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BROWNIAN MOTION WITH PARTIAL INFORMATION1

BY

TERRY R. McCONNELL

Abstract. We study the following problem concerning stopped /V-dimensional

Brownian motion: Compute the maximal function of the process, ignoring those

times when it is in some fixed region R. Suppose this modified maximal function

belongs to Lq. For what regions R can we conclude that the unrestricted maximal

function belongs to Lql A sufficient condition on R is that there exist p > q and a

function u, harmonic in R, such that

\x\p^u(x)<C\x\p + C,       xER,

for some constant C.

We give applications to analytic and harmonic functions, and to weak inequalities

for exit times.

1. Introduction. Let R be an open subset of TV-dimensional Euclidean space

(TV 3= 2). Suppose we start a Brownian motion, Bn from some point outside R and

stop it at some finite exit time T, but we are unable to observe the motion whenever

it is in A. (By exit time we mean exit time from some given open set G.) How much

information about the entire Brownian path up to time T is provided by this

semiobscured path? We shall address a special case of this question here: Suppose

the maximum Euclidean norm of the Brownian motion belongs to Lp—the maxi-

mum being computed over that portion of its time set on which Bt does not belong

to R and before time T. Does this imply that the unrestricted maximum (i.e., the

maximum of B, up to time T) belongs to Lp1 We shall see that the answer is yes

(Theorem 1.1) provided R is not too large.

We employ a technique of Burkholder, Gundy, and Silverstein [7] together with

the conformal invariance of Brownian motion to translate the two-dimensional case

of Theorem 1.1 into a statement about functions analytic in the unit disk.

We devote the remainder of this section to definitions and to the statements of our

main results. These results are proved in §3. In §2 we consider several illustrative

applications to classical analysis and probability. Finally, §4 is devoted to an

example pertinent to some of the discussion below.
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Let R be an open subset, not necessarily connected, of R^, and let t denote the

exit time of Brownian motion from R. We assume throughout that N >2. Define

the Brownian maximal function by

B* =   sup   \B,\.

We say that R belongs to Hp if one of the following three equivalent statements

holds:

(1.1) For each x in R, EXB*P < oo.

(1.2) For each * in A, .E^/2 < oo.

(1.3) The function | x \p has a harmonic majorant in R.

Both (1.1) and (1.2) hold provided the inequalities are true for some x in each

connected component of R. The equivalence of (1.1) and (1.2) follows from Theorem

7.1 of [6]; the equivalence of (1.3) with the other statements is proved in [4]. The

reason for the terminology is that, in two dimensions, if R is the image of the unit

disk under a univalent analytic function /, then R belongs to Hp if and only if /

belongs to the Hardy space Hp. (See [4].)

We say that a region R belongs to strong Hp, 0 < p < oo (and write R E SHP), in

case one of the following equivalent conditions holds for some constant C:

(I A) ExB*p<C\x\p + C,       xER.

(1.5) Ex7p/2^C\x\p + C,       xER.

There is a function u, harmonic in R, so that

(1.6) \xxf<u(x)*zC\xxV + C,       xER.

The equivalence of (1.4) and (1.5) is an immediate consequence of the following

inequality from [4]:

cpEx(Nt + | x \2)P/2 < EXB*P < CpEx(Nt + | x \2)p/2,

where c and Cp are constants depending only on p. It is easy to see from (1.4) that

SHq C SHP for a < /?. Any region R which belongs to HP and is invariant under

positive dilations (i.e., Xx belongs to R whenever x belongs to R and X > 0) also

belongs to strong Hp; for example, in two dimensions a sector of angular operature 0

belongs to strong Hp for all p < tr/6. (The classes Hp and SHP are, however, quite

different. In §4 we construct a region which belongs to Hp for all positive /?, but

which belongs to SHP for no such p.) Symmetrization provides many further

examples. Given an open connected subset R of RN, define the (spherical) symmetri-

zation, Rs, of R as follows: Let C(6) denote the set of points on the unit sphere

which form an angle of less than 8 with the positive x,-axis. Let | | denote

normalized surface measure on SN~X. Then Rs is the region whose intersection with

the sphere of radius r is r • C( 6), with 6 determined so that

|C(0)| = | {x ESN~x:rxER} \ .
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If ts denotes the exit time of Brownian motion from Rs, then a theorem of

Baernstein and Taylor [1, Corollary 6.2], suitably translated into probabilistic terms,

says that

sup PX(B* > A) < P(r-°-°.0)(B* > A),

1*1='

for all A > 0. The following result is then immediate.

