(K)). If O G Xis open,

p(O) =* v(*0) =* L{v)(*0) > L(v)(st-x{0)),

so p(O) ^ L(v)(srx(0)).

For any Borel set B and e > 0, we can find K compact and open so that

K G B G O, p(0 \K) < e, since p is Radon. Hence

p(K) ^ L(p)(sr\K)) *£ L(p)(srx(B)) *£ L(,)(st-'(0)) < p(O),

so L(v)(sl~x(B)) = p(B) = v(*B), so v is standardly distributed.

To prove (ii), note v(*X) ^ L(p)(srx(X)), so L(v)(*X - sr'(A')) = 0. By

Anderson and Rashid [4, Lemma 2], p is defined for Baire B and v is in its weak-star

monad. If X is completely regular, then by Loeb [27, Theorem 3], p is defined for

Borel B and is the unique regular extension of its values on Baire sets; since it is also

tight, it is Radon.

Example 8.5. Bernstein and Wattenberg [5] showed there is a ""-finite set F so that,

defining v(A) =|FD A \/\F\ for internal A, v(*B) is infinitely close to the Le-

besgue measure of B for all Lebesgue subsets of [0,1], and they used this as a basis

for a nonstandard integration theory. The preceding proposition shows v is stan-

dardly distributed. It also shows that the internal standardly distibuted v are exactly

the internal measures which represent Radon measures in the Bernstein-Wattenberg

style (v(*B) ~ p(B)). This also shows there are standardly distributed measures

which are not infinitely close (in the total variation norm) to standard measures.

Example 8.6. This example shows the converse of part (ii) of Proposition 8.4 is

false. Let p be point mass at 0, v point mass at e for some 0 ^ e — 0. L(»')st~ ' ~ p,

but K*{0}) = 0 * p({0}).
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The following theorem shows that measures obtained by sampling with replace-

ment are almost surely standardly distributed. It is related in spirit to Keisler's

Elementary Chain Theorem [11, Theorem 4.11] and is the main reason the concept is

interesting. Part (iii) is an analogue of the Glivenko-Cantelli theorem (Billingsley [6,

p. 103]). Part (i) strengthens a result of Wattenberg [29, Theorem II.4].

Theorem 8.7. Let p be a Radon probability measure on X and assume our

nonstandard model is k+ -saturated where k is the cardinality of the Borel algebra. Let

Œ = *(U„eNX), endowed with the internal probability measure P of sampling with

replacement (i.e., P is the *-countable product of copies of *p). For w G Q and n G *A,

let v^(A) -\A n {w,,...,w„} \/n, for all internal Borel A G*X (i.e., v^ is the

measure induced by the first n samples).

(i) Given n infinite (v^ is standardly distributed and L(v^)st~x(B) — (B) for all

Borel B)for L(P)-almost all w.

(ii) Let M be any internal set of measures containing all the standardly distributed

measures v satisfying L(v)st~ ' = p. For L(P)-almost all w, t>£ G M for all infinite n.

(iii) // X is separable metric, then for L(P)-almost all u>, L(v£)st~x = p for all

infinite n.

Proof. Fix an internal Borel set B. n(v"(B) — *p(B)) is the sum of n independent

random variables with mean 0 and variance *p(B)(l —*p(B)) < 1. If n is infinite,

Bernstein's  Inequality (Keilser [11, Theorem 4.3])  shows

P(\ p."(B) -*p(B)\> n~x/4) < 2e-fi/4.

Now fix n infinite. By the saturation assumption, we can find a collection of «

internal Borel sets containing *B for every standard Borel set B. Thus, we can find

an internal fi; C S2, P(Q'n) > I - 2ne~fi/\ ku"(*#) « P(B) for all standard Borel B

and hence (i) follows from Proposition 8.4(i).

w G Q'n => v^ G M. For each infinite n, {u>: v™ G M for all m > n) is internal and

has probability at least 1 — 2mSe„ 2me~^/4. Since M is internal,

P({u: v™ G M for all m 3*n}) > 1 -   2 2me^/4

holds for some finite n as well. Hence

L(P)({u: v™ G M for all infinite m}) = 1 -   lim    % 2me~J"/4 = I,

proving (ii).

(iii) Suppose X is separable metric. Then (Billingsley [6, p. 239]) the set of Borel

probability measures on X is also metrizable, with metric denoted by p. Given e > 0,

let Mc = *{v: p(p,p)<e}. If L(p)st~'=p, *p(v, *p) ~ 0, so Me satisfies the

hypotheses of (ii). Hence, for L(.P)-almost all w, v^ G Me for all infinite n.

Therefore, for L(i°)-almost all w, v* G ne>0_eGÄ Me for all infinite n, i.e., *p(v„, *p)

- 0, or L(p")st~' = p (Anderson and Rashid [4, Lemma 2]) as Baire measures; but

all Borel sets are Baire sets (Billingsley [6]).

Remark 8.8. The assumption that X is separable in part (iii) is only needed to

avoid pathologies which could  arise if measurable cardinals exist.  The actual
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condition required is that every separable subset of X have nonmeasurable cardinal

(Billingsley [6, p. 239]).

Example 8.9. One might suspect that, for L(y°)-almost all w, v^ is standardly

distributed for all infinite n. This example shows that the situation is quite different.

Let p be Lebesgue measure on [0,1]. Given w, let

K=  U (X- l/2" + 2,°co„+ l/2"+2).
»ejv

Then p(BJ < \. Hence, for L(/°)-almost all w, L(^)(st_1(5J) = p(BJ < 4 for

all infinite n by Theorem 8.7(iii). However, if n is finite, v£(*Bu) = 1. We conclude

there exists n infinite (depending on w) such that v£(*Bu) = 1 ^ L(^)(st~'(5w)).

Hence, for L(v°)-almost all a, there exists n infinite so that v^ is not standardly

distributed.
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