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FINITE GROUPS CONTAINING
AN INTRINSIC 2-COMPONENT OF CHEVALLEY TYPE
OVER A FIELD OF ODD ORDER
BY
MORTON E. HARRIS'

ABSTRACT. This paper extends the celebrated theorem of Aschbacher that classifies
all finite simple groups G containing a subgroup L = SL(2, q), g odd, such that L is
subnormal in the centralizer in G of its unique involution. Under the same embed-
ding assumptions, the main result of this work allows L to be almost any Chevalley
group over a field of odd order and determines the resulting simple groups G. The
results of this paper are an essential ingredient in the current classification of all
finite simple groups. Major sections are devoted to deriving various properties of
Chevalley groups that are required in the proofs of the three theorems of this paper.
These sections are of some independent interest.

1. Introduction. Let L be a finite group. If L = L’ and L/Z(L) is simple, then L is
said to be quasisimple. If 7 is a set of prime integers, then O™ (L) is the subgroup of
L generated by all #-elements of L and O,(L) is the maximal normal #-subgroup of
L. Clearly O™ (L) is the intersection of all normal subgroups M of L such that
|L/M|,= 1. Also O(L) = O,(L) is the maximal normal subgroup of L of odd
order. If L=L’" and L/O(L) is quasisimple, then L is said to be 2-quasi-
simple.

Let G denote a finite group. A subnormal quasisimple subgroup of G is said to be
a component of G and a subnormal 2-quasisimple subgroup of G is said to be a
2-component of G. Clearly every component of G is a 2-component of G. Also E(G)
denotes the subgroup of G generated by all components of G, L,.(G) denotes the
subgroup of G generated by all 2-components of G, F*(G) = F(G)E(G) where F(G)
is the Fitting subgroup of G, S(G) denotes the maximal normal solvable subgroup of
G, 9M(G) denotes the Schur multiplier of G and Z*(G) denotes the full inverse
image in G of Z(G/O(G)). A subnormal subgroup L of G such that O(L) = O(G)
and L/O(L) is isomorphic to PSL(2, 3) or to SL(2, 3) is called a solvable
2-component of G. As in [1] for simplicity of terminology, when it is not necessary to
distinguish between 2-components and solvable 2-components, we will refer to both
as 2-components. Also, when advantageous, we will refer to a 2-component which
definitely is 2-quasisimple as a perfect 2-component. If z is an involution of G and if
J is a 2-component of C;(z) such that z € J, then J is said to be intrinsic in C;(z).
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2 M. E. HARRIS

Finite simple Chevalley groups over finite fields of odd characteristic are listed in
[16, §17.1] and specifically exclude 2G,(3)’ = PSL(2, 8). We shall usually adhere to
the notation of [16, §17.1]. Note that in the notation for the “twisted” groups, the
field order parameter is always the order of the smaller field involved in the
definition.

For any odd prime integer p, a finite group G is said to be a Chevalley group over
a finite field of characteristic p if

(a) G is quasisimple and G/Z(G) is a simple Chevalley group over a finite field of
characteristic p; or

(b)p = 3 and G = SL(2, 3) or G = PSL(2, 3).

Unless mentioned to the contrary, all groups in this article are finite. As is
standard in the theory of finite groups, a simple finite group is nonabelian.

In order to state efficiently the main results of this paper, we introduce

DEFINITION 1. Let p denote an odd prime integer. A finite group H will be said to
be of M ( p)-type if it satisfies the following three conditions.

(a) H is 2-quasisimple and H /Z*(H) is isomorphic to a simple Chevalley group
over a finite field of characteristic p;

(b) | Z*(H) | is even; and

(c) if H/Z*(H) is isomorphic to PSL(2n, p") or to PSU(2n, p") for positive
integers n and r, then | Z*(H) |, =|OW(H /Z*(H)) |,-

Also a finite group H such that H/O(H) = SL(2, 3) will be said to be of
M (3)-type.

Note that any finite 2-quasisimple group that satisfies conditions (a) and (b) and
that does not satisfy the hypotheses of condition (c) is of IM( p)-type.

We now state the three main results of this paper. The first result can be viewed as
an extension of [3, Corollary III].

THEOREM 1. Let G be a finite group such that 0% (G) is 2-quasisimple. Suppose that
z is an involution of G such that C;(z) contains an intrinsic solvable or perfect
2-component L such that L is of 9(p)-type for some odd prime integer p. Then
0%(G)/O0(0?*(G)) is isomorphic to a Chevalley group over a finite field of characteris-
tic p or G/ O(G) is isomorphic to M,,.

THEOREM 2. Let W be a 4-subgroup of the figite group G and let W* = {z|, z,, z5}.
Suppose that C;(W') contains solvable or perfect 2-components L, and L, such that
z; € L, and L, is of IN( p;)-type with p; an odd prime integer, for i = 1 and 2. Then
O(G)O?*(L,) is subnormal in G or O (L,) is contained in a unique perfect 2-component
K; of G such that K,/O(K,) is isomorphic to M,, or to a Chevalley group over a finite
field of characteristic p; for i = 1 and 2.

THEOREM 3. Let G be a finite group such that F*(G) is simple. Suppose that G
contains a 4-subgroup W such that C;(W') contains a perfect 2-component L such that
L N W +# 1and L is of O( p)-type for some odd prime integer p. Let w € (L N W),
Then { L*>(€™)Y is a single 2-component of Cz(w) or F*(G) is a simple Chevalley
group over a finite field of characteristic p.
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At this point, it is appropriate to discuss the significance of the hypotheses, the
methods of proof and the importance of these results.

Suppose that K is a 2-quasisimple group such that K /Z*(K') is a simple Chevalley
group over a finite field of odd prime characteristic p and assume also that there
does not exist an involution ¢ in K such that Cy(¢) contains a perfect intrinsic
2-component of I ( p)-type. Then, by Lemma 5.3, K/O(K) is isomorphic to

(i) PSL(2, p") for some positive integer n,

(i) 2G,(3%*"*") for some positive integer n, or

(iii) a Chevalley group over a field of 3 elements and of Lie rank at most 4.

(In the cases of (iii) there is however an involution ¢ in K such that Cx(¢) contains
an intrinsic solvable 2-component by Lemma 5.2.) Consequently perfect intrinsic
2-components of IM( p)-type of centralizers of involutions are, with these excep-
tions, available for such groups K. This observation and the results of this paper will
be used in an inductive setting in [26] to show that a proof of the Unbalanced Group
Conjecture and the B(G)-Conjecture and the classification of all finite groups G with
F*(G) simple that contain an involution ¢ such that Cg;(t) possesses a perfect
2-component K such that K/Z*(K) is isomorphic to any simple Chevalley group
over any finite field of odd characteristic depends on the solution of a few specific
“standard component problems” related to the exceptions (iii) above.

This paper and [26] include an alternate approach to the results of J. H. Walter in
[38] and [39].

Theorem 2 is a consequence of Theorem 1 and Theorem 3 is a consequence of
Theorems 1 and 2. The proof of Theorem 1 is basically a combination of the
fundamental results of M. Aschbacher in [3], of the ideas of M. Aschbacher, J. G.
Thompson and J. H. Walter contained in [37] and of the insights of the author that
accrued from the research for [24].

In order to illustrate the significance of condition (c) in the definition of groups of
M ( p)-type and with [3, Corollary III] in mind, consider a finite simple group G
with an involution ¢ such that C;(¢) possesses a perfect intrinsic 2-component K with
K/Z*(K) isomorphic to a simple Chevalley group over a finite field of order ¢ = p”
with p an odd prime and » a positive integer that is not PSL(2, ¢). By a fundamental
property of such a group K (cf. Lemma 5.4), there is an involution z in K such that
z # t and Cx(z) contains both an intrinsic 2-component J, with J, /O(J;) = SL(2, q)
and at least one other 2-component J, of 9N (p)-type. Set H = C;(z). By [3,
Corollary I1I], we may assume that O( H)J, is not subnormal in H. Also assume for
simplicity of the present discussion that O(H) = 1 and g # 3; in which case both J,
and J, are perfect.

Suppose that K is of 9 ( p)-type. Then the critical condition (c) in the definition
of groups of I ( p)-type (cf. Lemma 5.4) enables one to choose J, such that ¢ or 2z
lies in Z(J,). Straightforward arguments using L-Balance [18, Theorem 3.1] and
properties of 2-components imply that J; and J, both lie in the same intrinsic
component X of E(H)= L,(H) with Z(X) N (t,z)=(z). Set X = X/Z(X).
Then f2 is an intrinsic 2-component of Cx(¢) of 9 ( p)-type and we conclude, by
induction, that X is a simple Chevalley group over a finite field of characteristic p.
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Since J, = PSL(2, ¢) and J, is a component of Cx(¢), it follows from the known
possibilities for X that X = PQ(m, q,) with m = 7 and ¢, a power of p. By repeating
this argument, if necessary, we reduce to the case in which K/O(K) = Spin(7, q).

Suppose on the other hand, that K is not of 9( p)-type. In this case, if (J,, J,) is
contained in a single component X of E(H) (which is not even necessarily the case),
then J_2 is neither of M (p)-type in X = X /Z(X) nor intrinsic in C;(t-) since
J, N (t, )= (z) and | Z*(J,) |, <| Z*(J,) |,. Consequently a wider inductive set-
ting seems required in order to identify X under these conditions and so the
treatment of this particular problem is postponed to [26].

Finally we remark that the bulk of the proof of Theorem 1 is devoted to treating
the cases in which L/Z*(L) is a simple Chevalley group over a field of 3 elements
and in which L /O(L) = Spin(7, q) for an odd prime power g.

In §2, we present various results that are required in our proofs of Theorems 1-3.
Some of these lemmas are of independent interest. In §3, we utilize [12] to survey the
conjugacy classes of involutions and semi-involutions and their centralizers in the
classical linear groups over finite fields of odd order. These results are required at
various points in our proofs in this paper, in [26] and are also of independent
interest. In §4, we apply the theory of linear algebraic groups to survey the
conjugacy classes of involutions and their centralizers in various Chevalley groups
and their automorphism groups over finite fields of odd order. In some of these
lemmas, since the machinery is available and for the sake of completeness, we derive
more information than is actually required in this paper. However all of these results
are required in [26] and are also of independent interest. In §5, we utilize our
previous work to derive additional results that are required in our proofs of
Theorems 1-3. Finally §§6-8 are devoted to proving Theorems 1-3, respectively.

Our notation is fairly standard and tends to follow the notation of [16]. In
particular, if X is a group and Y C X, then 9(Y) denotes the set of involutions of Y.
Also if X is a group such that (| X/X’|, |9R(X)|) = 1, then X has a universal
covering group and it is denoted by Cov( X) (cf. [21]).

Finally, the author would like to thank Professors Daniel Gorenstein and Michael
O’Nan of Rutgers University, Professor Nicholas Burgoyne of the University of
California at Santa Cruz and Professor Edward Cline of Clark University for
stimulating discussions about this paper and the referee for excellent suggestions.

2. Preliminary results. In this section, we present several lemmas that are required
at various points in our proofs of Theorems 1-3. Some of these results are of
independent interest.

The first lemma is well known and is presented without a (trivial) proof.

LEMMA 2.1. Let 7w be a set of prime integers. Let G be a group and let N be a
subnormal subgroup of G such that | G: N |, = 1. Then O"(G) = O"(N) and O,.(G)
= 0,(07(G)) = O,(N).

LEMMA 2.2. Let X and M be subgroups of the group G with M < G. Let  be a set of
prime integers and set G = G /M. Then the following two conditions hold.

@) 0,(X)< 0/(X); and

(b) 0"(X)= 0"(X).
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PRrOOF. Clearly MO,(X) < MX and (MO X))/M = O(X)/(M N O,(X)) is a
w-group; thus (a) holds. Also MO"(X) Q MX and (MX)/(MO"(X)) =
X/(O"(X)M N X)) which is an epimorphic image of X/O"(X). Thus
07(X) <O"(X). On the other hand, if x is a 7’-element of X, then X is a 7’-element
of X and hence O"( X) < O"(X). Thus (b) also holds and we are done.

LEMMA 2.3. Let H and K be subgroups of a group G and set M = (H, K ). Note that
[H, K] < M (cf. [16, Theorem 2.2.1(iii)]) and set M=M /[H, K. Then the following
two conditions hold.

(QM=H=x*K;and

(b) (K¥Yy=[K, HIK < M and (H¥)=[K, H|H < M.

PROOF. Since M = (H, K) and [H_K]=[H, K]=1, (a) holds. For (b), note
that [K, H] < (K") and (K"y= (K")= (K. Thus (b) also holds.

LEMMA 2.4. Let G be a not necessarily finite group such that G = H X K for
subgroups H and K. Let a be an endomorphism of G such that o* leaves H invariant
and H* = K. Then o® leaves K invariant, K* < H and Cy(a) = {hk|h € Cy(a?)
and k = h* € K} = Cy(a?®).

PrROOF. Clearly K = H* < H* = K, so that a® leaves K invariant and K* <
H¥”<H. Let h€ H and k € K and suppose that (hk)* = hk. Then h® =k,
k*=h, h** = k* = h and the lemma follows.

LEMMA 2.5. Let G be a not necessarily finite group with a nontrivial subgroup H of
index 2 such that H = K, X K, for subgroups K, and K,. Assume that K| and K, are
conjugate in G. Then the following two conditions hold.

(a) There is an involution t € G — H such that K| = K, and Cy(t) = (k,k} |k, €
K,)=K,; and

(b) (G — H)=1° =1

PROOF. Let x € G — H. Then x? = kk, where k; € K, fori = 1,2 and K} = K,.
Hence ki = k,, k¥ =k,, (k;'x)>=1 and (a) holds. Assume that y = u,u,t €
$(G — H) where u, € K, for i = 1,2. Then 1 =1y? = uu,ulu}; hence u| = u3',
u,tu;' = u,u,t =y and (b) also holds.

LEMMA 2.6. Let a be an endomorphism of the group G such that g* € gZ(G) for all
g € G. Then the following two conditions hold.

(a) a is the identity on G'; and

(b) the function a: G — Z(G) defined by g% = g~'g% is a group homomorphism.

PROOF. If g, h € G, then [g, h]* = [g° h®] = [g, h]. Thus (a) holds. If g, h € G,
then (gh) '(gh)* = h7'g"'g*h* = (g 'g*}(h~'h*). Thus (b) holds and we are done.

LEMMA 2.7. Let G be a group such that (|G/G’|, |9N(G)|)=1. Let H be a
subgroup of G such that H < G’ N Z(G) and (G/G'|, |H|)=1, let M = Cov(G)
and set G= G/H. Then (|G/G’|, | OM(G)|) = 1 and M is a universal covering group
of G.
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PROOF. Let a: M —» G and 7: G — G denote the canonic epimorphisms. Let
B=moa Thus B: M - G is an epimorphism, Ker(8) = a"'(H) and Ker(a) =
M(G). Note that a”'(G") = M’ Ker(a) = M’ since Ker(a) <M’ N Z(M). Thus
Ker(B) <M’ and G/G’ = G/G’ = M/M'. Also a([M,Ker(B)]) =[G, H] =1, so
that [M, Ker(B)] < Ker(a) < M’ N Z(M). Fix k € Ker(B) and define =1 M —
Ker(a) by m” = [m, k] form € M. If m;, m, € M, then

(mlmzy: [mymy, k] = [my, k][m,, k, my)[m,, k] = [m,, k][m,, k] = mim;

by [16, Lemma 2.2.4(i)] since [m,, k] € Z(M). Thus 7 is a homomorphism. Since
(M/M'|, |Ker(a))=(G/G’|, |DM(G)|) =1, we conclude that Im(7) = 1.
Hence k € Z(M) and ker(B) < M’ N Z(M). Now [21, Theorem 3(ii) and Corollary
1.2] imply that M is a covering group of G. Thus ker(B) = M(G) by [21, Lemma
1(1)]. Since ker(a) < Ker(B) and a(Ker(B)) = H, it follows that Ker(8)/Ker(a) =
H. Thus |‘DTL(G)|—|Ker(/3)|—|H||Ker(a)| and |9M(G)| is relatively prime to
|G/G’"|=| G/G’|. The result now follows from a celebrated result of I. Schur (cf.
[21, Theorem 3]).

COROLLARY 2.7.1. If G is a quasisimple group, then G is a homomorphic image of
Cov(G/Z(G)). If G is a 2-quasisimple group, then G /O(G) is a homomorphic image of
Cov(G/Z*(G)).

LeEMMA 2.8. SL(2, 3) is a universal covering group of SL(2, 3) and of PSL(2, 3).

ProOOF. By [28, V, Satz 25.5; 21, Theorem 3(i)], SL(2, 3) is a universal covering
group of SL(2,3). Then Lemma 2.7 implies that SL(2,3) is a universal covering
group of PSL(2, 3).

The next result is obvious.

LEMMA 2.9. Suppose that L is a solvable 2-component of the group G. Then
O(L) = O(G), 0*(L) < O*(L) and O(L)O*(L) < L = O(L)O*(L) = O*(L).

LEMMA 2.10. Let G be a group with O(G) = 1, let H = 0%(G), let N < Z(G) and
set G=G /N. Suppose that G is isomorphic to PSL(2, 3) or SL(2,3). Then the
following two conditions hold.

(@) G = N = H and H is isomorphic to PSL(2, 3) or to SL(2, 3); and

(b) if G = SL(2, 3), then H = SL(2, 3).

PrOOF. Clearly Z(G) < 0,(G) and (b) follows from (a). Also 0%(G) =0*(G)= H
by Lemma 2.2. Thus G = N * H and we may assume that G = H = 0%(G). Set
Q = 0,(G) and observe that |G|=3|Q| and G = Q(p) for some element p of
order 3. By [16, Theorem 5.3.5 and Theorem 2.2.1], we have Q = [Q, ( (P>1Co(p) and
[0,{p)] < G. Set G= G/[Q,{p)]. Then G = Co(p) * (Y= O*(G) and hence
Co(p) <[Q,{p)] = Q@ = G'. Consider the natural epimorphism 7: G - G = G/N.
Since Ker(7) = N < Z(G) N G', it follows from Lemma 2.8 and [21, Lemma 1(i1)]
that G is a homomorphic image of SL(2, 3). Thus (a) holds and we are done.
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LEMMA 2.11. Let G be a group. Then the following six conditions hold.

(a) E(G) is the irredundant central product of the distinct perfect components of G
and J is a perfect component of G if and only if J is a minimal perfect normal subgroup
of E(G);

(b) Z(E(G)) < Z(F(G)) = Ca(F*(G)) and [S(G), E(G)] = 1;

(c) every perfect 2-component is normal in L,(G), L,(G) is the irredundant product
of the distinct perfect 2-components of G and J is a perfect 2-component of G if and only
if J is a minimal perfect normal subgroup of L,(G);

(d) if J is a perfect 2-component of G, then J = 0%(O(G)J) = (O(G)J)*™ and
[S(G), J1< O(J);

(e) if J and K are distinct perfect or solvable 2-components of G, then [J, K] < O(J)
N O(K); and

(f) if J and K are distinct perfect 2-components of G, then the following three
conditions are equivalent: (i) [J, K] =1, (i) [/, K] < Z(J), (iii)) [/, K] < Z(K).

Proor. Clearly (a) and (b) follow from [5, §1], (c)—(e) follow from [18, §2] and (f)
follows from Lemma 2.6(a).

LEMMA 2.12. Let N be a normal subgroup of the group G, let H be a 2-quasisimple
subgroup of G such that H € N and set G = G /N. Then the following three conditions
hold.

() H is 2-quasisimple and H / Z*( H)=H/Z*(H);

(b) O(H)= O(H); and

(c) Z*(H) = Z*(H).

PrOOF. Clearly NN H < Z*(H), H =H'=H and H/Z*(H)=H/Z*(H) is
simple. Also O(H)< O(H) by Lemma 2.2(a). Thus Z*( H)< Z*(H) and both (a)
and (c) hold. Since Z*(H)/O(H) is a 2-group, (b) also holds and we are done.

LEMMA 2.13. Let G be a group such that O%(G) is 2-quasisimple. Set M = 0% (G)
and G = G/S(G). Then the following three conditions hold.

@) S(G) = O(G)Z*(M) = Co(M/O(M)) = Co(M/Z*(M));

(b) Z*(M) = S(G) N M and 0*(S(G)) = O(G); and

(c) M = 0¥(G) = F*(G) and M = M/Z*(M).

ProOOF. Clearly
S(G) N M=2Z*(M)
and
0(G)Z*(M) < S(G) < Co(M/O0(M)) = C;(M/Z*(M)).

Also Co(M/O(M)) N\ M =Z*M) < G, |Co(M/O(M))/Z*(M)| is odd and
[Co(M/O(M)), Z*(M)] < O(M). Thus

Cs(M/0(M)) = 0(G)Z*(M) = S(G) and O0?*(S(G)) = O(G).

Clearly M = 0%(G) = M/Z*(M) and C5(M) = 1. Thus F*(G) = M and the proof
is complete.
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For the convenience of the reader, we restate [18, Theorem 3.1; 22, Proposition 1;
23, Proposition 1].

LEMMA 2.14. Let G be a group, let M be a normal subgroup of G, let B be a
2-subgroup of G, let K be a 2-component of Cy(B) and set G = G/M. Then the
following three conditions hold.

(a) Ly(Ng(B)) = Ly (C5(B)) < Ly(G);

(b) if K is perfect, then K < M or K is a perfect 2-component of C‘(B) and

(c) if K is solvable, then O*(K) < M or O(CZ( B))K is a solvable 2-component of
Cs(B).

LEMMA 2.15. Let K be a perfect 2-component of the group G and let B be a
2-subgroup of G such that [K, B] < Z*(K). Then [K, B] < O(K), O*(Cx(B)) =
Cx(B)™, Cx(B)™ is a perfect 2-component of C;(B) such that

K= 0(K)(Cx(B)*™) = (0(G)(Cx(B)))™

and
K/O(K) = Cx(B)™/0(Cx(B)™).

PROOF. Set G = G/O(G). Then Kis a perfect component of Gand [K, B] < Z(I? ).
Thus [K, B] =1 by Lemma 2.6(a) and hence K is a component of C“(B) and
[K, Bl]< O(K). Set X=0(G)K. As K< < X, we have 0%(X)= X =
Hence

X = 0(G)Cx(B) = 0(G)(Cx(B)™),
Cx(B)™ = Cx(B)™ = 07(Cx(B)) = 0*(Cx(B)),
K = O(K)Cx(B)*™
and Cx(B)™ is a perfect 2-component of C;(B). Thus
K = 0(K)(Cx(B)™) = (0(G)Cy (B)™),
K/O(K) = Cx(B)*/0(Cx(B)*)

and we are done.

In the next three lemmas, let B denote a 2-subgroup of the group G, let N and H
be normal subgroups of the group G with N < Z*(H) and set G= G/N. Also let
M denote the full inverse image in H of C;7(B). Thus M = Cj(B), N<M =
{h € H|[h, BIS N}, C(B) S C4(B), Cy(B) S C4(B) and Cy(B) < Cy(B) =
Cy(B).

LEMMA 2.16. The following four conditions hold.
(@ [H,N]<O(N) 2 G;

(b) O*(M) = O(N)O*(Cy(B));

(c) (M) = O(N)O(Cy(B)); and _

(d) O(Cy(B))= O(Ci( B)) = O(M).
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Proorf. Clearly [H, N]< O(H)N N=O0O(N)< G, so that (a) holds. Also
NCy(B)ysM={h€E H|[B,_h] <N}and N has~a norgla\l_2/-coqlplement. S~et G=
G/O(N) and note that 0*(M) =0*(M), O (M) = O*(M), N < O(Z(H)) and
C,(B)= Cz(B) by [16, Theorem 6.2.2]. Consequently, to prove (b), it suffices to
assume that O(N) = 1. Let # € M with |7| odd. Then = stabilizes the chain
BN = N = 1. Hence m € Cy(BN) = Cy(B) by [16, Theorem 5.3.2] and (b) holds.
Then

0(M) = 0(0*(M)) = 0(N)0(0*(Cy(B))) = O(N)O(Cy(B))
and (c) holds. For (d), let L denote the inverse image in H of O(Cg( B)) = O(M).
Then NO(Cy(B)) = NO(M)<L < M,|L/N|isodd and [L, N] < O(N). By [16,
Theorem 7.4.3], we conclude that L = O(L)N. Since [B,O(L)]<O(L)N N =
O(N), we have O(L) = O(N)Cy1y(B). As O(Cy(B)) < Cp1(B) I Cy(B), we
have O(Cy(B)) = Cy(r)(B). Thus (d) holds and we are done.

LEMMA 2.17. Let K be a 2-component of Cy(B). Then the following two conditions
hold.

(a) K is a 2-component of C;(B) and K/Z*(K) = K/Z*(K); and

(b) K = Cyx(B)® if K is perfect and K = O*(Cyx(B)) if K is solvable.

PROOF. As K = K/(K N N)and K N N < Z*(K), we have

K/Z*(K) =K/Z*(K).
Clearly K < < C4(B) Q Cy(B), O¥(K)$ N and O(Ci(B)) =O(Cy(B))
< K if K is solvable. Thus (a) follows from Lemma 2.14. Set X = Cyx(B) =
Cy(B)K. Since Cy(B) < C;(B), we have Cy(B) < Z*(Cy(B)) and [K, Cy(B)] <
O(K). Thus X(®) = K if K is perfect. Suppose that K is solvable. Since
0*(Cy(B)) = 0(Cy(B)) < 0(Cy(B)) < K= 0*(K) 2 X,

we have K = 0*(X) and we are done.

LEMMA 2.18. Let J be a 2-component of Ci(B) and let K denote the full inverse
image of J in H. Set L = Cy(B)™ if J is perfect and L = O*(Cx(B)) if J is solvable.
Then the following four conditions hold.

(@L=JandL/Z*(L)=J/Z*(J);

(b) L is a perfect 2-component of Cy(B) if J is perfect;

(c) L is a solvable 2-component of Cy(B) if J is solvable; and

(d) if |N| is odd, then L/O(L) =J/O(J), L = 0*(Cx(B)) if J is perfect and
0¥(Cx(B)) < L = Cy(B) if J is solvable.