Proposition 1.1. If Rs belongs to SHP, so does R.

Another criterion for membership in SHP may be found in [15, Theorem 111.70].

Theorem 1.1 below tells what is meant by the phrase "not too large" in the first

paragraph: In order to determine whether the maximal function, B*, of Brownian

motion up to some finite exit time T belongs to Lq, we may ignore that portion of

the path lying in some open set 7?, provided 7? belongs to strong Hp for some/? > a.

By exit time, we mean the first time Brownian motion leaves some given open set.

For the remainder of this paper the letter T will stand for such a finite exit time of

Brownian motion. The letter R will denote an open set in which Brownian motion is

invisible, and r will represent the exit time from R. Define the obscured maximal

function, 7?£XR, by

#K* =       suP       \b,\-
0^t<T:B,eR

Then we have

Theorem 1.1. Let R be a region belonging to SHP and x0 a point not in the closure

of R. Then for any q < p there is a constant C so that, for any exit time T, finite almost

surely, we have

(1.7) Ex<>(B*)q^CEx»(B*^Ry.

The constant C does not depend on T. Conversely, if (\.l) holds for all such T, then R

belongs to SH".

We leave open the question of whether or not (1.7) holds when q—p. This

question is generally irrelevant in applications since the range of /? for which a given

region belongs to SHP is often an open interval.

We should point out that (1.7) holds if R satisfies the weaker condition

XpPx(B*>X)^C\x\" + C,       A>0,

for some constant C. Also, if x0 belongs to the closure of R, then (1.7) may not hold.

Nevertheless, the implication

B$XR E L" =>B*E L"

remains true.

Our next two results enable us to apply Theorem 1.1 to analytic and harmonic

functions. IfxGC and r > 0, let D(x, r) denote the disk with center x and radius r.

For 0 < a < 1 and 6 E [0,2m) let tta(8) be the smallest open convex subset of

D(0,1) whose closure contains the point e'e and the circle of radius a. If/is analytic
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in 73(0,1) and R is an open subset of C, let

*TVa/(r7) = sup \f(z) I .
zea„(tf):/(z)g/!

Also define

Rf*= sup |/(5,) |,
0«r<a:/(fl,)£K

where a is the exit time of Brownian motion from D(0,1). Finally, define

/*=   sup   |/(7?,) | = 0/*.
0«;<a

Theorem 1.2. Assume that the region R satisfies

(1.8)    Z>(0, r) D 7? # 0 => eac/j component of D(0, r) U R is simply connected,

for all r > 0. For eac/z a > 0 ///ere exw? constants ca and Ca, depending only on a, so

that, for every function f analytic in D(0,1) and satisfying/(0) = 0, we have

cam(RKf> M < W* > ^) < Cam(7vTVa/> A),

for all A > 0, where m is normalized Lebesgue measure.

The proof of this theorem is very similar to that of the analogous result (R = 0)

in [7]. It will be sketched in §3.

Theorem 1.3. Let R be a region belonging to SHP with 0 not in the closure of R, and

f a function analytic in D(0,1) withf(0) = 0. Then for any q satisfying 0 < q < p there

is a constant C so that

E°(f*y<cE°(Rf*y.

2. Applications. In this section we show how our results may be applied by giving

new proofs of two known results; and we obtain a new theorem concerning weak

inequalities for exit times. Throughout the remainder of the paper we shall use the

letter C to denote a constant—perhaps different from one usage to the next.

Theorem 2.1 [7]. Let f = u + iv be analytic in D(0,1) withf(0) = 0, and let a andp

be numbers such that 0 < a < 1 and 0 < /? < oo. Then there exist constants c and C

depending only on a and p so that

(2.1) c||/VBii||,<||7V4iD||,<C||/Vaii||,-.

