
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 271, Number 2, June 1982

INTERIOR AND BOUNDARY CONTINUITY OF WEAK SOLUTIONS

OF DEGENERATE PARABOLIC EQUATIONS

BY

WILLIAM P. ZIEMER1

Abstract. In this paper we consider degenerate parabolic equations of the form

(*) ß(u), - divA(x, t, u, ux) + B(x, t, u, ux) 3 0

where A and B are, respectively, vector and scalar valued Baire functions defined on

V X /?' X R", where U is an open subset of Rn + \x, t). The functions A and B are

subject to natural structural inequalities. Sufficiently general conditions are allowed

on the relation ß C Ä1 X /?' so that the porus medium equation and the model for

the two-phase Stefan problem can be considered. The main result of the paper is that

weak solutions of (*) are continuous throughout U. In the event that U = fi X (0, 77)

where Í2 is an open set of R", it is also shown that a weak solution is continuous at

(x0, 10) G dû X (0, T) provided x0 is a regular point for the Laplacian on Ü.

0. Introduction. In this paper we consider the problem of continuity of weak

solutions of parabolic equations of the form

(i) Ytß^ ~ d[vA(x> *' "' "*) + 5(*'r' "' O 3 °

where A and B are, respectively, vector and scalar valued Baire functions defined on

U X Rx X R", and U is an open subset of Rn+ x(x, t). Throughout this paper, U will

take the form Q7- = QX (0, T] where S2 is an open, bounded subset of R". The

functions A and 73 are required to satisfy the following structural inequalities.

\A(x, t, u, p)\< a0\p\ +a1(jc,i)|w| +a2(x, t),

(2) \B(x,t, u, p)\<b0\p\2 + bx(x, t)\p\ +b2(x, t)\u\ +b3(x,t),

A(x, t,u, p) ■ p > c0|p|2 - cx(x, t)\u\2 - c2(x, t),

where a0, b0 and c0 are constants with a0 and b0 nonnegative and c0 > 0. The

remaining coefficients are nonnegative measurable functions which, for simplicity of

exposition, we will assume to be bounded. Thus, we assume there is a nonnegative

constant K such that

(3) at(x,t)*zK,       bi(x,t)<K,       c,(x,t)<K.

Our results remain valid if the coefficients lie in those appropriate Lebesgue classes

which have been considered by previous authors, e.g., [LSU, T]. Throughout, we
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734 W. P. ZIEMER

allow sufficiently general conditions on ß so that (1) includes both the porous medium

equation and a model for the two-phase Stefan problem.

The main objective of this paper is to provide a technique that will establish

continuity of weak solutions of (1) at the lateral boundary of Í2r as well as at points

of QT. In the case A(x, t, u, ux) = ux, B = 0 and « > 1, continuity of weak solutions

was established by Caffarelli and Friedman, [CF], for the porous medium equation,

and by Caffarelli and Evans, [CE], for the two-phase Stefan problem. P. Sacks, [S],

extended the results of [CE] by considering suitable B of the form B = B(x, t).

Recently, DiBenedetto, [Dl, D2], established continuity of weak solutions of (1) in

essentially the same generality considered in this paper. The approach employed by

DiBenedetto is based on a parabolic version of DeGiorgi's technique as presented in

[LSU]. The proof that we present here is based primarily on the Moser iteration

technique as developed in [T] for quasilinear equations, and is therefore able to

avoid much of the technical complexity associated with the DeGiorgi method. Our

proof is also able to deal with the question of continuity of the solution at the lateral

boundary of a cylindrical domain ñ X (0, T). We are able to prove that a solution is

continuous at a boundary point (x, t), where x G 3Í2 and 0 < t < T, provided x is a

regular point for the Laplacian on fi.

The main idea of the proof is to employ the full strength of the Moser technique,

which includes the parabolic version of the John-Nirenberg Lemma, to establish that

each point of the domain fi X (0, T] is a Lebesgue point of a weak solution. Here,

the term "Lebesgue point" refers to a parabolic modification of that classical

concept. Then, we appeal to a suitable version of a fundamental lemma of DeGiorgi

as presented in [Dl, Lemma 3.1] or [CE, Lemma 3.1] which has been adopted to

reflect the singularity in the equation. This lemma implies that a weak solution is

continuous at each of its Lebesgue points. This same approach is also used to

establish continuity at the boundary of a cylindrical domain.