PrOOF. Note that [K, B|< N< K < < M and K = NO*(K) since 0*(J) = J.
Thus O(N) < 0¥ K) 9 < 0¥(M) = O(N)O*(Cy(B)) by Lemma 2.16. Hence

0*(K) = O(N)(0*(K) N 0*(Cy(B))),
[0*(K), Bl <O(N), J=0*K),

and
0*(K) N Cg(B) = O*(K) N 0*(Cy(B)).



10 M. E. HARRIS

Suppose that J is perfect and L = Cy(B)™. Then L < 0¥ Cy(B)) N O*(K),
L < <G, (B) = Cy(B) < C4(B) and L = (0X(Cpy(B)) N O*(K ). Hence

J=J® =0%K)n 0X(Cy(B)) " =1L

and K= NL. Let Y denote the subgroup of L such that NN L<Y < L and
Y=0(L) and let T € Syl,(N N L). Then NN L= O(N N L)T, |Y/NNL|is
odd, [L,T]<O(NN L)< O(L) and T € Syl,(Y). Applying [16, Theorem 7.4.3],
we conclude that Y = O(Y)T. Hence O(Y) = O(L), [L,Y]< O(Y) 2 < C5(B)
and Y<Z*(L)<S(L).AsL/Y = J/O(J), which is quasisimple, S(L)/O(L) is a
2-group and [L, S(L)] < Y. Then L stabilizes the chain S(L) = Y = O(L). Since
L= O0%L), we have [L, S(L)] < O(L) by [16, Theorem 5.3.2]. Thus L is 2-
quasisimple, S(L) = Z*(L) and L/Z*(L) ~J/Z*(J)

Suppose that J is solvable and L = O*(Cx(B)). Then L < <9 Cy(B)=
Cy(B) < C4(B), L < O*K) N C4(B) = 0*K) N O)Cy(B)) < Cx(B) and
hence

L = 0% 0*(K) N 0*(Cy(B))).

Thus J = 0%(J) =0* K)= 0¥ 0*K))= L. Let Y denote the subgroup of L
such that NN L<Y< L and Y = O(L). Then, as above, Y < < C(B), Y =
O(L)T where T € Syl,(NN L) and [L, Y] < O(L). However O(L) < O(Cy(B))
= O(C4(B)) N H < Cx(B) since O(C7(B)) =0(Cy(B))<J. Thus O(L) =
O(Cy(B)). Note that L/Y = J / O(J), which is isomorphic to PSL(2, 3) or SL(2, 3).
Set L=L/O(L). Then OXL)=O0XL)=1L, T< O,(Z(L)) and Lemma 2.10
implies that L is isomorphic to PSL(2, 3) or SL(2, 3). Thus (a)-(c) hold.

For (d), assume that | N| is odd. Then K = NL implies that Cx(B) = Cy(B)L.
Here both | CN(B)| and | Cx(B)/L| are odd. Thus L = OZ(CK(B)) if J is perfect
and L = Cx(B) if J is solvable. Also L N N < O(L),J=L= L/(L N N)and (d)
is clear. The proof of this lemma is now complete.

LEMMA 2.19. Let z be an involution of the group G and set H = Cg(z). Let L be a
perfect 2-component of G and let J be a perfect 2-component of H. Then the following
three conditions hold:

(a) if L* = L, then every perfect 2-component of C,(z) is a perfect 2-component of
H;

(b) if L* # L, then C; ;:(z)"*™ is a perfect 2-component of H,

O(CLL‘(Z)) =0(G) N (CLL"(Z))

and Cy;:(2) /O(Cy:(2)) is a homomorphic image of L/O(L); and

(c) there is a perfect 2-component K of G such that either (i) K* = K and J is a
perfect 2-component of Cx(z), or (ii) K? # K and J = Cyy:(z)®. Also, in either case,
[J, KK*] = [J, Ly(G)] = (J-*D)= KK*.

ProOF. Suppose that L*= L. Then L9 9 G, C(z) 9 < H and (a) holds.
Assume that L* #* L and set M = LL* and G = G/O(G). Note that M 9 < G,
7 € 9(G), H = Cz(z) and L = 0*(O(G)L) = (O(G)L)* by Lemma 2.18. Clearly
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L and L7 are distinct components of G, M =LL° = L*L?< < G and C,,(z) =
Ci7(Z) < < H. Moreover L,(Ci(Z)) = Cif(z)* and is a homomorphic image of
L= L/O(L) by [17, Lemma 2.1] and L,(Cy(2)) is a component of H. Set
¢ = Cpy(2)*. Then § = Ci7(2) and hence O(G)$ is the full inverse image
in G of L,(C;(2)). Since § I < (0(G)§) N Cy(2) = Cpg/(2)%, We have § =
(0(G)$ N Cy4(2))™. Thus ¢ is a 2-component of H by Lemma 2.18. Also ¢ =
L,(Ciy(2)) and } is quasisimple. Thus O(Ci(2)) < Ci($), so that O(Cip(2)) <
Z(M) = Z(L)Z(L?) by [17, Lemma 2.2). Since Z(L) is a 2-group, O(C,,(z)) =
O(G) N Cy(z) and (b) holds. Clearly the first part of (c) follows from (a), (b) and
[18, Lemma 2.18 and Corollary 3.2]. Also J =J' < KK* < L,.(G), so that J <
[J, KK?*] < [J, Ly(G)] = (J**©) < KK* by Lemma 23. Thus J < X =
[/, KK?] << KK*=Y and X is not solvable. Set ¥ = Y/S(Y). Clearly K < Y,
K<Y, S(K)=Z%K)=SY)NK, S(K*)=Z%K*)=S(Y)NK? K=
(S(Y)K )™, K? = (S(Y)K?)™ and 1 # X < Y = KK* where K = K/Z*(K) and
K? = K?/Z*(K*) are simple. Suppose that XS(Y) = KK*. Then (KK*)*® = KK*
= X < X and X = KK*. Thus to conclude the proof of the lemma, it suffices to
assume that K # K? and Y = K X K. However if X=K, then J =J® <
(KS(Y))®™ = K and hence K? = K. Similarly X = K7 is impossible and the proof
of this lemma is complete.
Our next result sharpens [1, Theorem 2(2)].

LEMMA 2.20. Let G be a group, let z € 3(G) and let K be a 2-component of Cy(z2).
Suppose that L is a perfect 2-component of G such that L* # L. Then exactly one of the
following two conditions holds.

(a)[K, L] < O(L) and [K, L?] < O(L?); or

(b) K= Cy;:(2).

PROOF. Assume that G is a counterexample of minimal order to the lemma.
Applying [1, Theorem 2] and Lemmas 2.17-2.19, we conclude that O(G) =1,
G = (LL*XO(C4(2)) X (2)), G =E(G) =L+ L*, K< 0%G) = LL°O(C4(z))
= Ng(L) = Ng(L*) and |G/O*(G)|=2. Thus K is solvable by Lemma 2.19.
Clearly O,(G) = Z(L) * Z(L*) = Z(E(G)) = C4(E(G)) and F*(G) = E(G). Set
J = Cp(2)* and G = G/Oy(G). Thus J is a perfect component of Cy4(z) with
O(J) = 1 by Lemma 2.19 and hence [K, J] = 1. But J; = {(xx* | x € L)< Cg(2)
and J| is a homomorphic image of L. Thus J; <J and hence [K, J;] = 1. Now [2,
Lemma 2.5] implies that K = O%(K) < C;(E(G)) = O,(G). This contradiction
completes the proof.

The next result is a slight refinement of [1, Theorem 2(4)].

LEMMA 2.21. Let z be an involution of the group G, let H= Cg(z), let L be a
2-component of G and let K be an intrinsic 2-component of H = C;(z). Then
[K,L1<O(L)or O*(K)< L.

PROOF. By [1, Theorem 2(4)], we have [K, L] < O(G) or 0O?(K) < L. Suppose
that [K, L] < O(G) and O(G) # O(L). Then L is perfect and K < N;(LO(G)) <
Ng(L) since L = O*(LO(G)). Hence [K, L] < O(G) N L = O(L) and we are done.
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The next lemma utilizes J. G. Thompson’s concept of a critical subgroup of a
p-group (cf. [16, pp. 185-186]) and extends [39, Lemma 4.1].

LEMMA 2.22. Let G be a group with O(G) = 1. Let z € 9(G) and let K be a solvable
2-component of C;(z). Then exactly one of the following two conditions holds:

(a) 0%(K) < E(G),[0%(K), E(G)] # 1 and K < C4;(0,(G)); or

(b) O?(K) = [Cp(2), K] for every critical subgroup P of O,(G).

PROOF. Let S € Syl,(K) and let p be a 3-element of Ni(S) — O(K'). Thus

O(Xs(2))S< K= O(CG(Z))<PK>= 0(Cs(2))S(p).

By [16, Theorem 5.3.4], we have [O(C;(z)), O,(G)] = 1. First, we suppose that
O0%(K) < C;(E(G)). Then 0y(G) # 1 since F*(G) = O,(G)E(G) and C,(F*(G))
= Z(0,(G)). Let P be a critical subgroup of O,(G). Suppose that [P, (p)] = 1. Then
p € Co(0(G)), K < Cg(0(G)), O%(K) < Co(F*(G)) = Z(0(G)) and O*(K) <
Q,(Z(0y(G))) N C4z(2). Since Z(0,(G)) < P, this is impossible. Thus [P, (p)] # 1.
Then [Cp(2),(p)] # 1 by [16, Theorem 5.3.4] and (b) holds by [23, Lemma 2.8].
Finally, suppose that [0?(K), E(G)] # 1. Then 0?(K) < E(G) by [1, Theorem 2]
and O*(K) % Oy(G). Hence [Cy G(2z), K1 =1 by [23, Lemma 2.8] and
[0,(G), 0*(K)] = [0,G), K] = 1. Thus (a) holds and we are done.

LEMMA 2.23. Let G be a group with O(G) = 1. Let z € 9(G) and let K be an
intrinsic solvable 2-component of C;(z) such that 0*(K) < Oy(G). Then the following
three conditions hold:

() O(C4(2)) = 1 and E(G) = E(C4(2));

(b)K < <G; and

(c) if M is a solvable or perfect 2-component of C;(z), then M < < G.

PROOF. Let P be a critical subgroup of O,(G) and let Q be the unique Sylow
2-subgroup of K. Thenz € Q' < P’ < Z(P), P < C4;(Z(P)) < Cy(2), L,(Cyx(2)) =
E(G) = E(C;(z)) by Lemma 2.19 and [O(C(2)), P] = 1. Thus

0(Cs(2)) < Cs(0,(G)E(G)) = Z(04(G)),

(a) holds and [K, E(G)] = 1. Let p be an element of order 3 in K. Thus p &
C;(0,(G)) and hence Q = [P, K] = [P,{p)] and [Q,(Z(P)), p] = 1 by [23, Lemma
2.6]. Hence [Z(P),{p)] = 1, K < Cz(Z(P)) < C4(z) and (b) holds. For the proof
of (c), it suffices to consider a solvable 2-component M of C;(z) by (a). But then
[E(Cs(2)), M] = [E(G), M] =1 and O*(M) < P < C;(z) by Lemma 2.22. Let R
be the unique Sylow 2-subgroup of M and let » be an element of M of order 3.
Suppose that R’ # 1. Then [Z(P), (v)] =[Z(P), M] =1 by [23, Lemma 2.6] and
hence M < C;(Z(P)) and M < <1 G. Suppose that R" = 1. Then P = R X Cp(M)
by [23, Lemma 2.5] and hence P’ < Cpx(M). Since z € P’ < Z(P), we have M <
Co(P) < Ciz(z) and Cz(P’) < G. Thus M < < G and we are done.

LEMMA 2.24. Let G be a group, let z € 9(G), let L be a 2-component of G such that
L? # L and let K be a 2-component of Cy(z) such that [L,0%(K)] < O(L). Then
[L, K]< O(L).



INTRINSIC 2-COMPONENT OF CHEVALLEY TYPE 13

PROOF. Assume that [L, K] £ O(L). Since K = 0%(K) if K is perfect, it follows
that K is solvable. Also [1, Theorem 2] implies that K < LL*0O(C4(z)) and O%*(K) <
LL? Thus K = (K N (LL?*))O(Cg(z)) and

0%(K) < Cx(L/O(L)) N Cx(L?/O(L*)) N (LL*) = K N (Z2*(L)Z*(L?)).

It follows that a Sylow 2-subgroup of K is abelian and K acts trivially on
O0%(K)O(K)/O(K). This contradiction establishes the lemma.

DEFINITION 2.1. A simple group X is said to be f-balanced if every group H such
that F*(H) = K has the property that (| O(Cy(2))|,3) = 1 for allt € §(H).

Note that if a simple group K is balanced (in the terminology of [7]) or is a simple
Chevalley group over a field of characteristic 3 (cf. [9, Lemma]), then K is
0-balanced.

The next result was suggested by situations arising in [24].

LEMMA 2.25. Let G be a group and let z € 3(G). Let K be a solvable 2-component of
Cs(z) and let L be a perfect 2-component of G. Suppose that the simple group
L/Z*(L) is 0-balanced. Also suppose that K < N;(L), [K, 0%(K)] < O(L) and that
O%(K) is not contained in L. Then O*(K) < Cx(L/O(L)).

PrOOF. By Lemma 2.24, we may assume that L? = L. Set H = L(K(z)). Then
Cy(2) 9 Q C4(2), O(Cy(2)) < O(C4(2)) = O(K) and K is a solvable 2-component
of Cy(z). Thus we may assume that G = H = L(K(z)).

Suppose that O(G) = 1. Clearly 0?(K) < C4(L) = C4(L/Z(L)) = S(G) and
S(G)NL=2Z(L). If z€ S(G), then L is a perfect 2-component of C;(z) and
hence [L, K] = 1. Thus we may assume that z & S(G). Set G= G/S(G). Then
F*(G) = Lis simple, Z € 9(G) and | K | is odd. The inverse image of C5(7) in G is

Ns((2)S(G)) = N ((2)Z(L))K(z)= Ng({z)Z(L)).

Also [Z(L), 0*(K)O(K)] = 1 and [C,,|(z), K] = 1 since O*(K) £ Z(L) by [23,
Lemma 2.8). Hence [Z(L), K] =1 by [16, Theorem 5.3.4]. This implies that
K 9 QCe({z)Z(L)) < Ng({z)Z(L)). Thus S(G)K 2 2 N;({z)S(G)) and K<
O(Cg(2)) since | K | is odd. Since L is §-balanced, it follows that 0*(K) < S(G) and
we are done in this case.

Suppose that O(G) #1 and set G = G/O(G). Then 7z € 9G), L is a perfect
2-component of G and is a solvable 2-component of C5(Z) = C;(z) by Lemma 2.17.
Since 0%(K) = 0%(K), 0%(K) = 0¥(K) and | O(G)Z*(L)/Z*(L)| is odd, it is
clear that the lemma follows from the above.

The next result was suggested by the proof of [24, Theorem 1].

LEMMA 2.26. Let G be a group and let z € 9(G). Suppose that Cg(z) contains
2-components L, and L, with z € L,. Assume also that O(G)L, is not subnormal in G
if L, is perfect and that O(G)O*(L,) is not subnormal in G if L, is solvable. Then
O%(L,) is contained in a unique perfect 2-component K of G. Also z & Z*(K), K is
C,(z)-invariant, L, < K if L, is perfect and [K, L*(L,)] = K if L, is solvable.
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PRrOOF. First suppose that O(G) = 1. Clearly 0%(L,) < E(G)and[L,, Oy(G)] = 1
by Lemmas 2.22 and 2.23. If z € Z(E(G)), then L,(Cg(z)) = E(Cy4(2)) = E(G), L,
is solvable and L, < C;(E(G)) < C4(2). Since L, is not subnormal in C;( E(G)), it
follows that z & Z(E(G)). Hence [1, Theorem 2(4)] implies that there is a unique
perfect component K of G such that 0O?(L,) < K. Clearly z € Z(K) and C(z)
normalizes K. If [L,, K] =1, then L, < C;( E(G)) < C4(z) since all components of
E(G) with the exception of K are components of C;(z) by Lemma 2.19. Since L, is
not subnormal in C;(E(G)), we have [L|, K] = K. Thus L, < K if L, is perfect by
Lemma 2.19. Suppose that L, is solvable and that [K, O*(L,)] = 1. Then 0%*(L,) <
C4s(E(G)) < Cz(z) and O*(L,) 9 <G, a contradiction. Thus O(G) # 1. Set
G = G/0(G) and let J, = O(G)L, for i = 1,2. Thus J, and J, are 2-components of
Ci(z2), z € f}(.l_z), f, is not subnormal in G if J_l is perfect and
0%(J)) = 0¥(L,) = 0%(L,) is not subnormal in G if J; is solvable. Hence, by the
above, 0%(J,) = 0?(L,) = 0%(L,) is contained in a unique perfect component K
of G, etc. Let K, denote the inverse image of K in G and set K = K{*). Then
K = O%(K,) is a perfect 2-component of G, K, = O(G)K, 0*(L,) < 0%(J,) <K,
z & Z*(K), K is C;(z) invariant and is the unique perfect 2-component of G that
contains O%(L,). If L, is perfect, then L, < K, and hence L < K = K{*. Suppose
that L, is solvable. Then K = [0%(L,), K] = [0¥(L,), K] and hence [0*(L,), K]
= K. The proof of this lemma is now complete.

The next result of this section is a compilation of results of various authors. For
references, see [13, §2; 19].

LEMMA 2.27. Let X be a simple Chevalley group over a finite field of order q where
q = p" for some odd prime p and positive integer n. Then X has a universal covering
group, Cov( X), and S(Cov(X)) = Z(Cov(X)). Set Y = Cov(X)/O(Cov(X)). Then
exactly one of the following 16 conditions holds.

(1) X=PSL(m,q)=A,,_q) for some integer m =2 with (m,q) # (2,3);
Z(SL(m, q)) = Z, .y if (m, q) # (2,9), then Cov(X) =SL(m, q) and if (m, q)
= (2,9), then O(Cov(X)) = Z, and Y = SL(2,9);

(2) X = PSU(m, q) =24,,_,(q) for some integer m = 3; Z(SU(m, q)) = Zim,g+1y
if (m, q) # (4,3), then Cov(X) = SU(m, q) and if (m, q) = (4,3), then O(Cov( X))
=Z, X Zyand Y = SU(4, 3);

(3) X=PSp(2m, q) = C,(q) for some integer m =2; Z(Sp(2m, q)) = Z, and
Cov(X) = Sp(2m, q);

4) X=PQ2m + 1,q) = B,(q) for some integer m = 3; Z(Spin(2m + 1, q)) =
Zy; if 2m+ 1,q) #(7,3), then Cov(X) = Spin(2m + 1,q) and if Cm + 1,q) =
(7, 3), then O(Cov( X)) = Z, and Y = Spin(7, 3);

(5) X = PQ(2m, q,1) = D,(q) for some even integer m = 4, Z(Spin(d4m, q, 1)) = E,
and Cov(X) = Spin(4m, ¢, 1);

(6) X = PQ(2m, q,-1) = 2D, (q) for some even integer m = 4, Z(Spin(2m, g, -1))
= Z, and Cov(X) = Spin(2m, g, -1);

(7) X=PQ(2m,q,1) =D,(q) for some odd integer m = 5; Z(Spin(2m, g, 1)) =
Zy,4—1yand Cov(X) = Spin(2m, g, 1);
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8) X =PQQ2m, q,-1) =D .(q) for some odd integer m = 5, Z(Spin(2m, q,-1))
= Z 4 4+1yand Cov(X) = Spin(Zm, q, -1);

(9) X = Eg(q) and Z(Cov(X)) = Z 5 , ),

(10) X = E,(q) and Z(Cov( X)) = Z,;

(11) X = Ey(q) = Cov( X);

(12) X = F,(q) = Cov(X);

(13) X = Gx(q); if g # 3, then X = Cov(X) and if ¢ = 3, then Z(Cov( X)) = Z,;

(14) X =°D,(q) = Cov(X);

(15) X = 2E((q) and Z(Cov(X)) = (3,q + 1); or

(16) p =3, nis odd, n = 3 and X = *G,(q) = Cov(X).

LEMMA 2.28. Let N be a normal subgroup of the group G, let H be a subgroup of G
that is of O( p)-type and set G = G/N. Then $(Z*(H)) C N or H is of I( p)-type.

PROOF. Assume that 1 € $(Z*(H)) — N. Suppose that H/O(H) = SL(2, 3). Then
NNH<H and hence NN H< O(H) and H/O(H) = SL(2 3). Thus we may
assume that H is 2-quasisimple. Then, by Lemma 2.12, H is 2-quasisimple,
H/Z*(H)=H/Z*(H),t € Z*(H) =Z*(H) and € $(G). Suppose that H is not
of 9M(p)-type. Then H/Z*(H) is isomorphic to PSL(2n, p") or PSU(2n, p") for
some positive integers n and r, Z*(H) has cyclic Sylow 2-subgroups and |Z*( H)|,
<|Z*H)|,=|9(H/Z*(H))|,- As Z¥(H) N N < Z*(H), | Z*(H) N N| is even
and ¢ € N, we have a contradiction and the lemma holds.

3. Centralizers of involutions and semi-involutions in the classical linear groups over
finite fields of odd characteristic. In this section, we shall review the survey of the
conjugacy classes of involutions and semi-involutions and their centralizers in the
classical linear groups over finite fields of odd order as presented in [12, Chapitre I,
§§3, 4, 13 and 14] and add a few observations that we shall require at various points
in the proofs in this paper.

Throughout this section, let £ denote a finite field of order ¢ = p” where p is an
odd prime integer and » is a positive integer. Also let ¥ be a finite dimensional
vector space over k with dim(V/k) = m

Suppose that m = 1. Then GL(V/k) = (AI,|A € kX Yy=k™, SL(V/k) = 1 and
consequently we shall usually assume that m > 1.

Before discussing the classical linear groups, we present two lemmas that we shall
need in subsequent discussions.

LEMMA 3.1. Suppose that m > 1. Let H be a finite group and let G be a subgroup of
index 2 of H such that G = GL(V /k); thus G’ = SL(V /k) and Z(G) = k™ . Assume
that there is an element 1 € H — G such that 7> € Z(G) and 7 acting by conjugation
on G induces transpose-inverse on G with respect to the basis B = {v,,...,v0,} of V/k.
Then the following two conditions hold.

(@) If m=2 and a € G has matrix () with respect to B, then Cy(G’) =
(Z(G), ar) and (ar)?* = (-1,)7%; and

(b) if m > 2, then Cy(G") = Z(G).
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Proor. Let M = Cy(G’). By [25, Proposition 2], we have M N G = C4(G') =
Z(G) = (NI, |\ € k), so that | M/Z(G) |< 2. First suppose that m = 2 and let «
be as in (a). Then ar € M — Z(G) and it is clear that (a) holds. Consequently we
may suppose that m > 2 and | M/Z(G) |= 2. Thus there is an element 8 € G such
that B € M.

For each integer 1 <i <m, let u, denote the unique element of G such that:
u(v) =v;if j & {i,i + 1}, uy(v;) = v;4, and u,(v,,,) = -v;. Clearly (y;|1 <i <
m)< G’ N C;(1) < Cx(T, B). Also, for each 1 <i<m, let ¢, denote the unique
element of G such that 7,(v;) = v;ifj € {i, i + 1}, t;(v;) = —v;and 1,(v,;|) = -V, .
Clearly ¢/ =t,€ G’ for all 1<i<m and hence B € Cy({t;|1 <i<m))=
ML, Stabs(kv,). Since B € C;({u;| 1 <i<m)), we conclude that B € Z(G) and
hence M = (Z(G), 7). Since 7 & C,(G’), we have a contradiction and the proof of
this lemma is complete.

LeEMMA 3.2. Suppose that m > 1 and n is even. Let H be a finite group and let G be a
subgroup of index 2 of H such that G = GL(V /k); thus G’ = SL(V /k) and Z(G) =
k. Let 6 € 9(Aut(k)) and suppose that there is an element 1 € H — G such that
12 € Z(G) and 1 acting by conjugation on G induces a unitary automorphism (trans-
pose-inverse-automorphism induced by o) on G with respect to the basis B = {v,,...,0,,}
of V/k. Then Cy(G") = Z(G).

PROOF. Let M = Cy(G’), so that M N G = Cz(G') = Z(G) = (A, | X E k™)
and | M/Z(G) |< 2. Assume that there is an element 8 € G such that 87 € M.

For each integer 1 <i <m, let u; and ¢, be as in Lemma 3.1. First suppose that
m > 2. Then, as in Lemma 3.1, it follows that 8 € Z(G) and M = (Z(G), 7). Since
T & Cy(G’) we have a contradiction. Consequently, m = 2. Let C,(¢) = ky, g5 =
| ko| and let N: k* — kg denote the norm mapping of k/k,. Clearly g = ¢q and
| Ker(N)|= g, + 1 by [28, Lemma 8.5]. Hence there is an element ¢ € Ker(N) with
c & {1,-1}. Let x € G be such that x(v,) = cv, and x(v,) = ¢"'v,. Then x € G’
and x" = x. Hence B € Cyz(x) = Stabg(kv,) N Stabg(kv,). On the other hand,
B € C;(u,) and hence B € Z(G). Thus M = (Z(G), ) and since 7 & Cy(G’), we
have a contradiction to complete the proof.

3A. The general linear groups. Let G = GL(V/k), H = SL(V /k) and Z = Z(G)
= (M, |A €KL*). Also set G=G/Z. Cleartly G/H=k*, G'=H, ZNH=
(Al |IN€EK* and X" =1)=Z_, ,, and G/H = k> /((k™)™) since the inverse
imageof Hin Gis Z * H = (x € G|det(x) € (k*)™).

Let u € G — Z be such that u? = yI,, for some y € k*, so that |i|= 2. Let
M = N;({u, Z)). Thus M is the inverse image in G of Cz(u). Setting U = (u, Z),
we have M = Ng(U), U is abelian and C;(U) = Cz(u). Clearly U < Z * H if and
onlyif |(UN H)/(Z N H)|= 2 and [12, I, §4(4)] implies that | M /C,(U) |< 2.