Here

Nau(6) =    sup    |u(z) | .
ze8„(0)

This result easily implies [7] that f E Hp <^ Nau E LP, yielding a real variable

characterization of the Hardy space Hp. The authors of [7] give two proofs of this

result, one of them using the quadratic variation,

S2(u) = f\ Vu(Bs)\2ds,

as a bridge between u and v. In our proof the function/itself plays this role.
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Proof of Theorem 2.1. We shall use the notation ||7YaM|| « ||7Vau|| to indicate

a two-sided inequality such as (2.1). We may assume that D(0,1) C f(D(0, j)) by the

open mapping theorem and the in variance of (2.1) under scaling. Also, we may

assume that a — {- (see [13]) and 0 </? < 2. (For/? > 1 we have IITv^hII^ ~ \\u\\hP.

See, e.g., [14, Theorem 7.1]. Clearly \\u\\h2 = ||i?llA2 and ||m||a, « ll«||A, for/? > 2 by

duality. Recall that II u II h, is defined by

\\u\\i,=   sup    (1,r\u(reie)\pd6.)
0<r<\   J0 I

Let R = {z = x + iy:\y\>\x\  and  |z|>j}. Then R belongs to SHP for all

0 < /? < 2. By Theorems 1.2 and 1.3, we have

IW,< Wii,<cii/ii,<ciiiy*ii,

<C\\RNJ\\p<C\\Njt\\p.

Similarly one proves that II Nau II   « C \\ Nav \\p.

Theorem 2.2 [3]. Let u be harmonic in D(0,1) with u(0) = 0, and let a and p be

numbers satisfying 0 < a < 1 and 0 < /? < §. Then there is a constant C, depending

only on a andp, such that

\\Nau\\p < C||Nau+ \\p,

where u+ = u V 0.

This result is also true in higher dimensions and for all /? satisfying 0 < /? < 1 [3],

but our methods give only this partial result.

Proof of Theorem 2.2. Let v be the harmonic function conjugate to u with

v(0) = 0, and let / = u + iv. As in the proof of Theorem 2.1 we may assume that

a = {- and that/(Z)(0, 5)) contains 7)(0,1). Arguing as in the proof of Theorem 2.1,

we obtain

\\Na(vI{u>0})\\p<C\\Nau+\\p,

for 0 < p < §, where I{u > 0} is the indicator function of the set where u is positive.

(Modify the set R in the proof of Theorem 2.1 by adjoining the set {z = x + iy: x < 0

and I z I> \}.) Now let R = {z = x + iy: x < 0, | z |> {}. Then

||JVaii||, *£ C\\RNJ\\p ^ C\\Nau+ ||, + C||TVa(t;7{M > 0})||, < C||TV>+ \\p,

and the proof is complete.

The following result is an immediate consequence of Theorems 1.2 and 1.3.

Theorem 2.3. Let R be a sector of angular aperture 0 with vertex at the origin, and

let p satisfy 0 < /? < m/6. If f is analytic in D(0,1) then

fEHp~RNjELp,

for any 0 < a < 1.

Let us turn to another sort of application. If Y is a random variable defined on a

probability space we say that Y belongs to weak Lp, or Y E WLP, if there is a
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constant c so that we have

\"P(\Y\>\)<Zc,       A>0.

Let G be a connected open subset of RN and T the exit time of Brownian motion

from G. Assume that Px(T < oo) = 1 for some x in G. Then it is known [5] that

B* E WLp <=> J'/2 E WL".

We shall say that G belongs to weak HP(G E WHP) in case B\ E WLP. It is natural

to ask for a nonprobabilistic characterization of WHP similar to the characterization

(1.3) of Hp. The following theorem provides a useful sufficient condition for WHP.

Theorem 2.4. For u harmonic in G andp > 0 let

ws(r) =| {x E SN~X: u(rx) ^srp,rx E G} \ .

If there exists a harmonic function ufor which

lim limsupw5(/-) = 0,

then G E WHP.

For example, if G is the sector in C defined by G = {re'9: 0 < 0 < 60} then

G E WHP when p = m/60. (However, G & Hp. See [4] for this and the analogous

results for cones in higher dimensions.) We may take here u(re'e) = rpsin pO. The

fact that G belongs to WHP is shown by a different method in [5].