The author is pleased to acknowledge several interesting conversations with

Emmanuel DiBenedetto during the preparation of this paper.

1. Preliminaries. For Í2 a bounded open subset of R", the cylindrical domain

ß X (0, T] will be denoted by Í2r and let ß(i) = Q X {/}. We let x = (xx,...,xn)

denote points in R" and the gradient of a function u will be denoted by ux or v«.

Points in R"+x will generally be denoted by z = (x, t). Following common practice,

the letter C will denote a constant that may change from line to line in the same

proof. We will denote by W2X-X(ÜT), the Sobolev space of functions whose distribu-

tional first derivatives belong to L2(QT), whereas W2Xfi(QT) will be the subspace

consisting of those functions u for which 9w/3x, G L2(SlT), i = 1,2,...,«. The space

of those elements of W2'l(QT), whose trace on 3S2 X (0, T] is zero, is denoted by

W2$(ÜT). Let V2(tiT) C W2,0(QT) denote the Banach space with norm

\u\vHaT) = ess sup II m(-, OH la + llV«H|,or.
0«sr«7"

Finally, let V2x-°(tiT) G V2(QT) denote that subspace of elements u for which the

map t -» u(-, t) is continuous relative to the norm on L2(ß).
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Throughout we will be interested in ß of the following two types.

Type I. Here we assume that ß is a relation on Rx X Rx given by

(r, r>0;

(4) ß(r) = \[-a,0],    r = 0;

[r-a,       r<0;

where a > 0. As shown in [Dl] there is no loss of generality in assuming ß is of this

simple form. Indeed, if ß were assumed to be given by

ß(r)

ßx(r), r>0

[-a,0], r = 0

ß2(r) - a,     r<0

where /?,, /' = 1,2, are monotone increasing functions whose derivatives are almost

everywhere bounded away from 0 and oo, then the question of continuity of weak

solutions of (1) easily reduces to the case of ß given by (4).

Type II. Let ß be a continuous monotone increasing function with ß(0) = 0

satisfying the following.

(i) Assume the upper right (Dini) derívate of ß is finite for all r ^ 0. Denote this

derívate simply by ß'(r).

(ii) There is a constant a0 such that

ß'(r) >a0>0,    forallr^O.

(hi) \\minfr^0ß\r) = oo.

(iv) There exists 8 > 0 such that /?'(i) =£ /3'(/-), for s $ [-8, 8] and r G [-8, 8] -

{0}, and /?' is increasing on [-8,0) and decreasing on (0, 8].

Definition 1.1. A function u G W2lA(QT) is called a weak solution of (1) if

(5)   .

- fw(x, t)<p(x, t) dxfh + pj + w(x, t)<t>,(x, t)
il try /() ùl

f ' f + A(x, t, u, ux) ■ V<f> + B(x, t, u, ux)<t>(x, t),
J'o J®

for all </> G W2¡j(QT) and all intervals [/0, f,] C (0, T]. Here, w is a function such

that

{{z,w(z)):zGÜT} G {{z,ß[u(z)]):zGÜT},

if ß is of type I. If ß is of type II, then w = ß(u).

2. Weak solutions and Lebesgue points. Since we will assume that weak solutions

of (1) are bounded, it will be convenient to formulate the structure in the following

way.

(6)
\A(x, t,u, p)\^a0\p\ +ax,       \B(x, t, u, p) |=s bQ \p |2 + bx,

A(x,t,u, p) ■ ps>\p\ c,.

Choose^such that d- 1 = a, + b, +
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Now consider a function u G W2XA(ÜT) that is a weak solution of (1) with

structure (5). In this section we will show that any point z0 G ßr is a parabolic

Lebesgue point for u. For notational simplicity, we will take z0 = (0,0). The

estimates that are obtained below are set in terms of space-time cylinders, i.e.,

products of «-balls with time intervals. Thus, we will consider cylinders of the

following form:

. R(r) = B(r)x(oxr2,o2r2),

R-(r) = B(r')x(rxr2,r2r2),

(7) R+(r)=B(r')x{r3r2,r4r2),

R*(r) = B(r")x(Pxr2,p2r2),

R'(r) = B(r")x(p,r2,p4r2),

where B(r) denotes the «-ball of radius r and center 0, and where

0 < r" </-' <r,

a, < t, < p, < p2 < t2 < t3 < p3 < 0 < p4 < t4 < a2.