First assume that U is not cyclic. Then U= Z X (w) where w € 4(G — 2Z),
w # -1, Co(U) = Cgz(w), w™ C {w,(-I,,)w} and |wM|=| M/C4(U) |< 2. Also as
in [12, 1, §§3 and 4], we have V = V* @ V™ where

V*=Cy,(w) and V = {veEV|w(v)=-v}=[V,w].
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Also 1 <dim(V* /k) < m, det(w) = (-1)%™" /5 and U< Z « H if and only if
dim(V~ /k)is odd and -1 & (k™)™ Clearly G = HC;(w), w’ = w¥ and there is an
isomorphism a: C;(U) - GL(V* /k) X GL(V™ /k) with «(Z) = (A1 ,+, AI,-)|A
€ k™) and a(w) € Z(GL(V™ /k)). Clearly

(GL(V* /k) X GL(V™ /k))’ = SL(V* /k) X SL(V~ /k)
and hence

o Ceon(Co(U))) = ((MIys 81, )| A, 8 € K ) = kX XKk

by [25, Proposition 2]. Suppose that | M/C;(U)|= 2. Then w ~ (-I,,)w in M and
hence there is an involution g € M such that g: C,(w) < [V, w], w8 = (-I,,)w and
M = Co(U)(g)=GL(V" /k)wr Z,.

The above discussion shows that if x, y € 9(G), then the following three condi-
tions are equivalent: (i) x ~ y in G; (ii) dim(C,(x)/k) = dim(C,(y)/k); (iii) x ~ y
via H. Also for any integer p with 1 < p < m, there is an involution z € G — Z such
that dim(C,(z)/k) = p.

Next assume that U is cyclic. Then U= (Z,w) where w* = yI, for some
y € kK —(k™)%. Hence X2 — v is irreducible in the polynomial ring k[ X] and is the
minimal polynomial of w. Thus m is even, (X2 — y)™/2 is the characteristic
polynomial of w and det(w) = (—y)™/2. Consequently U < Z * H if and only if
(~y)™/? & (k)™ As in [12, 1, §3], let K be a quadratic extension field of k such
that K = k(p) where p? = v, so that {1, p} is a basis of K/k. As in [12, 1, §3], for
vE€ Vanda, b €k, set v(a + bp) = va + w(v)b. Then V becomes a vector space
over K of dimension % and C;(U) = GL(V/K). Let B = {v,,. -+s0y 2} be a basis
of V/K and let Gal(K/k) = (), so that B, = {vy,...,0, /2, 0\p,...,0,,,,p} is a
basis of V/k, for any 1 <i <%, w(v;) = v;,p and w(v;p) = v;y, 7 € Aut(k), |7]|= 2,
7(p) = —p and Cx(7) = k. For any v = 37/? v,d, with d, € K for 1 <i <%, set
x(v) = /2 v;7(d;). Then x € GL(V/k) = G, det(x) = (-1)"/2, | x|=2 and w*
= —w since xw(v) = x(vp) = v71(p) = —x(v)p = —(wx(v)). Thus M = C;(U){x)
< TL(V/K) and x acts like a field automorphism of order 2 on C;(U) = GL(V/K).
Since the norm N: K™ — k™ is epimorphic, it is easy to see that G = C;(U)H and
hence w’ = w¥. Also it is obvious that for every § € (K*) — (K*)?, there is an
element w, € wZ = U — Z such that w} = 81,,. Consequently all cyclic subgroups X
of G such that Z < X and | X/Z |= 2 are conjugate via H because of the basis B, of
V /k. Moreover, if m is even, there are cyclic subgroups X of G such that Z < X and
| X/Z|= 2 since there are elements w € G such that w? = yI, for any y € k*
—(kX)2.

3B. The symplectic groups. Suppose, in this section, that f: V' X V — k is a bilinear
symplectic scalar product that is nonsingular (cf. [25, §1; 29, §7; etc.]). Thus
f(v,,v,) = —fo(v,,v)) for all v,, v, €V and m = dim(V/k) is even. Let G =
GSp(V/k) and H = Sp(V /k) be as defined in [12, I, §9]. Thus Z = (AL, |A € k™)
< G, H=G', Z(G) = Z by [25, Proposition 3] and Z N H = (-I,). For each
u € G, there is a unique element r, € k™ such that f(u(v,), u(v,)) = r, f(v,, v,) for
all v, v, € ¥, r, is called the multiplicator of u and the mapping y: G —» k™ defined

2 =
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by Y(u)=r, foru € Gis an cplmorpmsm with Ker(y) = H (cf. [25 Proposition 3]).
Set G=G/Z. Then |G/H|=2 and the inverse image of H in G is Z+ H =
(u € G|r, € (k¥)?).

For m = 2, we have, by [28, I, 9.12], G = GL(V /k), y = det and H = SL(V /k).

Let u € G — Z be such that u*> = yI,, for some y € k™, so that |&|= 2. Let
U=<(u,Z) and M = Nyi(U). Thus U is abelian, U= (#a)=U/Z, C(U)=
Cs(U), M is the inverse image in G of Cxu), U<Z =+ H if and only if
[(UNH)/(ZNH)|=2and |M/Cy;(U)|<2asin §3A.

First assume that U is not cyclic. Then U = Z X (w) where w € (G — Z),
w # I, Co(U) = Cg(w), w™ C {w,(-I,)w}, |w"|=|M/Cx(U)|<2and r? =

Suppose thatr, = 1. Thenw € HLU<Z* H,V=V* L V™ where V" = C,(w),

= {v € V|w(v) = -v} = [V, w] and the restrictions of f to V* /k and V™ /k
yield nonsingular symplectic vector spaces. Thus dim(V*/k) is even, 2 <
dim(V* /k) <m, Co(U) = {(wy, w)) € (GSp(V™* /k)) X (GSp(V™ /k)) | r,,, = 1.},
G = HC4(U) and w® = w¥. Suppose that | M/C4z(U)|= 2. Then w ~ (—I,,)w in M
and [29, Proposition 9.13] implies that there is an involution g € M N H such that
g VroV ,wE=(-I,)wand M = C,(U)g).

It now is clear that if x, y € §(H), then the following three conditions are
equivalent: (i) x ~y in G; (ii) dim(C,(x)/k) = dim(C,(y)/k); (iii) x ~y in H.
Also for any even integer p with 2 < p < m, there is an involution z € G — Z such
that dim(C,(z)/k) =p

Suppose that r, = —1. Then w & H, U< Z * H if and only if ¢ =1 (mod4),
Vt=Cy(w) and ¥V~ = {v € V|w(v) = v} = [V, w] are totally isotropic sub-
spaces of ¥ with V'=V* @V~ and dim(V" /k) = dim(V™~ /k) = %. Also there are
bases {v;|1<i<%} of V' /k and { Vitm| 1 <j<%} of V" /k such that
(v, 054, ,2) = §;; for all 1 <i, j<?%. Suppose that x € Cz(U). Then x leaves
invariant both V+ and ¥~ and f(x(v,), x(v,)) = r, f(v,, v,) for all v, € V" and
v, € V™. Conversely, if x € GL(V/k) is such that x leaves invariant both V" and
V™ and f(x(v,), x(v,)) = sf(v,, v,) for all v, € V*, v, € ¥~ and for some fixed
s €k, then x € Cz(U) and r, =s. For (A, ;) € K™ Xk™, let (A I+, A\, 1,-)
denote the element of C;(U) such that (A, I+, A,I,-)(v, + v,) = A0, + A,v, for
allv, € V" and v, € V. Then

Y((Ady+, A2dp-)) =ANA, and X = <()\|IV+ AT ) [N Ay €K >< C(U).
Also for each g € GL(V™ /k), there is a unique element g* € GL(V~ /k) such that
f(g(v)), g*(vy)) = f(v,, v,) for all v, € V" and v, € V™. Hence the mapping a:
GL(V* /k) = Cy(U) defined by a(g)(v, + v,) = g(v,) + g*(v,) for all v, € V',
v, € ¥~ and g € GL(V* /k) induces an isomorphism of GL(V* /k) onto C,(U).
Consequently
Co(U) = Cy(U)X = C(U) * X = Cx(U) X ((Ip+ , N,-) [N €KX

since Cy(U) N X = ((AI+,N'I,-)|A € k™). Note that C;(U) = SL(V'* /k) and
Z <X = Cow(Cs(U)'). Let g € GL(V/k) be such that g: v, v, ,, for all
1<i<?%. Then g € %(G) with r, = -1, gw = (-I,)wg € H, (gw)2 =-I,, M=
Cs(U)X g) and it is easy to see that conjugation by g induces transpose inverse on
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Cy(U) = GL(V*/k) and that g: (AL +, I[,-) [N €K™ Yo ((Iy+, A ,-) [N E k™).
Clearly G = HC;(U), w® = w# and it follows from the existence of the bases of
V* /k and of V™ /k described above that all involutions w of G with r, = -1 are
conjugate under H. Moreover, it is easy to see from [29, Proposition 9.13], that there
are involutions w € G such thatr, = -1.

Next assume that U is cyclic. Then U = (Z,w) where w* = yI,, for some
y € k* — (k)2 Since r2 = y?, we have r,, = =vy. Also, let K = k(p), p, 7, V /k, etc.
be as in §3A and for any v,, v, € V, set fy(v,, v,) = pf(v,, vy) + f(v;, w(v,)). Thus
fo(vy,0)) = =pf(vy, v;) — 1,y 'f(v), W(v,)) for any v, v, E V.

Suppose that r, =y. Then f(v,, v,) = —f(v,, v;) for all v,,v, €V and f:
VX V - K is a nonsingular bilinear symplectic scalar product on V/K. Hence
dim(V/K) =2 isevenand U £ Z * H since r, = y & (k™). It readily follows that
C;(U)={x € GSp(V/K)|r, € k*} and hence G= HCz(U) and w® = w# by
[25, Proposition 3]. Also by [29, Proposition 9.13], V/K has a basis B =
(o, 07| 1 <i<%}suchthatforalll1 <i,j<%and1<r,s<2, wehave

fH(oD,090) =0 ifi#jorr=s and f(o{), o)) =1= (o8, o).
Consequently B, = {v{", v, v{’p, v{’p | 1 <i <%} is a basis of V/k such that for
alll<ij<%and1<r,s=<2, wehave

f(0®@,09) = f(o, vp) = f(vp, vp) =0 ifi#jorr =5,
6. o9) = (oo, 00) =0 ana (o1, i) = (ol ) = +1.

Clearly w(v{”) = v{% and w(v{%p) =0y for all 1<r<2 and 1 <i<?%. Let
x € TL(V/K) be induced by 7 with respect to the basis B of V/K as in §3A. Then
xw = (I, )wx, x € I'Sp(V/K), f(x(v,), x(v;)) = —f(v,, v,) forallv,,v, EV, x €
G, |x|=2 and M = Cy(U)x)<TSp(V/K). Clearly every element w, € wZ is
such that wi =r, I, with r, € kK —(k*). Next suppose that X is a cyclic
subgroup of G such that Z< X, |X/Z|= 2 and such that X — Z contains an
element z with z2 = r,I,,. Then r, & (k™ )? since X is cyclic and we may assume that
r, = y. The existence of the basis B, of V/k above implies that X and U are
conjugate via H. Moreover, when % is even, there are such subgroups X of G. To see
this, let y € k™ —(k*)?, let K = k(p) where p? = y as above, let W/K be a vector
space with dim(W/K) =% and let g: W X W - K be a K-bilinear nonsingular
symplectic scalar product (cf. [29, Proposition 9.13]). Since K = k + kp, we con-
clude that g = pg, + g, where g;; W X W — k is a k-bilinear scalar product on
W/k for i =1,2. For each 0 # v € W, g(v, W) = K= g(W, v) and g(v, v) = 0.
Thus g, and g, are nonsingular symplectic scalar products on W /k. Since g is
K-bilinear, it follows that g,(v,p, v,) = g(v,, v,p) and hence g,(v,p, v,p) =
vg,(v,, v,) for all v, v, € W. Thus, if m denotes multiplication by p on W /k, then
m? =vyl,,, m € GSp(W/k) and r, =7y with respect to the symplectic space
(W/k, g,). Since (V /k, f) and (W /k, g,) are isometric, our proof of the existence of
such subgroups X of G is complete.

Suppose that r,, = —y. Then fy(v,, v,) = 7(f(v,, vy)) for all v, v, € V and f,:
V X V - K is a nonsingular 7-bilinear Hermitian scalar product on ¥ /K. Clearly
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U < Z + H if and only if ¢ = -1 (mod 4). Since the multiplicators of all elements of
GU(V/K) lie in k™ , it follows that C;(U) = GU(V/K). Clearly G = HC4(U) and
w¢ = w¥ by [25, Proposition 4]. Also, by [29, Proposition 8.8], ¥/K has a basis
B ={v|1<i<#%} such that f(v, v;) =9, for all 1<i, j<?%. Consequently
B, = {v,v,p|1<i<?%}isabasis of ¥/K such that for all 1 <i,j <% we have

f(v;,0,) = f(v;, v,0) = f(v,p,0,0) =0 ifi

and

f(”ia v,») =f(0,~P, vip) =0 and f(vi’ in) = +1.

Clearly w(v,;) = v;p and w(v;p) = v;y for alll <i<#%. Let x € 'L(V/K) be in-
duced by 7 with respect to the basis B of V/K as above. Then xw = (-, )wx,
x € TUV/K), f(x(v)), x(v,)) = —f(v,,v,) for allv,, v, EV, x €G, | x|= 2 and
M = C4(U)x)<TU(V/K). As above all cyclic subgroups X of G such that Z < X,
| X/Z|=2 and X — Z contains an element z with z> = -r,,, are conjugate under
H. Moreover such subgroups X of G always exist. To see this, let y € k™ —(k>)?,
let K = k(p) where p?> = y and let Gal(K/k) = (7) be as above. Let W/K be a
vector space of dimension % and let g: W X W — K be a nonsingular 7-bilinear
Hermitian scalar product on W/K. Since K = k + kp, we have g = pg, + g, where
g WX W -k is a k-bilinear scalar product on W/k for i = 1,2. As above, it
follows that g, is a nonsingular symplectic scalar product on W/k and that
&i(v1p, ;) = —g,(v}, v,p) and hence g,(v,p, v,p) = ~v8\(v,, vy) forall v}, v, € W.
The existence of such subgroups X of G now follows as above.

3C. The unitary groups. Assume in this section that n is even, so that ¢ = g2 where
go = p"/* and let 6 € Aut(k) with | |= 2. Set k, = C,(0), let N: k> - k{ denote
the norm mapping of k/k,, and let f: ¥ X V — k be a o-linear Hermitian scalar
product that is nonsingular (cf. [25, §1; 29, §7; etc.]). Thus f(v,, v,) = o( f(v,, v,))
for all v}, v, € V. Let G = GU(V/k) and H = U(V /k) be as defined in [12, I, §9].
Thus Z = (AI,| A € k* )= Z(G) by [25, Proposition 4]. For each u € G, there is a
unique element r, € kg such that f(u(v,), u(v,)) =r,f(v,,v,) forallv,, v, € V, r,
is called the multiplicator of u and the mapping y: G — kg defined by y(u) = r, for
u € G is an epimorphism with Ker(y) = H, cf. [29, Proposition 4]. Also [29, Lemma
8.5] implies that G = H * Z.

Note that U(V/k) = U(m,q,), UWV/k) N SL(V/k) = SU(V/k) = SU(m, q,)
and PSU(V/k) = PSU(m, gq,), etc. by our notational convention that adheres to [16,
§17.1). .

Suppose that m = 2. Then V/k has a basis B = {v,, v,} such that f(v,,v,) =
f(v,,v,) = 1 and f(v,, v,) = 0. With matrices relative to the basis B, set

= {(Jfb) o(ba))

Then, as in [28, II, 8.8], it follows that G = Z * X where y|y =detand XN H =
SU(V/k) = SL(2, ;).

a,b € kand N(a) + N(b) = det( —o‘(zb) o(ba)) #* 0}.
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Consequently, since G = H * Z, for greater simplicity we restrict our attention to
H = U(V/k). Note that H' = SU(V/k). Set Z, = Z N H = (AI,|\ € Ker(N))=
Ker(N) and H=H/Z,. Then |H/H |=(m,q,+ 1), H =H' /(Z, N H') =
PSU(V/k) and the inverse image of H in His H+2Z, = {u € H|det(u) €
(Ker(N))™).

Let u € H — Z, be such that u*> = yI,, for some y D er(N), so that |i#|= 2. Let
U=(Z,,u) and M = Ny(U). Thus U is abelian, U = (&), Cx(U) = Cy(u), M is
the inverse image in H of Ci(u), U < H' * Z, if and only if

[{(UNH)/(Z,NH)|=2 and |M/C,(U)|<2

as in §3A.

First assume that U is not cyclic. Then U = Z; X (w) where w € §(H — Z)),
w % I, Cy(U) = Cy(w), w™ C {w,(-I,,)w} and |w™ |=| M /Cy(U)|. As above,
weget V=V" LV where V' = Cp(w), V™ = {v € V|w(v) = -0} =[V,w] and
the restrictions of f to ¥V* /k and V™~ /k yield nonsingular unitary vector spaces.
Thus there is an isomorphism

a: Cy(U) - UVt /k) X UV~ /k), H=H'Cy(U)and w" =wH"

Clearly U < Z, » H’ if and only if (-1)%™" /% € (Ker(N))™. If | M/Cy(U)|= 2,
then [29, Proposition 8.8(b)] implies that there is an involution g € M such that g:
Vte Vv ,w8=(-I,)wand M = Cy(U){g)= UV* /k)wr Z,.

It now is clear that if x, y € §(H), then the following three conditions are
equivalent: (i) x ~y in G = GU(V /k); (ii) dim(Cy(x)/k) = dim(C,(y)/k); (iii)
x ~y in H. Also [29, Proposition 8.8] implies that for any integer p with 1 <p <m,
there is an involution z € H — Z, such that dim(C(z)/k) = p.

Next assume that U is cyclic. Then u? = yI,, where y € Ker(N) — (Ker(N))~
Now |k*|=g— 1=(g9)*> — 1, |Ker(N)|= ¢, + 1 and 2| (g, — 1). Hence there is
an element A € k™ such that > = y. Set uy, = u(X"'I,,), so that (uy)* = I,, uy €
GU(V/k), Cy(U) = Cylu) = Cy(utg) and Ny(U) = Nyy((uo) X Z,).

Clearly r, = N(X')#1 and N(A)>=N(y)=1, so that r, = NAYHY=-1.
Hence m is even, V= V" ®V~ where V" = C(uy) and V™ = {v € V]uy(v) =
-v} = [V, uy] are totally isotropic subspaces of ¥V with dim(V*/k) =
dim(V~ /k) = %. Since det(u) = (-y)™/? it follows that U < Z, = H’ if and only if
my>|qy,+ 1|, if |m|,>2 and ¢, =1 (mod 4) if |m|, = 2. As in §3B, it follows
that there is an isomorphism a: GL(V* /k) - Cy(uy) = Cy(U) and an involution
g € H such that gu = (-1, )ug, Ny(U) = Cy(u){g) and conjugation by g induces a
unitary automorphism on C;(U) = GL(V'* /k). Note that u(v) = Avif v € V* and
u(v) = -Av if v € V™. Next suppose that X is an arbitrary cyclic subgroup of H
such that Z, < X and | X/Z, |= 2. Then there is an element z € X — Z, such that
z% = yI,, and it is now clear that X and U are conjugate via H. Moreover, when m is
even, such subgroups X of H exist since then V" has complementary totally isotropic
subspaces each of dimension % by [29, Proposition 9.14].

3D. The orthogonal groups. Assume in this section that f: V' X V — k is a bilinear
symmetric (orthogonal) scalar product that is nonsingular (cf. [25, §1; 29, §7; etc.]).
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Thus f(v,, v,) = f(v,, v)) for all v, v, € V. Also let g: ¥V - k be the associated
quadratic form on V/k so that g(v) =4 f(v,v) and f(v,,v,) = g(v, + v,) —
g(v,) — g(v,) for all v, v, € V (cf. [29, §10)).

In this setting, there is associated (to ¥ /k and f) a unique element D(V/k) €
k> /(k™)? called the discriminant (of (V/k, f)) (cf. [29, Definition 7.5]). Clearly if
c € k™, then ¢f: V X V - k is a bilinear nonsingular symmetric scalar product with
discriminant ¢”D(V /k).

Note that for any given dimension m = dim(V /k) and suitable f, D(V /k) can be
either of the two elements of k*/(k*)? and two orthogonal spaces over k are
isometric if and only if they have the same dimension and discriminant (cf. [29,
Proposition 8.9]).

Let G=GO(V/k) and H= O(V/k) be as defined in [12, I, §9). Thus Z =
(M, |N € k™)< Z(G)and Z N H = (-I,). Also for each u € G, there is a unique
element r, € k™ such that f(u(v,), u(v,)) = r,f(v,, v,) for all v,,v, € V and r, is
called the multiplicator of u. The mapping y: G — k> defined by y(u) = r, for
u € G is such that Ker(y) = H, y"'(k*)* = Z » H, y maps G onto k* if m is even
and onto (k™ )? if m is odd by [25, Proposition 5(b)]. Set @ = H’, K = SO(V /k) and
G=G/Z. Then H=H/(-I,), @ <K < H and det maps H onto (-1) so that
| H/K|= 2 by [29, Proposition 8.10].

By [29, Corollary 14.6], all maximal isotropic subspaces of V/k are conjugate
under H = O(V/k) and the dimension of any such subspace of V/k is called the
index of V, ind(V/k). As in [29, Example 14.7], if m is odd, then ind(V/k) =
(m — 1)/2 and if m is even then either ind(V/k) =2 and D(V/k) = (-1)™/?(k>)?
orind(V/k) =% — 1 and D(V) = (-1)"/%c(k>)?* where ¢ € k* —(k*)% Thus the
index distinguishes the two types of orthogonal vector spaces of the same even
dimension.

From our notational convection (cf. [16, §17.11]), if m is even, we have PQ(V /k)
= PQ(m, q,1)if ind(V/k) = % and PQ(V /k) = PQ(m, q,-1)ifind(V/k) = % — 1.

As in [29, Proposition 20.2], there is a homomorphism o: H = O(V/k) —
k> /(k*)? called the Spinornorm. The proof of [29, Proposition 20.10] yields
o(-1,) = D(V/k)2"™(k> ). 1f ind(V /k) > 0, then o(K) = k™ /(k*)? and Ker(o)
N K = Q by [29, Proposition 20.3 and Theorem 20.8]. If m = 3, then C;(2) = Z by
[25, Proposition 5] and ind(V') > 0 and K’ = H’' = Q by [29, Propositions 9.2(b) and
20.9}].

Suppose that m = dim(V /k) is odd for the moment. Then H = (-I,,)X K and
G=ZxH=ZXK. Also, if ¢ € k* —(k*)?, then {(V/k, f), (V/k, cf)} repre-
sents the two classes of nonisometric orthogonal spaces over k of dimension m and
we have GO((V/k, f)) = GO((V /k, cf)), O(V/k,f) = O(V /k, cf ), etc.

Next suppose that m = dim(V /k) is even and m = 4. Then |G/(Z + H)|= 2,
Z(K)=(-1,), -1, €Q if and only if D(V/k) € (k*)*, K= (-I,)X Q@ and
H = (-I,,YX Ker(o) when D(V/k) & (k*)? and Z(®) = (-I,) when D(V /k) €
(k)% by [25, Proposition 5].

We shall now discuss the cases with 1 < m < 6.

When m=1, we have G=2Z, H=(-1I,), K=Q =1 and o(-I,) =
27DV k) (kX ).
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Suppose that m =2 and ind(V/k) > 0. Then [29, Proposition 9.14] implies
that ¥ /k has a basis B = {v,, v,} such that f(v,, v|) = f(v,, v,) = 0 and f(v,, v,)
=1 (i.e. V/k is a hyperbolic plane). Then D(V/k) = (-1)(k*)?, the involution
t of GL(V/k) such that t: v, < v, lies in H— K, G= M(t) where M=
Stabgy /4y (kv)) N Stabgyy/ky(kvy), ¥: G —> k™ is an epimorphism, o: H -
k> /(k*)? is an epimorphism by [29, Proposition 9.9], K = Z__,, ¢ inverts K and
H = K(t) is dihedral. Also, passing to matrices with respect to the basis B, it is easy

to see that
0 a a O
H= ek* ), K= ( )
<(a" O) ? > { 0 a!

and that if @ € kK, then

o((a(i' g)):_a(kx)2 and o((g a(zl)):a(kx)z'

Suppose that m =2 and ind(V/k) = 0. Then, as in the proof of [29, Lemma
15.1(b)}, there is an element ¢ € k™ —(k*)? such that D(V/k) = —c(k™)* and V /k
has a basis B = {v,, v,} such that g(a,v, + a,v,) = af — ca3 for all a;, a, € k.
Also if K /k is a quadratic extension field such that K = k(p) where p* = c and if N:
K™ — k* denotes the norm mapping of K/k, then there is a k-linear isomorphism &:
V — K such that N(e(v)) = g(v) for all 0 # v € V. Let 7 denote the involution of
Aut(K), so that Cx(7) = k. Focusing attention on (K/k, N), it follows that
T € O(K/k) — SO(K/k), |t|=2, 7 inverts SO(K/k)= (M|\ € Ker(N))=
Z,,\, H=O(K/k) = SO(K/k)() is dihedral, G = GO(K/k) = (AIx |\ € K*)
(), Z(G) = Z, y: G - k* is an epimorphism and o: H = O(K/k) — k* /(k*)* is
an epimorphism since N: K* - k* is an epimorphism. Also, passing to matrices
with respect to the bases B = {1, p} of K/k, it is easy to see that

aekx}

a, a
SO(K/k)={(ca]2 a?)la,,azekanda,z—ca§= },

(3 ¢
0o -1)
O(K/k) — SO(K/k) = SO(K/k)7

=[5 T)|a. 4, ekanda? — ca2=
ca, -a,||% % 1 —¢ca; = 1.

