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MINIMUM SIMPLICIAL COMPLEXES WITH GIVEN

ABELIAN AUTOMORPHISM GROUP1

BY

ZEVI MILLER

Abstract. Let K be a pure ^-dimensional simplicial complex. Let r0(/O be the

automorphism group of K, and let T„( K) be the group of permutations on n-cells of

K induced by the elements of ro(^f). Given an abelian group A we consider the

problem of finding the minimum number of points M^,"\A) in K such that

ro(K") ~ A, and the minimum number of n-cells M\"\A) in A-such that Tl:(K) ~ A.

Write A = Y[p«'Lepip \ where each factor Xp, appears e(p") times in the canonical

factorization of A. For A containing no factors Zp« satisfyingp" < 17 we find that

M\"\A) = M})2)(A) = 2p° pae(pa) when n > 4, and we derive upper bounds for

M\"\A) and M^"\A) in the remaining possibilities for A and n.

1. Introduction. A simplicial complex K is defined as a pair {V, §) where V is a

finite set (whose elements are called points) and S is a set of subsets of V (called

simplexes or cells) with the property that /J G § and 0 ^ a C /? imply a G S, while

x El V implies {x} G S. The dimension of a simplex fi having n + 1 points is n, and

the dimension of a complex K is the maximum dimension of any simplex of K. We

also say that AT is a pure r-dimensional simplicial complex (or an /--complex) if K has

dimension r and the maximal simplexes of K all have dimension r.

We will be concerned with pure «-dimensional simplicial complexes for n > 2.

When n = 2, such a complex will be called a /?/e;c for brevity. Following the notation

of Dewdney [3] we denote by K(r) the set of r-cells of K, so that in particular if we

identify each point x with the 0-simplex {x) we get AT(0) — V. If S C V then we

define (5), the complex induced by S, as the complex having S as point set and

having as simplexes those subsets of 5 which are simplexes in K. If D C S, define

(Z>), the complex induced by D, as follows. We define the point set V((D)) by

K«D» = UaeD{> G a: x G V) and the set of simplexes S«2>» by §«D» =

Ua6D{/?GS:/?Ca}.IfuG V(K) and AT has dimension n, then the set of points in

V — v which are contained in «-cells with v will be called the neighborhood of v and

will be denoted by N(v). A 1-1 and onto map/: V(K) — V(K') between «-dimen-

sional complexes K and K' is called simplicial when a G K(n) if and only if ({f(x):

x G a}) G /C('n). If such a map/exists, we say K and /T are isomorphic and we write

A" a K'. If L is an induced subcomplex of K, we write/(L) for ({/(/): / G F(L)}>.
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The point group and cell group of an w-complex are defined in the natural way.

We let ro( K), the point group of K, be the set of all functions /: V -> V which are

simplicial. The subgroup of ro(K) consisting of all elements fixing v G V{K) will be

denoted by T0(K)V. When the complex K is understood, ro(A7)D may be abbreviated

(T0)v. An automorphism a in ro(A") naturally induces a permutation a on K(n) as

follows. If a, [} G K(n), then we write 6(a) = /? if a(a)= (fl). The set of permuta-

tions on K(n) given by {a: a G T0(K)) is clearly a group, will be called the cell group

of K, and will be denoted by Tn(K). Hence there is a surjective homomorphism it:

ro(A") -» r„(A") defined by 77(a) = a. Finally when a is a group element, (a) will

denote the subgroup generated by a, and {x} will denote the least integer greater

than or equal to the real number x.

The purpose of this investigation is to study the following problem. Given an

arbitrary finite abelian group A, find the minimum number of /i-cells M\n){A) in an

n-complex K satisfying Tn(K) = A, and find the minimum number of points

M^"\A) in an ^-complex A"satisfying T0(K) — A.

Let A = nzjl'*1 via the decomposition theorem for abelian groups, where e(pa)

is the number of direct factors isomorphic to Zp, for a fixed pa. We solve the

problem of determining M\"\A) when n s* 4 for those A all of whose direct factors

Zp« satisfy p" > 17. The same problem is solved when n = 2 or 3 for those A having

the additional property of e(pa) being bounded by a certain function of pa for all

pa. We also determine M^\A) for those A all of whose direct factors Z « satisfy
pa^9.

Given the group A and the integer n, we construct ^-dimensional simplicial

complexes K\n\A) and K{0"\A) having cell automorphism group and automorphism

group (respectively) isomorphic to A, that is, Tn(K\"\A)) = A and T0(K^"\A)) sA.

These constructions form the crux of this work, and are used in Theorems 8, 9, and

10 to give upper bounds for M\"\A) and M^"\A) for abelian groups A and integers

n. The required lower bounds are found by determining (in Lemma 11.1) the

minimum degree in any faithful action of an arbitrary abelian group. These facts are

combined to yield our main result, Theorem 11, which gives the exact values of

M["\A) and Mg\A).

The motivation for this work originates with results of Arlinghaus [1], Meriwether

[10], Babai [2], and Sabidussi [12] for graphs, i.e., dimension 1. Meriwether first

found the minimum number of points in a graph with given finite cyclic automor-

phism group, and Arlinghaus generalized this result to cover arbitrary finite abelian

groups.

As n varies it is interesting to observe the relationship among the exact values and

bounds for M\"\A) and M^n)(A), and among the constructions used in realizing

these bounds. It will be seen that as n increases these numbers and the constructions

from which they arise assume a rather simple and elegant form. This would present

an example of the interesting phenomenon in which one is able to better understand

a geometric invariant as the dimension of the space in question increases. In this

regard, we note that the determination of M\X\A), the minimum number of lines in

a graph with line group A, is completely open and is an extremely difficult problem.
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It was also found that the class of 2-complexes which realize the numbers M\2\Zp«)

and Af02)(Z «) was unique and could be utilized, by means of the topological cone, to

give the complexes which yielded the values of M[n){A) and M^"\A), if n 3= 2, for

all finite abelian groups A. It is precisely the fact that A is a direct product of prime

power cyclic subgroups which makes this construction possible. In the same way, it

is expected that a determination of M["\G) and M^''\G) for/^-groups G should

yield upper bounds (which are probably exact) for M\"\H) and M^"\H) when H is

nilpotent.

The text is organized as follows. In §2 a set C of 2-complexes is defined, each

member K of which satisfies | K(1)\ = pa and T2(K) D Zp„ for given p and a. A

characterization is then found for the subset C'CC consisting of complexes K'

satisfying Y2(K') ^ Z «, and a formula is developed for the number of isomorphism

classes among the set of 2-complexes in C \ C. From the resulting fact that C \ C" is

nonempty for pa > 9, it follows that M\2\Zp.) = pa for pa > 9. We conclude §2

with a characterization of all 2-complexes K satisfying | K(2) | = p" and admitting an

element in T2(K) which is a/?a-cycle. One consequence of this result is that the set of

2-complexes K satisfying | K(2) \ = pa and T2(K) =s Z »is shown to be identical with

C\ C". In §3 bounds for M\n\A) and M^"\A) are obtained by construction. Letting

A = YiZp{p"\ we construct the ^-complexes K\"\A) and K^"\A), which yield the

upper bounds for M\n){A) and M^n)(A) respectively, by forming them, in all but

certain "small" cases, as disjoint unions of the complexes Kj")(Zpip")), i = 0,1, over

distinct prime powers appearing in the factorization of A. The characterization and

enumeration in §2 is used in determining which prime powers pa admit the

construction Kfn)(Zpip°)), i — 0,1, in effect, how large pa must be.

A general description of the method used in constructing K\"\Zepip°)) is in order

here. We begin by choosing a pair, say R and 5, of nonisomorphic 2-complexes from

the set C\C. By the result of §2, each of these is known to have cell group Z «. We

then attach e(pa) — 1 copies of R and one copy of 5 together to form a kind of

"tower" complex having e(pa) "floors". The bottom floor of this tower is a cone

over R, while each of the top e( pa) — 1 floors is isomorphic to a cone over S. From

the nature of the coning operation (to be defined in §3) it will follow that the cell

group of each floor is the same as the cell group of either R or S. We will then see

that the cell group of the entire tower contains the direct product Zepipa\ this group

arising from the action of Z » on each of the e(p") floors independently. That the

cell group of the tower contains nothing more than Zp,p"\ i.e., that

Yn[K\"\z;^)) = zpa,

will follow from the nature of the tower construction. Specifically, any element of

the cell group lying outside of the subgroup Zpipa) just described must be a

nonidentity permutation on the floors of the tower (since all elements acting

invariantly on each floor are accounted for in the subgroup Zp\p°)). But such a

permutation will be impossible since the tower has been "rooted" at its bottom

floor. That is, a nonidentity permutation of the floors must move the bottom floor to
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some other floor (by the nature of the construction), and this is impossible since R

and S were chosen to be nonisomorphic complexes.

The complexes K^"\Zp\p°)) are formed using an essentially different method,

based on a higher-dimensional version of graph complementation. In these com-

plexes too, however, the basic building blocks are the 2-dimensional complexes in

the set C \ C".

Finally, we remark that our main result, Theorem 11, gives M{/\A) — M\"\A) —

2 pae(pa), n 3s 4, for all A with the exception of certain "small" cases.

2. A set of extremal complexes. Throughout this section the word "cell" will be

used interchangeably with 2-cell. Our first task will be to construct plexes having p"

cells and cyclic cell group Zpa. It will be seen that this is possible for pa s* 9. These

plexes will later be used in the construction of /--complexes, r > 2, that provide

upper bounds for Mfr)(A), i = 0, 1, and A finite abelian.

Let n — p" be a fixed prime power. We will define a set C of plexes, each having n

2-cells. For j satisfying 3 <_/< n, form the plexC(«, /) by letting V(C(n, j)) =

(1,2,3.n},  and   C(n, j)(2) = {(\ + i,2 + i, j + i):   0<i<n-l},   addition

performed modulo n. We illustrate the 1-skeleton of the complex C(8,4) in Figure

2.0.