Because we intend to employ both Theorems 2.1 and 3.1 to establish continuity of

weak solutions of (1), we impose the following constraints on the geometry of the

above cylinders in order that the hypotheses of Theorem 3.1 can be satisfied for a

particular cylinder that will be specified later.

First, let r" = jr. Let w be a number such that 0 < w < 2~ ', and choose

1 / w      ,\ 1     w
Px~ 4Í2 _1J'       P2 = "4 ■  2-

Now choose t, < p,, p2 < t2 < 0 and select t3 , t4 so that t2 < t3 < 0, t4 > 0 and

t4 — t3 = t2 — T,. Next, choose t3 < p3 < 0 and 0 < p4 < t4. Finally, choose a, < t,,

t4 < a2 and note that R((r/2)N) G RXr), for some positive integer A. For u defined

on fij-and z0 G QT, let

L(zQ) = ess lim sup u(z),       l(z0) = essliminf u(z).
7-» 7 Z —* ¿a

We can now state the main result in this section.

Theorem 2.1. Let u G W2-X(QT) be a bounded weak solution of (I) with structure

(6), where ß is of either type I or type II. Then, for any z0 G Br,

limr-o+2)/-      |M-L(z0)|=0,    ifL(zo)>0,
r-0 JR'(r)

or

lim^c+2)/-      |M_/(2o)|=0,   ,fl(zo)<0.
r-0 JR*(r)

The proof of this result follows the approach adopted in [T]. Note that the result

implies that L(z0) and l(z0) cannot have opposite signs.
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Proof. Take z0 = (0,0) and assume that L(z0)> 0. For k > 0, let uk = (u - k)+

and define

p(r) = esssup{i<(z): z G R(r)},

where the notation of (6) is now being employed. Without loss of generality, we may

assume that p(r) > 0, for all small r, for otherwise we would consider /(z0). Then,

the only interesting case would be /(z0) < 0 and therefore, X(r) > 0, for all r > 0,

where

X(r) = -essinf{w(z): z G R(r)}.

In what follows, we would then choose k < 0, replace (u — k)+ by (u — ky and

replace p(r) by X(r). The proof would remain essentially unchanged in all other

aspects.

Now choose 0 < k < L(z0) and define ¡ik(r) = p(r) — k. For e > 0 and 8(r) = r

+ dr + (dr)2 we define the function

jMO + 8(r) - uk(z),    on {u>k};

\pk(r) + 8(r), on {u<k};

and consider as test functions in Definition 1.1,

(8) </, = r,2exp - (b0uk(z))(va ~[pk(r) + 8(r)]a),

where a < 0 and rj > 0, is a smooth cut-off function that will be specified below. For

the moment we assume only that spt tj C R(r) C fir. Observe that </> = 0 on

{u<k}. Because uG W2A(UT), it is well known that u(x, ■) is an absolutely

continuous function of t for a.e. x G Í2. If ß is of type II, it follows from classical

real analysis that ß[(u — k)+ + k](x, ■) is also absolutely continuous. Consequently,

integration by parts allows identity (5) to be written as

(9) /"'' f w,4> + A(x, t, u, ux) ■ <t>x + B(x, t, u, ux)$ = 0,
Jt0Ja

for all intervals [i0, tx] G (0, T]. In case ß is of type I, it is easy to verify that (5) can

be written as (9) with w, replaced by ut. Thus, in either case, substitution of (8) into

(9) yields

f"fw,<t,+ f"jr12e~''^-l\a\v''-x+b0{v"-[pk(r) + 8(r)]a)]A-ux

= -pjluA • n^-*°"*(o« ~[pk(r) + 8(r)]a) - f"f B*.
If) ii /q il

Using va - [pk(r) + 8(r)Y <va,v> 8(r), the structure (6) and Young's inequal-

ity, it follows that there is a constant C, depending on the structure (6) such that

-\aylpfV2e-h^{v" -[/i*(r) + 8(r)]a}v,ß'(u) + /''/V^' | Vt> |2

<C,(l+|«|-')/'l/[('-_^)2+|VT)|2]t;a+l.
tn       il
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This inequality holds in case ß is of type II. In the event ß is of type I, the inequality

will be the same except ßXu) should be replaced by 1. Note that the first term on the

left is zero on the set {u < k} and therefore /?'(") can be replaced by ßXuk + k) in

case ß is of type II. Let

f(v)  =    fVe-'>o^ar)+S(r)-s)ß,^k + ^ +¡(_ ^a _ (^  + fi)«l  &
•'0

Thus, the first term on the left side of the above inequality now becomes

-\a\~x p j-r)2f(v)tdxdt.