We will prove Theorem 2.4 in §3.

3. Proofs of the theorems. To prove norm inequalities, we shall first prove

distribution function inequalities as in the work of Burkholder and Gundy [6]. We

shall use the following special case of [2, Lemma 7.1].

Lemma 3.1. Let f and g be nonnegative functions on a probability space and B, 8 and

e positive numbers satisfying B > 1, 8 > 0 and

P(f> BX,g<8X)<eP(f>X),       A>0.

Let q satisfy 0 < q < oo and Bqe < 1. Then we have [2 and 5]

(3.1) Ef^cEg",

and

(3.2) supA'?7,(/>A)<csupA<?7>(g>A),
\>0 X>0

where c^ [Bi/S^l - B"e)].

Proof of Theorem 1.1. Assume for the time being that TV = 2 and x0 = 0, and

fix a positive number p such that D(0, p) does not meet R. Let B, 8, and A be

positive real numbers as in Lemma 3.1 with 8 < 1. We first prove the following

distribution function inequality:

(3.3) P°(B} > j8A, *K* < §M < £(/3< «)^°(^ > A),
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where e(B, 8) — c(B~p + logB/log B8X). Here c is a constant depending only on/?

and p. Letting n(X) = inf{/: | B, | = A}, we have by the strong Markov property,

P°(B* > BX, B$XR < 8X) = P°(B* > BX, B*XR ^ 8X, jtt(A) < T, 2?„(M E R)

< £°(/>B^-(B* > 0\, B^R < 8A); M(A) < T, B^ E r)

< E°(PB^(B* > BX); n(X) < T, B„(X) G 7?)

+ £°(pB"<x» (B, hits the circle of radius 8X before the circle of radius BX);

p(\)<T,BliiX)ER)

= 7 + //.

By the Hadamard Three Circles Theorem,

(3 4) « < (\ogB/\ogB8x)P°(n(X) < T)

= (\ogB/logB8-x)P°(B*>X).

Using Chebyshev's inequality and (1.4) we have

PB^(B? >BX) ^^EB^(BT*P)

^XW{ClB^)lP + C)=W + Wxp-    on(^(A)G^}-

Hence

/ < (CB.-P + CB-»X-»)P°(u(X) < T, BMX) E R).

Since fju(A) < T} = {B$ > A}, we have

I^CB-"P°(B*>X) + CB-p\-pP°(B*>X,BMX) E R).

The second term imposes the restriction that A > p, hence

KCBpP°(B* >X),

where C depends on p and p. Adding together the estimates for 7 and 77 gives (3.3).

Now, since q < /?, we may first take B very large and then 5 very small so that

B"e(B,8)< 1. Lemma 3.1 then implies that

(3.5) £°(5*)<?<C£°(^x/,),?.

Suppose now that xQ ¥= 0. Let T(G) denote the exit time of 73, from some open set

G containing xQ. Then we have

EX°(B*nc)y<c[E<>{B*(G_Xo)y+\x0\'i' ,

where G — xQ denotes the translation of G by x0. Now R E SHp => R — x0 E SHP

with new constants depending on x0 in (1.4)—(1.6). Moreover, we have

E  \°T(C-x0)\iR-x0))   *^ C[E'°\Bt(G)\r)    M^oIJ-
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Inequality (1.7) with T = T(G) follows from the two preceding inequalities and (3.5)

with T = T(G — x0) and R replaced by R — xQ. Note that x0 not in the closure of R

implies | x0 \" =£ Ex°(\ B$XR \q).

The proof in the case TV > 2 is the same, but with the constant in (3.4) replaced by

(1 - B2-N)/(82~N - B2~N).

As to the converse, we shall again assume at first that TV = 2. Let Cr = dD(x0, r)

for each r > 0 and let m denote normalized Lebesgue measure on Cr. Applying the

strong Markov property and (1.7) with T the exit time from the region R U D(x0, r),

we obtain

Cr" > Ex°(B$q) >Ex°(EB«'>{B?q);Bll(r) E R)

= f      Ex(B*")m(dx),
JcrnR

where jtt(r) = inf{7: | Bt — x0 |= /-}. In the last step we used Kakutani's observation

that if a Brownian motion is started from x0, then its position upon exit from

D(x0, r) is uniformly distributed on Cr.