Let w =a, + a,p € K* with {0} # {a,, a,} Ck, so that N(w) = aj — ca3 # 0.
Let R, denote the reflection corresponding to w so that R,, has matrix

1 [-a?—ca} -2aa,
N(w)

with respect to the basis B = {1, p} of K/k and o(R,,) = N(w)(k™ ). Let {b,, b}
C k be such that b? — cb? = 1, so that

2 2
2a,a,c  ai + ca;

b, -b
T= (Cb2 _bf) € O(K/k) — SO(K/k).
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If b=1, then b,=0, T=7=R, for all w=a, + a,p with a, =0 #* a, and
hence o(T) =o(7) = —c(k*)%. If b, # 1, then it is easy to see that o(T) =
2(1 — b,)(k*)%. Consequently

(( b ZT)) = -2¢(1 — b,)(k*)?

cb,
for all {b,, b,} C k with b} — cb? = 1 and b, # 1. Note that o maps

a, a
SO(K/k) = {(ca2 af)
onto k* /(k*)2. For o((7} .9)) = —c(k™)* and ¢ & (k)% Moreover, if —c € (k™)?,
then o(O(K /k)) = 6(SO(K /k)) = k> /(k™)? and the assertion is proved.

If m=3, then H= (-I,)X K, K=PGL(2,q) and € =PSL(2,q) by [29,
Proposition 24.1].

If m = 4 and ind(V/k) = 1, then H’ = @ = PSL(2, ¢*) and H = (-I,,) X Ker(o)
where Ker(o) is isomorphic to PSL(2, ¢2) extended by a field automorphism of
order 2 (cf. [29, Proposition 24.12]).

To discuss the case m = 4 and ind(V /k) = 2, we shall apply the methods of [29,
Lemma 24.10 and Proposition 24.11]. Thus let W, W’ be two vector spaces over k of
dimension 2 with bases B = {w;, w,} and B’ = {w], w,} respectively and let V= W
® W’ so that B* = (v, =w,®w/|1<i, j<2} is a basis of V/k. Define
g(})?’j=l €;j0;j) = €11€p = €156 for all {¢;;| 1 <i,j <2} C k. Then V/k becomes a
nonsingular orthogonal vector space of index 2 and V = (kv,; + kvy,) L (k(-v),)
+ kv,,) is an orthogonal sum of hyperbolic planes. Let A € GL(W /k) and 4’ €
GL(W’ /k), so that g((A ® A")(v)) = det(A)det(A)g(v) for all v € V as in [29,
Lemma 24.10]. Moreover, as in this reference, if H = {(4, A")|A € GL(W /k),
A’ € GL(W’/k) and det(A)det(A4’) = 1}, then the mapping y such that y((A4, 4"))
= A ®, A’ is an epimorphism of H onto SO(V /k) with Ker(y) = {(al,a"'l,.)|a
€ k™ } and such that y(SL(W/k) X SL(W’/k)) = Q(V /k) = SL(2, q) = SL(2, q).
Let T, T' have matrix ({,_9) with respect to the bases B, B’ of W/k and W' /k
respectively and let x and y have matrices

a,,a, € kand a} — cal = l]

1 0 0 0 1 0 0 0
0 -1 0 0 0010
o 0 -1 0 ™ lo 1 0 o0
0 0 0 1 00 0 1

with respect to the bases B* of V' /k. Then
Y (T®T)=x€e$(SO(V/k)— QV/k)),

y €3O0V /k) — SOV /k)), xy = yx, O(V/k) = Q(V /k){x, y), y interchanges the
two 2-components of (V/k) and SO(V/k) = Q(V/k){x) normalizes the two
2-components of (V /k).

If m = 5, then @ = PSp(4, q) by [29, Proposition 24.13].

If m = 6 and ind(V/k) = 3, then D(V) = —1(k*)? and Q(V /k) is isomorphic to
SL(4, k)/A where A is the unique central subgroup of SL(4, k) of order 2 by [29,
Proposition 24.15].
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If m=6 and ind(V/k) = 2, then D(V) = —c(k™)* where ¢ € k™ —(k™)? and
Q(V/k) is isomorphic to SU(4, k)/B where B is the unique central subgroup of
SU(4, k) of order 2 by [29, Proposition 24.15].

For the remainder of this section, assume that m = 7. Thus K'=H' =Q =
Ker(o) N K, Cy(R) = (-I,,), o maps K onto k* /(k*)? and H/Q = E,.

Let u € G — Z be such that u*> = yI,, for some y € k*, so that |#]|=2. Let
U= (u, Z) and M = Ny (U). Thus U is abelian, U = ()= U/Z, C;(u) = Cz(U),
M is the inverse image in H of Ci(i), and | M /C(U) |< 2.

First assume that U is not cyclic. Then U= Z X (w) where w € 4(G — Z),
w# Iy, Co(U) = Co(w), wM C {w,(~I,)w}, |w™|=| M/Cp(U)|<2and r2 = 1.

Suppose thatr, = 1. Thenw € HHUNH = (-1, w),U<Z+H, V=V*' LV~
where V* = C,(w), V™ = {v € V|w(v) = -v} = [V, w] and the restrictions of f to
V* /k and V™~ /k yield nonsingular orthogonal vector spaces such that D(V/k) =
D(V* /k)D(V~ /k). Thus

Co(U) = {(w1,w,) € (GO(V™* /k)) X (GO(V™ /k)) |r,, =1},
C,(U) = o(V* Jk) X O(V~ /k),
H=QCy(w) and wf=wo

Also w € Q if and only if dim(V~ /k) is even and D(V~ /k) € (k*)* by [29,
Lemma 20.6]. If | M/Cy(U)|= 2, then there is an involution g € M such that g:
VteV:, wd8=(-I,)w and M = C,(U)(g)= O(V* /k)wr Z,. Also [25, Prop-
osition 5] implies that if m is odd, then G = HC;(U) and if m is even, then
G = HCy(U) if dim(V* /k) is even and | G: (HCy(U))|= 2 if dim(V* /k) is odd.
Also if h € G = GO(V/k), then w, = wh € §(H), C,(w)) = h7'(V"),
D(C,(w)/k) = ()" /ODWV* k), [V, w]=h"(V") and DV, w,]/k) =
(r)3™V /0D~ /k). If x, y € 9(H), then it is clear that the following three
conditions are equivalent: (i) x~y in H=0WV/k), (i) x~y via £; (iii)
dim(C,(x)/k) = dim(C,(y)/k) and D(C,(x)/k) = D(C,(y)/k). Also for any
integer p with 1 < p < m and any element a € k> /(k™)? it is clear that there is an
involution z € H — Z such that dim(C,(z)/k) = p and D(C,(z)/k) = a.

Suppose that r, = -1. Then w & H, U< Z *» H if and only if ¢ =1 (mod4),
Vt=Cy(w) and ¥V~ = {v € V|w(v) = -v} = [V, w] are totally isotropic sub-
spaces of ¥ with V=V*" @V, m is even, dim(V* /k) = dim(V~ /k) =% and
ind(V) = %.

Suppose that ¢ = 1 (mod 4) and let » € k™ be such that »> = —1. Also, as in §3B,
choose bases {v,| 1 <i<%} and {v,,,, |1 <i<%)} of V' /k and V" /k respec-
tively such that f(vy, v;1,, ;) = §;; for all 1 <i, j<?%. Set H, = kv, + kv, ,, $0
that H; is a hyperbolic plane for all 1<i<#% and V=H, L --- L H, . Then
UN H = {((»I,)w) where ((»I,)w)* = -1,, ((vI,)w)(v;) = vv, and
(1)WY Vit j2) = VUi yp for all 1 <i<%. Thus o((vI)w) = »™/2(k*)? by
[29, Example 20.4 and Lemma 20.6]. Hence U < Z * Q if and only if »™/2 € (k™).

As in §3B, we have Cy(U) = GL(V* /k), M = C,(U){g) where g € $(H) and
conjugation by g induces transpose inverse on C(U) = GL(V* /k), G = HC,(U),
w¢ = w# and all involutions with r, = -1 are conjugate under H. Moreover, when
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m is even and ind(V') = %, the existence of complementary totally isotropic sub-
spaces of V each of d1mensnon by [29, Proposition 9.15] implies the existence of
such subgroups U of G.

Next assume that U is cyclic. Thus U= (Z,w) where w? = yI, for some
y & (k™). Thus r, = =y since r> = y% and m is even. Also let K = k(p), p, 7, V/k,
N: K* - k*, etc. be as in §3A and, for any v, v, € V, set fy(v,, v,) = pf(v,, v,)
+ f(v,, w(v,)). Consequently

fo(v2,0,) = pf(v,, v,) + 1, f(0,, w(v,)).

Suppose that r,, = y. Then fy(v,, v,) = f(v,, v,) forall v,, v, € Vand f: VX V
— K is a nonsingular K-bilinear symmetric scalar product on V/K. Also U <
Z « H since r,, = y & (k™). It readily follows that Cy(U) = {x € GO(V/K)|r, €
K>}, Cy(U) = O(V/K), G = HC4(U) by [25, Proposition 5(b)] since kX < (K*)?
and w’ = w”. Let @ = a + bp be any element of D(V/K). Then [29, Proposition
8.9] implies that ¥ /K has a basis B = {v;| 1 <i <%} such that

0 ifi#j,
1 ifl<

N|§

flo;, oj) =

=Jj<
a lfl—j—%

Consequently B, = {v;, v;p| 1 <i <%} is a basis of V/k such that

f(vi,v~)=f(vi,v~p)=f(v.p,v.p)=0 lfl;&j’
f(v;,0) = f(v,p,00) =0 and f(v,vp) =1 ifl<i<%,
f(vm/Z’ Um/z) =b, f(”m/zp, Om/Zp) =vb

and f(v, 5, v, ,,p) = a. Calculating the discriminant of V/k using B, yields
(-1)"/2N(a) € D(V /k). However (K> )? is the inverse image of (k> )? in K> under
N. Thus D(V/K) = a(K*)? is uniquely determined. Clearly w( v;) = v;p and w(v,;p)
=v;yforalll <i<?%.Letx € 'L(V/K) be induced by 7 with respect to the basis
B of B/K. Then xw = (-I,,)wx, x € TO(V/K), f(x(v,), x(v,)) = —f(v,, v,) for all
v, 1, EV, xEG, |x|=2 and Ng(U) = Cz(U){x). Suppose that X is a cyclic
subgroup of G such that Z< X, | X/Z|=2 and such that X — Z contains an
element with z2 = r,I,.. Then r, & (k™)? since X is cyclic and we may assume that
r, = v. The existence of the basis B, of V/k and the discussion above imply that X
and U are conjugate via H. Moreover, when m is even, such subgroups X of G
always exist. To see this, let y € k* —(k*)? and let K = k(p) with p> =y, 7, N:
K> - k>, etc. be as above. Let W /K be a vector space of dimension 2 and let g:
W X W — K be a nonsingular orthogonal scalar product on W /K such that if
a € D(W/K), then (-1)"/2N(a) € D(V/k). Since K = k + kp, we have g = pg,
+ g, where g;: W X W - k is a k-bilinear nonsingular orthogonal scalar product on
W/k for i=1,2. Also g(v,p,v,) = g(v,,v,p) and hence g,(v,p, v,p) =
vg:(v,, vy) for all v,, v, € W. Also, as above, we conclude that D(W /k, g,)) =
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D(V/k). Since dim(W/k) = m, we conclude that (W/k, g,) and (V/k, f) are
isometric. Then the existence of such subgroups X of G follows as in §3B.

Suppose that r,, = —y. Then fy(v,, v,) = —7(fo(v}, v,)) and p™'f: VX V > Kis a
nonsingular Hermitian scalar product on V /K. Clearly U < Z * H if and only if
g = -1 (mod 4) and since the multiplicators of all elements of GU(V /K) lie in k™,
it follows that C;(U) = GU(V/K), G = HC4(U) and w¥ = w¥. Also [29, Prop-
osition 8.8] implies that ¥/K has a basis B = {v;|1 <i < %} such that p™'f(v,, v))
=9, forall 1 <i,j<%. Consequently B, = {v,,v,p|1 <i<?%}is a basis of V/k
such that f(v;, v;) = f(v;, v;p) = f(v,p, v;,p) =0 for all i+ with 1<i, j<3%,
f(v;,v) =1, f(v,p, v,p) =1, and f(v;, v;p) = 0 for all 1 <i<2%. Thus (-y)"/? €
DWV/k), ind(V/k)=4% if % is even and ind(V/k)=%—1 if 4 is odd. Let
x €TL(V/K) be induced by 7 with respect to the basis B of ¥V /K. Then xw =
(-Iywx, x EH=0W/k), | x|=2 and Njg(U) = Ci(UXx)<TUWV/K). It is
easy to see that all cyclic subgroups X of Gsuchthat Z< X, | X/Z|=2and X — Z
contains an element z with z2 = —r,1,, are conjugate under H. Finally, when m is
even, ind(V/k) = % if 4 is even and ind(V /k) = % — 1 if % is odd, such subgroups
X of G always exist. To see this, let y € k™ —(k>*)?, K = k(p) with p> =y, 7, N:
K™ — k™, etc. be as above. Also let W/K be a vector space of dimension % and let
g: WX W — K be a nonsingular skew-Hermitian scalar product on V/K. Let
g = pg, + g, where g;: WX W — k is a k-bilinear nonsingular scalar product on
W /k for i = 1,2. Then g\(v,, v;) = g(v,, v}), g,(v,p, v,) = —g(v,, v,p) and hence
g(v,p, v,0) = -vg(v,, v,) for all v, v € W. As above, we conclude that (W /k, g,)
is a nonsingular orthogonal vector space with dim(W/k) =m and (-y)™/? €
D((W /k, g,)). Then by hypothesis, D(V/k) = D(W /k). Thus (V /k, f) and (W /k,
g,) are isometric by [29, Proposition 8.9] and the existence of such subgroups X of G
follows as in §3B.

This concludes §3.

4. Applications of the theory of linear algebraic groups. In this section, we apply
the theory of linear algebraic groups to survey the conjugacy classes of involutions
and their centralizers in various Chevalley groups and their automorphism groups
over finite fields of odd order. In some cases, since the machinery is at hand and for
completeness, we derive more information than is actually required in this paper.
However all of these results are utilized in [26] and are of independent interest.

We begin this section with some results on endomorphisms of linear algebraic
groups that are slight reformulations of some results in [33, 35). Then we combine
these results with the methods and results of [30, 35]. The remainder of this section
presents our applications of this material to the Chevalley groups over finite fields of
odd order.

Our first results concern the following situation.

G is a linear algebraic group and o is an endomorphism of G onto G such that
G,=Ci0)={g€ 5|o(g) = g} is finite.

The basic results about the structure of G,, conjugacy, etc. are contained in [35,
§810-15]. The first result in this context that we specifically mention is a conse-
quence of [35, Corollary 10.9].
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LEMMA 4.1. Let G be a connected linear algebraic group and let o be an endomor-
phism of G onto G such that G, is finite and Ker(o) = 1. Let H = G(o) (the
semidirect product) and let g € G. Then go and o are conjugate via an element of G.

LEMMA 4.2. Let G be a connected linear algebraic group and let 6: G — G be an
endomorphism of G such that o is an automorphism of the underlying group. Let n be a
positive integer, set F = G,. = {g € G| 6"(g) = g} and assume that F is finite. Thus
G, = (g € G|a(g) =g} is finite, 0, = 0|p induces an automorphism of F and
of = 1. Set H = F(o,) (the semidirect product). Let fo, € H with f € F and | fo,|= n.
Then fo, and o, are conjugate via an element of F.

PROOF. Since (fo,)" = (fo(f)o*(f) - 0" N(f)ef =1, we have fo(f)
0" '(f) = 1. By [35, Theorem 10.1], there is an element x € G such that
xo(x)™"' = f. Hence o(x') = x7'f, 0%(x7') = x"'fo(f), etc. and o"(x7') =
xfo(f) ---6" " I(f)=x"". Thus x € F, x0yx~' = xo(x)'e, = fo, and we are
done.

Suppose that 4 is a not necessarily finite group and that o is an endomorphism of
A. Then H'(o, A) denotes A modulo the equivalence relation: a ~ b if a = cho(c)™!
for some ¢ € A. As an example, if o is the identity on 4, then H'(q, 4) is the set of
conjugacy classes of 4.

For the next two results, as above, we let G be a linear algebraic group and let o be
an endomorphism of G onto G such that G, is finite. Consequently o(G°) = G° by
[36, §1.13, Proposition 2(b)] (where G° denotes the irreducible component of G that
contains the identity of G). For convenience of the reader, we restate [33, I, 2.6].

LEMMA 4.3. Suppose that G is connected and that A is a (closed) subgroup of G fixed
by o. Then the natural map from H'(s, A) into H'(o, A/A°) is bijective.

The second result in this context that we present is a slight refinement of [33, I,
3.4(b)}.

LEMMA 4.4. Suppose that m € G is such that 6(m) = m and G = (G°, m)= G%m).
Let M = cclg(m) and let A = Cgo(m), so that o(A) <A, A= Cz(m) N G%isa
closed subgroup of G, A/A° is a finite group and C5(m) = A(m). Let % be a set of
representatives in A of the cosets in a representative choice from the equivalence classes
of H'(o, A/A®) and suppose that A = {a; € A |1 <i < n} where |%|= n. For each
a; € A with 1 <i < n, choose (by [33, 1, Theorem 2.2]) an element g, € G such that
g:0(g,)"" = a,. Then the following three conditions hold.

(a)ymé € Eofor alll <i<n;

(b) {m&|1<i<n)} is a set of representatives for the orbits of G, on M, =
{x € M|o(x) = x}; and

(c) Cg(m?) = Cgo)(m*)(m*) and

Can{m®) = (Caa(m#)), = (4%), = ((x € A]oyo(x) ;" = x))* = (4,)"

where PB; denotes the inner automorphism of G induced by o', forall 1 <i<n
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PRrOOF. Note that Cz(m) and hence 4 = Cz(m) N G° are closed subgroups of G
by [6, 1, (1.7), Proposition (c)]. Clearly o(m®) = o(g,)'mo(g,) = g 'a,ma;'g, = m&
and (a) holds. Since Cg(m) = A(m), it follows that G° acts transmvely (by
conjugation) on M. Suppose that m& = m3" for some h € G, and 1 <, j < n. Since
G, = (G°),(m#&), we may assume that h € ((70)0 Then g;hg' € A = Cz(m) and
g;h = ag, for some a € A. Thus (g;h)o(g;h)™"' = g;0(g;)”" = a; = ag;0(g;) 'o(a)™’
= aa,;0(a)”" ~ a; and hence i = j. Now [33, 1, 3.4(b)] yields (b) Choose any i with
1 < i < n. Clearly

Co(m) = Can(m5)(m®) and G (m¥) = (Coo(m#)), = (4%),.

Let x € A. Since the following three conditions are equivalent: (i) x% € (_?a, (ii)
g:0(g;) 'o(x)a(g,)g " = x and (iii) a;0(x)a;' = x, we also have (c). The proof of
this lemma is now complete.

Next, we introduce some (standard) notation and results from [30, 7).

Let p be a prime integer, let K be an algebraic closure of Z/( pZ), let ® denote a
complex semisimple Lie algebra and let = denote a faithful representation of &. Let
G= G, x denote the Chevalley group obtained from the triple (&, 7, K') (cf. [7,
§3)). In this construction and notation, G is a (connected) semisimple linear algebraic
group, B is a Borel subgroup of G, H is a maximal torus of G, U = B, (the unipotent
radical of B), B = UH, N = Ng(H), W = N/H, etc. (cf. [34, §5; 7, §3]). Clearly,
since H is abelian, W acts on H by conjugation.

Let P(7) denote the set of weights of = and let I, denote the Z-module generated
by P(7). Then H can be described as follows.

forx € Hom( r,, K> ), associate to x the automorphism of V,
(4.1) (the representation space of 7 ), defined by:
h(x)v = x(m)v foreachv € V,, and m € P(7).

Then the mapping x — A(x) is an isomorphism of Hom(T,, K*) onto H.
Moreover, letting ® denote the root system of &, we have

if x € Hom(T,, K*),a € ®and u € K,

then A (x)xo(#)h(x)™ = xo(x(a)u).

For a € @, set £, = (x(u)|u € K), so that H<N'(£,,) and the mapping
u — x,(u) is an 1somorphlsm of (K,+) onto X,. Then U= (%X, |a € (I)+) and
U =(% «| @ € @7 ) is the unipotent radical of the Borel subgroup that is “oppo-
site” to B relative to H (cf. [6, IV, §14]).

Note that every semisimple element of G is conjugate in G to an element of H by
[36, §§2.12 and 2.13] and W controls the G-fusion of elements of H by [35, 6.3]. Also
if x € Hom(T,, K>), then [30, Proposition 1, (i)-(iii)] holds and

G5 (h(x))/ (C5(r(x))°) = W,/ (W)

where W, and W, are as in [30, §2].

Let E denote the Q-module generated by ® and fix a W-invariant inner product
(*,*) on E and for any Z-submodule T of E set [*= {x € E|(x, y) € Z for all
y €T}. Also, as in [30, §2], ad denotes the adjoint representation of & and sc

(4.2)
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denotes the simply connected representation of &. Thus Iy <TI, <T, < E, T4 is
the Z-submodule of E generated by ®, I, is the Z-submodule of E generated by all
weights of & and W stabilizes I, T, and T,4. Also I, I} and T are W-stable and
[l <T;}<Tg. With this action of W on l",, and with trivial action of W on K™, the
isomorphism of (4.1) becomes a W-isomorphism.

As a standard, if 0 # B € E, set B* = 2B/(B,B) and fort € K* and a € P, let

h,(t) = h(x) where x is the unique element of

4.3
(43) Hom(T,, K™ ) such that x(m) = ‘™ for any m € T,.

We shall frequently be concerned with the following situation.

7 is an (algebraic group) endomorphism of G=G, _x onto itself that leaves H and
U invariant and such that (i) G is finite or (ii) 7 is an automorphism of G as an
algebraic group.

Suppose that 7 satisfies (i). Then, as noted above, [35, §§10-15] presents many
basic results in this situation. Note also that if y is any (algebraic group) endomor-
phism of G onto G such that G is finite then y is conjugate via Inn(G) to an
endomorphism of G that leaves H and U invariant by [35, Corollary 10.10].

Next suppose that 7, as above, satisfies (ii). Then [35, §§7-9] presents many basic
results in this situation. In particular, C5(7) is closed, Cg(7)° is reductive and
contains every unipotent element of Cg(7) and the structure of Cg(7)/ Ca(7)° is
given by [35, Lemma 9.2]. Also, if G is simply connected, then C (1) = Cz(7)° by
[35, Theorem 8.2 and Corollary 9.4]. Clearly 7 fixes U~ and N and Ca(1)° =
(U., H,,(U"),) by [35, Lemma 9.2(a) and the proof of Theorem 8.2] and C5(7) =
(U., N,) by uniqueness in [35, 6.3]. For example, when r is the inner automorphism
of G induced by the element h(x) € H where x € Hom(T,, K™), then the structures
of Cx(r), Cx(7)° and Cg(7)/(Cg(7)°) are readily apparent (cf. [35, 8.3(c); 30,
Proposition 1; 30, §8]). Note also that if y is any semisimple automorphism of G,
then y is conjugate via Inn(G) to a semisimple automorphism of G that leaves H and
U invariant by [35, Theorem 7.5].

Let A denote the element of Aut(K) such that A(«) = u” for all u € K, let n be an
arbitrary positive integer and set ¢ = p”, 6 = X" and k = Cg(A). Then Cx(A) is the
prime subfield of K and k is the unique subfield of K of order g.

Since G, H, N, U and U~ are all defined over Cx(A), both A and o induce, in a
natural way, endomorphisms of G that leave invariant H,N,U, U and B=UH
and that we shall also denote by A and o, respectively. Thus A" = ¢ as endomor-
phisms of G, A and ¢ are automorphisms of G G as a group, C5(A) = Gy < Ci(o) = G,,
G, is finite and A-invariant, etc. Let G = (U, (U™ )o)- Then G is the Chevalley group
assoc1ated with the triple (&, =, k), G = O* (G ), G = G(H ), N, = (H )(NA),

= H(N,), H, is the image of Hom(T,, k) under the 1somorph1sm of (4.1),
Hom(I‘k, k*) = {x € Hom(T,,, K*)|x?" ' =1} and H, = {h € H|h7"' = 1}, etc.
(cf. [35, §12; 7, §3)).
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As on [30, p. F-5], we fix a generator K of k™ and define a homomorphism
I;- - Hom(T,, k) by

(4.4) A - x, wherex,(§) =KX for¢ €T,.

Clearly this yields an exact sequence of W-modules
(4.5) 1-(¢g— I} >T}> Hom(T,, k&*) - 1.

Next we impose the additional assumption that & is a simple Lie algebra. Let
B = {a,,...,a;} be a set of simple roots and let a, denote the highest root of ®.

Then G is a simple linear algebraic group and a, = Z/_, m,a; where each m, is a
positive integer. As in [30, §3], set

(46) D={t€E|0<(a;,¢)foralll <i<land(ay, ¢)<g—1}.

Then the remaining definitions and results of [30, §§3-5] yield the following three
lemmas.

LEMMA 4.5. Assume that @ is a simple Lie algebra and that m is a positive divisor of
q — 1. Then every element of G of order m is conjugate in G to an element of H, of the
form h(x,) for some A\ € D N T-.

LEMMA 4.6. Assume that  is a simple Lie algebra and let B, 8 € D N T} . Then the
following four conditions are equivalent.

(@) h(xg) ~ h(xs) in G;

(b) h(x) ~ h(x,) via G;

(c)B~dvia%,; and

(d)B~bviaQ,.

LEMMA 4.7. Assume that & is a simple Lie algebra. Then the following two conditions
hold.

@Q,=9,/y=T} /T4 =T, /T,; and

(b) if B €D N T, then Q, 5 = C(h(x4))/(Cilh(xp)°)-

Also, as in [30, §7], let {6,,...,6,} be the Z-basis of I';; such that (&, o) = §,;
for all 1 <i, j</ Then we have the following elementary extension of [30,
Proposition 7).

LEMMA 4.8. Assume that & is a simple Lie algebra, let § € ) N T;- and let m be a
positive divisor of ¢ — 1. Then h(x;) is an element of H of order m if and only if the
following four conditions hold.