From elementary estimates it follows that there is a constant C (depending on k)

such that

-C~x(-^-¡)va+x </(o) < C(a + 1)~ V+1.

As in [T] this immediately yields the following inequality:

sup  ([t]v(x,t)f dx + p ft]2va'x | Vv\2 dxdt

<C(l + |o|_1)|l + a\-xpf[(r-xi))2 + | VTj|2 + ij|ij,|]t3a+1dx</i,

where C depends on k and is bounded when a is bounded away from 0 and -1.

There is a similar inequality in case a = -1. The dependency of the constant on k is

immaterial as k is fixed throughout the proof. In case ß is of type I, the same

inequality results except that C does not depend on k. This inequality is the basis for

an iteration procedure involving a which leads to the desired result. Details will not

be given, for the argument is similar to that given in [T] or [AS]. For complete details

involving the general structure (2), see [GZ2].

We will complete the proof of Theorem 2.1 by indicating the main points of the

iteration scheme. For p any extended real number and R a cylinder, let

\/p

A(P,R)= (|Ä|-'_/V)

where | R | denotes the (« + 1)-Lebesgue measure of R. Thus, A(-oo, RXr)) denotes

the infimum of u over the cylinder RXr). The Sobolev inequality along with (10) and

the iteration scheme yields

(10) A{-Po,R+(r))<CA(-oo,RXr)),       A(px, R*(r)) < CA(p0, R   (r)),

for any p0 > 0, p, > 1. In case a = -1, the John-Nirenberg lemma implies that

there exists p* > 0 such that

A{p*,R~{r)) <CA{-p*,R+(r)).

Hence, from (10)

(11) \\R*(r)\-lf      vp'\       <Cminu,
\ JR*(r)        I R'(r)
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or

\P*(r)rf      [/**(/■)+ *(r)-«iJ"
(12) '*™

<C[pk(r) + 8(r)-pk(r/2N)Y>.

Observe that the right side of ( 12) tends to 0 as r i 0.

f      [pk(r)+8(r) -uj"

(13)
=  f [p(r)+8(r)-u)p'+ f [p(r)-k + 8(r)]"',

JA*(r,k) JB*(r,k)

where A*(r, k) = R*(r) n {z: w(z) » k} and 5*(fc, /■) = R*(r) - A*(r, k). Since

p(r) -> L(z0) and 0 < k < L(z0), it follows from (12) and (13) that

\B*(r,k)\/\R*(r)\->0,    asrj,0,

and therefore that

(14) \R*(r)\-]f [p{r) + 8{r) - u]p' -» 0,    asriO.

Since 8(r) ->0,p(r) ^ L(z0) and | Ä*(r) | = cr" + 2, (12), (13) and (14) imply

limr-(«+2)/"       |M-L(z0)p" = 0.
r-0 •/R*(r)

3. A maximum principle. In this section we prove a lemma which is fundamental to

the theory of regularity as developed by DeGiorgi. Nondegenerate elliptic and

parabolic versions of this lemma appear in [LU, p. 83] and [LSU, p. 114]. The lemma

was also employed in [GZ1] for the purpose of establishing boundary regularity of

weak solutions of nondegenerate elliptic equations. In the case of the two-phase

Stefan problem, a version of this lemma is critical to the proof of continuity given by

Caffarelli and Evans, [CE, Lemma 3.1]. DiBenedetto, [Dl, D2], extended the lemma

as it appears in [LSU] to weak solutions of (1) with general structure (2). For the

convenience of the reader we will also include a brief proof. For the sake of brevity,

we will assume the restricted structure (6) rather than (2).