We may assume R ¥= 0. Since each component of R is met in a set of positive

measure by Cr for some r, it follows that ExB*q < oo for some x in each component

of 7?. Therefore | x \q has a harmonic majorant on R, and the least such majorant, u,

is given by u(x) = Ex \ BT \q. It follows that

(3.6) f      u(x)m(dx)^Crq,       r > 0.
JcrnR

Given a number A s* 1, let Rx = {x E R: u(x) > X \ x \q}. If Rx is connected we

may proceed as follows (to handle the other case simply apply the following

argument to each component in turn). Let Tx be the exit time of Brownian motion

from Rx. By Chebyshev's inequality and (3.6) we have

Xm{x E Cr n R: u(x) > Xrq} < C.

Choose A so large that C/X < 1/2 a. Then the circular symmetrization (defined in

the usual way but with x0 as origin) of Rx is contained in a sector of angular

aperture less than m/q. Such a sector satisfies (1.6) and, hence, so does Rx by virtue

of Proposition 1.1. Thus there exists a harmonic function, v, which majorizes | x \q on

Rx and satisfies v(x) < C | x \q + C. (In the disconnected case the same C will work

for each component.)

Now, for x in Rx, we have

u(x) = Ex{\ ZL |') = Ex{\ BTx \q; Tx = r) + Ex(\ BT \q; Tx < r)

^v(x) + Ex(EB^(\BT\q);Tx<T)

= v(x)+Ex{u{BtJ;Tx<t)

<v(x) + XEx{\BTJq;Tx<r)

<v(x) + Xv(x)<C(\ +A)|x|" + C(l +A).

Since u(x) < A | x \q for x & Rx, it follows that u satisfies (1.6) with p replaced by a.

Hence R E SHq.
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The proof of the TV-dimensional case is very similar: Given 6 > 0, let S$ denote the

cone of all vectors in R^ making an angle of less than d with the positive x,-axis.

Then, for each /?, there is 60 = 60(p) sufficiently small so that Se E SHP for 6 < 80

[4]. These cones, translated so as to have vertex at x0, replace the two-dimensional

sectors in the argument above. Otherwise the argument is the same.

Proof of Theorem 1.2. We shall only sketch this proof since it is very similar to

that of [7, Theorem 3] (the case R = 0) as presented in [13]. The proof of the

right-hand side inequality of Theorem 1.2 uses only the lower semicontinuity of

RNaf and certain properties of Brownian motion. The proof is the same as the

R—0 case.

For the left-hand side, begin by defining

RMJ(0)= sup \f(z)\.
z6fl„(9):|z|>a,/(z)««

Then it suffices to prove Cam(RMJ> X) =£ P(Rf* > A) (see [13]).

Let Pg be the Wiener measure associated with Brownian motion started from the

point z and conditioned to hit the unit circle at the point e'e. The following facts

about Pg are known [9].

(i) Brownian motion forms a strong Markov proccess under the P9Z.

(ii) The family Pez yields a regular version of the conditional probabilities

Pz( ■ | Ba). (Recall that a is the exit time of Bt from the unit disk.)

(iii) If T is any stopping time then

Pe(T<o) = -j^-Ez(h(BT); T<a),

where h is the minimal harmonic function (Poisson kernel) with a pole at e'9.

Suppose A is given and 6 is such that RMaf(0) > X. Define B, by B, = e2i9B, and

R*f= sup        |/(i,)|.
Os;r«j:/(fl,)gK

The process Bt is simply Brownian motion reflected across the line joining 0 and e'9.

Probabilistically it is again a Brownian motion. Given r with a < r < 1, let ar be the

intersection of the circle of radius |(1 + r), tangent to the unit circle at — e'9, with

^a(^)- We may choose such an r so that, for some point z on ar, we have \f(z)\> X

and f(z) £ 7?. We shall prove that, apart from a set of w of /^-probability 0, if

B,(u) does not hit ar then R*f(u) V Rf*(co) > A. (Once this key fact has been

established, the remainder of the proof proceeds as in the case R = 0.) This fact, as

we shall show, follows from the following two lemmas. The first serves as an

analogue of the maximum modulus principle and is an easy consequence of the

argument principle.