@8 =((g— )/mC, a;6,) for nonnegative integers a, with 1 <i <1,

(d) 2= a;m; < m;

cym(8,T,)<(q— 1)Z; and

(d) if f is a proper divisor of m, then f(8,T,) £ (¢ — 1)Z.

PrOOF. Clearly | h(x;) | = m if and only if (i) H™®* = 1 for all p € T, and (ii) if
f is a proper divisor of m, then I /®*) = 1 for some p. € T,,. Clearly (a)-(d) imply
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8€DNT; and |h(xs)|=m. Conversely, since § € I;;<T,;, we have § =
3!_,¢;&, for integers ¢; with 1 <i</. Then (¢ — 1)|mc; for all 1 <i </ since
I,4 <T,. From the fact that € %), we conclude (a) and (b). Since (c) and (d) follow
from (i) and (ii), we are done.

Now utilizing the facts noted above, we shall derive various results that we require
about Chevalley groups over finite fields of odd order. Consequently, for the
remainder of this section, we assume that p is odd. Also let k, = Cx(0?) so that
k < k, and k, is the unique subfield of K of order ¢2.

As observed before, by our notational convention, if m is an even integer and V /k
is an orthogonal finite dimensional vector space with dim(V/k) = m, then
PQ(V/k) = PQ(m, g,1) if ind(V/k) =% and PV /k) = PQ(m,q,-1) if
ind(V/k) =% — 1 (cf. §3D). Also, as is standard and throughout the remainder of
this paper, we set P§Q(6, q,1) = PSL(4, q), Spin(6, q, 1) = SL(4, q), PR(6, q,-1) =
PSU(4, ), Spin(6, ¢,-1) = SU(4, q), PQ(5, q) = PSp(4, q), Spin(5, q) = Sp(4, ¢),
PQ4, g, 1) = PSL(2, q) X PSL(2, q), Spin(4, q, 1) = SL(2, q) X SL(2, g),
PQ(4, q,-1) = PSL(2, ¢%) and Spin(4, g, -1) = SL(2, ¢?).

LEMMA 4.9. Let X = Cov( E,(q)). Then the following six conditions hold.

(a) Z(X) = (z) where z is an involution;

(b) there is a unique conjugacy class & of involutions of X such that if T € &, then
Cx(7) contains a 2-component J with v € J and J = SL(2, q);

(c) if ®, T and J are as in (b), then Cy(7) contains, besides J, precisely one other
2-component J, and J, = Spin(12, q, 1) with Z(J,) = (7, z).

(d) {7, z, 12} is a set of representatives of the conjugacy classes of involutions in X;

(€) there are elements v,, v, of X such that v/ = z and L,.(Cx(Y;)) = E(Cx(y,)) for
i= 1,2, E(Cx(y,)) is a quotient of SL(8, q) if ¢ =1 (mod4) and of SU(8, q) if
q = -1 (mod 4) and E(Cy(Y,)) is a quotient of Cov(E¢(q)) if ¢ =1 (mod4) and of
Cov(%E4(q)) if ¢ = -1 (mod 4); and

(f) all elements y of X such that y> = z are conjugate in X to vy, or ¥,.

PRrROOF. Let @ = E,, let = denote the simply connected representation of &, so
that G is a simply connected linear algebraic group, and let B = {a,,...,a,} be as in
[8, Planche VI]. Then I, = 3]_, Za; and T, = T, = 3]_, Zw, where {®,,...,w,} is
as in [8, Planche VI]. Also G = (70 = X by [35, Theorem 12.4] and Cg(h) is
connected for all h € H by [35, Theorem 8.1]. Thus, we have @, = 1, &, = w, for all
1<i<?7T}=T,,,T4="T,and ay = 2a, + 2a, + 3a; + 4a, + 3a5 + 20, + a,.
Then Lemmas 4.4-4.8 imply that G and G each have three conjugacy classes of

involutions represented by h(x, ) for i = 1,2, 3 where
—1_ —1_ -1, _ _
A= qT"-’p A= 4 5 %% and A; = qT(2w7) = (g — Do,

Also (4.4) yields

h(xa,) = ha(=Dha (-Dhe,(-1) = ko (1),
h(xr,) = ha(-1)he(-1) and
h(xa,) = ha(-Dho(-1)ho,(-1).
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Setting Li=(Z.a) Ly=(E.0|2<i<T), L;=(%.,,) and L,=(X.,,

X ., |1 <i<S5) [30, Proposition 8], Lemrha 4.7(b) and (4.2) imply: Z(G) = Z(G)
= (h(xa)) Cth(xy,) = (L, » L), Cath(x,) = (L3 + LYH, L, Q C5(h(x»,)
fori=1,2, L < C‘(h(xx )) for j = 3,4, L, _L3 =SL(2,K), Z(L)) = (h(xa, ))
Z(Ls) = (h, ( 1), Lz = L4 = Spin(12, X)), Z(Lz) = (h(xa,), h(xr))=E, and
Z(Ly) = (h(Xx,), h(x»,)) = E,. Also

Cs(h(xa,)) = Ce(h(xa)h(xx,)) and  Z(Cz(h(xa,))) = (h(xa), (xa,)-
Thus A(x, )h(x»,) ~ h(x,,) in both G and G. Moreover, setting L, = Ci (o) and
L, = Ci(o), we have L, =SL(2, k), Z(L,) = (h(x»,)), L, = Spin(12, k, 1), Z(L,)
= (h(xy,), h(x»,))= E, and

Cc(h(Xx.)) = Ca(h(Xx,)h(Xx,)) = CE("(XA,)), =(L,»* Lz)(ﬁa)
Thus (a)-(d) hold.
For (€) and (f), let » be an element of order 4 in K™ . Then Lemma 4 8 implies that

G contains precisely two conjugacy classes of elements y such that y2 = z and these
two conjugacy classes have representatives

N = h(xa,) = ho () ho (#)he (- DRy (v)

and

V2 = h(Xa,) = ho (DA (v )h, (Do () (v*)
where
1

.

—-1,._ —1_
=_(zwz)=q ®, and A= 4 (2 7)"

Also as above, we have C‘(y,) = L H and Ci(v,) = L2H where L = (xﬂ,,
X4 |1<t<7andza&2)andL2—<3€+,,|1<z<6) NotethatlquK>< then

ha(#) = ho(u?Yho (u? o (1Y (u®)ho (u?)hg (u?)hg,(u).

Thus L, is a quotient of SL(8,K), zE L,, v, € L, if and only if 8|(q — 1),
L,/Z(L,) = E((K) and z & L,. Suppose that ¢ = 1(mod4). Then y € k, (v,, v,)
< G, and we have (¢) and (f) in this case.

Finally assume that ¢ = -1 (mod 4). Then » & k and ¢ inverts both y, and v,. Let
w be an element of N, such that the w induced automorphism W of ® satisfies w:
a, © ag, 4, © as, a; < —a, and fixes a, and a,. Then w? € H and w inverts y, and
Y,. Letting 8 denote the inner automorphism of G induced by w, it follows that Bo
fixes both vy, and v, and Bo is conjugate via Inn(G) to o by Lemma 4.1. Since (L, Do
is a quotient of SU(8, gq) and (LZ)B,, is a quotient of Cov(2E(q)) by [35, §11],
Lemma 4.4 implies (e) and (f) in this case also and we are done.

LeMMA 4.10. Let X = Spin(7, q) with Z(X) = {z) and let S € Syl,(X). Then the
following six conditions hold.

(@) Z(S) ={z)=Z,,Q2,(S) = S and S has a normal 4-subgroup;

(b) all involutions of X — Z( X) are conjugate in X;
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() if t € 5(X —(z)), then | X: Cx(1)|, =2, Cx(t) contains precisely three 2-
components J,, J, and J;. These 2-components may be indexed so that SL(2, q) = J,
<QCy(t) for all 1 <i<3, Z(J)=(z), Z(J,) =(t), Z(Jy) =(tz) and
Cx(J) * J, * ;) = (z, t). Also there is an involution T € Cy(t) — (J, * J, * J;) such
that Cy(t) = (J; * J, * J,){(7) and J{(1) has semidihedral Sylow 2-subgroups for all
1<i<3

(d) there are two elements v,, Y, of X such that v/ = z and L,(Cx(Y,)) = E(Cx(¥,))
for i =1,2, E(Cy(v,)) = Sp(4, q) with Z(E(Cy(v,))) = (2), E(Cx(1)) = SL, q)
if ¢ = 1(mod 4), E(Cx(v,)) = SU(4, q) if g = -1 (mod 4) and Z(E(Cx(1,))) = {12);

(€) all elements y of X such that y* = z are conjugate in X to y, or v,; and

(f) if E is a normal 4-subgroup of S, then T = Cy¢(E) is a maximal subgroup of S,
Q(T)=T,Z(T) = E and T € Syl,(Cx(E)).

PROOF. Let & = B,, let m denote the simply connected representation of &, so
that G is a simply connected linear algebraic group, and adopt the notation of [8,
Planche I1]. Let B = {a,, a,, a3}, so that T,y = 3}_, Za,, T, = T, = 3}_, Zw, where
{@,, @,, w3} are as in [8, Planche II}, oy = a; + 2a, + 2a;, 6, w; for i = 1,2,
&y =20, T4 =32,26,<T,, T} =3%,Za, + Z2a,), R, =1,G =G, = X and
we may assume that X = G. Then, as in Lemma 4.9, G and G have precisely two

conjugacy classes of involutions represented by A(x,,), A(x A,) Where

—1_
q 2 wz.
Also setting z = h(Xx ) and 7= h(x,,), we have z=h,(- 1), ¢ = ho (- )=
ho(=Dhy(-1), Z(G) = Z(G) = (z) and (1) = (J0 « J, *» L)H where J, =
<£+a )~ SL(2, K)foralli € {0, 1,3}, Z(.Io) =(t), Z(J3) = (z)and Z(J)) = - (1z).
Then, as in [30, §8], C;(¢) = Ci(t), = (J, * J, * L,)(H,) where SL(2, k) = (J)), =
J;Q Cy(2) for all i € {0, 1,3}, Z(Jy) = (), Z(J;) = (z) and Z(J,) = (tz). Also

1G1=¢°(¢> = 1)(¢* = 1)(¢° — 1)
by [34, §9], (H,) N Jy = (h(K)), (H,) N Ty = (ho(H)), (Hy) NIy = (ho(K))
where h,(u) = h,(u)h, (uz)h (u) for all uEk>< | Co(t): (Jo* Iy * J3)|=2
and |CG(t)|" 3(q - 1)3 Thus (b) holds, Cs(2) = (Jy* J; * J)(h(K)) and
|G: Co(D) ], = 2.
Set M = Cy(1) and let {i, j, k} = {0, 1,3}. Then

JrxJ, = X I, < Cy(J) < CM(xa,-) sl NM(xa,) = Jj"kxaiﬁa

Since Ca(x, (1) = ((H.,) nJ) X ((Ho) NJy), we have Cpy(%X,)=J X J X x,,
and Cy(J;) =J; X Jy. Thus Cy(Jy* J, * Jy) = (t,z)= Z(M) and M/C,(J,) =
PGL(2, g). For r € {0, 1,3}, let w, be as in [34, p. 30, (R5)]. Then (w, , @, , @,,) is
abelian, w; =1, o} =1z and 7, = z. Hence A = w, w0, w,, is an involution and A
inverts h,(X). Thus 7= h, (H)A € (M) and M = (J0 * J, * J;){7). Moreover,
for r € {0, 1,3}, we have (J(7))/Z(J,) = PGL(2, q) and [27, Lemma 2.2] readily
implies that J{7) has semidihedral Sylow 2-subgroups. Thus (c) holds. Next let
T € Syl,(M) and let T< V € Syl,(X). Then T = C(¢t), Z(T) = (¢, z), Q(T) =
T,|V:T|=2and Z(V) = (z). Thus {t,z) < V, T= C,({t, z)) and (f) holds.

A= q- 1(26,) and A, =
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Clearly Ny((t,2)) = MV, J; < MV and JMV =J) =JMV =7 = (J,, J,} since
t¥ = t(z). By the discussion in §3D, there is an element a € M V — M such that
a? € (z) and [a, J;] < (z). Hence [, J;] = 1 and a Sylow 2-subgroup of (J;, a) is
not quaternion. Thus J;a contains an involution. Since MV = M{a}), (a) also holds.

For (d) and (e), let » be an element of order 4 in K* . Then Lemmas 4.5— 4 7 imply
that G contains precisely two conjugacy classes of elements y such that y?> = z and
these two conjugacy classes have representatives

Y1 = h(xn) = ho(-Dho(r), whered, = L1 (26,) = L7 (4a,)

and

=1L 2m,).

Also by [30, Proposition 8], we have Cg(y,) = L,H and C(v) = L2H where
v, EL, = (%wo, %MI, aeﬂz Y= SL(4, K) and zEL, = <£+a2, vay )=
Sp(4, K) Suppose that ¢ =1 (mod4). Then » €k, v, € Cf(0) =SL(4, k), z €
Ci (o) = Sp(4, k) and we have (d) and (¢) in this case. Finally, suppose that ¢ = -1
(mod 4). Then » & k and o inverts both y, and v,. Let § = a; + a, + a;. Thus
§ € © and wy, as defined on [34, p. 30, (R5)], has coefficients in the prime subfield
of K and is such that w; € N and (w;)* = h «(=1). Set w = w,. Then the w induced
automorphism w of ® satisfies: w: a; © —ay and W(a;) = a; forj = 2,3. Thus w also
inverts v, and vy,.

Letting B denote the inner automorphism of G induced by w, it follows that Bo
fixes both y, and y, and Bo is conjugate via Inn(G) to o by Lemma 4.1. Since
(l_,‘)ﬁ,, = SU4, k) and (l_,z)ﬁo = Sp(4, k) by [35, §11], we have (d) and (e) in this
case also by Lemma 4.4 and our proof is complete.

LemMa 4.11. Let X = Spin(7, q) and Z(X) = (z) where z is an involution. Let
A = Aut(X), B = Inn(X) and let € be an arbitrary subgroup of A with B < €. Then
the following nine conditions hold.

@ P, q)=(7,q)=B=A and € I A = PTO(7, q);

®)A/B =2, X Z,;

(c) there are involutions a;, a,, a; in A — B such that Ba; = Ba, = Ba,,
B{a,y=8S0(7, q) = PGO(7, q), E(Cx(a;)) = L,(Cy(a;)) and Z(E(Cx(«,))) = (z)
for i =1,2 and 3, E(Cy(a,)) = SU4, q) if g =1 (mod4), E(Cx(a;)) = SL(4, q) if
q = -1 (mod 4), E(Cy(a,)) = Sp(4, q) and E(Cy(a3)) contains precisely two compo-
nents J, and J,, Z(J,) = Z(J,) = (z) and J, and J, may be indexed so that
J, =SL(2, q) and J, = SL(2, ¢%);

(d) all involutions in B a, are conjugate via an element of B to a,, a, or as;

(e) B contains precisely one conjugacy class of involutions & such that if r € &, then
Cy (1) contains an intrinsic 2-component J with J /O(J ) = SL(2, q);

) if &, T and J are as in (e), then O(Cy(7)) = O(Cg(7)) = 1 and Cy(71) contains,
besides J, two other 2-components J, and J, such that v € J, = SL(2, q), J, = PSL(2, q)
and Cy(J » J, * J,) = (7);

() if nis odd, then O%(A) = B(a,);

1= h(Xa,) = ho(-Dhe(-1h (), whereX, =L — Lee,) =
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(h) if n is even, then there is an involution T € A — (B(a,)) such that Cy(7) =
Spin(7,/q), Z(Cx(7)) = (z), all involutions of A — B{a,) are conjugate via an
element of B{a,) to T and $(B1a,) = & ; and

(i) if4||C/B|, then n is even and B(T)< €.

PROOF. Observe that the natural epimorphism of X onto X/Z(X) = Q(7, q) =
PQ(7, q) induces an isomorphism of Aut(X) onto Aut(X/Z(X)) by [21, Corollary
4.1].

Adopt the notation of the previous lemma. Note that Z(G) = (z), set G = G /(z)
and observe that [6, II, Theorem 6.8] implies that G is a connected linear algebraic
group and the natural epimorphism of G onto G = G, /(z) is a morphism of linear
algebrmc groups. Also A and ¢ induce endomorphisms of G, G, = XK where
K= {he Hlo(h)h €(z)), X=X/Z(X) = = PQ(7, q) = Q(7, q), X= O"(G )
=(G,) and | XK /X |= 2. Moreover A leaves G invariant. Letting A* denote the
restriction of A to G, it follows that A* induces an automorphism of G, of order n,
CG=,()\‘)(X,) =1 and G, (A*)= Aut(X) with X corresponding to Inn(X) (cf. [11,
§12.5]). By [25, Proposition 5], | PTO(7, q) |=| % | and PTO(7, q) is isomorphic to a
subgroup of A = Aut(X) = Aut(X/Z(X)). Thus (a) and (b) hold. Also Lemma 4.10
implies that G possesses three conjugacy classes of involutions which are represented
by

- I~ /\3/ . N AN NN
t= hal(_l)’ 71 = ha,(_l)hag(v ) and Y2 = ha.(_l)haz(_l)ha3(v)'

Let w be as in Lemma 4.10. Then w € N, w inverts v, and v,, %? = 1 and ¢* = tz.
Thus for any j € {,7,, v,}, we havej € G, and

~— N, TN
C5(J) = Ce()wy=Ne((z.7y), where C5(/)° = C5(1).
Choose g € G such that ga( g)"' = w, sothat go(g)™" = w.

Lemma 4.4 implies that G, has 6 conjugacy classes of involutions represented by
{t, 1%, %, 7§, 5, 78} of which only three conjugacy classes lie in X by Lemma 4.10.
Clearly J;* = J, and (e) holds. Also it is easy to see from §3D and [25, Proposition
5(d)] applied to PTO(7, q) that (e) and (f) hold. Alternatively (f) also follows easily
from the proof of Lemma 4.10. For, with ¢, J_o, Jy etc. as in Lemma 4.10, we have

N¢ 0\.)(10 * Jl )= Cs(1){A*) and hence it suffices to study Cy(z)(A*)=
(Jo * Jy * J)HA*). Set L= Cy(t)(A\*) and let {i, j, k} = {0,1,3}. Then, as in
Lemma 4.10,

Jxdo = I X G < Cd) < CE,) D N(%,) = J 4%, H ).

Also, since Cj(x,(1)) = (H,N J) X (H, N J,), we have Cu(X,) = () XJ)X,.
Consequently CL( J. ) =J; X J, and C(Jo*xJyx ) = (1, z). Now Lemma 2.7 im-
plies (f). Let 8 denote the mner automorphism of G induced by w~'. Note that
Bo = oB, B> = 1 and (Bo)* = ¢ as endomorphisms of G.

First let 4 = C(¢). Then 4 = Cz({t, z)) and both B and o leave A4 invariant. As
in Lemma 4.10, {J,, J,, J;} is the set of 2-components of C,(t)=A4,. Also
Cx(t%) = C(t%) = (C5(1)g,)%, (BoX(Jp) =J, and (Bo)(J;) =J;. Then Lemma
2.5 and [30, §8; 35, §11.6] imply that C5(¢)g, contains precisely two 2-components
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¢, and ¢, and by suitable indexing we may assume that §, = (J—3)Ba = SL(2, k),
Z($) = (2§ = C(JOXJ,)(BU) =SL(2, k,) and Z(},) = (z).

Next let A=Cin)= = C5({v1))- Thus B and ¢ both leave A invariant and, as
above, (L), =SL(4, k), Z((L,),) = () if 4|(g— 1), Z(L),) =(z) i
41(¢g—1) and (L ), is the unique 2- -component of Cy(y,) = A Also CX(yig) =
(Ag,)%, (Bo)L,)=L, and, as above, (L,)s, =SU(4, k), Z((L )go) = (1) if
41(q— ) and Z((L,),) = (z) if 4| (g — 1). _

Next let A= ¢5(12) = C5({72))- Thus B and ¢ both leave 4 invariant, and, as
above (L,), = (L;)g, = Sp(4, k) and Z((L,),) = Z((L,)g,) = {z)-

Clearly (g) holds. Suppose that n is even, let m = 3 and set 7* = (A*)™. Thus 7* is
the restriction of A™ to G,, (A")*=o¢ and Cy(7*) = G5(N") = Spin(7, /g). Also
Lemma 4.2 implies that all involutions of (G,)7* are conjugate via G, to 7*. Thus (h)
and (i) hold. Finally (c) and (d) follow from the above and §3D and the proof of this
lemma is complete.

LEMMA 4.12. Let X = Spin(2m + 1, q) with m = 4. Then the following five condi-
tions hold.

(a) Z(X) = (z) where z is an involution;

(b) there is an involution t € X — Z(X) such that Cx(t) contains 2-components J,
and J, with J, = J, = SL(2, q), Z(J,) = {t) and Z(J,) = {1z);

(¢) m is odd if and only if there is a conjugacy class & of involutions in X such that if
T E R, then Cy(7) possesses a 2-component J with z € J and J/O(J) = SL(2, q,)
with q, = p” for some positive integer r;

(d) if m is odd and &, T and J are as in (c), then & is unique, q, = q, O(J) =1
and Cy(7) possesses, besides J, precisely one other 2-component § and § =
Spin(2(m — 1), ¢, 1) with Z(§) = (z, 7); and

(e) there is an involution j € X such that Cy(j) contains a component J with (z,
JY=2Z(J), J = Spin(2m, q, 1) if m is even and J = Spin(2(m — 1), q,1) if m is odd.

PRrROOF. Let = B,, let 7 denote the simply connected representation of ® so that
G is a simply connected linear algebraic group and adopt the notation of [8, Planche
1. Thus B = {a,...,a,}, I,4 =32, Za;, T, =T, =2, Z6;, ay=a; +
3n,2a;, &,=w; for all 1<i<m-—1, §,=28,, [[j=3",26,<T,, I;'=
2 Za, + Z(2a,,), X = G = G, and €, = 1, etc. Then, as in Lemma 4.9, G and G
have precisely 1 + [%] conjugacy classes of involutions which are represented by

lw withjevenand2 <j<m — 1}

{h(X)\) I A=

U {h(m, hoo) | M=

(2w,) and A, = (2w )if mis evcn}.

Then, as in Lemma49 we have Z(G) = (h(x,,)), h(x»,) = ho(-1) and h,(-1) =
h(x,) with A =% w2 Also t = h, (-1) satisfies (b) and it is easy to see, as in Lemma
4.9, that (c)-(e) hold.
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LEMMA 4.13. Let X = Spin(8, g, 1). Then the following three conditions hold.

(@) Z(X)=E, and Z(X) = (t,t,) where t, and t, are distinct commuting
involutions;

(b) all involutions in X — Z( X) are conjugate in X, and

©if 1 € (X — Z(X)), then Cy(7) possesses precisely four 2-components J,, J,, J;,
J,. Also the 2-components of Cy(7) can be indexed so as to satisfy the following
conditions:

(@) J, = SL(2, q) and Z(J,) = (r);

(ii) J, = SL(2, q) and Z(J,) = (r1,);

(iii) J; = SL(2, q) and Z(J;) = {7t,); and

(iv) J, = SL(2, q) and Z(J,) = {1t,t,).

PrOOF. Let & = D,, let = denote the simply connected representation of & so that
G is a simply connected linear algebraic group and adopt the notation of [8, Planche
IV]. Thus B = {a, a,, a3, a,}, T,y = 2 Za,, T, = T, = 3%, Zw,, @y = , + 2,
+a;t+a, b =0foralll<i<4,T1H=T, G=G,=Xand Q, = 1, etc. Then,
as in Lemma 4.9, G and G have precisely 4 conjugacy classes of involutions
represented by

—1_ -1,._ -1, _ i
(hGo)IN = L4800, =452 28, = 5@ A = L5 (2ay) ).

Also, as in Lemma 4.9, we have
X=G=G,, h(xp) = hof-1) = ho(-Dhy(-Dh, (-1),
h(Xx,) = ha(-Dho (1), h(xa,) = Ha(-1)h, (1),
h(xx,) = ho(-Dho(-1), Z(G) = (h(xa,), h(x»,))

and (a) and (b) hold. Also, setting 7= h,(-1) and observing that h,(-1) =
Tho (~Dho (1), ho (1) = Th (-Dh,(-]1) and h,(-1) = 7h,(-1)h,(~1), it readily
follows, as in Lemma 4.9, that (c) holds and we are done.

LEMMA 4.14. Let X = Spin(8, g, —1). Then the following four conditions hold.

(a) Z(X) = (z) where z is an involution;,

(b) all involutions in X — Z( X)) are conjugate in X;

(©) if T € (X — Z(X)), then Cyx(1) possesses precisely three 2-components J,, J,,
Js. Also the 2-components of Cy(1) can be indexed so as to satisfy the following three
conditions:

(i) J, = SL(2, ¢%) and Z(J) = (z);

(i) J, = SL(2, q) and Z(J,) = (1); and

(iii) J; = SL(2, q) and Z(J;) = (7z); and

(d) if y € X is such that y* = z, then Cy(Y) contains a unique 2-component L with
L =SL(4, q) or L =SU(4, q).

PROOF. Assume the notation of Lemma 4.13 and let p denote the graph automor-
phism of order 2 of the root system of D, such that p(a;) = a; for i = 1,2 and
p(a;) = a,. Then p induces a semisimple automorphism of G, which we shall also
denote by p, such that if « € ® and u € K, then p(x,(u)) = x,,(a). Also, as
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endomorphisms of G, we have op = po and (op)’ = o2 and we may take X = G,, =
Cg(op). Then (a) with z = h,(-1)h, (-1) and (b) follow from Lemma 4.13. Also
T=h(-1) E Q(X Z(X)) and CX('r) = C-('r)op Since C5(r) = LH where L =
Jo*J,* J;* J,and SL2, K) =J, = <aea s X_,) S C5(r) for alli € {0, 1, 3,4}, the
methods of [30, §§2 and 8] 1mply that C X('r) =(%,* %, * $)H where H = Cj(op),
SL(2, g) = Gj0p) = Ci{0) = $o, SL2 9) = Cj(op) = Cj(0) = §1, Z(%o) = (r),
2(4,) = (r2), SL2, %) = Gj,i(0p) = § = (Xo ()Xo (0(u)), X_,(u)x_, (0(u))|u
€ k) and Z($) = (h (-Dh,(-1))= (z). Thus (c) holds.