5

1

Figure 2.0. The 1-skeleton of C(8,4)

Observe that there exists an isomorphism/: C(n, j) -» C(n,n + 3 —/) given by

f(k) = n + 3 — k, 1 =£ k =£ n. Thus for n even there is a one-to-one correspondence

between the two sets of complexes S = {C(n, j): 3 *£/ < {n/2} + 1} and T —

{C(n, j): {n/2} +2<j< n) given by C(n, j) «-» C(n, n + 3 - j), 3 <y < {n/2}

+ 1, where corresponding complexes are isomorphic. For n odd the two sets are

S = {C(n, j): 3 </< {n/2}} and T= {C(n, j): {n/2} + 2 <;'<«}, the complex

C(n,{n/2} + 1) corresponding to itself under /. Hence, for all «, the set C of



SIMPLICIAL COMPLEXES WITH GIVEN GROUP 693

complexes defined by C = {C(n, j): 3<j< {n/2} + 1} contains at least one

complex from each isomorphism class in the collection of complexes C(n, j),

3 <_/' < n. In analyzing the complexes C{n, j), we therefore restrict our attention to

the subset C of them. Notice that for each member C(n, j) of C there exists an

element t = (12 • • • n) of ro(C(«, j)) and that (t)= Zn. We also have (f )= Zn as

a subgroup of T2(C(n, j)), and it follows that T2(C(n, j)) D Z„ for all C(n, j) G. C.

We begin by isolating those plexes C(n, j) of C which satisfy T2(C(n, j)) ~ Z„.

Let C" be the subset of C consisting of plexes C(n, /) whose parameters n and j

satisfy at least one of the following conditions:

l.n<8,

2.j = 3,

3. n — 2j, n > 16,

4. n = 2/ - 2, n > 16,

5. n = 2/ - 3, n > 9,

6.y2 - 3/ + 3 = 0 (mod «), /? = 1 (mod 6).

In Theorem 1 we show that no member C(n, j) of C" satisfies T2(C(«, y')) = Z„. In

the considerably more involved Theorem 2 it is proved that T2(C(«, /)) s Z„ if and

only if C(«, /) G C\C.

Theorem 1. Let C(n, j) G C", //zen we fcatx- r2(C(/i, /)) ^ Z„.

Proof. As noted previously, we already know that T2(C(n, j)) D Zn = (f) for

any n and / Hence for each C(n, j) G C" we need only construct an element

a G r0(C(«, /)) such that a G <f>.

Suppose first that 7 = 3 in C(«, /). It has already been observed that a =

II[l/i2) + 1(fc» « + 3 — k) gives an isomorphism a: C(n,3) -» C(«, n). Since C(n, n)

is identical with C(«,3), it follows that a may be viewed as an element of

F0(C(n, 3)). Clearly a £ (f), and hence T0(C(n, 3)) ^ Z„, as required.

Now suppose n = 2j — 3. We will show that C(n, j) = C(n, 3). To do this, define

the map/: C(n, 3) -» C(«, j) given by/(^) = 1 + (k — l){n/2}. First we show that

/ is 1-1. For if not, then for two distinct points A:,, k2 G C(n,3) we would have

f(kx) =f(k2) (mod n), that is, 1 + (fc, - 1){«/2} = 1 + (*2 - Ol"/2} (mod «)■
Since « is an odd prime power we have ({n/2}, n) = 1 and hence k] = k2 (mod n).

This shows that/is one-one, and since it is a map between finite sets it must also be

onto. It remains to show that/is simplicial. By the linearity in the definition of/, it

suffices to show that/(l,2,3)G C(n, j){2). But this follows immediately on observ-

ing that/(l) = l,/(2) = 1 + {n/2} =j, and/(3) = 1 + 2{«/2} = n + 2 = 2. Thus

the assertion C(n, j) = C(n,3) is proved. It follows that T2(C(n, j)) s T2(C(n,3))

Let us now pass to the case n = 2j — 2. Here we define a as

j   i

a = 0)0)11 (k,j + k-l).
k = 2
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It is obvious that a is one-one and onto. To see that a is simplicial, take a typical

2-cell D = (k,k + \,k+j- 1>. By definition a(D) = (j + k - 1, / + k, k), and

noting that 2j + k — 2 = k (mod n) we get a(D) = (j + k — I, j + k,2j + k —

2) G C(n, j)(2), as required. Clearly a G (f) since a has two fixed points.

Now suppose n = 2/ n > 16. We define a by

a=(n)(n/2)        II        (A,3«/2"^)    I!    (fc,"-A:).
kodd & even

n/4<A<3n/4 k<n/2

It is perhaps easiest to understand a by considering the following "intuitive"

description of it. We let a act on the even numbered points as a reflection about the

pointwise fixed axis {«, n/2}, and on the odd numbered points as a reflection about

the axis {n/4,3n/4} while interchanging the two points of this last axis. Clearly

then a is 1-1 and onto. Let us now show that a is simplicial by considering its action

on a typical 2-cell D = (k, k + 1, k + (n/2) — 1). By symmetry and from the

description of a given above, we may assume without loss of generality that k

satisfies n/4 < k < n/2. Suppose first k is odd. Then observing that 3«/2 = n/2

(mod n) and writing k + (n/2) — 1 as n — ((n/2) — k + 1) we find that a(D) —

((n/2) - k,(n/2) - k + I,(n/2) - k + (n/2) - 1>G C(n, j\2), as required. Now

suppose k is even. Here we rewrite k + (n/2) — 1 as 3(«/2) — (n — k + 1) and we

get a(D) = (n-k,n-k+l,n-k + ((n/2) - 1))G C(n, j\2). Thus a is sim-

plicial and hence it is an automorphism of C(n, j). Finally, we note that a G (f)

since a has two fixed points.

Now suppose^'2 — 3j + 3 = 0 (mod n) where n is a power of a prime/? satisfying

p = 1 (mod 6). We define a by a(r) = 3/ - 3 + r(\ - j) for r G C(n, j). Let

D — (r, r + 1, r + j' — 1) be a typical 2-cell of C(n, j). We get by definition

o(r, r + 1, r +j — I)— (z,, z2, z3), where z, = 3/ — 3 + r(l —/), z2 = 3/ — 3 +

(r +j)(\ -J), z3 = 3j - 3 + (r + j - 1)(1 -j). Observe that z, - z2 =/ - 1, so

that to show a is simplicial we need only show that z3 = z2 + 1 (mod n). This in

turn is equivalent to (r + 1 — 1)(1 — j) = \ + (r + 1)(1 —/) (mod n). But we have,

using simple manipulation mdj2 — 3)' + 3 = 0 (mod n), that (r +/ — 1)(1 —/) =

(r + 1)(1 -/) -j2 + 3j - 2 = (r + 1)(1 -/) + 1 (mod n), as desired. We remark

that the condition p = 1 (mod 6) arises since the congruence j2 — 3j: + 3 = 0

(mod pa) has solutions (exactly two in fact) if and only if p = 1 (mod6). To see this,

first reduce to the equivalent congruence (2j — 3)2 = -3 (mod pa). It is well known

[13, p. 94] that if p = 2 and a > 4, then -3 is not a quadratic residue mod pa. Hence

we may restrict our attention to odd primes. By employing formal Taylor series one

may prove that (2j — 3)2 = -3 (mod pa) has either 2 or no solutions according to

whether -3 is a quadratic residue mod p or not. We are thus reduced to determining

the Legendre symbol ( ^). By elementary properties of the symbol and quadratic

reciprocity we have
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Hence there is a solution if and only if p = 1 (mod 3), which combined with p being

odd implies that/? = 1 (mod6), as required.

Finally, if n < 8 one may verify directly that there exist nontrivial elements of

T0(C(n, j)) having fixed points, and hence in these cases too one has T2(C(n, j)) ^

Z„. When n = 7, we know in fact that C(7, /) for any / is isomorphic to the

projective plane on seven points and hence | F0(C(«, j)) | = 168.    □

In order to prove the converse to Theorem 1, we will require additional terminol-

ogy. Suppose/: C(n, j) -* C(n, k) is an isomorphism of plexes with the property

/(1,2, j) = (1,2, k). The inverse image f~\\,2) can be any one of three possible

1-cells, and each of these may be mapped onto (1,2) in two ways. This suggests six

classes of isomorphisms satisfying/(1,2, j)= (1,2, k), T*(l,2), T*(2,1), T*(\, j),

T*(j,l), T*(2, j), T*(j,2) where we define T*(a, b) by T*(a, b) = {/:

C(n, j)^C(n,k): f(\,2, j) = (1,2, k), f(a) = 1, f(b) = 2). We remark that if a

pair of complexes C(n, j) and C(n, k) are isomorphic, then the set of maps / as

defined above, denoted by T*(n, j, k), is the disjoint union of the six classes given.

The indices / k, and n are omitted from the symbols T*(a, b) as they will be

understood by context. Suppose that/ G T*(a, b), (\ b — a | , n) = 1, and that/has

the additional property/(a + (r — \)(b — a)) = r, 1 < r < n, with all integers read

modulo n. Thus/maps the hamiltonian cycle a, b,2b — a,3b — 2a,...,a in C(n, j)

onto the hamiltonian cycle l,2,...,n in the image C(n,k). This map / will be

denoted by T(a, b), and thus T(a, b) G T*(a, b).

Let us make some observations concerning the maps T(a, b) acting on a fixed

plex C(n, j) as domain. From the definition it is clear that T(a, b)~x is given by

T(a, b)~\x) = a + (x - l)(b - a) and hence T(a, b)(x) = 1 + (x - a)/(b - a).