Throughout this section we let (xx, tx) G fir, i, > 0 and for r > 0 we let Q(r)

denote the cylinder

Q(r) = B(xx,r)x[tx~r2,tx],

where B(xx,r) denotes the «-ball of radius r and center xx. We will consider only

those cylinders for which Q(r) G ÜT. In case ß is of type II, we will assume that a

bounded solution u G V2(QT) of (I) is the weak V2(QT) limit of a uniformly bounded

sequence {«„}, where each un is a weak solution of (I) in which ß is replaced by a

CX(RX) function ß„. The ßn are chosen so that ßn(0) = 0,

0< ot0 <&'(/■) <0'(r),       r¥°0,    «=1,2,...,
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and that ßn -» ß uniformly on compact subsets of Rx. This assumption is in accord

with results concerning existence of weak solutions of (1), cf. [CD].

We also assume for simplicity that solutions u of (1) are elements of W2-x(SlT). In

case ß is of type II this is no loss of generality in view of standard techniques

involving integral averages. Let m(r) = esssup{w(z): z G Q(r)} and for k G Rx, let

A(k,r) = Q(r)n {z:u(z)>k}.

Lemma 3.1. Let u G IV2,X(QT) be a bounded, weak solution of (I). There exist

positive numbers 0, k and 8 depending only on the general structure of (I) such that if

k G Rx and

then

r¿"/2^ + k<m(r0),   m(r0)<k + 8,    and   | A(k, r0) |< 0 \ Q(r0) \ ,

\A[2-x(m(r0) + k),r0/2]\=0.

Proof. First, assume that ß is of type I and choose a function w C ß(u). Define

a, ifw(z)>0,

o(z) w(z) + a,     ifu(z) = 0,

0, ifw(z)<0,

and note that w + a = u + a. Thus, substituting w into (5) yields

'i

- fo(x,t)<t>(x,t) dx    + f ' (o(x,t)<t>,(x,t) dxdt
J 'o      % •'o

=  f' f A ■ Vj> + B<p + u,<i>dxdt.

Let <i> = 7)2(u — k)+ where k < 0 and rj is a smooth cut-off function that will be

specified below. Choose tj so that tj, s* 0 and tj vanishes at t0. Then

- J a(x, t)(j>(x, t) dx     =-lou+7¡2dx
'o

< - I ou+ ï]2 dx

+ kjo,2 dx

Also,

/ ' / oip, dx dt =  I ' I ouf r\2 dx dt + 2 / ' / tjtj,(m — k)   a dxdt,
Jta jü Jt0 Ja Jt0 Ja

and therefore

f' (A ■ V<i> + B(j>+ u,(bdxdt^ f' ¡2of]f],(u - k)+ dxdt.
Jt„ JSl Jtn JQ
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Therefore, from (6) and elementary estimates we have

sup     / [r/(w — k)   \  dx +  / ' / | v[r/(« — k)   \  dx dt
,„<,«;,, JQ Jta JQ

<clpf(u-k)+2{\vv\2 + -nv,)

+ /''/(« - k)+7i7],dxdt +   Íjri2x(u>k)\,
to    ß /

provided r/ vanishes at t0. Here x(£) denotes the characteristic function of a set £.

If k > 0 this estimate is even easier to establish. In case ß is of type II, the estimate

is easily seen to be valid for the approximating ß„ and passage to the limit yields the

estimate for ß.

Now choose k G Rx and let 77 = m(r0) — k. For each positive integer m let

km = (k + 2H) - 77/2"\       rm = (r0/2)(l + 1/2"'),

Qm = B(xurm)x[tx-r¿,tx],

and choose smooth cut-off functions t\m such that t\m = 1 on (?m+ ,, rjm = 0 near the

parabolic boundary of Qm, \ Wqm |< C2m/r0 and 0 < 3r/m/3( < C4"'/r2. Substitut-

ing k = km+x and t] = r/m into the previous inequality, we have from the parabolic

Sobolev inequality, vide [LSU, p. 75],

1/°

(jL/("-*-r)
+ |£mn {«>*„+,} |,

where a = (« + 2)/«. Observe that

C(m+ l)2

/„/("-*-)* «iU^iL/„/<»-*-)*■.

C(wi + 1)"
ß„n{«>*B+I}|<H»Lli2_y /(M-0+\

77 •'p../

and

/    /(«-^+,)+2<(/    /(»-^+,)+2")   °lômn{w>*m+,}|2/<"+2).