For (d), let » be an element of order 4 in K. Lemma 4.8 implies that G contains
precisely two conjugacy classes of elements y of order 4 such that y?> = z and these
two conjugacy classes have representatives

N =h(x,) = o (DA (7R, (7)),

where A, = %(263 +2w,) = q; !

(63 + "_"4)
and

1 _ —
Y2 = h(X)\ ) = ha(_l)haz(—l)hag(v)hou(”)’ where}\z = (2“’]) = —q—Twl‘
Also we have Cg(v,) = L,H and Ci(v) = L,H where vy, €L, = (Xﬂ,o,

X0 X.0,)=SLA4,K), v, & Ly=(X.0, X0, %.4)isof type 4;and z € L,.
Suppose that ¢ = 1 (mod4). Then » € k, v, € C;(po) = SL(4, q) and z € C;(po)
= SU(4, q) by [35, §11]. It follows that (d) holds in this case. Finally, suppose that
g = -1 (mod 4). Then » & k and po inverts both y, and v,. Also, from [8, Planche
IV], it follows that there is an element w € N with coefficients in the prime field of
K such that w? € H and such that the w induced automorphism w of ® satisfies :
a, © —a,, w(a,) = a, and W: a; < a,. Then, by [34, p. 30], we have v = vy, ! for
i = 1,2. Letting 8 denote the inner automorphism of G induced by conjugation by
w, it follows that Bpo fixes both y, and v, and Bpe is conjugate via Inn(G) to po by
Lemma 4.1. Since (L, oo = SU(4, q) and (EZ)Bpo = SL(4, q) by [35, §11], we have
(d) in this case also.

LeMMA 4.15. Letr X = Spin(2m, q,1) for some even integer m = 6. Then the
following three conditions hold.

(@) Z(X)=E, and Z(X) = (t,,t,) where t, and t, are distinct commuting
involutions of X,

(b) there is a unique conjugacy class of involutions & of X such that if - € Q, then
Cy(1) possesses a 2-component J with € J and J /O(J) = SL(2, q); and

(c) if & and 7 are as in (b), then O(J) = 1, J is the unique 2-component of Cy(T)
that contains 1, Cy(T) contains precisely two other 2-components J, and J, such that, by
appropriate indexing, we may assume: J, = SL(2, q) and J, = Spin(2m — 4, q, 1) and,
by appropriate indexing of Z( X)*, we may also assume: Z(J,) = (7t,) and Z(J,) =
(Tty, t)).

__PrROOF. Let @ = D, let 7 denote the simply connected representation of & so that
G is a simply connected linear algebraic group and let B = {«,,...,a,,} be as in [8,
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Planche IV]. Then I,y = 22, Za, and T, = T, = 2L, Zw,; where {w,l I<ism}is
as given in [8 Planche IV], ¢, =@, forall I<i<m, T =T,,G= X Q,=1
and &y = a; + 2755 2a +a,_,; t+ a,, etc. Then, as in Lemma 4.9, G and G have

precisely 3 + (m—2)/ 2 conjugacy classes of involutions represented by

B = {h(x)‘)l)\=q;laiwithievenand2<i<m—2}

U {h(xxi)|)\,- =" L (2w,;) withi € {1, m — 1, m}}

Also Z(G) = E,, h(xa) = (=Dho(-1),  h(xa,_) = ho(=Dh(-1) -
he, (~Dhg (-1)"?h, (- 1)('" /2, h(X)\ ) = h(xA Dh(xy,) and Z(G)
(h(xa,), h(xx ))-In addmon it is easy to see that p = h(x)\)Wlth}\—TwZ is the
unique involutlon of B satisfying the conditions required in (b) and that the
conditions of (c) hold in C;(p) = (Cz(p)),-

LEMMA 4.16. Let X = Spin(2m, q,—-1) for some even integer m = 6. Then the
following five conditions hold.

(a) Z(X) = (z) where z is an involution;

(b) there is a unique conjugacy class & of involutions in X such that if T € &, then
Cy(7) possesses a 2-component J witht € J and J /O(J) = SL(2, q);

(©) if R, Tand J are as in (b), then O(J) = 1, J is the unique 2-component of Cy(T)
that contains v and Cy(7) contains, besides J, precisely two other 2-components J, and
J, which may be indexed so that J, = SL(2, q),J, = Spin2m — 4, q,-1), Z(J,) = (1z)
and Z(J,) = (z);

(d) there is a unique conjugacy class 8 , of involutions in X such that if r € & ,, then
Cx(7) possesses a 2-component J with z € J and J/O(J) = SL(2, q,) where q, = p”
for some positive integer r; and

(e) if &,, T and J are as in (d), then O(J) =1, q, = q* and the following two
conditions hold:

(i) Cx(7) possesses, besides J, exactly one other 2-component §; and

(ii) ¢ = Spin2m — 4, q,1) and Z($) = (7, z).

PROOF. Assume the notation of Lemma 4.15 and let p denote the graph automor-
phism of order 2 of the root system of D, (cf. [11, §12.2]). Then p induces a
semisimple automorphism of G, which we shall also denote by p, such that if a € ®
and u € K, then p(x (u)) X,q(U). Also as endomorphisms of G, we have
po =op and (op)’ = ¢” and we may take X = G,,. Note that Z(G) = (h(xx),
h(xx,_))» Z(G) = (h(x,,)) and for each even mteger iwith2<i<m— 2 and
for A, 9,—-«0,, we have

h(X0,) = ha(Dha(-1) < hg,_ () (e, (DA (-1)"7).

Thus Z(X) = (z) where z = h(xx,) = hq,_ (-Dh,(-1) and X possesses precisely
1 + (m —2)/2 conjugacy classes of involutions represented by B = {h(x,)|A
=i'2;'6,. with i even and 2 <i<m — 2} U {z}. Thus (a) holds and it follows via
arguments similar to those above that i(x,,) = h,(~1) is the unique involution of B
satisfying the conditions required in (b), that A(x, , ,) is the unique involution of B
satisfying the conditions required in (d) and that (c) and (e) also hold.
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LemMA 4.17. Let X = Spin(2m, q, 1) for some odd integer m = 5. Also let Z( X) =
{v) where |y|= (4,9 — 1) and let z be the unique involution in Z(X). Then the
following three conditions hold.

(a) There is a unique conjugacy class & of involutions of X such that if T € &, then
Cx(7) contains a 2-component J with T € J and J /O(J ) = SL(2, q);

(b) if ®, T and J are as in (a), then O(J) = 1, J is the unique 2-component of Cy (1)
that contains T and Cy(7) contains, besides J, precisely two other 2-components J, and
J,. Also by suitable indexing we may assume J, = SL(2, q), J, = Spin2m — 4, ¢, 1),
2() = (rz), Z(Jy) = (2) if ¢ = -1 (mod 4) and Z(J,) = (rv) if ¢ = 1 (mod 4;
and

(c) there does not exist an involution 1 € X such that Cy(T) possesses a 2-component
J withz € J and J/O(J) = SL(2, ¢?).

PrOOF. Let = D,, let = denote the simply connected representation of & so that

G is a simply connected linear algebraic group and let B = {a,,...,q,,} be as in [8,
Planche IV]. Then I,y = 372, Za; and T, = T, = 2L 1Z(.o where {w | I<i<m}is
as given in [8, Planche IV], ;= w; for all 1 < ismTy=T,G= X, Q, =1

and ap = a; + 2"'_22 20t a, ; + am, etc Let » be an element of order 4 in K*.
Then Z(G) = (h(xp))= Z, where B ——-(4w )=(q — DNw,,

h(xg) = ho(~Dho (1) -+ ko (v"2)ho (v™)

and h(xﬁ)z——h _(=Dh,(-1). Also Z(G) = Z(G) if 4[(¢g—1) and Z(G) =
(h(xﬁ)z) if 4{(q - 1. Moreover as in Lemma 4.9, G and G have precisely
2 + (m — 3)/2 conjugacy classes of involutions represented by

B = {h(xx)|}\=q; 16,.withievenand2<i<m—3}

U {h0) ko) I = L5 28) and h, = 454, + ).

Here h(xy,) = h,_(-Dh, m(-1)=h(xﬁ)2 and p=h(x,) with A =55, is the
unique involution of B satisfying the conditions required in (a). Finally, since
B = hy(-1Dh(xp)* = h,(-1), both (b) and (c) readily follow.

LEmMMA 4.18. Let X = Spin(2m, q, —1) for some odd integer m = 5. Also let Z( X) =
(y) where |y|= (4, q+ 1) and let z be the unique involution in Z(X). Then the
following three conditions hold.

(a) There is a unique conjugacy class of involutions & of X such that if T € &, then
Cy(7) contains a 2-component J witht € J and J /O(J ) = SL(2, q);

(b) if R, 7 and J are as in (a), then O(J) = 1, J is the unique 2-component of Cy (1)
that contains T and Cy() contains, besides J, precisely two other 2-elements J, and J,.
Also by suitable indexing we may assume J, = SL(2, q), J, = Spin2m — 4, q,-1),
Z(J)) = {(1z), Z(J,) =(z) if g =1 (mod 4) and Z(J,) = (1Y) if ¢ = -1 (mod 4);
and

(c) there does not exist an involution v € X such that Cy(1) possesses a 2-component
J withz € J and J /O(J ) = SL(2, ¢%).
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PROOF. Assume the notation of Lemma 4.17, let p denote the graph automorphism
of order 2 of the root system of D, (cf. [11, §12.2]) and assume that p induces an
automorphism of G as in the previous lemmas, etc. Then we may take X = (_;.,p,
Z(X)=(h, (-Dh,(-1))ifqg = 1(mod4)and Z(X) = (h(x,)) if g = -1 (mod 4)
and both G and X have precisely 2 + (m — 3)/2 conjugacy classes of involutions
with representatives as in the proof of Lemma 4.17. Also the methods of the proof of

Lemma 4.14 and the information in the proof of Lemma 4.17 readily yield (a)-(c).

LEMMA 4.19. Let X = Eg(q), let A = Aut(X) and let B = Inn(X). Then the
following five conditions hold.

QA =BAwhere ANDB=1,X=B =N and A is the subgroup of N induced by
Aut(k), so that A = Aut(k) = Z,;

(b) B contains involutions t and v such that Cyg(t) possesses precisely two 2-
components J, and J, and by appropriate indexing we may assume that Z(J\) = Z(J,)
= (1), J, = SLQ, q), J, = CoA(Eo(q)), | C(t)/(J * ;)| =2 and Cy(J, + ) =
(t) and such that Z(Cg(v)) = (v), cy(v) is a proper quotient of Spin(16, g, 1),
| Cp(v)/Cg(v) |= 2 and Cu(Cy(v)) = (v);

(c) {t, v} is a set of representatives for the conjugacy classes of involutions of %B;

(d) if n is odd, then 0% (A) = B; and

(€) if n is even, then the unique involution T € A is such that Cy(71) = Ey(/q) and
YA — b)=17".

PRrROOF. Clearly (a), (d) and (e) follow from Lemma 4.2, [35, Theorem 12.4; 11,
Theorem 12.5.1]. Also (b) and (c) follow from [30, §9 and Proposition 9(ii)] or the
methods of this section.

The same references in the proof just above yield

LEMMA 4.20. Let X = Fy(q), let A = Aut(X) and let B = Inn(X). Then the
following five conditions hold.

@QA=BAwhere ANB=1,X=B =N and A is the subgroup of N induced by
Aut(k), so that A = Au(k) = Z,;

(b) B contains involutions t and v such that Cy(t) = Spin(9, q) with Z(Cg(1)) = (1),
Cg(v) has precisely two 2-components J, and J, and by appropriate indexing we may
assume that Z(J,) = Z(J,) = (v), J, =SL(2, q), J, =Sp(6, q), | Cx(v)/(J, * J,) |
= 2and Cyx(J, * J,) = (v);

(c) {t, v} is a set of representatives for the conjugacy classes of involutions of B;

(d) if nis odd, then O*(A) = B; and

(€) if n is even, then the unique involution T € A is such that Cy(1) = Fy(/q) and
4(A —B) =18

LEMMA 4.21. Let X =3D,(q), let A = Aut(X) and let B = Inn(X). Also let
k, = Cx(0?), so that | k,|= q>. Then the following four conditions hold.

(@A=BAwhere ANB=1 X=B =N and A is the subgroup of A induced by
Aut(k,), so that A = Aut(k,) = Z,,;

(b) B has one conjugacy class of involutions and if t € 9(B), then the structure of
Cy(t) is as given in [14); in particular, Cy(t) has exactly two 2-components J, and J,
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which may be indexed so that Z(J\) = Z(J,) = (1), J, =SL(2, q), J, = SL(2, ¢*),
| Co(1)/(Jy * ) |= 2 and Cy(J, * J,) = (1);

(c) if nis odd, then O* (A) = B; and

(d) if n is even, then the unique involution T € A is such that Cy(1) = 3D4(ﬁ ) and
YA —B) =73,

PrOOF. Clearly X =B and (b) follows from the methods above or [14, Theorem
and (2A)(iii)]. Also (a) follows from results of R. Steinberg, [34, Theorem 36]. Thus
(¢) holds. Suppose that n = 2n, for some integer n; and 7 is the unique involution of
A. Then Cy(1) =*D,(yg) and r is induced from the field automorphism of k, of
order 2. Let 9 = B(7), so that $(A — B) = §(D — B).

To conclude the proof, we shall apply Lemma 4.2 as follows. Let & = D,, let =
denote the adjoint representation of ® and let G denote the Chevalley group
obtained from (&, 7, K). Let g, = p™ and o, = "' € Aut(K) so that oy(u) = u?°
for any u € K and denote the gy-induced endomorphism of G also by g,. Then
o = o and Cg(o,) = k, has order ¢,. Also let p denote the element of Aut(G)
induced by the graph automorphism of order 3 (cf. [35, §11; 11, Proposition 12.2.3]).
Then p* = 1, po, = 0,0 as endomorphisms of G (cf. [11, p. 225]), (p’0y)* = po,
(p0)’ =63, C5(po, 0,0) = C5(p%0,) < C5(po) < C5(0>) and (o,0)*> = o> Also
Ci(po) =>D,(q) by [34, §11, Theorem 35 and Corollary] and Lemma 4.2 now
implies that $(%) — B) = 7®. The proof of this lemma is now complete.

LEMMA 4.22. Let X = Gy(q), let A = Aut(X) and let B = Inn(X). Then the
following four conditions hold.

(@ X=3B=A and N /B is cyclic;

(b) B has one conjugacy class of involutions and if t € $(B), then Cyx(t) has
precisely two 2-components J, and J, and by appropriate indexing we may assume that
Z(J) = Z(Jy) = (), J, =1, =SL(2,q), | Cp(t)/(J, * ) |= 2 and Cy(J, x J;) =
(1) :

(©) if p # 3, then A = B A where B N A = 1 and A is the subgroup of N induced by
Aut(k), so that A = Aut(k) = Z,, 0¥ (W) = B when n is odd and, when n is even, the
unique involution T € A is such that Cy(7) = G,(/q) and $(A — B) = 7°; and

(d) if p=23, then W = BA where BN A =1, A =2Z,, and the unique involution
T € A is such that (U — B) = 1%, Cy(7) = G,(7) if n is even and Cy(7) = >G,(q)
if n is odd where 2G,(q) is simple if ¢ > 3 and *G,(3) = Aut(PSL(2, 8)).

PrOOF. Clearly X = B and (b) follows from [30, § and Proposition 9(ii)] or [14,
§2]. Suppose that p # 3. Then Lemma 4.2 and the proof of [11, Theorem 12.5.1]
imply (c). Suppose that p = 3. Then [11, Proposition 12.4.1, Theorem 12.5.1 and p.
225) imply that A = BA where A N B = 1 and 4 = (g) where g is the automor-
phism of X induced by A € Aut(K). Since Aut(k) = (A)= Z,, we have (d) when n
is even. When n is odd, then Lemma 4.2, [11, p. 225 and Lemma 14.1.1; 31, Theorem
7.8 and (8.4); 11, Proposition 12.4.1 and p. 268, Note] and the fact that a Sylow
3-subgroup of 2G,(3) is nonabelian by [31, (5.5)] yield (d). Clearly (a) holds and we
are done.
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LeEMMA 4.23. Suppose that q = 3" where n = 2m + 1 for some integer m = 1. Let
X =2Gx(q), let ¥ = Aut(X) and let B = Inn(X). Then the following two conditions
hold.

@QA=BAwhere ANB=1,X=B=U =0%N)and A is the subgroup of A
induced by Aut(k), so that A = Aut(k) = Z,; and

(b) B has one conjugacy class of involutions and if t € §(B), then Cx(t) = ()X J
where J = PSL(2, q).

PRrOOF. Clearly [31, Theorem 9.1] implies (a) and (b) is well known (cf. [16, §16.6]
or [10, Appendix 1]).

LEMMA 4.24. Let X = E;(q), let A = Aut(X) and let B = Inn(X). Then the
following four conditions hold.

(@ A =B, A/B=2Z, X Z, and there is a subgroup & of N such that B <E,
|€/B|=2,8 =(I(€)) and A = €A where € N A = 1 and A is the subgroup of %
induced by Aut(k), so that A = Aut(k) = Z ;

(b) if n is odd, then 0¥ (A) = G;

(¢) if n is even, then the unique involution T € A is such that Cy(7) = E,(,/q) and
YA —6)=1%and

(d) € contains five conjugacy classes of involutions which may be represented by
{t;| 1 <i=< 5} such that

(1) t, €8, Cyx(t)) contains precisely two 2-components J, and J, which may be
indexed so that Z(J,)) = Z(J,) = {(t,), J, =SL(2,q), J, is a proper quotient of
Spin(12, ¢, 1), | Ca(1))/(J, » 1) |= 2 and Cs(J, » ;) = (1,);

(2) t, € B, Cy(t,) contains exactly one 2-component J such that J is a quotient of
SL(8, q) if ¢ = 1 (mod 4) and of SU(8, q) if g = -1 (mod 4) and C(t,) N Ce(J) is
cyclic;

(3) t; € B, Cy(t;) contains exactly one 2-component J such that J is a quotient of
Cov(E(q)) if ¢ =1 (mod4) and of Cov(*E¢(q)) if ¢ = -1 (mod4) and Cg(t;) N
Ce(J) is cyclic;

@ t, € € — B, Cy(t,) contains exactly one 2-component J such that J is a quotient
of SU(8, q) if g = 1 (mod 4) and of SL(8, q) if ¢ = ~1 (mod 4) and Cy(t,) N C(J)
is cyclic; and

(5) ts € € — B, Cy(ts) contains exactly one 2-component J such that J is a quotient
of Cov(*E¢(q)) if ¢ = 1 (mod 4) and of Cov(E¢(q)) if ¢ = —1 (mod 4) and Cg(ts) N
Cs(J) is cyclic.

PROOF. Let ® = E,, let 7 denote the adjoint representation of ® and let G denote
the linear algebraic group obtained from the triple (&, 7, K). Note that G =
07(G,) =X, G,=GH,, G,/G=H,/(GN H,) =Z, by [35, Corollary 12.6(b)],
H, = Hom(T,,, k) and G N H, corresponds by [11, Theorem 7.1.1] to Im(Res)
where Res: Hom(T,, k™) - Hom(T,4, k™) denotes restriction to T,. Letting A*
denote the restriction of A to G,, it follows that A* induces an automorphism of G of
order n, Cg \+y(G) = 1 and A = Aut(E,(q)) = G(\*) (cf. [11, §12.5]). Let B =
{a),...,a;}, {®,...,@,}, etc. be as in [8, Planche VI]. Also let w € N, be such that
the w induced automorphism w of ® satisfies w: a; © a4, a; © a5, a; < -a, and
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fixes a, and ay; thus w? € H,. Here T,y = 37_, Za,, Ty =T, = 21, Z&,, | T, /T, |
=2, ¢=w,forall1 <i<7and ay = 2a, + 2a, + 3a; + 4a, + 3a5 + 204 + aj.
Also by [30, Proposition 3], Z, = Q, = (T, W). Then it follows that G has three
conjugacy classes of involutions represented by ¢, = h(x,,) for i = 1,2,3 where

_q-—1 —-1_ _q—1
)\I—T‘*’l’ A= q—z—_“’z’ Aa—qz

L= ha;(_l)has(_l)ha-,(_l) = hao(_l)’
L= haz V3)ha5(y)ha6(_l)ha-,(v3)9
ty = ho (-1 (9o (~Dhy (»)hg (V)

for some element » € K™ of order 4. Also t, € G, = G for i = 1,2,3 and Cz(t,) =
(L, * L,)H where L, = (£+ao> SL(2, K), L,= (E*a |2<i<7) is a proper
quotlcnt of Spin(12, K) and Z(L,) = Z(Lz) = (1), City)) = (L;H){w) where

= (xﬂ, |i€{0,1,3,4,56,7}) is a quotient of SL(8, K) and Cg(1;) =
(L4H)<w> where L, = (Ei +a,| 1 <i<6) is a quotient of Cov(E¢(K)).

Next we apply Lemma 4.2. Let g € G be such that go(g)™' = w. Then G = G, has
five conjugacy classes of involutions represented by {t,, t,, 15, 15, t§}. Also if B
denotes the inner automorphism of G induced by w~!, then C,(¢§) = (C5(t)gs)?
for i = 2,3. Now Lemmas 4.2 and 4.9 yield (a)—(c).

As in [30, §8], we have C;(¢,) = (J, * J,)H, where J, = (X .4)=SL2q), ), =
(¥ .4,|2<i<T)is a proper quotient of Spin(12, ¢, 1) and Z(J,) = Z(J,) = (t;).
Clearly | C;(t))/(J, * J,)|= 2 and

Co(Jy + 1) = Co(1) N Ce(Jy * 1) = Cﬁ(-ll * -12)

< Cif(F-ay) * (%o |25i<T)) =

thus part (1) of (d) holds.

Similarly C;(t,) = (J; H,)(w) where J; = (X.q,i€{0,1,3,4,5,6,7}) is a quo-
tient of SL(8, g). Also, it is clear that C;(2,) N C(J;) = Ci(J;). Since ( H, Sy=
L, H, we have (t,)< Ci(Jy) < Ci(Ly) = (t,). Thus CG(tz) N CG(.I3) = (1,).

Note that C;(#5) = C5(¢,)p, = (J3 (HBU))(w> where J? = O? ((L3)Bo) is a quo-
tient of SU(8, ) by (35, §11.6]. Also, it is easy to see that (H, J2)= L3H Since
Cs(ty)gs N CJD) < Hpa and Ci(L,;) = (1), we conclude from Lemma 4.9 that
(2) and (4) of (d) hold.

Also, as above, C;(t3) = (J,H,)(w) where J, = (inlj 1 <i=<6) is a quotient
of Cov(E¢(q)) and Cg(t3) N C4(Jy) = Ci(J,). Here (H, J,)= L,H and

W,

Ci(Ly) ={x € Hom(T,, K*)|x(a;) = 1forall 1 <i<6} = K*,

so that C;(t3) N C;(J,) is cyclic.

Finally, as above, C;(1§) = c—(t3)ﬂ,, = (J2(Hp,))(w) where J? = OP((Ly)p,) is
a quotient of Cov(’E4(q)) and (H, J2)= L, H. Since C5(t3)p, N C5(JY) < Hg,, we
conclude that (3) and (5) of (d) hold and we are done.
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LEMMA 4.25. Let X = E,(q), let A = Aut(X) and let B = Inn(X). Then the
following five conditions hold.

(@) A=A(A X {(1*)) where A’ N (A X {(1*))=1, A is the subgroup of A
induced by Aut(k), so that A = Aut(k) = Z,, and where 7* is the automorphism of X
of order 2 induced by the graph automorphism of order 2 of the root system of type E,
B=0%U)|A/B|=@B,q— 1), 7™ inverts W' /Band A X (1*)=Z, X Z,;

(b) A’ and B have precisely two conjugacy classes of involutions which may be
represented by involutions t and v such that t € Cyx(t) = Spin(10, ¢,1) and
Cy(Cx(t)) is cyclic and such that Cy(v) possesses precisely two 2-components J, and
J, which, by appropriate indexing may be assumed to satisfy: J, = SL(2, q), J, is a
quotient of SL(6, q), Z(J,) = Z(J,) = (v) and Cy.(J, * J,) = {v);

(c) A’'r* is A-invariant and $(A'1*) decomposes into two N’-orbits (under conjugacy
by elements of N’), these two N’'-orbits may be represented by v and ht* for some
involution h € Cy.({7*) X A) where Cy.(7*) = F,(q) and Cy.(h7*) is a quotient of
Sp(8, 9);

(d) if nis odd, then O*(A) = A (1); and

(e) if n is even and @ denotes the unique involution of A, then $(% — A’ {7*)) = ¥
U (1*9)¥, Co(9) = E(/q) and Cy(1*9) =E(/7).