Therefore given the ordered pair (a, b), the image complex T(a, b)[C(n, j)] is

uniquely determined. For example, if we write T(\, j)[C(n, j)] = C(n,k), then

7T1, j)(2) = k and thus k is determined by k = T(\, j)(2) = (j - 1)"' + 1, in-

verses being taken in the group of units in Zn. The fact that 771, j): C(n, j) -»

C(n,(j — 1)"' + 1) is an isomorphism can be verified by considering its action on

an arbitrary 2-cell (x, x + 1, x +j - 1) of C(n, j). Letting

z=l +(x-\)/(j- 1)

and using A: = (j - 1)~' + 1 we find that T(\, j)(x, x + 1, x +j - 1>= (z, z + k

— 1, z + 1)G C(n, k)(2y Furthermore, 7(1, j) is 1-1 since (j — 1, n) — 1, and

hence it is onto by finiteness of n. Now given any of the five remaining ordered pairs

(a, b) one may in a similar way find the uniquely determined k for which

T(a, b)[C(n, j)] — C(n, k), and hence prove that T(a, b) is an isomorphism. The

results are summarized in Table 1 for later reference. Observe that the pairs of plexes

T(a, b)[C(n, j)] = C(n, k) and T(b,a)[C(n, j)] = C(n, n + 3 — k) are related by

a reflection about the axis {1, n/2 + 1} when n is even and the axis formed by

{n/2} + 1 and the "midpoint" of the 1-cell (1, n) when n is odd.
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Table 1. The values of k for which T(a, b)[C(n, j)] = C(n,k)

(a,b)           k

(1.2)            J

(2,1) n + 3-j_

(1, J) U- U'' + 1_

(j, 1) n + 3-(j- 1)-'- 1

(2, J) -(J~2)-x + \_

0,2) h + 3 + 0-2)-'-1

For a fixed/ we will denote by TJ the set of isomorphisms {77a, b): {a, b} C

{1,2, j}} defined above. The elements of T will often be referred to as division

isomorphisms.

Let/: C(n, j) -» C(«, k) be an isomorphism between two complexes in C\ C". By

a translation of the indices in F(C(n, A)) we may suppose that /G T*(a, ft) for

some ordered pair (a, b). Our first objective is to show that in fact/ = T(a, b). That

is, all isomorphisms (up to a translation) are division isomorphisms. We will require

the following observation, stated as a lemma for future reference.

Lemma 2.1. Let C(n, k) G C\ C". Then (A - 1, A, 1) is not a 2-cell of C(n, A).

Proof. If not, then we must have n + 1 = 2A — 2 or 2A — 3, both contradicting

C(«,A)G C\C.

We are now ready for the theorem which will lead to the converse of Theorem 1.

In the proof and subsequent discussion, C(n, j) will often be abbreviated as C(j)

since n will be fixed by context.

Theorem 2. Suppose n > 9 and that two complexes C(n, j), C(n, k) G C\ C are

isomorphic, say, by the isomorphism f: C(n, j) -» C(n, k). Then f is a division

isomorphism, up to a translation of the indices of C(n, A). That is,f= Tr ° T(a, b) for

some r and some ordered pair (a, b), where t = (123 • • • n) G ro(C(n, A)).

Proof. First some preliminary remarks are in order. As a convention, the points

of C(n, j) will be unprimed while those of C(n, k) will be primed. Also it should be

emphasized that the hypothesis requires both C(n, j) and C(n, k) to be in C \ C, so

that in particular we have 4 <j, k < {n/2}. Thus, for example, if (/•', r + 2') G

C(A)(I) for some r' G V(C(k)) we may conclude that A = 4, a conclusion which

would be false without the above restriction on A.

Our method is as follows. We prove that for each ordered pair (a, b), if g is an

isomorphism in T*(a, b), g: C(n, j) -» C(n, A), then g = T(a, b). Note that this

suffices to prove the theorem. For let/be any isomorphism,/: C(n, j) -» C(n, A),

and suppose that f(l,2, j)= (r\ r + V, r + k - V). Then letting t2 = (1'2'3'

■••«') G r0(C(A)), we have t2~ (r-1)/(l,2, j)= (Y,T, k'), and hence t/^^/G

T*(a0, b0) for some ordered pair (a0, b0). Now letting g = T2(r~ "/, we know by the
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result above that r2_(r_1)/= T(a, b), and the theorem will be proved. Observe

further that to show g = T(a, b) it suffices to prove that g(2b — a) = 3'. For then

letting t, — (12 • • • /i) G ro(C(/')) we see that the map

t2-»gT»~": CO) - C(k)

satisfies t2~ 'grf-0 G T*(a, b) and hence

r2-xgrra(2b-a) = 3'.

But this implies g(3b — 2a) = 4'. Proceeding inductively by using the maps

T2(r~i)gTlr'i)ih'a) one then shows that g(a + (r + ])(b - a)) = r + 2' for all r,

and hence g = T(a, b) as required. In practice, the proof of g~ ](3') = 2b — a often

proceeds by considering all possibilities for g~ '(3') subject to the hypotheses that g is

simplicial and C(j), C(k) G C \ C, and eliminating all of them except g~ x(3') = 2b

— a. The required result follows since then either g~ '(3') = 2b — a as desired, or

g~ '(3') ¥= 2b — a in which case the hypothesis C(A) G C\C' must be violated.

There are, of course, six possible sets of mappings T*(a, b) to consider. We carry

out the details here only for the case involving T*(\, j), the other cases being

essentially similar computations. A full treatment of all the cases may be found in

[Hi-
Suppose then that/G T*(\, j). Thus we have/(l) = \',f(j) = 2', and/(2) = A'.

Our first step will be to show that f~x(k — V) = n + 3 —j. We remark that since

(A - 1', A', l')G C(A)(2) by Lemma 2.1, it follows that f '(A - 1', A', l')G C(j)(2)

since /is an isomorphism.

It is convenient to consider first the case n = 2j— 1. This condition yields

r\k~ l')G {/+ l,j + 2,n). If/"'(A- V) = n, then (n,2) = f~\k - 1', A')
G C(j){[), so that combining with C(j) G C" we get j = 4. This gives n = 7,

contradicting C(j) £ C. Suppose then that f~x(k — V) = j + 1. Then we have

(2', A — l') = /(/, j + 1) G C(A)(!), and it follows that A = 4. Now by preservation

of cells we have (f~x(nr), 1, j + 1) = f~x(n', V, A — l')G C(j)(2), so using n = 2j

— 1 it follows that fx(ri) = j + 2. But now A = 4 gives (j, j + 2) = /(«', 2') G

C(y)(1), and thus j = 4. We then have the contradiction n = 7 and C(y) G C".

Finally assume that/^'(A — 1') =_/' + 2. Arguing as above we get f~x(n') =j + 1.

Now (n',2') = f(j + 1, y')G C(A)(1) so we have A = 4. But this implies A — 1' = 3'

and (j, j + 2) — f '(2\ 3') G C(y)(1) so thaty = 4. It follows again that n — 7 and

C(j) G C, a contradiction. We have thus shown that no isomorphism/ G 7*(1, /)

yields an image plex C(A) G C\C when n = 2j — 1.

We may henceforth assume that n ¥> 2j — 1. It follows that f~ '(A — 1') G {n + 3

— j, n} if j — 4, while f~x(k — V) = n + 3 — j exclusively if j ¥= 4. Suppose then

thaty = 4 and f~x(k — V) = n. In order to preserve cells we have (/"'(«')' 1- ")

= f"V,1',*-l')6C(;)(j) so we get r\n')=j-\. This gives («',2') =

/</- l,y')G C(A)(1)andhenceA = 4. It follows that (/ «> = /^,(2',3')G C(y)(1).

But combining n ^ 2y — 1 with C(y')GC\C we get n^2j+ 1 and hence

(/, n)^ C(j)0), a contradiction. We are thus reduced to f~l(k — 1') = n + 3 —/,

as desired. We also note that since (f~x(n'), 1, « + 3 —j) — /"'(«', 1', A — l')G

CO)(2). we also Setf '("') = « + 2 -/
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We may now prove that/= T(\, j). As has been previously observed, it suffices

to show that f~x(3') — 2j — 1. This will be done using the following descending

induction. It has been shown that f~'(A — 1') = n + 3 — j = f~x(k') — (j: — 1) and

f~\n') = n + 2 — j =f~x(V) — (j — 1). Let us then assume that for some integer

R satisfying 3 < R < A, we have proved that f~ x(r') =fl(r + V) ~ (j - 1) for all

r in the ranges R < r < A and R — A + 1 *£ r < 1. Our object is to show that

f-\R ~ V) =r\R')~(J ~ !)• Letm = (A - R)(l -j) + 1 for brevity. Then we

have/"'(/? - 10 = N(f-\R')) n N(f~x(R - A + V)) = N(m) n N(m + 1). Since

n > 2A - 1 we have (R - V, R', R - A + 1') G C(k\2) and hence

T' (*- 1', R',R- k + l')$C(j)m.

Thus/^'(« - F) ¥= m +j- 1, so it follows (using n #2/- 1) that/"'(7? - V) =

m - (j - 2). But this yields f~\R - V) = m - (j' - 2) = 1 + (A - R)(\ - j) = 2

— (A — R + \)(j — 1) = f~x(R') — (j - 1). Our induction is completed and we get

the desired result/" '(30 = 2/ - 1.    □

We are now ready for the characterization of those complexes C(n, j) G C

satisfying T2(C(n, j)) = Z„. We write C(j) for C(n, j) in the proof since « is fixed.

Theorem 3. Let C(n, j) G C. Then we have T2(C(n, j)) ss Z„ // and only if

C(n,j) G C\C.

Proof. We already know from Theorem 1 that if C(j) G C, then r2(C(/)) ^ Z„.

Hence necessity is proved.

Suppose now that C(j) G C \ C, and assume to the contrary that T2(C(j)) ^ Z„.

Then there exists an automorphism a G ro(C(7)) such that a $ (t), where t = (12

••■«). Thus a is an isomorphism a: C(j) -» C(j) which is not a power of r(l,2).

By Theorem 2 we know that a is a division isomorphism. Thus a — T(a, b) for

some ordered pair (a, b), and we consider each possibility for (a, b) in turn.