Thus if we let

it follows that

ccr8m
(772 + 77 + ,02)(^)

<// + 4)/(n + 2)
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Therefore,

*m+\

1 + 2772
< ccr8m i

77       \77/ „n + 2 r/2r0     77

(n + 4)/(n + 2)

With general structure (2), it can be shown that k < 2/m. Thus, for small rQ, we have

from hypothesis that r¿ < H2 and because u is assumed to be bounded, there is a

constant depending on sup | u | such that 1 < C/77, and therefore

ers"
•Aji+1

// Um)
(n + 4)/(n + 2)

where Jm = 7m//"0"+2772. According to [LU, p. 66], Jm -> 0 as m -» oo  if J,  is

sufficiently small. However,

Jx <C\A(k,r0)\/r¿'+2

and thus, the conclusion now follows.

Continuity of weak solutions of ( 1 ) readily follow from Theorem 2.1 and Lemma

3.1. To see this, choose z0 G Í2r and as in Theorem 2.1, take z0 = (0,0) and assume

l(z0) < 0. Then it follows from Theorem 2.1 that

(15) r-C+2)f       |M — /(z0) I— 0,    asr^O.
JR*(r)

Referring to (7) we have that

^MiH(^)(§r-f(§r

e(îMï)

"(i)

X

X

- 2 \t r Y   w

2/ '2 (ÎÏ
(§)■

where i, = wr2/8.

Suppose that u is not continuous at z0, i.e., that l(z0) < L(z0). Select a number k

and <5* «£ 8 such that

L(z0)-Ç>^>L(z0)-|ô*>/(z0).

Choose r small enough so that

(16) m(^)<L(z0)+\s*,        (^)"/K + k<m(^),

and therefore that

(17) m(r/2)<k + 8,       m(r/2) + k <2L(z0).

It follows from (15) that

\R*(r) n {z:M(z)2*A:} |< (0/2) \ R*(r) |
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for all small r, and therefore

(18) \A(k, r/2) | = | Q(r/2) n {z: u(z) > k) |< (0/2 + «) | Q(r/2) \ .

Thus, if 2co < min(f?, 1) and if r is small enough to satisfy (16), (17) and (18), we see

that the hypotheses of Lemma 3.1 are satisfied with r0 = r/2. Note that

Q(r0/2) = B(r/4)x[tx-(r/4)2,tx]

and r, - (r/4)2 = (r2/l6)(2co - 1) < 0. Therefore, z0 G Q(r0/2). However, (17)

and Lemma 2.1 imply that m(r0/2) < L(z0), a contradiction.

Similar reasoning can be applied if we assume /(z0) < L(z0) with L(z0)> 0.

However, in this case a statement dual to Lemma 2.1, which involves the measure of

{z: u(z) =£ k}, would have to be employed. Thus, we have shown that /(z0) = L(z0)

for every z0 G ßr. Throughout the proof, we have tacitly assumed that 0 < t0 < T

where z0 = (x0, t0). The reader can verify that the proof can be easily modified to

accommodate the case t0 = T. Therefore we have the following.

Theorem 3.2. Suppose u G W2A(QT) is a bounded solution of (I) where ß is of type

I or of type II subject to assumptions of this section. Then, after redefinition on a set of

measure zero, u is continuous on fir.

The author is indebted to the referee who observed that it is possible to obtain a

modulus of continuity for weak solutions by performing a more detailed analysis of

inequality (12).

4. Continuity at the boundary. In this section, we consider the question of

continuity of weak solutions at a boundary point z0 G 3ß X (0, T). We consider a

function /defined on all of 7?"+ ' such that

(19) fGW2x'x{Rn+x)   and   f\ R"+x - fl is continuous.