PROOF. Let ® = Ej, let 7 denote the adjoint representation of ® and let G denote
the linear algebraic group obtained from the triple (&, 7, K). Let 7 denote the
automorphism of G induced by the graph automorphism 7 of ® (of order 2) such
that 7(x,(#)) = x7(u) for all u € K and all a € . Clearly TA = A7 as endomor-
phisms of G, both 7 and A leave invariant G,, G = 07(G,) = X, G, = GH,,
G,/G =H,/(GN H,)and G = (G, ). Letting A* and 7* denote the restrictions of A
and 7 to G,, respectively, it follows that A* and 7* induce commuting automor-
phisms of G of orders n and 2, respectively; Cg asyx(r+y)(G) =1 and A =
Aut(E¢(9)) = G,({A*)X (7*)) (cf. [11, §12.5]). Let B = {aj, ay, a3, a4, as, ag},
{@,, @y, @3, Wy, ws, w6} etc., be as in [8, Planche V]. Then Iy = 3%_, Za,, [} =T,
=38 ,Zw;, | T/ Ty|=3¢=wforall 1 <i<6,ay=a, +2a, + 2a; + 3a, +
2a5 + ag and it follows that G has two conjugacy classes of involutions represented
by 1, = h(x»,) for i = 1,2 where A, =5, + &), 1, = h, (-Dh, (1), A, =5s,
and t, = h ( l)h (DA (=1) = h,(-1). Also ¢, EG forz—l 2 C(t))=LH
where L, = (%M |1 € {0 2,3,4, 5}) t, €L, and L, = Spin(10, X') and C5(¢,) =
(L, * Ly)H where L, = (&+a Y= SL(2, K), L3 = (%w |i € {1,3,4,56}),
is a quotient of SL(6, K') and Z(Lz) =(t,)= Z(L3)

As in [30, §8], we have Cg(1)) = J\(H,) wheret, € J, = (X.,]i€{0,2,3,4,5})
= (L) = Spin(10, ¢, 1) by [35, Theorem 12.4]. Clearly C5(J,) = C,(J,) and
(H,J))= L H= Cg(t,). Since

Ci7(L,) ={x € Hom(T,, K*) | x(a;) = 1 foralli € {0 2,3,4,5}}

= {x € Hom(T,, K*)|x(e;) =1 forall2 <i <5 and x(ag) = x(,)” }
= KX
it follows that Cg(J;) is cyclic.
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Similarly, we have Cg(¢,) = (J, * J3)(H ) where J, = (X . ,,)=SL({, q), Z(J,)
=(ty), I3 = (X .41 € {1,3,4,56)}) is a quotient of SL(6, ¢) and Z(J;) = (1,).
Clearly Cg(J, * J3) = Ci(J, * J3) and (H, Jy, 1,Y= (L, » L,))H = Cz(t,). As
above, it follows that C;{(L, * Ly) = (t,)= Co(Jp * J3).

Let 7* denote the simply connected representation of & and let G* denote the
simply connected linear algebraic group obtained from the triple (&, 7*, K). Also
let A: G* > G be the universal covering of G and extend A\, 7 and ¢ = A" to
endomorphisms of G* in the obvious way so that A, 7 and ¢ are compatible with A.
Clearly (4.1) and (4.2) imply that Ker(A) = Hom(T,./T,,, K*) where | T /T, |= 3.
Thus, if p = 3, then Ker(A) = 1 and if p # 3 and » is an element of order 3 in K™,
then Ker(A) = (f)= Z, where f = h, (»)h,| v")has(v)h%(v"). Note that T inverts
Ker(A) and Ker(A) <(G*), if and only if 3|(g — 1). Now the proof of [35,
Corollary 12.6(b)] implies that G,/G = Z; .-y and 7* inverts G,/G. Thus (G,({A*)
X (T*))Y = G, and both (a) and (b) hold.

For (c), observe that G() is a linear algebraic group and that G is a normal
closed subgroup of G{r) by [6, Chapter I, 1.11]. Since G is a simple group (cf. [7,
§3.2(3))), it follows that (G_( 1') =G by _[6, Chapter I, (1.2), Proposition]. Also o
induces an endomorphism of G(r) with (G<T>)o G,() finite. On the other hand,
every involution of G is conjugate via G to an element of NG, ,>(B) N NG, <7>(H )=
H <T> by [35, Theorem 7.5; 36, §2.12, Corollary 2 and §2.8, Theorem 2(c)]. Note that
i a; © ag, a3 < as and fixes a, and a,. For each 1 <i <6, let H = {h(x) | x(a )
= 1 for allj # i with 1 <j < 6}, so that H, is a subgroup of H. Then H = @%
H' = H,, H] = Hy and [r, H, X H,]= 1. For j € {2,4), let h; -’h(x)EH be
such that x(«;) = -1, so that h; is the unique involution of H Also h, =
hal(—l)had(_—l)h%(-l) and h, = h,, Jg—l). Then Lemma 2.5 implies that every involu-
tion of Hr is conjugate via H to an involution in (h,, hyy7.  Clearly
Chyhay E ooy, X0 )< C5(1) and (hy, hy)< Hy, < H,. Forj € {2,4), let o, be
as defined in [34, p. 30, (RS)]. Then

(0 0)< C5(7) NN, < C5(1) NN, and (hyr)* = hyhyr = (hyr) ™",

Consequently every involution of G is conjugate via G to an element of {r, h,7}
where {7, h,7} C (G(1)), = G,(7). Also, [35, (9.4) and (9.8)] imply that C5(7) and
Cg(h,) are connected and reductive linear algebraic groups. Hence Lemma 4.32
implies that 9(G,7*) = (%) U (h,7*)%.

The methods of [11, Chapter 13] can be used to determine the structure of C;(7)
and Cg(h,7). For this process, let S denote the set of orbits of ¥ on ® and for each
orbit O € §, let ag = (32¢)/| O | denote the average of the vectors in 0.

Then {ay|O € S} is the corresponding root system for Cs(7) and {a,, ay,
(a; + a5)/2, (a3 + a5)/2} is a base for this root system. Since each element of
(N/H), can be represented by an element of N,, as follows from [35, §8.2(5)], we
conclude that C5(7) = ((¥,|a €® and #(a) = a), (x (U)X, o(u)|u € K))=
Fy(K) and (Cg(7)), = Cg(7*) = Fy(k).
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Note that h, = h(x) for the element x € Hom(T,y, K*) such that x(a,) = 1 for
all 1 <i<6 withi+#2 and x(a,)=-1. Let 5, = {0 €5]|0|=1 and x(a) =1
for a €0}, let 5,={0€8||0|=2 and x(a)=1 for «a €0} and let &, =
{0 €5]]0|=2 and x(a) = -1 for a € O}. Then {ap|0 €S, U S, U §,} is the
corresponding root system for Cz(h,7), is of type C, and has base

{a a tag a;+ a 2a2+a3+2a4+a5}
4> .

2 2 2
Then [35 (9.2), (9.3), (9.8) and the proof of (8.2)] imply that Cg(h,) = (H,.,, L)
where L= ((X,|{a} €8,), (x()X,(u)|u €K and {a, #(a)} €S,),

(x4 (u)x (a)( u)|u € K and {a, 7(a)} € 8;)). Hence ((Cz(h,1)),) = C5(h,) and
Cg(h,m) is a quotient of Sp(4, k). This completes the proof of (c), and (d) is
immediate. Finally, suppose that n is even and let @ be as in (e). Then ¢ corresponds
to (A*)"/2 = (\*/?)|;. Since (X*/?)? = X" =0 and (X'/?*r)? = o0, Lemma 4.2 im-
plies that $(G,(A*)"/ 2) = ((A*)"/%)% and (G, (A*)"/ %) = (A*)"/2 *)G Clearly

Cs((A\*)"/?) = Cz(N'/?) and Cg(A*"/?r*) = Cz(X"/?7). Thus (e) holds and we are
done.

LEMMA 4.26. Let X =2E¢(q), let % = Aut(X) and let B = Inn(X). Then the
following three conditions hold.

(@) A = A'A where W' N A =1 and A is the subgroup of A induced by Aut(k)), so
that A=Auy(k))=2,,,B<Uand|A'/B|=3,q9+ 1);

(b) A’ and B have precisely two conjugacy classes of involutions which may be
represented by involutions t and v such that t € Cy(t) = Spin(10, ¢,-1) and
Cy(Cx(tY) is cyclic and such that Cy(v) possesses precisely two 2-components J, and
J, which by appropriate indexing may be assumed to satisfy: J, =SL(2,q), J, is a
quotient of SU(6, q), Z(J,) = Z(J,) = (v) and Cy.(J, * J,) = (v); and

(c) if @ denotes the unique involution of A, then A'{p)= (I(A)) and $(A'¢p)
decomposes into two N'-orbits (under conjugacy by elements of N'), these two N’-orbits
may be represented by ¢ and ho for some involution h € Cy.(A) where Co.(9) = F,(q)
and Cy.(he) is a quotient of Sp(8, q).

ProOF. We use the notation of the previous lemma except that we consider G,
and set G = 0”( .). Then (G,,) = =G =X, A and 1 leave G,, invariant, G,,
GH,, < G,.and G, ,/ G= t,,/(G N H,,). Letting A* and 7* denote the restrictions
of )\ and 7 to G,,,, we have (A*)" = T* =0|g., |A*|=2n, G5 _(G) =1 and
A = AutCE((q)) = G,(A*) (cf. [34, Theorem 36]) Note that [35, Corollary 12.6(b)]
and the proof of Lemma 4.25 readily imply that |G,,/G|=(3,q + 1) and that 7
inverts G,,/G. Clearly (t,,¢,)<G. Then Lemma 4.4 implies that G,, has two
conjugacy classes of involutions represented by ¢, and ¢,. Also, as above, CG ()=

Ji(H,, ) where t, € J, = ({x(u) | u€k,a€ {*xa,, *ay *a,}), <xa,(“)x.,5(°(“)),
x_aB(u)x_as(o(u)) lu€k)))= (L )er = Spin(10, g, -1). Clearly G, (J) = Cq (J)
and (H, J;)= L H = Cg(1,), so that Cg (J,) is cyclic. Similarly, we have Cg (¢,) =
(Jy * SN Hyp) whete Jy = (F . 00 )= SL2, q), Z(J) = {130 Js = ({E on,):
(x4 (u)x,(a)(o(u))lu €k, and a € {*a,, Ta;3})) is a quotient of SU(6, g) and
Z(Jy) = (t,). Since (H, J,, J;)=(L,* Ly)H, we conclude, as above, that
CG,(Jy * J3) = (t,). Thus both (a) and (b) hold.
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For (c), as in the preceding lemma, we have 9(G,,7*) = (7*)% U (h,7*)%",
G (%) = C5(1),, = Cg(71), = Fy(k) and Cg (h,m*) = Cg(h,7),,. However h, €
C5(hy7),, and Cg(h,T) is connected. Thus Cg(h,7),, = Ca(h,yT)g,, = Ca(hyT)g,e =
Ci((h,)T), where B denotes the inner automorphism of C5(h,7) induced by conjuga-
tion by 4,. Now (c) follows from Lemma 4.25 and our proof is complete.

The information about Aut(PSL(2, ¢)) that we require appears in [14, §1]. For the
remaining cases we present

LeMMA 4.27. Let X = PSL(m, q) for some integer m = 3, let A = Aut(X) and
B8 = Inn( X). Then the following four conditions hold.

(a) A = C(A4 X {(7*)) where € N (A X (1*)) = 1, A is the subgroup of U induced
by Aut(k), so that A = Aut(k) = Z,, 7* is the graph automorphism of order 2 induced
by the graph automorphism of order 2 of the root system of type A,,_,, B =¢’,
PGL(m, q) =€ Q A and 1* inverts € /B =Z,, ,_,);

(b) if m is odd then 3(C *) = (7*)¢ and if m is even, then (€ 1*) decomposes into
three orbits under conjugation by €;

(c) if n is odd, then O*(A) = € (7*); and

(d) if n is even and @ denotes the unique involution of A, then $(% — € (1*)) = ¢¢
U (1%9)%, Cy(9) = PGL(m, /) and Cy(7*9) = PU(m, 7).

PROOF. Let ® = 4,,_,, let = denote the adjoint representation of & and let G
denote the linear algebraic group obtained from the triple (&, 7, K'). Let 7 denote
the automorphism of G induced by the graph automorphism 7 of ® or order 2 such
that 7(x,(u)) = X34)(u) for all ¥ € K and all « € ®. Clearly  TA = At as endomor-
phisms of G, both 7 and A leave invariant G, = PGL(m, q), (G,) = G = PSL(m, q)
and G,/G = Z ., q—1y- Letting A* and 7* denote the restrictions of A and 7 to. G,,
respectively, it follows that A* and 7* induce commuting automorphisms of G, of
orders n and 2, respectively,

C(E,((»)x(f'))(G) =1= (—;-a N ((A*YX (%))
and
%A = Aut(PSL(m, q)) = G,((A*) X (7*))

(cf. [11, §12.5]). Let B = {ay,...,a,,_,}, {®},...,®,_,}, €tc., be as in [8, Planche I].
Thus, we may assume that 7: a; < a,,_, for all 1 <i < (m — 1)/2 and that 7 fixes
a,, ,5 if m — 1 is odd. Then, from [8, Planche I, we conclude that 7 inverts T /T,,.
Note that G, = G(H,), G,/G=H,/(GNH)=Z,, . T, =26, +T, and
7(w,) = —w, + r for some r € I,4. As in Lemma 4.25, it is easy to see that 7* inverts
G,/G. This may also be demonstrated as follows. If x € Hom(T,, k*), then xx™

extends to an element of Hom(T,_, k) by defining

(xx™)(z2w, +5) = x(r)’x(s)x(7(s)) forallz € Zands € | P

Now [11, Theorem 7.1.1] implies that 7* inverts H, /(G N H,) and G,/G. Thus (a)
and (c) hold. Also (d) follows from Lemma 4.2 and [35, §11.6]. Forany 1 <i<m —
1, let H;= {h(x)|x(a;,) =1 for all j#i with 1 <j<m— 1}, so that H, is a
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subgroup of H and H, = K* . Clearly H = @{g' H, and Lemma 2.5 implies that
$(Hr)=1" if m— 1 is even and $(Hr) =" U (h7)¥ where h is the unique
involution of H,, s21f m — 1is odd. As in Lemma 4.25, we observe that G(r)isa
linear algebraic group and (G(7))° = G. Also o induces an endomorphism of
G(r) with (G(t)), = G(r), and C5(r) is a connected linear algebraic group by
[35, 8.3(b)]. Thus, by Lemma 4.4, we may assume that m — 1 is odd. Since
| C5(hT)/(C5(hT))°|= 2 (cf. [10, §4.3]), (b) follows from Lemma 4.4 and we are
done.

REMARK 4.28. Let G = GL(m, k) for some integer m = 3, the group of nonsingu-
lar m X m matrices over k. Let H = SL(m, k) = {x € G|det(x) =1} and let 7
denote the transpose-inverse automorphism of G. Then G = H’ = G and [29,
Proposition 8.9] implies that C,(7) = O(V/k, f)) and Cy(7) = SOV /k, f))
where (V/k, f) is a nonsingular orthogonal vector space of dimension m with
D((V/k, f)) = (k™) Also if ¢ € k* —(k™)? and h denotes the inner automor-
phism of G induced by the m X m diagonal matrix with ¢ in position m and 1 in the
remaining (diagonal) positions, then 7h = h~'r and (h7)* = 72 = I;. Also, by [29,
Proposition 8.9), C;(ht) = O(V/k, f)) and Cy(ht) = SOV /k, f)) where (V /k,
f) is a nonsingular orthogonal vector space of dimension m with D((V/k, f)) =
c(k™)2. Suppose that m is even and let g denote the inner automorphism of G
induced by the matrix 4 on [11, p. 3]. Then 7g = g7, g> = I; # g and Cy(78) =
Sp(V /k) where V /k is a nonsingular symplectic vector space of dimension m by [29,
Proposition 9.13). Suppose that 7 is even and let 6, = A"/2, 50 that of = ¢. Clearly A
and o, induce automorphisms, in the natural way, of G which we shall also denote
by A and o,. Then A"/ = o, # I; = of and 70, = ¢,, etc. Letting Cx(0,) = C,(0,)
= k,, we have C;(o,) = GL(m, ky) and Cp(o,) = SL(m, k). Also, by [29,
Proposition 8.8], we have C;(o,7) = U(V/k) and Cy(o,7) = SU(V/k) where V /k
is a nonsingular unitary vector space of dimension m.

LEMMA 4.29. Assume that n is even and let X = PSU(m, /q) for some integer
m =3, let U = Aut( X) and let B = Inn( X). Then the following two conditions hold.

(@) A =CA where € I A, ENA=1,A is the subgroup of A induced by Aut(k),
so that A =Au(k)=2Z2,%8 =C’, PU(m, q) =€ < A =PI'U(m,/q), and €/B
= Z(m,ﬁﬂ); and

(b) if @ denotes the unique involution in A, then $(€ @) decomposes under conjuga-
tion by € into one orbit if m is odd and into three orbits if m is even.

ProoF. Utilize the notation of Lemma 4.27 and set o, = X"/? and G = 0”(G, ).
Clearly o = 0, 70, = 0,7, (70,)> = o,

G,,, =PU(m,\q), G =G, =PSU(m, q)

and
<G, =PGL(m, q).
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Let A*, 7*, of denote the restrictions of A, 7 and o, to G,, .» respectively. Then
™ =0 = (A2 (A =1, G Lon(G) =1 and % = Aut(PSU(m, /7)) =

00,()\*) (cf. [34, Theorem 36]). Thus (a) holds. Clearly oy induces an endomor-
phism of the linear algebraic group G(7), (G(T)),o, 001,<T> and (b) follows as in
Lemma 4.27.

REMARK 4.30. Suppose that n is even and let o, = A"/? and k, = C,(0,). Let
(V/k, f) be a nonsingular unitary vector space of dimension m. Then [29, Proposi-
tion 8.8] implies that V/k has a basis B = {v,,...,0,} such that f(v,, v;) = §;; for
all 1 <i,j<m. Then W= 3L kyv, is a vector space over k, of dimension m and
(W/ko, flw,«,) 1s a nonsingular orthogonal vector space with D(W/k,) = (k3 )by
[29, Proposition 8.9]. If agz: U(V/k) - GL(m, k) denotes the monomorphism
defined via the basis B, then Im(ay) is invariant under oy, Im(ag),, = O(W/k,)
and ax(SU(V/k)),, = SO(W/k,). Next let N: k™ — kg denote the norm map, let
¢ € k™ be such that N(c) & (kg )* letv], =v,forall 1 <i<m — 1and v, = cv,,
let B' = {v},...,v,} and let W’ = 3™ kqv;. Then B’ is a basis of V/k such that
f(v),v)) =8 foralll <i,j<mwithi# morj+# mand f(v,,v,) = N(c), Wisa
vector space over k, of dimension m and (W’/kg, f|y /) is a nonsingular
orthongonal vector space with D(W /k,) = N(c)(kg )? by [29, Proposition 8.9]. If
ag: UWV/k) - GL(m, k) deotes the monomorphism defined via the basis B then
Im(ap) is invariant under o, Im(ag), = O(W'/ky) and ap(SU(V/k)), =
SO(W’ /k,). Next, suppose that m is also even. By [29, Proposition 9.14], V/k has a
basis B* = {w{"), w{?|1 <i<2%)} such that f(w{", w{?) = f(w{", w{?) =1 for all
I<i<Zand f(wO, w)=0ifi#jorr=swithl<i,j<Zandl<r,s<2.
Let d € k™ be such that o,(d) = —-d and set f* = df. Then W* = 3"/ 2k w" +
37/2kows? is a vector space over k,, of dimension m and (W*/ko, f* |y i) is a
nonsingular symplectic vector space by [29, Proposition 9.13]. If az.: U(V/k) —
GL(n, k) denotes the monomorphism defined via the bases B*, then Im(ag.) is
invariant under o, and Im(ag.),, = Sp(W*/ky) = ag(SU(V /k)),,.

Clearly, the following two results are easy consequences of the methods utilized in
this section.

LEMMA 4.31. let X = PSp(2m, q) for some integer m = 2, let A = Aut(X) and let
B = Inn( X). Then the following three conditions hold.

@A =B, A=CA where B1C A, C=0C2m, k), |€/B|=2,4ANE=1
and A is the subgroup of W induced by Aut(k), so that A = Aut(k) = Z

(b) if nis odd, then 0% (A) = €

() if n is even, then the unique involution T € A is such that Cy(7) = PGSp(2m, \/q)
and (% — €) = 7%,

LEMMA 4.32. Let X = PQ(m, q) for some odd integer m =7, let A = Aut( X) and
let B8 = Inn( X). Then the following three conditions hold.

@A =B, A=CA where BI1C I U, €=PGO(m, k)=S50(m,q), |€/B|
=2,A N € = 1andA is the subgroup of A induced by Aut(k), so that A = Aut(k) =
Z,;

n
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(b) if nis odd, then 0% (A) = €; and
() if n is even, then the unique involution T € A is such that Cy(7) = SO(m, /q)
and (A — €) = 7€,

LEMMA 4.33. Let X = PQ(2m, q, 1) for some integer m = 4, let A = Aut(X) and let
B = Inn( X). Then the following seven conditions hold.

(a) There is a normal subgroup € of U such that €' = B, € /B = E, if m is even and
C/B=Zy, .\ ifmisodd,

(b) A contains a subgroup A induced by Aut(k), so that A = Aut(k) = Z,;

(¢) Cy(A) contains a subgroup B such that BN A =1, |B|=2 if m+* 4 and
B=3,ifm=4and A =C(BX Awith@N(BXA)=1;

(d)CB/B=3,ifm=4,CB/B = D; if m is even or m is odd and g = 1 (mod 4)
and S B/B = E, if m is odd and ¢ = -1 (mod 4);

(e) if T € 9(B), then €{1)= PGO(2m, g, 1);

(f) if n is odd, then O* (%) = € B; and

(8) if n is even and @ denotes the unique involution of A and if 1 € 9(B), then

$(Cop) =¢°, $(Erp) = (19)¢, Cylp) =PQ(2m,/q,1)
and Cx(1@) = PQ(2m, /q,-1).

PROOF. Let & = D,,, let 7 denote the linear algebraic group obtained from the
triple (®, 7, K). Let B denote the group of automorphisms of G induced by the
group of graph automorphisms of @, as in Lemma 4.27. Thus B = 3, if m = 4 and
| B|=2 otherwise and [B,A\] =1 as endomorphisms of G. Also B and A leave
invariant G, and G = 0”(G,) = (G,) = X. Let \* = A |c and for b € B, let b* =
b|;. Then, as endomorphisms of G, | A* |= n, A* commutes with B* = (b* |b € B),
B* =B, Cg ayxp+(G) = 1= G, N ((A*)X B*) and A = G,({(A*) X B*) by [11,
Theorem 12.5.1]. Also from [8, Planche IV], we have I, /T,; = E, if m is even and
I, /T,y=2Z, if m is odd. Note that G, = G(H,) and G,/G=H,/(GN H,) =
Hom(T, /T,,, k™) by [11, Theorem 7.1.1]. Applying [35, Corollary 12.6(b)] and the
proofs of Lemmas 4.13, 4.15 and 4.17 (as in Lemma 4.25), we conclude that (a)-(d)
and (f) hold. Note that PTO(2m, ¢, 1) is isomorphic to a subgroup of A and if
| % |#| PTO(2m, q,1)|, then m =4 and |¥ |= 3| PTO2m, q,1)|. Thus we may
assume that n is even and ¢ = 1 (mod 4). Let ¢ = (A*)"/? and let T € §(B*). Then
(8) holds by Lemma 4.4 and [35, §11.6]. Note that (J(PQ(2m, g,1)))= PQ(2m, g, 1)
and that ($(PO(2m, q,1))) = PO(2m, q,1) and (9(PGOQ2m, q,1))) =
PGOQ2m, q,1) from §3D. Thus there is a monomorphism §: PGO(2m,q,1) -
C(r,e)=C UE7 U ECqp U Crp. Then §3D and (g) imply that §(PGO(2m, g, 1)) <
& (). Since | PGO(2m, q,1)|=| €(7)|, we have ( PGO(2m, q,1)) = €(7) and we
are done.

LEMMA 4.34. Assume that n is even and let X = PQ(2m, /q,-1) for some integer
m =4, let U = Aut( X) and let B = Inn( X). Then the following five conditions hold.

(a) There is a normal subgroup € of U such that € =B, |€ /B |= 2 if m is even,
and € /B = Zia ji+1) if mis odd,

(b) A contains a subgroup A induced by Aut(k), so that A = Aut(k) = Z ;
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C©A=CAandCNA=1;

(d)A = PTOQ2m, /q,-1); and

(€) if @ denotes the unique involution of A, then €{@)= PGO(2m, /q,-1) and ¢
inverts € /B.

ProOF. Utilize the notation of Lemma 4.33 but let € 4(B) and set 6, = A"/? and
G= OP(G, ,). Clearly o5 =0, TA =Ar and (10p)* = 0. Thus A and 7 leave
G.,o, invariant, G =(G,,) =X, olg, =7lg,, G%, = GH and GW /G =

H,./(GNH,,). Applymg [35, Corollary 12. 6(b)] and the proofs of Lemmas 4.13,
4.15 and 4. 17 we conclude that | Gu ./G|= 2 if mis even and G,,O,/G Zg g+ if

m is odd. Also T inverts Go ,/Gin all cases. Let A* = A |G . Then

n/2
(A9)"? = %I, = la,, * 1, Co,ay(G) =1

and
= G, (\*)

by [34, Theorem 36]. Thus (a)-(c) hold. Since PTO(2m, /g, -1) is isomorphic to a
subgroup of % and | PTO(2m, /q,-1)|=| A |, we have (d). Since

(§(PGo(2m,|q,-1))y= PGO(2m, q, -1)
by §3D, | PGO(2m, Jq,-1)|=2 |G_«w' and (G, o AA*))/G, , we have (e) also
and we are done.
Finally, we note that §§3A-3D and Lemmas and Remarks 4.27-4.34 give a
complete survey of the conjugacy classes of involutions in the automorphism groups
of the classical linear groups over finite fields of odd order that extends [12].

5. Additional preliminary results. In this section, we utilize our previous work to
derive further results that are required in our proofs of Theorems 1-3 (as presented
in §§6-8, respectively).

Throughout this section, p will denote an odd prime integer and g = p”" for some
positive integer n.

LEMMA 5.1. Let X be a simple Chevalley group over a finite field of order q. Let
z € §(X) and set H = C(z). Then the following seven conditions hold:

() every 2-component H is a Chevalley group over a finite field of order q, q*, q° or
q* and E(H) = L,(H);

(b) H/E(H) is solvable;

(c)ifqg=3,then O(H) = 1;

(d) if H possesses a solvable 2-component, then q = 3;

(e) H does not contain a 2-component J with z € J and J = Spin(7, p") for any
positive integer r;

(f) if g # 3, then S(H) = Cy(E(H)) and S(H) is cyclic or dihedral; and

(g) if g = 3 and E(H) denotes the product of all solvable 2-components of H, then
Cy(E(H)E(H)) is cyclic or dihedral.
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PRrOOF. Clearly [9, Lemma (c)] yields (c). Applying Lemmas 4.19-4.26, it follows
that we may assume that X is a classical linear group. Then Lemmas 3.1-3.2, [25,
Propositions 2-5] and §§3A-3D yield the result.