Suppose first that a = T(\, j). By definition a(l) = 1, a(j) = 2, and a(2) = j, so

that we must have (j — l)2 = 1 (mod n). When n = p" > 9 with p odd the two

solutions to this congruence are/ = 0 and 2 (mod n), neither of which is permitted

for a plex C(j) G C. When n — 2" > 16 there are four solutions, / = 0,2, «/2 + 2,

and n/2. The first three are disallowed by definition of C while the last implies that

C(j) G C, as required. Next suppose a = T(j, 1). Since a(y) = 1, a(l) = 2, and

a(2) =_/, we must have (1 — j)(j — 1) = 2 — _/ (mod «). Thus j2 — 3j + 3 = 0

(mod «), and we get C(j) G C". Assume now that a = 7,(2, /)■ Using a(2) = 1,

a(y) = 2, and a(\) =j, we find that (j — 2)(y — 1) = -1 (mod n), and again we get

y'2 — 3j + 3 = 0 (mod «) leading to C(j) G C. Next assume a = T(j,2). Since

a(j) = 1, a(2) = 2, and a(\) —j, we get (2 — j)(j — \) = \ —j (mod «) and thus

(i — 3)(y — 1) = 0 (mod «). Writing n = pr for prime p and using n > 2j — 2 >j

— 1 we find that p \j — 3 and p \j — 1. It follows that /? = 2 so n = 2r. Since

C(j) G C\C and « is even we must have n > 2/ + 2 and thus j < 2r~x. Now

observe that one of y — 1 and/' — 3 has congruence class 2 modulo 4, and it follows

that the largest power of 2 dividing (j — l)(y — 3) is at most 2r~x. This contradicts

n | (j' ~ 1)0' ~ 3), and the theorem is proved.    □
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We now turn our attention to the problem of determining the number of

isomorphism types of plexes C(n, j) G C satisfying T2(C(n, j)) ss Z„. We will call

this number I(n). The following lemma is useful in the determination of I(n).

Lemma 4.1. Let C(j) EC\C.

(1) For any a G P, a ¥= 7/(1,2), ifa(C(j)) = C(k) G C, then A *j.

(2) For any two distinct a, B G P, if a(C(j)) = C(kx) and B(C(j)) = C(k2) with

C(A,), C(k2) EC, then A, ^ A2.

Proof. We will make use of Table 1 which gives the value of A satisfying

77a, b)[C(j)] = C(k) for any T(a, b) E P.

For statement (1), let us assume the contrary and then consider each possible a in

turn. We need not consider a = T(2,1) since 7(2, l)[C(y')] = C(n + 3 -y) g C.

Suppose then that a = T(\, j). By Table 1 we must havey =(j— 1)~' + 1 (mod n),

implying thaty(y — 2) = 0 (mod n). Since n is a prime power and n >j it follows

that n = 2r. The condition n > 2j — 3 and the congruence above imply that « = 2/,

contradicting C(j) E C\C. Now suppose a = T(j, 1). The contrary assumption

forces j = n + 3 — (j — \)~x — 1 (mod «), which immediately leads to the con-

tradiction j2 — 3)' + 3 = 0 (mod/*). Next assume that a = T(2, j), so that our

assumption gives./' = (j — 2)~' + 1 (mod n). Again we get/2 — 3y + 3 = 0 (mod n),

a contradiction. Finally if a = T(j,2), then y = n + 3 + (y — 2)_1 — 1 (mod «).

This leads to (y — 3)(y — 1) = 0 (mod «), implying that n = 2r. Now combining the

congruence with n > 2y + 2 we find that 2r does not divide (y — l)(y — 3), a

contradiction.

In proving statement (2), we will again assume the contrary and then consider all

possible pairs a, B E P. We may immediately eliminate pairs T(a, b), T(b, a) from

consideration since not both T(a, b)[C(j)] and T(b, a)[C(y')] are members of C. In

addition we may assume that neither a nor B is 7(1,2) or 7(2,1) since 7(1,2)[C(y)]

= C(j) thereby reducing to statement (1), while 7(2, l)[C(y)] = C(n + 3 -j) g C.

Let us then consider the remaining pairs a, B in turn. Suppose a = 7(1, y) and

B = 7(2, j). Our contrary assumption and Table 1 yield

0-l)"I + l = -0-2)"I + l    (modn),

which gives 2y' — 3 = 0 (mod n), contradicting C(y') G C. Now suppose a = 7(1, y)

and B = 7(y,2), so that (y - l)-' + 1 = « + 3 + (y - 2)_l - 1 (mod n). This

leads to the contradiction y'2 - 3y + 3 = 0 (mod n). If a = T(j, 1) and B = 7(2, j),

then n + 3 — (j — \yx — \ = -(j — 2)~x + 1 (mod n) and again we get the con-

tradiction y'2 - 3j + 3=0 (mod «). Finally if a = T(j, 1) and B = 7(y,2), then

n + 3 — (j — \yx — I = n + 3 + (j — 2)~x — 1 and we arrive at the contradic-

tion 2y — 3 = 0 (mod n). The lemma is proved.    □

For convenience, we make the following definitions. Let Q(n) be the set of

integersy for which C(n, j) E C and T2(C(n, j)) = Z„, and let Y(n) be the set of

integersy for which C(n, j) E C and T2(C(n, j)) ^ Z„. Fory G Q(n) define \(j) to

be the number of plexes C(n, A), A G Q(n), in the same isomorphism class as
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C(n, j). Finally, for reals r and 5 denote by [r, s] the set of integers n satisfying

r < n < s. Thus we have the partition [1, {n/2} + 1] = Q(n) U Y(n).

It is now possible to calculate I(n).

Theorem 4. Let n s* 9 vw7n -n = /?° /or /? prime, and let m = {n/2}. 7nen the

number I(n) of isomorphism classes among the set of plexes C(n, j) E C satisfying

T2(C(n, y)) s Z„ (equivalently C(n, j) EC\C) is given by

-   + — \m — 2 -   —1—1     when p = 1 (mod 6)
L     P     J      3\ Y     P     \        ! orp = 3,

7(") = 1 \m+ ll       1/ J»i+ll\       , , _,       .,.
-    + —   w — 2 -      — 1 wne« p = 5 (mod 6),

L     Z7     J      3 \ L     />     J/

— — 2 w/jen p — 2.
4

Proof. Our method is to use Theorem 2 to identify the isomorphism classes of

complexes C(n, j) E C with the orbits of C under the action of the group of

division isomorphisms.

Let us begin with the determination of the numbers A(y') for j G Q(n). By

Theorem 2 two distinct complexes C(y'), C(A) G C are isomorphic if and only if

they are division isomorphic, say, by/: C(y') -» C(A). Setting

7= P\ (7(1,2), 7(2,1)},

we may assume that / G 7 since j ¥= A and y, A < {n/2} + 1. Thus we have / G

{7(1, y), T(j, 1), 7(2, y), 7(y',2)}. Now observe that T(a, b)[C(j)] = C(k) if and

only if T(b, a)[C(y)] = C(n + 3 — A). Hence there are at most two isomorphisms

in 7 whose actions on C(y) yield plexes in C, and thus there are at most two plexes

C(A,), C(A2) G C distinct from C(y') and in the same isomorphism class as C(y'). It

follows that A(y') < 3 for ally G Q(n). Furthermore, from the definition of 7(a, b)

we have an isomorphism T(a, b) defined only when \a — b\ and n = pa are

relatively prime. Thus we have the upper bounds A(y) < 3 ify s lor2 (mod p) and

A(y) *£ 2 ify = 1 or 2 (mod p). We now prove that the corresponding lower bounds

also hold, from which equality follows. Suppose first thaty z 1 or 2 (mod p). Then

all isomorphisms in 7 are defined on C(y), and from the remarks above precisely

two of them, say T(a, b) and 7(c, d) with \a — b\¥=\c — d\ , yield isomorphic

images of C(y) which are in C. Calling these images C(A,) and C(A2) as above, we

appeal to Lemma 4.1 to conclude that the three integersy, A,, and A2 are distinct,

and thus X(y') = 3. Ify = 1 or 2 (mod p), then precisely one of they — 1 andy — 2 is

relatively prime to n, and as above there is one isomorphism BET such that

B(C(j)) = C(k) E C. Again by Lemma 4.1 we have y ¥= A and so A(y) = 2. To

summarize then, it has been shown that fory G Q(n) we have A(y) = 3 ify £ 1 or 2

(mod /?), while A(y) = 2 ify = 1 or 2 (mod p).

In view of this result, it is useful to adopt the following notation. For r = 2 and 3

define Qr(n) as the set of integersy G Q(n) for which A(y') = r, and Ir(n) as the
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number of isomorphism classes among the set of plexes C(y) withy G £?,(«). Thus

we have the partitions Q(n) = Q2(n) U Q3(n), [1, {n/2} + 1] = Q2(n) U Q3(n) U

Y(n), and the equality I(n) = I2(n) + I3(n).

We may now proceed to the calculation of I(n). Suppose first that n = pa where

p = 1 (mod6). Let/(x) = x2 — x + 3 and observe that if r is a solution to/(x) = 0

(mod n), then so is n + 3 — r. Since these two must be all the solutions, it follows

that there is precisely one integer, call it r, satisfying r G[l,{n/2} + 1] and

/(r) = 0 (mod n). Now none of 1, 2, 3, and {n/2} + 1 satisfy/(x) = 0 (mod n) so

that we may conclude by Theorem 3 that Y(n) = {1,2,3, {n/2} + 1, r}. Let X be

the set of integersy satisfying/? <j < {n/2} + 1 andy = 1 or 2 (mod p). We claim

Q2(n) = X. From the discussion above we know that Q2(n) C X. For the opposite

inclusion, note that ify G X, then not bothy — 1 andy — 2 are relatively prime to n.

Hence we have X n Q3(n) — 0. It therefore remains to show that Ifl Y(n) = 0.

This amounts to verifying that {n/2} + 1 G X and r G X. Since p > 9 it is obvious

that {n/2} + 1 z 1 or 2 (mod p). To show r G X, observe that since /(/•) = 0

(mod pa), we have f(r) = 0 (mod p). But if r = 1 or 2 (mod p), then f(r) = 1

(mod p), a contradiction. Now by definition of X and since {n/2} + lzO (mod p),

we have \Q2(n)\ = \X\= 2[({n/2} + 1)//?], and thus

I2(n) = {\Q2(n)\ = [({n/2} + \)/p\.