Lemma 3.2. Let G and W be simply connected regions with G bounded. Let f be

analytic in G and continuous on G with /(3G) C W. Then f(G) C W.

Lemma 3.3. For any e > 0,

Po(B, hits [l - e, 1) infinitely often) = 1.
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Proof. We shall prove an analogous result in the upper half-plane—this is done

only for notational convenience and ease of computation. Let P0Z denote the Wiener

measure associated with Brownian motion started at a point z in the upper

half-plane and conditioned to hit the x axis at the point (0,0). We shall show that B,

hits every segment (0, ei], e > 0, infinitely often with /^-probability 1.

Let r > 0 be fixed, S be the segment (ri/4, ri/2], Y the semicircle of radius r

centered at 0, and Ts the hitting time of /?, to S. We first show that there is an

absolute constant C so that

(3.7) P(z(BlhilsS)>C,

for | z | > r. Since the conditioned motion must eventually hit Y, it follows from the

strong Markov property that we need only consider z E Y; and, by symmetry, we

may restrict our attention to z belonging to the first quadrant. Let h(x + iy) =

y/(m(x2 + v2)) be the Poisson kernel with a pole at 0. Then

P$(B, hits S) = P^(TS < £) = j^Ez(h(BTs); Ts < £ ),

where £ denotes the exit time of Brownian motion from the upper half-plane. To

estimate this last quantity we distinguish two cases.

CaseY Re(z) *s Im(z).

We have h(z) < \/(mr) and h(BTs) > 2/(mr) so

Pi(B, hits S)>2PZ(TS<£) = 2(o(z;S),

where <o(z; S) denotes the harmonic measure at z of S relative to the upper

half-plane. By the scaling properties of Brownian motion, this harmonic measure is

independent of r. It follows that u(z; S) is bounded away from 0 by a positive

absolute constant.

Case II. Re(z) > Im(z).

With the notation as above we obtain

Pl32(BlhHsS)>—u(z;S),

where v = Im(z). An easy estimate shows that

(This estimate is expedited by the observation that

o>(z; S) > u{z2;[-r2/4, -r2/\6)),

which in turn follows from the fact that u(z; S) is greater than the harmonic

measure of 5 relative to the first quadrant.) Since x > •f2r/2 in this case, we obtain

0i(z; S) > Cy/r, whence

P,Z(B. hits S) >— -C- =C.
"      ' y r

Thus (3.7) is proved.

Now let A„ be the event that B, hits the interval (2"2"e/, 2~2n+xei]. Then Pq(A„) > C

so that P0Z(B, hits (0, ie] infinitely often) > Pq(A„ i.o.) > 0. Since lim,_e- B, = 0
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Pq - almost surely [9], the result follows from an application of the Blumenthal

zero-one law to the time reversed process (see [12]).

Let A be the exceptional set in Lemma 3.3. If u> £ A and the path B,( w) avoids ar,

then the union of the paths Bt(u) and Bt(u>) contains a closed curve y which

surrounds ar, i.e., ar is contained in some bounded component of the complement of

y. Call this component G and observe that it is simply connected. If D(0; A) meets

R, let V=RUD(0, A). Otherwise, set V = D(0, A). Then by hypothesis, each

component of Fis simply connected. Suppose it were false that Rf*(u) V R*f(u) >

A. Then the image of 3G under/is contained in some component W of V. But then

Lemma 3.1 implies that/(G) C W, hence f(ar) C W, a contradiction.

Proof of Theorem 1.3. First recall Levy's observation of the conformal invari-

ance of Brownian motion. There is a new Brownian motion, W, on the range of /

such that/(fi,) = Wy(t), t < a, where v(t) = Jo\f'(Bs) \2 ds.

Fix A, B, and 8 as in (3.3) and let ft = inf{7: \f(B,) |= A}. Using the strong

Markov property as in the proof of (3.3), we have

P°(f* > BX, Rf* < 8X) < £°($(/3j; /t < o,^) E R),

where $(x) = Px(f* > BX, Rf* < 8X), for f(x) E R. By Levy's observation we

have

$(*) = P'ix\W*a) > BX, RW*a) ^ 8X).