Throughout this section we will consider a bounded weak solution u G W2xx(tiT) of

(1) such that

(20) u = /   weakly on d£lT;

that is, u — fis assumed to be in the W2xx(ÇlT)-closure of smooth functions ^ where

spt \p G Í2r. If ß is of type II we assume, as in §3, that a bounded solution u of (1),

whose trace is/on the lateral boundary of QT, is the V2 limit of a uniformly bounded

sequence {«„}, where each un is a weak solution of (1) in which ß is replaced by ß„

and where the trace of w„ on the lateral boundary is/. Define

L(QT, z0) = limsupw(z),       l(QT, z0) — liminfw(z).
z-z0 '-'o

Because we are assuming that u — /weakly on 3ñr, it will be convenient to extend

« to all of R"+x by setting

fw,     onßr,

[/,     on7T+l - QT.
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Thus, u can now be considered as an element of W2X-X(R"+X) and therefore

(21) limr-(n+2)f \u(z) -u(zo)\dz = 0,

for all z0 = (x0, t0) G R" + x, except perhaps for a set of Newtonian capacity zero,

see [DZ]. Here W(zQ, r) denotes the parabolic cylinder

B(x0,r)x[tx ~r2,tx],

where f, = r0 + r2/8.

In order to facilitate the proof of boundary regularity we need

Definition 4.1. For an arbitrary set E G R"+x, we define a capacity by

(22) T(E) = inf jess sup ju{x,tf dx + Jj\ Vu\2dxdt\,

where the infimum is taken over all functions u G W2x(Rn+x)for which

E G int{z: u(z) > 1}.

Recall that the Newtonian capacity of a set A G R" can be defined as

y(A) = inf   j \ Vu

where the infimum is taken over all u G W2(R") such that A G int{;c: u(x) > 1}. It

is well known that y[7i(r)] = Cr"~2. As an immediate consequence of the defini-

tions, we have the estimate

/oo y[£(0] dt+ esssup |£(/)| .
-oo t

Now suppose that E = A X (0, T], where A G B(x0, a) for some x0 G R" and

a G Rx. It follows from elementary estimates that there are constants C,, C2 such

that

(24) T(E)^CxTy(A) + C2a2y(A).

In particular, if E is taken as a parabolic cylinder R(r) (see (7)), then (23) and (24)

imply that r[Ä(r)] ~r".

It will be shown below that a weak solution of (1) is continuous at z0 if

„^ pr[R*(r)-QT]  dr _

(25) Í       T[R*(r)]       7 - °°-

Because ÜT = Ü X (0, F], (23) and (24) imply

T[R*(r) - QT] < Cxr2y[B(xQ, r) - Qj + C2r2y[B(x0, r) - ß]

and

r[Ä*(r) - QT] > (r/2)2y[B(x0, r/2) - ß].

Since T[R*(r)[ ~ r" and y[ß(x0, r)] ~ r"-2, (25) holds if and only if

Ort f\y[B(x0,r)-Q]  dr

1    j ^o      y[5(x0,r)]    "   r

which is the Wiener criterion for regularity at x0 G 3ß.

= oo,
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We now consider parabolic cylinders

Q(r)=B(xx,r)x[tx-r2,tx]

where (xx, tx) G 3ß X (0, T) and let

m(üT,r) = sup{w(z): z G ßrn Q(r)}.

The proof of the following is almost identical to that of Lemma 2.1.

Lemma 4.1. Let u G W2-X(Q,T) be a bounded weak solution of (I) such that u— f

weakly on 3ßr. There exist positive numbers 0, k and 8 depending only on the general

structure of (I) such that if

k > sup{/(z): z G ß(r0) - ßr},       ft'*» + k< m(ßr, r0),

m(QT,r0)<k + 8   and   \A(k, r) n ßr|< 6 \ Q(r0) | ,

then

|^[2-1(m(ßr,r0) + ,x),r0/2] nßr|=0.

Lemma 4.2. Suppose z0 = (x0, t0) G 3ß X (0, T) is such that

.      \W(z0,r)nilT\
llnlinf -l~r^7-71-   = 0-

r-.o | W(zQ, r) I

Then

lim u(z) =/(z0).
z-»z0

zES27-

Proof. It suffices to prove L(ßr, z0) </(z0) f°r tne proof that/(z0) < /(ß7, z0)

is similar. Consider parabolic cylinders of the form

Q(r)= W(z0,r),        \ Q(r) n ßr|< 8 \ Q(r) \ .

Suppose L(QT, z0) >/(z0) and choose k and 8* *£ ô, such that L(ßr, z0) — <5*/2

> k > L(QT, z0) — (3/4)5* >/(z0). Now choose an /•„ so that

/c^sup{/(z):zGo(r0)-ßr},

m(0r, r0) < L(ttT, z0) + jô*,        /-0("/2)" + Ac < m(ßr, r0),

and therefore that

m(tiT, r0) < k + 6*,       w(ßr, /-0) + A: < 2L(ßr, z0).