Now we also get | Q3(n) \ = \ Q(n) | -| Q2(n) | = {n/2} + 1 - | Y\ -| Q2(n) | =

{n/2} - 2[({n/2} + \)/p] - 4. Thus I3(n) is given by I3(n) = \ \ Q3(n) \ , and

combining this with I(n) = I2(n) + l3(n) we get the required result.

Suppose p = 3. Here we find that Y(n) is {1,2,3, {n/2} + 1} so that Q(n) =

{n/2} + 1 — | T(n)|= {n/2} — 3. Defining X as above (with p = 3) we have

| X\= 2([({n/2} + l)/3] - 1) since {n/2} + 1=0 (mod 3) when n = 3", and it is

similarly proved that Q2(n) = X. Thus we get | Q3(n) | = | Q(n) \ — | Q2(n) |= {n/2}

— 2[({n/2} + l)/3] — 1. By definition of 7r(n), r = 2,3, we therefore obtain

I2(n) = {-\Q2(n)\ = [({n/2} + l)/3]-\

and

h(n) = \ | Q3(n)\= \({n/2} - 2[({n/2} + l)/3] - l),

from which the formula follows.

Now assume/) = 5 (mod6). We find that

F(n)={l,2,3,{n/2} + l},    \X\=2[({n/2} + l)/p]

since {n/2} + 1 z 0, 1, or 2 (mod n), and as above Q2(n) = X. Thus

I e3(») 1 = 1 C(«) I -I Qi(") 1= («/2) - 3 - 2[({n/2} + 1)//;],
and we get

I(n) = I2(n) + I3(n) = \ \ Q2(n) | +| | Q3(n)\

= [({n/2} + \)/p] + \{{n/2) - 2[({n/2} + \)/p\) - 1,

as required.
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Finally consider the case p = 2. By Theorem 3 the exceptional set Y(n) is

{1,2,3, n/2, n/2 + 1}, and we get \Q(n)\= n/2 + 1 - | Y(n) \= n/2 - 4. Since

p ~ 2, we also get Q(n) = Q2(n) and Q3(n) = 0. It follows that

/(«) = i I G2(») 1= «/4 — 2,

and the theorem is proved.    D

Corollary 4.1. If pa > 9, then we have M\2)(Zp«) = M^2)(Zp„) = pa.

Proof. We give the proof only for M\2)(Zp„), as that for M^2)(Zpa) is obtained by

replacing cells by points and cell groups by point groups throughout.

The upper bound M{2)(Zp») <pa follows from the existence, guaranteed by

Theorem 4, of a plex C(pa, j) satisfying r2(C(pa, j)) s Zp„ and | C(pa, j\2) \ = pa

for/>"2*9.

For the lower bound, let K be any plex satisfying T2(K) = Z «, and let a be a

generator of Y2( K). Clearly \a\ = p", and | a | is the least common multiple of the

lengths of the cycles appearing in the disjoint cycle decomposition of a. Hence a

pa-cyc\e appears in this decomposition, so that | K{2) | s* p".    D

Let us now observe that the complex C(n, j) can also be defined when n is not a

prime power. We can then ask the same question considered above. For fixed n,

what is the number I(n) of isomorphism classes of complexes C(n, j) satisfying

T2(C(n, y')) s Z„? We give some values of I(n) for small n.

Theorem 5. 7(10) = 1, 7(12) = 2, 7(14) = 2, 7(15) = 2.

We have shown above that M\2)(Zp„) = pa, and that the minimum was achieved

by the complexes C(pa, j) satisfying Y2(C(pa, j)) s= Z .. These C(pa, j) were

characterized in Theorem 3 (using the parameters/?" andy) as the ones belonging to

the set C \ C. Now clearly the group T2(C( />", y')) contains an element r whose cycle

structure (as a permutation on C(pa, y)(2)) consists entirely of a /""-cycle. Indeed, t

is the permutation on C(pa, y')(2) which sends cell (/',/' + 1, i+j— 1) to cell

(/' + 1, / + 2, / +y) (indices read modulo pa). Our next objective is to state a

theorem (without proof for brevity) which characterizes the set of all 2-complexes K

such that \K(2)\ = pa and there exists a EY2(K) whose cycle structure (as a

permutation on K(2)) consists entirely of a /?"-cycle. The main consequence of this

characterization will be that the realization of M(2)(Zp*) by C(pa, j) is unique. That

is, if a 2-complex K satisfies | K{2) \= p" and T2(K) = Zp„, then K = C(pa, j) for

somey.

First we fix some notation. Let Kbe a 2-complex such that | A"(2) | = n with n = p"

a prime power, and such that there exists a G T2(K) which is an n-cycle. Thus we

may write a = (axa2 • • • an) where the a, are all the 2-cells of K. Such a plex will be

called n-permutable. If c is any cycle appearing in the disjoint cycle structure of some

element of T2(K), we denote by K(c) the complex (a,, a2,... ,an) induced by the

cells appearing in c. Now let K be «-permutable and let d satisfy (d, n) > 1, or,
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equivalently, (d, p)> 1. Then ad will have a disjoint cycle decomposition ad =

nj=f>c; where c, is a cycle of length n/(n, d). It is clear that the complexes K(c(),

1 «£ /' =£ (n, d), are mutually isomorphic and that K is the cell disjoint union of these

complexes. Letting K(ct) = K', we will say that A" is a K'-superposition or A" is a

superposition of K'. If (d, n) = 1, then ad is an n-cycle, and we have K(ad) — K(a)

= K. We will then continue to call K a 7C(ad)-superposition. Observe that K may be

both a /('-superposition and a AT"-superposition for nonisomorphic K' and K" (via

different powers of a of course). If K satisfies T2(K) =s Zn in addition to being

n-permutable then we will say that K is n-cyclic. If G is a graph, denote by 7(G) the

2-complex having V(G) as its points and the triangles of G as its 2-simplexes. We

now define several special classes of plexes, some of which were first introduced in

[5] by Harary and Duke in their investigation of the Ramsey numbers of plexes. As

usual, the point set of a plex K will be denoted by V(K) and the set of 2-cells by

K„y We now define the n-book Bn, the (n,0)-cvc/e Cn0, the (d, n/d) book-cycle

BC(d, n/d), the d-identifiedn-cycle dCn, the n-star Sn, and the n-disk Dn, as follows:

(1) The «-book:

V(Bn)={x,y,l,2,...,n),

B„(2) = {(x,y,i):l<i<n}.

(2)The(«,0)-cycle:

V(Cnfi)= {l,2,...,n,l',2',...,n'},

Q,0(2) = {('>'+ 1 >'"') ■ 1 ^ ' ^ n, integers read modulo n}.

(3) The (d, n/d) book-cycle:

V(BC(d,n/d)) = [\,2,...,d,\i,2i,...,di: 1 <i<n/d),

BC(d,n/d)(2)= {(k,k+ 1,A,): 1 <i<n/d, 1 =£ A *£ d}.

(4) The ^-identified n-cycle:

V(dC„) = {1,2,...,/7,0',F,..., (d- 1)'},    d a divisor of n,

dCn(2)= {<*',»'+ !.'">: 1 <i<n,i = i' (mod </)}.

(5) The w-star:

K(SJ= {fl,l,2,...,n,l',2',...,n'},

SB(2)={(a,i,/'):l</<«}.

(6) The n-disk:

V(Dn)= {l,2,...,«,a},

An example of a plex in each of the classes defined above is given in Figure 2.1.
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S4 D5

Figure 2.1. Examples of special classes of plexes

We are now ready for the first step, Theorem 6, of our characterization. The proof

is lengthy and is omitted for brevity.

Theorem 6. Let r range over divisors of n. Then a 2-complex K is n-permutable if

and only if it is a superposition of one of the following complexes.

(a) Br,

(b) C,0,

(c) Dr,

(d) Sr,

(e) C(r, j),

(f) rPK3.

Theorem 6 may be used to derive the following structural characterization of all

n-permutable plexes for n a prime power. The proof of this result involves a lengthy

computational argument which we omit here. Details may be found in [11].

For the statement of this characterization we require the following notation.

Recall that for any graph G, we denote by P(G) the 2-dimensional simplicial

complex whose points are those of G and whose 2-cells are the triangles in G while

the 1-cells are the edges of G. If G and H are graphs, we denote by G + H

(borrowing the notation of [4]) the graph whose point set is V(G) U V(H) and

whose edge set is E(G) U E(H) U {vw: v E V(G), w E V(H)}. The graph Kx
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p(k+3K      J /    """""^^W^S^ //^"\-""^l

P(K]+2C5)

Figure 2.2. The complexes 7 (A", + 3A", 3) and 7(A, + 2C5)

consists of one point and no edges, C„ is the cycle graph on n points, nG is the

disjoint union of n copies of the graph G, and A, r is the graph A, + rKx.

Illustrations of P( A, + 3A, 3) and 7(A", + 2C5) are given in Figure 2.2.

Our characterization of /?°-permutable plexes may now be given.

Theorem 7. Let n—pabea prime power with I, m positive integers such that

n/lm E Z. Then a 2-complex K is n-permutable if and only if it is a disjoint union of

copies of one of the following complexes.

(a) Some complex listed in Theorem 6,

(b),C/m,
(c)BC(l,m),

(d)7(A,+/A,,m),

(e)7(A,+/Cm).

The following is an immediate consequence.

Corollary 7.1. For pa > 9, there is a unique 2-complex K satisfying T2(K) = Z «

and | A"(2) | = pa, namely, K = C( pa, j) for some j.