If x satisfies f(x) E R and |/(jc)|=A, the last expression is dominated by

pf^\W* > BX) + Pf(x) (the Brownian motion Wt hits the circle of radius 8X

before that of radius BX), where t is the exit time of Wt from R. Proceeding as in the

proof of (3.3) we deduce the distribution function inequality

P°(f* > BX, Rf* < 8X) < e(B, 8)P°(f* > A),

where e(B,8) is the same as in (3.3). The remainder of the proof is exactly the same

as the proof of Theorem 1.1.

Proof of Theorem 2.4. Let p' satisfy p' > p. Suppose there is a function u

harmonic in G for which lim^olimsup^^ ws(r) = 0. We may therefore find r and s

so that the symmetrization of the region

R = {x E G: \x\> randu(x) <s\x\p}

is contained in a very thin cone. (See the discussion at the end of the proof of

Theorem 1.1.) Thus Proposition 1.1 implies that we may take r and s so that R, as

defined above, belongs to SHP . By (3.3) (and its TV-dimensional version) and (3.2) it

suffices to show that XPPX(B*-^R > A) - 0(\) as A ̂  oo, for any x EG. Here T is

the exit time of Bt from G. Let Gn T G be an exhaustion of G by open sets whose

closures are compact, and let T(n) be the exit time of Bt from G„. It follows from

Doob's maximal inequality that, for A > rp, we have

XPX(\RB^„)\">X)^XPX(     sup     u{B,)>sX]
^0<,t<T(n) '

<±Exu(BT(n)) = u(x)/s.

The result follows upon passing to the limit as n -» oo.
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4. An example. In this section we construct an example to illustrate the difference

between Hp and SHP.

Theorem 4.1. There exists a region R belonging to Hp for every positive p and

belonging to no such SHP.

We shall need the following lemma which follows easily from the three circles

theorem.

Lemma 4.1. Let jrR be the exit time of Brownian motion from the annulus with center

0, small radius r, and large radius R. Then ]imK^xE2r(TpR) = oo, for any p > 0.

Proof of Theorem 4.1. Let {/>„} be an ordering of the rationals in (0, oo).

Construct inductively an increasing sequence, {rn}, of positive real numbers by

setting r0 = 1 and requiring that

(4.1) E2r^(rptj>n^(2rn_x)2p\

for k = 1,2,...,n. Lemma 4.1 ensures that this is possible. Let Dn be the circle of

radius rn minus the arc {rne'e: \ 6 |< e„}, where the e„ will be fixed shortly. Let

R = (^=\D„Y- We will use the notation [—e„, e„] to refer to the arc {rne'9:\6\<

£„}. Let t„ be the exit time of Bt from Z)(0, rn), and

<£„= {T,<T>< = 1,2,...,«- 1,t„ = t}.

(Recall that t is the exit time of B, from R.) By the strong Markov property

P°((£n)<£0(/»^-2(/iT#i_,e[-en_l!en_1]))

for n > 3. This quantity approaches 0 as e„_, approaches 0. Thus we may choose e„

so that

(4.2) Eo(Tp^y/2Po{&y/2^2-",

for A: = 1,2,...,«.

Now the region R has been completely specified and it remains to show that it has

the required properties. Fix TV > 0 and p E (0, oo), and choose n so large that

np > TV and so that the set {/?,,...,/?„} contains some pk in the interval (0, /?). It

follows from (4.1) that

^-(T'),/>>£2'-(^_irJ,/'>£2'-(T^1,JI/'*>ii(2r._I)2.

Thus E2r«-l(rp) > N(2rn_x)2p. Since TV was arbitrary, R $ SH2p. (Statement (1.5)

fails to hold.)

Using the Schwartz inequality we have

OO 00

E0(tp/2)=  ^ E°(ry2,&n)< 2 £0(t/)'/2/>°(6?,),/2.

n=\ n=\

For any rational/?, (4.2) implies that the tail of this series is dominated by 2~". Thus

E°(tp/1) < oo for all rational /?, and hence for all p E (0, oo). The proof of Theorem

4.1 is complete.
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