However, z0 G Q(r0/2) and therefore Lemma 4.1 implies

L(QT, z0)<|[m(ßr,r0) + Ar],

a contradiction.

Consider a point z0 G 3ß X (0, T) at which (21) holds. In view of Lemma 4.2 it

follows that

(27) L(ßr,z0)>/(z0)>/(ßr,z()),
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for if not, then L(ßr, z0) </(z0) — e for some e > 0. Consequently, u(z) <f(z0) —

e/2 for z G ÜT C\ W(zq, r) and all small r. But (21) implies that

,.      \rV(z0,r)nÜT\
hm  -;-:-r-L  = 0,
r-0       \W(z0,r)\

thus contradicting Lemma 4.2. A similar argument shows that /(z0) > /(ßr, z0).

Thus, (27) holds for all z0 G 3ß X (0, T) except for a set S of Newtonian capacity

zero. Let

,    , A - S n {z: W(z,r) - ßr C S, for some r > 0},    and

B = S     A.

Observe   W(z, r) - ßr is a set of the form   W(z, r)-Qr= (B(x, r) - ß) X 7

where 7 is an interval. As S has zero Newtonian capacity in R"+x, it follows that

y[B(x, r) - ß] = 0. Thus, from (25) and (26) we have the

(29) r'r[jt:(r)"Qr]^=0<co,
V    '                                    A)       T[R*(r)] r

for all z G A. Note that points of B are limits of points at which (27) holds because

5 is of Newtonian capacity zero, and therefore has Hausdorff dimension at most

« - 1 in R"+x. As/is continuous on Rn+X - ßr, it follows that (27) holds at all

points of B. Thus, B is empty and

(30) L(ßr,z0)>/(z0)>/(ßr,z0)

at all z0 G 3ß X (0, T), except possibly at those where (29) holds.

To complete the proof of regularity at z0 G (3ß) X (0, T), we first prove a result

similar to Theorem 2.1. To this end let z0 be a point at which (30) holds, assume

u =/weakly and let/(z0) > 0. For k > f(z0) let

j(M(z)-A)\     zGßr,

[o, z Gßj-;

pk(r) = sup{uk(z):z GR(r)};

and define

(   ^=\fLk(r) + i(r)~uk(z),    zGR(r)nSlT,

V[Z)     \pk(r) + 8(r), zGR(r)-QT.

Proceeding exactly as in the proof of Theorem 2.1, we have

r-(n+2)f     vpA       <Cminu,
JR'(.r)        j R'(r)

for some p, > 1, and therefore

(32) r(n+2)C |M-L(ßr,z0)|"^0.
JR*(r)nQT
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Observe that a similar argument yields

(33) r-(n+2)i |ii-/(ß7.,zo)r"^0,   as r|0,
JR*(r)naT

if/(07.,20)</(r0)<0.

If /(z0) 3= 0, condition (30) allows us to treat (1) as though it were a nondegener-

ate equation whenever the test function <i> in (8) involves (u — k)+ for k > f(z0) or

(u — k)~ for k </(z0) *£ 0. For this reason the results of [Z] carry over to the

present situation with essentially no change and thus yield the following.

Theorem 4.3. Suppose (25) holds at z0 G 3ß X (0, T). Then L(ßr, z0) =/(z0) //

f(z0) > 0 and l(QT, z0) = /(z0) iff(z0) *£ 0.

Observe that the conclusions of Theorem 4.3 follow immediately from (31) if a

stronger condition than (25) is assumed to hold at z0 = (x0, f0), namely, if R" — ß is

assumed to have positive upper metric density at x0, i.e., if

|B(jc0,r)n(Ä"-ß)|      n
lim sup -—-.-r-- > 0.

rV \B(x0,r)\

Now by employing Lemma 4.1, Theorem 4.3 and the argument used to establish

Theorem 3.2, we have

Theorem 4.4. Let u G W2X,X(ÜT) be a bounded weak solution of (I) such that u = /

weakly on 3ßr. We assume ß to be of type I or of type II. If (25) holds at

z0 G 3ß X (0, T), then

lim u(z) =/(z0).
z^z0

zeíír
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