3. The values of M\n)(A) and M^n)(A). Let A be an arbitrary finite abelian group.

In this section we use the complexes analyzed in the previous sections and "cones"

over these to form w-complexes, n>2, that provide upper bounds for M\"\A) and

M0"'(y4). It will be seen that for "almost all" groups A these bounds are in fact the

exact values of M\"\A) and M^"\A). In particular, we find the exact values of

M\n)(A) for dimensions n > 4 when A has no cyclic prime power direct factors of

order less than 17, and for n 3= 2 when A = Z2<2). We also find M^2)(A) for all A

except those having cyclic prime power factors of order less than 9. These exact

values and others are summarized in our main result, Theorem 11.
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We begin with some definitions. A finite abelian group A will be written

A = Up a Zepipa), where e( pa) is the number of times a given Zp« occurs as a factor in

the canonical decomposition of A. We write pa \ A if e(pa) s* 1, that is, if Zp„

appears in this decomposition. When A" is an n-complex satisfying Tn(K) = A (resp.

T0(K) = A), then we say K is an n-cell (resp. point) representation of A. If n and A

are two positive integers, then Sk(n) is defined to be 1 if n = 0 (mod A) and 0

otherwise.

Some notation to be used in our constructions will now be introduced. Suppose L

and K are two n-complexes with v E V(L) and w E V(K). We define the n-complex

v(L)~w(K) by V(v(L)~w(K)) = (V(L)U V(K) - {v,w})U {Z}, and v(L)

~ w(K\n) = {« G L(n): t> G «} U {a G K(n): w G «} U {(a - u) U {Z}: © G a,

a G L(n)j U {(a - w) U {Z}: w G a, a G A"(n)}. Thus u(7) ~ w(K) is obtained by

attaching K and L together via the identification of v and w. The new point Z may

be referred to as either v or w. If {»,-}"=, C F(7) and {w,}"=, C K(A") are sets of n

points in L and A", then we define i>,(7)    ~     w/L) recursively by

/     * K'<n      ,     s /      ,     . 1 <i'<n-1      .      . \

0/(I)    ~    *,(*) = d,(c,(L)      ~      "/(*))

/       .     , Kitn-1       „ \
~w„(t>,(7)      ~      w,(K)y

Ki<n
Thus u;(7) ~ Wj( K) is just the attachment of 7 and K via the identification of vi

with w; for 1 < i < n. In practice the complexes 7 and K which we use will usually

have been defined in §2, and as such they contain sets of points with primed or

unprimed integer labelings. If the number of, say, unprimed points, 1 </=£«, in 7

is n, and the number of them in A is also n, we will abbreviate i(L) ~ i(K) by

i(L) ~ i(K), it being understood that the identifications are to take place over the

full range of n possible values for / in both 7 and A". Similarly, i(L) ~ i'(K),

i(L) ~ i"(K), and i'(L) ~ i"(K) would be complexes obtained by the indicated

identifications over all possible values of i, i', or /'" in 7 or A". The symbol

i(L) ~ (i — l/( A) will signify that the point i of 7 is to be identified with the point

(/ — 1)' of A" as i runs over its possible values in 7. We require this notation when

the definitions of 7 and A give a range of 0' through n — 1' for the primed points in

K and 1 through n for the unprimed ones in 7. The complex i(C30) ~ i'(C30) is

illustrated in Figure 3.1(a). For each positive integer n we define the 2-complex F(n)

as follows. Referring to the definition of C„0 given in §2, we let V(F(n)) = V(Cn0)

U {1", 2",... ,n"}, and F(n\2) = C„0(2) U {(/, /', ;")/l < i < n}. The complex ob-

tained by identifying the points i", 1 < i < n, of F(n) to a single point Q will be

denoted by F'(n). Note that T0(F(n)) = T2(F(n)) a ro(7'(n)) at T2(F'(n)) = Z„.

We illustrate 7(3) and 7'(3) in Figures 3.1(b) and 3.1(c), where the three points in

7/3) labeled 1 are identified.
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111 m-
b)Fl3) c) F'(3)

Figure 3.1. Three 2-complexes

In order to state our next result we require some notation. A sum of the form

2J= r[x + 8k(i - r)] for fixed x and A > 0 will be denoted by Sk(x, r, s). The sum

2si=rx will be written S0(x, r, s). Now let n0 = 1 < n, < n2 < ■ ■ ■ < nr be a finite

sequence of increasing positive integers, and let N be any positive integer. An

expression S of the form

S = Ski(xu\,n1) + Ski(x2,ni + \,n2) + --- +SkrJxr+i, nr, N)

will have its usual meaning when N > nr, while if «, , + 1 < N ^ n, for 1 ^ t < r

then by convention S will be given by

Skl(xlt 1, n,) + Sk2(x2, n, + 1, n2) + ■ • • +Ski(x„ «,_, + 1, N).

Recall that I(pa) is the number of isomorphism classes among the complexes

C(pa, j) satisfying T2(C(pa, j)) = Zp., and by Theorem 4 we have I(pa) > 0 if and

only if pa s* 9.

We may now state the theorem which presents an upper bound for M\2\A) when

A is an arbitrary finite abelian group. The theorem gives bounds, denoted by

Bf\Zepipa)), for M\2)(Z;ipa)), from which the bound

Ml2\A)*z 2 7?i2)(z^a»)

p"\A

follows by construction. The bounds Bil2)(Zepip°)) are given only for those pa

satisfying a > 1 and p > 7, or a = 1 and p s* 11. In the remaining cases the

behavior of B(i2)(Zp.p°)) is exceptional owing to the smallness of/?", and we therefore

omit discussion of these cases here. These cases are discussed in detail in [11].

Theorem 8. Let A be a finite abelian group with canonical factorization A = U Zeip"\

and for any fixed prime power pa let n = I(pa). Suppose that for all elementary

divisors pa of A we have a > 1 and p >7,ora= 1 and p > 11. Then M\2)(A) satisfies
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M\2\A) *£ 2,.,,, fi<2)(Z;^°») where B?\Zepip"x) is given by

(1) S0(pa,l,n) + S0(pa+p,n + l,n+ {p/2} -3)

+ S0(pa + 2p,n + {p/2} -2, e(pa))     ifp>landa>\,

(2) S0(p,\,n) + S0(2p,n+ \,e(p))    if p > 11 and a = 1.

Proof. The method of proof we employ begins by constructing a 2-cell represen-

tation K(Zepipa)) of each factor Zepip"^ in the decomposition of A. We then obtain our

bounds 5<2)(Z^a)) by letting 5<2)(Z;^"») =| K(Zepipa))(2) \ . The 2-cell representa-

tion K(A) of A which we use is K(A) = U p„[A K(Zp.pa)), and it follows that

Ml2\A)<\K(A\2)\ =  ^i2,(z/»).

In what follows, then, we construct a 2-cell representation K(Zpipa)) for each

subgroup Zp,1'^ appearing in the factorization of A such that the value of

|A-(z;i>">)(2)|=7if>(z^>)

is as claimed.

Suppose first then that a > 1 and p > 7. We will require three types of 2-com-

plexes in our construction. The first type will be the /?"-cyclic complex C(p", j). By

Theorem 4 there exist I(p") > 0 mutually nonisomorphic complexes of the form

C(pa, j), each satisfying T2(C(pa, j)) = Zpa. Now define 77, to be some C(pa, y0)

satisfying T2(C(p", y0)) = Zp«, and for each /, 1 < / =s I(pa), let 77, be a complex

C(pa, j) satisfying T2(C(pa, j)) = Zp„ such that 77, ¥= Hr for r < i.

We now define the second type of complex. It is shown that each example of this

type has cell group Zpa, and the maximum number of mutually nonisomorphic

examples is determined. Define the complex Y(j, pa) by Y(y', pa) = i(C(p, j)) ~

(i — 1)'(„C «), where y satisfies 4 <j < {p/2}. As abbreviations, we write Y for

Y(j, pa) when/' and/?" are fixed, and T(y) for Y(j, pa) when only/?" is fixed.

We now claim that T2(F) = Zp<.. To see this, denote the subcomplex C « of Y by

C for brevity, and observe there is a natural homomorphism/: r2(7) -* T2(C) given

by restriction to C, i.e., f(a) = a \c. The map / is injective since if a \c — 1, then

a = 1 on all of Y(2). It follows that r2(Y) is a subgroup of T2(C) = D2p«, the

dihedral group of order 2/?". It remains to show that r2(F) contains no involution t.

Now T2(F) is clearly invariant on C, and hence such a t when restricted to C may be

assumed without loss of generality to act on points according to r(y') — /?" + 3 — j

and r(y') = (/? + 3 — /)'. But then t does not preserve the cells of the subcomplex

C(p, j) since 4 «Sy < {p/2}. Thus r2(F) contains no such r, and hence r2(7) = Z «.

as claimed. To summarize, the complex C « has dihedral symmetry, but attachment

of C(p, j) via the identifications i ~ (i — 1)', 1 <i <p, destroys all the involutions.

The cell group of the resulting complex is then just Z ..

Next we assert that Y(j) & Y(k) if y' ¥= A. Suppose the contrary, and let /:

Y(j) -» Y(k) be an isomorphism. Let C, and C2 be copies of C. in Y(j) and 7(A)

respectively. Clearly /(C,) = C2, and hence / may be viewed as an element of
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FoipCp") = D2P°- Therefore we have /= aV, where 0 < x < />" - 1, 0 < v < 1,

a = (12 ■■■pa)(Y2' •••?'), and

{p°m {pa}
T = ({p/2} + l)({p/2} + Y)   TJ   0,/>" + 3-7)   II   (/,7 + 3-/).

7=1 7=1

Clearly we have ax(Y(j)) = Y(j) and t(Y(J)) = Y(p + 3-j). Hence we get A =y

or k = p + 3 — j, both of which are disallowed by the conditions k ¥=j and

k, J < {P/2}- It follows that y(y) * Y(k) as claimed. Finally, note that | Y(j\2)\ =

/?"+/? for ally.

As the third type of complex, we will define for each positive integer A a

2-complex Tk satisfying T2(Tk) ^Zpa. For later use, the p points of  y(y) in

C« n C(p, j) will retain the names i', 0 < i <p — 1, they had in pCp.. Define 7,

by letting

Tx = i{Bp)~(i-\)>(Y(j))

= i(Bp)~(i-\y[i(C(p,j))~(i-l)'(pCp.)]

for some j. Thus 7, is formed by identifying the nonspinal points of a /?-book in a

one-one manner with the points /', 0 < i <p — 1, of Y. The proof that r2(7,) = Zp«

is almost identical to the proof of r2(F(y')) s Zp«, and is hence omitted. Let j be a

spinal point on the /?-book 7,, and define 72 by

T2 = s(Tl)~Q[i(Dp)~(i-l)'(Y(j))].

(    c<p,i)    ^^

I     ̂ ~^-~~^       _—^^    11       C    ot

/ 1   r p P

Y<il = i<C(p,j))~ (i-l^C  ^ /^    1/    \/\[     J

■ iop ) Mi-l)'(/(/)) if»p)~(i-H' (/(/))

Figure 3.2. Complexes used in constructing Tk
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Figure 3.3. The complex 74

Clearly we have T2(i(Dp) ~ (i - \)'(Y(j))) = Zp., and hence T2(72) = r2(7,) X Zp.

= Z2„. Having constructed Tk_x, we define Tk recursively by letting Tk = s(Tk_x) ~

t( 7,) where 5 and / are spinal points of /?-books in Tk _, and 7, respectively such that

.? t^ fl if A = 3 and s G 7^_2 if A > 4. The "building blocks" of 7^ are illustrated in

Figure 3.2 and 74 is shown in Figure 3.3.

We now show that T2(Tk) = Z*«. It may be assumed that A s» 2 as the case A = 1

has already been treated. Define the subcomplex FJy 1 <y' < A, of Tk to be

Fj=(TjX2^TJ_H2)).

Thus 7; = 7, fory ,= 2 and 7, = i(Dp) ~ (i - 1)77(0) for some t, so that F] may be

informally described as theyth "floor" of the "tower" Tk. We know that r2(7) == Zp«

for ally. Our object is to show that there exists an isomorphism

/: nr2(//)-r2(r,),
7=1

and the statement Y2(Tk) = Zkp« would follow. Let (al,a2,...,ak) by any A-tuple

satisfying a, G T2(Fj), 1 =s / *£ A. To each such A-tuple there corresponds an element

(ax,a2,...,ak)e of T2(7^) given by (a,, a2,...,ak)e\F = or. We then define the

homomorphism/: 11*=, r2(7^) - T2(Tk) by /(a,, a2,.. .,ak) = (a,, a2,... ,ak)e. Ob-

serve that/is injective, since (ax,a2,...,ak)e= I in T2(Tk) implies that or = 1 for all
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j. For surjectivity, observe that a typical element t of r2(7^)\/(II*=1 T2(7^)) must

fail to be invariant on some 7-. Since the 7/s are preserved under t2(Tk), it follows

that t would satisfy t(Fj) = 7, for some pairy, /, j ¥= I. But this action on Tk has

been disallowed because Tk has been "rooted" at one end with the complex

i(D ) ~ (i — 1)'(7(0). Hence no such t exists and/is thus surjective. It follows that

/: n*=, r2(7^) -» T2(Tk) is an isomorphism, and thus Y2(Tk) at Zp« as required.

We may now describe the 2-cell representation K(ZpV'°)) of Zp{p°\ Define

H/{pa)+x to be Y(j) for somey, and then for each integer r satisfying 7(/?") + 2 < r

< I(p") + {p/2} - 3, let Hr = 7(A) in such a way that Hr i- Hs for s < r. We

observe that such an assignment is possible since it was shown above that the

{p/2} — 3 complexes 7(y), 4 <y:< {p/2}, are mutually nonisomorphic. Now

define K(Zepipa)) by

' I(p") + {p/2)-3

U WiUV)-('(f")+(f/2)-3)'
(=1

A-(z;^"») = if e(p") >I(pa) + {p/2} - 3,

e(p')

U H,   ife(/?")<7(/?")+{/?/2}-3.

We now claim that

r2(A-(z;^))=z;^».

For convenience write K' for the complex

r(p")+{p/2}-3

U      n,
i=i

Now K' has /(/?") + {p/2} — 3 connected components, and we have shown that

each has cell group Zp« while no two of these components are isomorphic. It follows

that r2(A~0 = z^°)+^/2>"3. Clearly 7e(/,.)_(/(p«)+{/,/2}_3) is connected, and is

isomorphic to no connected component of A'. We thus get

r2(*(z,i>->)) = r2(*') x r2(Te{p^Uip.)+{p/2)_3)) = zp\

Hence our upper bound for Mx(2)(Zpip°)) when /? > 7 and a > 1 is

M<2)(z;<"°») < S0(pa, \,n) + S0(pa+p,n+l,n + {p/2} - 3)

+ S0{pa + 2p,n+ {p/2)-2,e(pa)).

We now consider the case a = 1 and /? > 11. Since I(p) > 0, we may define 7/,,

1 *£ /'</(/?), as a full set of /(/?) representatives, one from each isomorphism class,

of the set of complexes C(p,j) satisfying Y2(C(p, j)) = Zp. Next we define a

complex T'k for each integer A > 0 similar to the complex Tk used in forming

A/Z;^"') for /?>7 and a > 1. Let 7{ = /(D,) ~ /(C(/», /)) for some C(p,t)

satisfying Y2(C(p, t)) a Zp, and we observe that r2(7() s Z . Now let u be a spinal
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point on the/?-book of i(B ) ~ i(C(p, ty), and define 72 to be

7Z = Q(rl)~u[i{Bp)~i(C(p,t))].

For A s» 3 we define T'k recursively. Let s be the spinal point on the /?-book of a

subcomplex i(Bp) ~ i(C(p,t)) of T'k_x such that s $ T'k_2. We then let T'k =

s(T'k_x) ~ h[z'(77,) ~ ;'(C(/?, /))]. The proof that r2(7Jt) s Z*„ can be used almost

verbatim to show that T2(T'k) = Z*. Now define K(Zp<-p)) by

V^p      / j   e(p)

UH, if e(p)<I(p).
i=i

The resulting bound for M,(2)(Zj;(p)), p ^ 11, is

M<2>(Z;<*>) <| A-(Z;<^)(2)|= S0(/>, 1, n) + S0(2/?, „ + \,e(p)).

We omit here the construction of K(Zepipa)) in all remaining cases for/?" as these

involve "ad hoc" features necessitated by the smallness of/?". These include the use

of the complexes F(n) and F'(n) "mounted" on special complexes having identity

automorphism group. A complete description of these constructions is available in

[11].    □
We now discuss the construction of minimal pure n-dimensional simplicial com-

plexes A having given A ss r„(A") for n > 3 or given A s= T0(K) for n > 2. Our

object is to find upper bounds for M\"\A) and M{\n)(A) in these dimensions n. It

will be seen that these bounds give the exact value of M\n)(A) when n > 4 and of

A/rJ'I)(y4) when n — 2 for "almost all" A. The w-complexes at which the values of

Mxi")(A) are realized arise as analogues of the 2-complexes Tk described in the proof

of Theorem 8. In addition we will make use of the topological cone over the

2-complexes C(pa, j) discussed in §2.

Let A be a pure n-complex, and recall that A"(n) is its set of maximal simplexes. We

describe a method of constructing complexes of dimension greater than n containing

A" as a subcomplex. The (n + r)-cone over K, written Cn+r(K), is the pure (n + r)-

dimensional simplicial complex defined by V(Cn+r(K)) = V(K) U {u,, v2,...,vr},

Cn+r(K\h+r) = {(a, vx, v2,.. .,vr)/a E K{n)}. The 3-cone over 27A/, C3(27A/), is

illustrated in Figure 3.4.

A A     0
Ĉ3(2PK3)

Figure 3.4. The complexes 27A/ and C3(2PK3)
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We define Pn+r(K) to be the set of points {vx, v2,...,vr} in Cn+r(K), and the

elements of Pn+r( K) will be called perspectivity points or perspectivities of C„+r(A^).

We are now ready for Theorem 9 which gives upper bounds for M\"\A) in

dimension n > 3. In order to avoid small exceptional cases we will assume that all

elementary divisors p" of A satisfy /?" > 9.

Theorem 9. Let A be a finite abelian group, and let A = IIZpf") be the canonical

factorization of A. For fixed pa > 9, let y — /(/?") (determined in Theorem 4) be the

number of isomorphism classes of C(pa, j) satisfying T2(C(pa, j)) = Zp«. Suppose

thatp" > 9 for allp" dividing A. Then M\"\A) satisfies

m}"\a)< 2 B\nAzepip°A
P"\A

where B\"\Zepip°)) is given for n s* 4 o v

(\)p«e(pa)ifpa>n,

(2) S0(pa, 1,1) + S0(/?«,2, e(pa)) + 1 if 9 <pa < 13,

and for n — 3 by

(3)
S0(pa, 1, Y2*-1) + 54y_2(/?", 1 + Y2*-1, y(2*-' + 4) - 3)

+ S3y_,(/?«,y(2^,+4)-2, <>(/>"))

(/>" > 23,
(4) S0(/?", 1,4) + S5(/?",5,8) + S5(/?",9, e(pa))ifpa = 17 or 19,

(5) S0(/?", 1,1) + (1 + pa)(e(pa) - 1) if 9 <pa < 13.

Proof. Again we proceed by first constructing an n-cell representation A"(")(Z^i/'°))

of each direct factor Z^i^ of A. We then obtain a representation A"(,l)(y4) of /I by

using the disjoint union

K(n\A)=  U^'JZ/'I.

Letting fl^Z^) be the number of n-cells in K^i/Z^), we get

M\"\A)^\K^\A\n)\=  2 B\"\z;ip^).
p"\A

It therefore remains to construct A"(")(Z^'")) for/?" | A, to show that B\n)(ZpV'">)

has the required value, and to observe that Tn(K(n)(A)) = A. We describe the

constructions only for n 3= 4 to avoid unimportant complications. The constructions

for n = 3 are detailed in [11].

Suppose first that /?" > 17. We construct an ^-dimensional analogue 7/") of the

tower Tk used in the case n = 2. By Theorem 4 there exists integersy, A satisfying

r2(C(/?«, y)) s T2(C(/?", A)) s Z,. and C(pa, j) * C(/?", A). Define 7<"> and 72<">

by C„(C(p", j)) and S(r,<">) ~ t(C„(C(p", A))), where * G P„(C(p", j)) and f G

P„(C(pa, k)). Now suppose that we have constructed Pkn) for 1 < A < TV - 1. We

then define  7^> by  7#"> = s(T^x) ~ /(C„(C(/?", A))), where s G 7„(C(/?", A)),
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■J G TN_2, and t E Pn(C(pa, A)). Thus s G Tjf}x is a perspectivity point of the copy

of C„(C(pa, A)) not contained in 7^"_)2, and T^n) is obtained by attaching

C„(C(pa, A)) to Tjf}x via the identification of s and /. The complex 7^"> may be

viewed as a "tower" having TV "floors" 7/ 1 < /' < TV, with 7, ss C„(C(p", j)),

Ft at C„(C(p", A)) for 2 < /' < TV, and

F = (t(">\ 7(">      \

Each floor is attached to the ones immediately "above" or "below" it by the

identification of perspectivities. An illustration of 7/"', / 3* 2, is given in Figure 3.5,

perspectivity points being dotted.

s

I I

! I

/ \i \     i \
| C(p>) J      ( C(P,r> |

floors / \ I \ fl°ors

! <\?*\ )       ' C(<r) j

\ / \ /

,-''     ~%       /'       \

/
I C(p*j) J       I PK3 J

^ y        \ /

ajp0*"*!/ b)9<p       £13

Figure 3.5. The complex A"(")(z^°)) for/?" > 9 and n > 4



SIMPLICIAL COMPLEXES WITH GIVEN GROUP 715

We now claim that r„(7/n)) a Z'p.. Since Y„(Ft) at Zp„ for all i, it suffices to give an

isomorphism/: II'=1 T„(Ft) -* Tn(Tf"^). For any /-tuple (a,, a2,...,a/) with a, G

Tn(F,), define /(a„ o2,... ,o,) E r„(7/">) by /(a„ a2,... ,o,) \F< = a,, for !</</.

The injectivity of /is immediate from its definition. The surjectivity follows from the

fact that 7/") is rooted at 7, and the consequence that any element of T„(7/(")) is

invariant on each 7/ We may therefore define K{n)(Zepipa)) by A"(n)(Z;^°>) = Te\"ply

The resulting upper bound for/?" > 17 is M\n)(Zepipa)) =£ pae( /?").

Suppose now that 9 </?" < 13. We will modify slightly the construction given

above. That construction cannot be carried out here since Theorem 4 yields only one

integer r satisfying Y2(C(pa, ry) = Zp when 9 </?" < 13. Instead we let 7,(n> =

C„(C(/?",/-))and

72<"> = r[«(r/»)) ~v(C„(PK3))] ~s(Cn(C(p", r))),

where t, u E P„(C(pa, r)) C K(7,(n)), t^u, vE P„(PK3), and s E Pn(C(pa, r)).

Having constructed 7<7(n) for 1 < q < TV - 1, define 7#° by

^) = «.)~'(<;(C(^r))),

where s E P„(C(pa, r)), s $ 7#L>2, and « G P„(C(pa, r)). The complex 7^1, in this

case is illustrated in Figure 3.5(b). We now define K^XZp."^) as Te\"p\y The proof

that Yn(Ki"\Zp.p°))) a Z^a) is almost identical to the one given for/?" s= 17. Our

upper bound becomes M1(")(Z;(X))<50(/?", 1,1) +S0(/?", 2, e(/?"))+ l.    □

We now pass to the determination of an upper bound for the minimum M^n)(A)

of points in a pure ^-complex K such that Y0(K)s±A. Again to avoid small

exceptional cases we assume that the elementary divisors p" of A satisfy /?" > 9. We

define the complement A" of a pure n-complex A" to be the pure n-complex whose

point set is V(K) and whose set of maximal simplexes A"(n) is given by K(n) — {a C

V(K):\a\=n+ l,a$Kin)).

Theorem 10. Let A be a finite abelian group having canonical factorization

A = \\Zp{p"). Suppose that /?" 3= 9 for all elementary divisors /?" of A. Then the

minimum number of points M^n)(A) in an n-complex K satisfying ro( A") =s A satisfies

M^n)(A)<n-2+  2 pae(pa).

p"\a

Proof. We proceed by constructing a complex having point group ro isomorphic

to ZpV'"> for each elementary divisor/?" of A, and then we combine these in a certain

way to get a complex with point group A. This last complex will yield the claimed

upper bound.

Let us begin with dimension n = 2. For any/?" dividing A, Theorem 4 implies that

there exists r such that T0(C(p", r)) a Y2(C(pa, r)) s Zp.. We let Sx(pa) =

C(pa, r), and we define Sk(pa) inductively for A ̂  2 by Sk(pa) = Sk_xU C(pa, r).

A simple induction shows that YQ(Sk( /?")) = Z*«, and | Sk( pa)(0) I= kpa.
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We may now form the complexes with group A by combining disjoint unions of,

and cones over the complexes Sk(pa) defined above. Define K^2)(A) by Ktf\A) =

Upa]A S^a^p"), and observe that ro(A"<2)(,4)) =A. Now for each n > 3 let Ktf\A)

= C„(KX2)(A)), and get T0(K^"\A)) s A. We therefore obtain the desired bound

M^(A) <\KP(A)m\= n - 2 +  £ p"e{pa),
P°\A

and the theorem is proved.    □

We may now discuss cases where the bounds for M\"\A) and M^"\A) derived in

Theorems 8, 9, and 10 are in fact the exact values of M\"\A) and M^"\A). Toward

this end, we need the following lemma.

As a convention, we say that a group G acts faithfully on a set X if and only if

there exists an injection G -» 2,™ of G into the symmetric group on | X\ letters.

Lemma 11.1. Suppose an abelian group A = W Zepip°) acts faithfully on a set X. Then

\X\>lp.lAp«e(pa).

Proof. Suppose that A acts faithfully on X and | X | is a minimum among the

cardinalities of all sets on which A acts faithfully.

Let Qx, S22,... ,Slr be the orbits of A in X, and let A( be the subgroup of A which

fixes some point of fi, and hence all of £2,. Observe that | £2,\ = \A/AI | and hence

\X\= 2J"=, \A/Aj\ . In fact we may identify the objects of £2, in a one-to-one

manner with the elements of the group A/A,. We also have C\ri=xAj = 1 by the

faithfulness of the action. Our problem may then be stated as that of minimizing the

sum S = 2 | A/A, | over all collections {A/} of subgroups in A satisfying H,. Ai = 1.

We claim thatA/A, is cyclic of prime power order for all i. For if not, then there

exists t such that A/A, decomposes into A/A, = B/At X C/At, with B C A and

CCA properly. We may then define a new set X' by A" = U,#, fl,. U {^/7} U

{A/C}, and we observe that A acts faithfully on A" (by multiplication) with the

r + 1 orbits {HJ,^,, .4/5, -4/C The collection of stabilizer subgroups correspond-

ing to X' is {/1,},#„ 5, C and since (B C\ C) C A, this collection has trivial

intersection. Now clearly 1/| B \ +1/|C|< 1/1-4,1 and if equality holds we get

A = Z2XZ2in which case the lemma obviously holds. Hence we may assume that

1/| 7 | +1/| C|< \/\At\ , and it follows that

r

|jr|= 2 MM I +M/#I +M/CI< 2 MM-I = I*I,
,#/ i=i

contradicting the minimality of | X\ . It follows that A/A, is prime power cyclic for

all / as asserted.

Next we claim that A <l\ri={ A/Ar To see this, define the homomorphism /:

A -> II,r=1 -4/y4, by f(a) = (ax, a2,. ..,ar) where a, is the image of a in the factor

group A/A(, 1 < / *£ r. Clearly / is injective since fY=| At= 1, and hence A <

!![= \A/At as asserted.
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The proof may now be completed. By the above we have

Y[z;ip'^ = a<][ a/a, = l[zy\
1=1

where the q& are prime powers, and | X\= 2-=, \A/Aj\= S/e(/). Elementary

divisor theory now shows that there is an ordering {/?"', p"2,. ■ ■ ,/C"}>

Wf'> ?22>- • ■^kt}' m < A, of the/?" and q^ appearing in A and II -4/^4, respectively

such that /?," | qf for 1 < ; < w. It follows that 1*1=2 qpe(qp) > 2 pae(pa), as

required. □

We may now proceed to apply Lemma 11.1 in proving our exact results.

Theorem 11. Suppose A = U Zp\p") is an abelian group. For a fixed prime power /?"

let y — I(p") (determined in Theorem 4) be the number of isomorphism classes among

the C(pa, j) satisfying Y2(C(p", j)) = Zp«. Then exact values of M\n)(A) and

Mt)2)(A) are given by:

(\)Ml"\A) = lp.lApae(pa)if

(a) n = 2, andp" > 9, <?(/?") =£ y for allpa dividing A,

(b) n = 3, andp" > 9, e(pa) < y2^x for allp" dividing A,

(c) n ^ 4, andp" > 17 for allp" dividing A.

(2) MP(A) = lp«[A pae(pa) ifpa > 9 for allp" dividing A.

Proof. The upper bound for case (l)(a) follows from Theorem 8, items (1) and

(2), and from constructions similar to the ones used in the sketch of the proof but

omitted for brevity. The same bounds for cases (l)(b) and (l)(c) follow from

Theorem 9, items (4), (5) and (1) respectively. In case (2) the bound M^\A) <

2 p"e(pa) follows from Theorem 10.

The corresponding lower bounds M\n)(A) s* 2^ pae(pa) and M^2)(A)>

2/,«|/(/?"e(/?") in cases (l)(a)-(l)(c) and (2) follow from Lemma 11.1 which states

that the number of objects being acted on, be they points (when A = ro(A")) or

simplexes (when A = T„(K)), must be at least 2p°iA pae(p").    □
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