LEMMA 5.2. Let K be a 2-quasisimple group such that K/Z*(K) is a simple
Chevalley group over a finite field of order q. Then exactly one of the following three
conditions holds.

(a) There exists an involution t € K such that Cg(t) possesses an intrinsic 2-
component J with J /O(J ) = SL(2, q);

(b) K/O(K) = PSL(2, q); or

(©)p=3,nisodd, n=3and K/O(K) =>Gyq).

PrROOF. Let K be a counterexample of minimal order to this lemma. Then
O(K) =1 by Lemma 2.19 and hence Z*(K) = Z(K) = O,(K). Let L = Cov(K).
Then L = Cov(K/Z*(K)) by Corollary 2.7.1 and there is an epimorphism 7: L » K
such that O(L) < Ker(w) < Z(L). Now Lemmas 2.14, 2.27, 4.9, 4.10, 4.12-4.26 and
§8§3A-3D force the conclusion of this lemma.

LEMMA 5.3. Let K be a 2-quasisimple group such that K/Z*(K) is a simple
Chevalley group over a finite field of order q. Then exactly one of the following five
conditions holds.

(a) K/O(K) = PSL(2, 9);

(b)p =3,nisodd,n =3 and K/O(K) =2G,(q);

(c) g = 3 and K/O(K) is isomorphic to PSL(3, 3), PSU(3, 3), PSL(4, 3), PSU(4, 3),
PSp(4, 3), G,(3), P(7,3), PQ(8,3,1) or to PQ(8, 3,-1);

d)g=3,|Z%K)|,=2and K/Z*(K) = PSU(4, 3); or

(e) K contains an involution t such that Cx(t) possesses a perfect intrinsic 2-component

of N( p)-type.

PROOF. Let K be a counterexample of minimal order to this lemma. Then, as in
the previous lemma, we have O(K) = 1. Moreover, we must have ¢ = 3 by the
previous lemma. Suppose that K is simple. Then Lemmas 4.19-4.26, Lemma 2.14
and §§3A-3D yield a contradiction. Thus S(K) = Z(K) = O,(K) # 1. Since,
K = Cg(j) for any involution j € Z(K), we conclude that K is a proper quotient of
SL(2m, 3) or of SU(2m, 3) for some integer m = 2. However Lemma 2.14 and §§3A
and 3C yield a contradiction in this case also and we are done.

LEMMA 5.4. Let K be a 2-quasisimple group such that K/Z*(K) is isomorphic to a
simple Chevalley group over a finite field of order q. Assume that t is an involution in
Z*(K) and that K /Z*(K) is not isomorphic to PSL(2, q). Then there is an involution
z € K— Z*(K) such that Cy(z) possesses a 2-component J with z € Z(J) and
J/0(J) = SL(2, q) and at least one other 2-component L of N p)-type with L /Z*(L)
isomorphic to a Chevalley group over a finite field of order q. Moreover, if K is of
M ( p)-type, then L may be chosen to satisfy Z(L) N {t, tz} # @ also.

PROOF. As above, we may assume that O(K) = 1. Then §§3A-3C and Lemmas
2.14,2.27, 4.9, 4.10 and 4.12-4.18 imply the desired conclusions.
Our next result is clearly a consequence of §§3A and 3C.
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LEMMA 5.5. Let X = PSL(2m, q) or X = PSU(2m, q) for some positive integer
m=2. Let z€93(X), let H= Cy(z) and let L be a 2-component of H. Then the
following two conditions hold.

(a) If L is a 2-component of H, then either L is isomorphic to SL( j, q) or to SU(J, q)
for some integer j with2 < j <2m — 1 or L/Z(L) = PSL(m, ¢*); and

(b) if L is a perfect 2-component of H such that | Z*(L) |, | N(L/Z*(L))|,, then
L/Z(L) = PSL(m, q*) and L is the unique 2-component of H.

LEMMA 5.6. Let X be a simple Chevalley group over a finite field of characteristic p
such that |ON(X)| is even. Assume that X contains an involution z such that
H = Cy(z) contains distinct solvable or perfect 2-components J and L such that z € L
and J/O(J) =PSL(2,q). Then O(J) =1, |OM(X)|=2 and exactly one of the
following six conditions holds.

(a) X = PQ(7, q), and L = SL(2, q);

(b) X = PQ(2m + 1, q) for some integer m = 4, L = Q(2m — 2, q, 1) if m is odd or
if mis even and g =1 (mod4) and L = Q(2m — 2, q,-1) if m is even and q = -1
(mod 4);

(c)niseven, X = PQ(8, r,-1),r* = gand L = SL(2, r);

(d) n is even, X = PQ(2m, r,-1) for some even integer m =6, r* = q and L =
Q2m —4,r,1);

() n is even, X = PQ(2m, r, 1) for some odd integer m = 5,r*> = q, r = -1 (mod 4)
and L =QQ2m — 4, r,-1); or

() n is even, X = PQ(2m, r, -1) for some odd integer m = 5, r* = q, r = 1 (mod 4)
and L=Q2m — 4, r,1).

PrROOF. Applying Lemmas 2.27 and 4.24 and §§3A-3C, we conclude that X =
PQ(m, p*) for positive integers m and s with m = 7. Since (3, ¢) = PSL(2, ¢) and
(4, g,-1) = PSL(2, ¢2), it is easy to see that this result follows from §3D.

LEMMA 5.7. Let G be a group such that O%(G) is 2-quasisimple and
0%(G)/0(0*(G)) is a Chevalley group over a finite field of order q. Assume that G
contains an involution z such that H = Cg(z) possesses a solvable 2-component J such
that 0O%(J) is not contained in Z*(0*(G)). Then q =3, z & S(G), O(H) < O(G)
and 0*(G) N H contains a solvable 2-component J, such that J, < < H,J = O(H)J,
and 0*(J) = 0% (J)).

PROOF. Let G be a counterexample of minimal order to this result and set
M = 0%(G).

Suppose that z € Z*(M). Then K = C,,(z)* is a perfect 2-component of H
such that M = O(M)K = (O(G)K )™ by Lemma 2.15. Since [J, K] < O(K) <
O(M) by Lemma 2.11, we have [J, M] < O(M) and henceJ < S(G) = O(G)Z*(M)
by Lemma 2.13. Since O%(S(G)) = O%(Z*(M)), we have a contradiction. Thus
z & S(G) since Z¥(M) = S(G) N M.

Next observe that ¢ = 3 implies O(H) < O(G). To see this, set G= G/S(G).
Then Z € §(G), F*(G) = M = 0%(G) and O(C5(z)) = 1 by Lemma 2.13 and [9,
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Lemma (c)]. Since O(H )< O(C;(2)) by [18, Proposition 3.11], we have O(H) <
0*(S(G)) = O(G) and our assertion is proved.

Suppose that O(M) # 1. Set G = G/O(M). Then 0*(G) =M = M/O(M),
Z¥(M)=2Z*(M), z € 4G), H= Cz(z), O(H)=0(H) and J is a solvable 2-
component of H by Lemmas 2.2, 2.12, 2.16 and 2.17. Since | G|<| G|, we have
g =3, O(H) < 0(G) = O(G) and there is a solvable 2-component J, of C,,(z) such
that J = O(H)J, by Lemma 2.18. Hence O(M)J = O(M)O(H)J,. As Copp(2) <
O(H), we have J = O(H)J,. Also, since J, < < J, we have 0%(J) = 0%(J)).
Thus O(M) =1, S(G) = O(G) X Z(M) = Cz(M) and M is quasisimple.

Suppose that O(G) # 1. Set G = G/O(G). Then, as above, we conclude that
q=3 H= Ci(2), O(H) < O(G) and (O(G) X M) N H possess a solvable 2-
component ¢ such that J = O(H)$. As O(G) < H since z € M, we have O(H) =
O(G) and J =§. Thus J = O(G) X (M NJ). Set J,=MNJ. Then J, =M N
JQ QHJ S QAMNHJ QJ,0MNH)<O(H)N M= 1,J, is a solvable
2-component of M N H and 0?(J) = 0%(J,). Consequently O(G) = 1 and S(G)
=Z(M) = O,(M). B _

Suppose that S(G) # 1. Set G = G/S(M). Then O(C;(2))J is a solvable 2-
component of C5(Z) by Lemma 2.14 since O*(J) € S(G). Thus ¢ =3, O(H) = 1,
O(Cz(2)) < O(G) = 1 and J < M = 0%(G). Thus J is a solvable 2-component of
M N H. This contradiction implies that S(G) = 1, F*(G) = M and M is simple.

Let R=0%J). Then R < HNM, HNM < H, E(H)=L,(H) =
E(HN M) and [R, E(H)|=[R,E(HNM)|<[J,E(H)]=1 by Lemmas 2.11
and 5.1. Let T € Syl,(R), so that either T= Qg or T=FE, and z € T. Thus ¢ = 3
by Lemma 5.1(f) and O(H) =1 by [9, Lemma (c)]. Let E,(H N M) denote the
product of all solvable 2-components of H N M. Suppose that J is not a solvable
2-component of H N M. Then

[R,E(CHNM)E(HNM)]<[J,E(HNM)E(HN M)] =1

by Lemma 2.11 and Lemma 5.1(g) yields a contradiction since (z, R)<
Cynm(E(H N M)E(H N M)). Thus J < H N M which is also a contradiction and
the proof is complete.

LEMMA 5.8. Let W be a 4-subgroup of the group G and let W#* = {z|, z,, z5}.
Suppose that C;(W') contains solvable or perfect 2-components L, and L, such that
z,€L,, 2z, ELyand L,/O(L,) = SL(2, q). Assume that O(C;(z))L, is not subnor-
mal in Cy(z,) if L, is perfect and that O(C4(z,))O*(L,) is not subnormal in Cg(z,) if
L, is solvable. Then there is a unique perfect 2-component K of Cg(z,) such that
0%(L,) < K. Moreover the following two conditions hold.

@)z, & Z*(K), Ca(W) < Nyi(K),L, # L,,L, < Kifq+# 3and[K,0*(L))] = K
ifq=3;and

(b) if K/Z*(K) is a simple Chevalley group over a finite field of characteristic p,
then z, € Z(K ) and exactly one of the following four conditions holds:

(i) K/O(K) = Spin(7, q), Cx(z,) contains unique 2-components J,, J,, J; such that
2, €J,, J, Q Cx(W) and J,/O(J;) = SL(2, q) for i = 1,2,3. Also, for i € {1,2}, we
haveJ,= L,if g # 3 andJ, < L,= O(Co(W)J,if g = 3;
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(ii) K/O(K) = Spin(2m + 1, q) for some odd integer m = 5; W< L, Q C,(W),
L,/O(L,) = Spin(2(m — 1), q,1), L, is a 2-component of Cx(z,) and Cx(z,) con-
tains exactly one other 2-component J. Moreover, z, € J QA C;(W),J =L, if ¢+ 3
and L, = O(Co(W)H)J if g = 3;

(iii) n is even, K/O(K) = Spin(8, r,—1) where q=r% L, QA Cy(W), L, is a
2-component of Cx(z,) and Cx(z,) contains precisely two other 2-components J, and
Jy. Moreover J, Q C(W) and J,/O(J;) =SL(2, r) for i = 2,3 and, by appropriate
indexing, we may assume that z, € J,,z, € J;,J, = L, if r #+ 3 and L, = O(Cz(W))J,
ifr=3;o0r

(iv) n is even, K/O(K) = Spin(2m, r,-1) for some even integer m =6, q = r?
{L,, L,} is the set of 2-components of Cx(z,), L,/O(L,) = Spin(2(m — 2), r, 1),
W<L,C;(W)and L, Q C;(W).

PROOF. Set H = Cg(z,). As ON(Z(L))) = {z,), we have L, # L,. Clearly C;(W)
= Cy(z,) and Lemma 2.26 implies that O%(L,) is contained in a unique perfect
2-component K of H. Moreover Lemma 2.26 yields z, & Z*(K), C,(W) < Ngy(K),
Cx(z,) QS Co(W), L, <K if ¢ # 3 and [K,O0%(L,)] = K if ¢ = 3. Thus, for the
remainder of this proof, we may assume that K/Z*(K) is a simple Chevalley group
over a finite field of order ¢, = p” for some positive integer r. Recall that K/Z*(K)
is #-balanced when p = 3. Thus [1, Theorem 2(3)] and Lemma 2.25 imply that
O%*(L,)<K and z, € Z(K). Set M =KL,L,. Then M = 0¥(M)= K and
Cy(25) = Cx(z,)L,L,. Clearly O*(L,) and O%(L,) are not contained in Z*(K).
Also, if L; is solvable for i =1 or 2, then O(L;) = O(Cz(W)) < O(Cy(z,)) <
Cy(z,) S Q C;(W) and hence O(Cy(W)) = O(L;) = O(Cy(2,)). Consequently,
L, and L, are 2-components of Cy,(z,) and g, = 3 if L, or L, is solvable by Lemma
5.7. Also, Lemma 5.7 implies that Cx(z,) contains 2-components J, and J, such that
J; Q D Cyl(z;) 2 2 Ce(W), O¥(L)) = 0*(J)), J; = L; if L, is perfect and L; =
O(Cs(W)H))J, if L, is solvable for i=1 and 2. Since O(K)= O(H) N K and
z, & Z*(K), we may assume that G = H = K. Then Lemmas 2.16-2.18 and induc-
tion 1mp1y that we may assume that O(G) = 1 and hence that S(G) = Z(G) = Oy(G).
Set G = G/Z(G). Then |"JIL(G)| is even since z; € Z(G) and 7, € g(G) Clearly
L, N Z(G)={(z)), L,/O(L,)=PSL(2,q), Z, €L, and L, and L, are 2-
components of C;(z,) by Lemma 2.17. Then Lemma 5.6 implies that Z(G) = (z,)
and G satisfies one of conditions (a)-(f) of Lemma 5.6. Then Lemmas 4.10, 4.12,
4.14, 4.16, 4.17 and 4.18 combine to complete this proof.

6. A proof of Theorem 1. We begin this section with an extension of a portion of
[3, Corollary III] that is the solvable 2-component case of Theorem 1.

LEMMA 6.1. Let G be a group such that O*(G) is 2-quasisimple. Suppose that
2z € (G) and H = Cg4(z) possesses an intrinsic solvable 2-component J. Then the
following three conditions hold.

(a) O(H) < 0(G);

(b) there is an intrinsic solvable 2-component J, of H N O%(G) such that J, < < H,
0%(J) = 0%(J)) andJ = O(H)J,; and

(c) either G= O(G)O*(G) and G/O(G)=M,, or 0*(G)/O(0*(G)) is a
Chevalley group over a field of 3 elements.
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PROOF. Assume that G is a counterexample of minimal order to this lemma and
set M = O%(G). Suppose that z € Z*(M) = S(G) N M. Then K = C,,(z)*™ is a
perfect 2-component of H and M = O(M)K. Thus [J,M]< O(M) and J <
C;(M/O(M)) = S(G) = O(G)Z*(M) by Lemmas 2.11 and 2.3. AsJ = 0*(J), this
is impossible. Thus z & S(G) and S(G)NJ < 0(J).

Suppose that S(G) # 1 and set G = G/S(G). Then FXG)=M=M/Z*(M),
7€ 9J)and O(C( 7))J is a solvable 2-component of G by Lemmas 2.13 and 2.14.
Hence O( H) < O(C3(2)) = 1 by [18, Proposition 3.11],and G = M = M,, or Mis a
Chevalley group over a field of 3 elements. Thus O(H) < 0*(S(G)) = O(G) and
Lemma 5.7 implies that G = M = M,,. Then Z*(M) = O(M) since | M (M,,)|= 1
(cf. [13, §2)) and S(G) = O(G). Then G = O(G)M, M/O(M) = M, and J is the
unique 2-component of C;(z) = H by [4, Table 1]. Also we conclude that Cy(2)
contains a unique 2-component K from Lemma 2.18. Moreover K is solvable,
K< < H,z€KandJ = K. Hence O(G)J = O(G)K. Since Cp(z) = O(H), we
have J = O(H)K and 0% (J) = O%(K) by Lemma 2.1. Thus S(G) = 1 and F*(G)
= M is simple. Then [3, Corollary III; 4, Table 1] imply that G = M = M,, or M is
a Chevalley group over a finite field of odd order. Consequently Lemma 5.7 implies
G=M=M,, Thus O(H) =1 by [4, Table 1] and we have a contradiction, which
concludes our proof of this result.

We now commence to prove Theorem 1. Thus let G, L, z and p be as in the
hypotheses of Theorem 1 and assume that G is a counterexample of minimal order
to the theorem.

Thus L is perfect by Lemma 6.1, L < 0%*(G) = G and Lemmas 2.12-2.14 imply
that O(G) = 1. Consequently O,(G) = Z(G) = C;(0*(G)) = S(G) and z & Z(G)
since G # L.

Suppose that Z(G) # 1 and set G = G/Z(G). Then G is simple, |5|<|G|,
7 € 9(G) and L is an intrinsic perfect 2-component of Cz(Z) of 9( p)-type by
Lemmas 2.12 and 2.28. Then, by induction, G= M,, or G is isomorphic to a
Chevalley group over a finite field of characteristic p. Since | 9(M,,) |= 1, we have
a contradiction. Thus Z(G) = 1 and G is simple. Then [3, Corollary III] and Lemma
5.1 imply that G does not contain an involution u such that C;(u) contains an
intrinsic 2-component J with J /O(J) = SL(2, p¥) for some integer k = 1.

Suppose that W is a 4-subgroup of G with W* = {z,, z,, z;} and such that
Cs(W) contains 2-components L,, L, such that z, €L,, z, EL,, L,/O(L)) =
SL(2, p¥) for some integer k = 1 and L, is of 9N ( p)-type.

Applying Lemma 5.8, we obtain a unique perfect 2-component K of C;(z,) such
that 0O%(L,) <K, z, & Z*K), C,(W)<NyK), L, <K if p*#3 and
[K,0%(L,)] =K if p¥*=3. Set X=KL,. Then X < Cy(z)) <G, 0*(X) =
L, 2 9 Cx(z,) = Cx(23)Ly; 2 2 Ca(W), O(L,y) < O(Cx(2,)) < O(Ce(W)) and
hence L, is an intrinsic 2-component of Cy(z,) of I ( p)-type. We conclude, by
induction, that K/O(K) is a Chevalley group over a finite field of characteristic p or
X =O0(X)K and X/O(X) = K/O(K) = M,,. Also, when p* =3, K/O(K) is al-
ways @-balanced since M, is balanced. Then [1, Theorem 2(3)] and Lemma 2.25
imply that O%*(L,) < K. Thus z, € Z(K), K/Z*(K) is a simple Chevalley group
over a finite field of order p” for some integer n = 1 and Lemma 5.8 yields a great
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deal of information about this situation. In particular, L, /O(L,) is not isomorphic
to Spin(7, p") for any positive integer r.

Set H= C,(z), Q = C(L/O(L)) and H = H/O(H).

First suppose that L/O(L) = Spin(7, q), where ¢ = p” for some positive integer
n. Let 1 # B be a 2-subgroup of Q. Then Lemma 2.15 implies that J = C,(B)\®) =
0%(C,(B)) is a 2-component of C;(B(z)) with z €J, L = O(L)J and J/O(J) =
L/O(L). Hence J is contained in a unique 2-component K of C;(B) by Lemma
2.19. Thus J is a 2-component of Cx(z) and hence K = K/Z*(K) is a simple
Chevalley group over a finite field of characteristic p by induction since K < C;(B)
< G. Assume that z € Z*(K). Then 7 € §(J), J is a 2-component of Cg(Z) and
J/O(J) = Spin(7, q) since Z*(J) = O(H) X (z). Then Lemma 5.1(e) yields a
contradiction. Thus z € Z*(K), J = Cx(2)™), K = O(K)J = (O(C4(B))J ) and
K/O(K)=J/0(J)=L/O(L) = Spin(7, q) by Lemma 2.15. Let j € $(H — L) be
such that C,(j) contains an intrinsic 2-component J with J/O(J) = SL(2, p") for
some positive integer 7. Then Lemma 2.21 implies that [J, L] < O(L) sincej € J —
L. Hence j € J < Q and the remarks above with W = ( j, z) yield a contradiction.
Thus, if j € §(H — L), then Cy(j) does not contain an intrinsic 2-component J
with J/O(J) = SL(2, p") for some positive integer r. Hence, if K is a perfect
2-component of H with K # L and K/O(K) isomorphic to a Chevalley group over a
finite field of order ¢ = p° for some positive integers s, then K/O(K) = PSL(2, q)
and g # 3 or p=3, sis odd, s =3 and K/O(K) =2G,(q) by Lemma 5.2. Thus
L char H and Qchar H.

Let SESyl,(H). Thus SN Q<S, SNL<S, SNQNL=(z)<ZS) and
[S € Q,S N L]= 1. Note that all involutions of L — (z) are conjugate in L and
29N S # {z} by Glauberman’s Z*-theorem [15, Corollary 1].

Let 7 € 9(S — L) be such that C;(7) contains an intrinsic 2-component K with
K/O(K)=L/O(L). Suppose that C,(7) contains a perfect 2-component J such
that z € J and J/O(J) is isomorphic to one of the following groups: Spin(7, q),
SL(4, q), SU(4, q), SL(2, ¢°), Sp(4, q) or n is even and J /O(J ) = Spin(7, Vq)- Then
z € Z(J), J is a perfect 2-component of C;(7, z) and J is contained in a unique
perfect 2-component Y of C;(7) by Lemma 2.19. Since J is a perfect 2-component of
IM( p)-type of Cy(z), we conclude by induction that ¥/O(Y) is a Chevalley group
over a finite field of characteristic p. Clearly Y # K by Lemma 4.10 and hence
X = Cx(2)® = 0%(C(z2)) is a perfect 2-component of Cy;(1, z) = Cy(7) such
that 7 € X and X/O(X) = K/O(K) by Lemma 2.15. Then X is contained in a
unique perfect 2-component %Y of H. By induction, ¥ /O(%) is isomorphic to a
Chevalley group over a finite field characteristic of p. Hence ¥ = L, Y = O(%¥)X
and r € X <% = L. Since 7 & L, we have a contradiction. Moreover as Ci(L) =
Q < H, we may apply Lemmas 4.10-4.11 to the quotient H/Q to conclude that
=71, where 1, €SN Q) and 7, €J(S N L)— (z)). Then C,(7) =
O(C(TNC, ({7, 1)), O(C, (7)) < O(L) and C,({T, 1,)) contains a 2-component X
such that z € X and X/O(X) = SL(2, ¢) by Lemma 4.10. Thus C;({7, z)) contains
a 2-component J such that z €J and J/0O(J) = SL(2, q). Suppose that [K, z] <
O(K). Then Lemma 2.15 implies that Y = Cx(z)(*® = 0%(C(z)) is a 2-component
of C;({7, z)) such that r € Y and Y/O(Y) = L/O(L). Applying an observation
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above with W = (7, z) yields a contradiction. Thus [K, z] = K and Lemma 2.21
implies that z € K. Then Lemma 4.10 implies that C;({, z)) contains a 2-component
J, such that r € J; and J, /O(J;) = SL(2, q). As noted above, this implies that 7 € L
and we have a contradiction.

We have shown that if 7 € 4(S) is such that C;(7) contains an intrinsic 2-
component K such that K/O(K)=L/O(L), then 7€ L. Hence z°N S =
SNL),z°NH=9L),{(z°N HY=Land S € Syl,(G) since Z(S N L) = (z)
and S N L = (%(S N L)) by Lemma 4.10(a).

Let z, € (L — (z)) and let z, = z% for g € G. Then z, ~z,;z in L, z° N H® =
9(L®), (z°N H®)Y= L& and z ~ z;z in L% Hence Ny({z, z,))/Cs({z, z;)) = Z5.
Note that Q* Ci(z)) S Cii(7)) =Cy(z)), Q= O(H)Cy(z)), CAZ)) =Cy(z)),
LCy(z,) = H,|L:Cy(2))|,=2=|H:Cy(z))|,and (z, z,) is the center of a Sylow
2-subgroup of C;(z,) by Lemma 4.10. Also C,(z,) contains precisely three 2-
components J,, J,, J; such that z € J,, z; € J,, zz, € J;, O(J;) < O(L) and J;,/O(J,)
=SL(2,q) for i =1,2,3. Set E =(z,z,), M= C(E) = Cy(z)), $,=J; if g+ 3
and §, = O(M)J; if ¢ = 3 for i = 1,2,3. Thus, as C,(z,) < M, we have J; < M and
4,1is a 2-component of M for i = 1,2, 3. Suppose that H is a 2-component of M such
that z, € K and H/O(K) = SL(2, g). Then we conclude from Lemma 2.21 that
O¥*(K)<L.1f g+ 3, then X = 0%(K) < L and X = J, = ¢,. Suppose that g = 3
and set B= LK. Then X Q < Cyg(z,), O¥*(B) =L, Cy(z))=C(z))X I < M
and O(K) < O(Cg(z))) < O(M) = O(K) = 0(%,). Hence X = O(M)J, = ¢, by
Lemma 5.7. Thus  =¢, in all cases. It follows that §, < M for i = 1,2,3 and
N;({z, z,)) permutes ¢, §, and ¢, in the obvious way. Applying [18, Proposition
3.11] and Lemma 4.11(f) to the group H/Q, we conclude that O(C;(z,)) < 0 < M
= Cj(Z,) and hence O(M)= M N O(H). This implies that ¢, < M and ¢, =
SL(2, q) for i = 1,2,3. Also Ciz($,%,%,) = Q@ X(Z,) by Lemma 4.11(f). Moreover
Lemma 4.10 implies that one may choose z, such that z, € SN L, z§ = z,(z),
Cs(z)) =TESyl,(M), Z(TNL)=E< S and | S: T|= 2. By the Frattini argu-
ment, there is a 3-element # € Ny(T') N N;(E) such that = acts transitively on E*
andon$,,%,,%,. Thus

<S»"’><NG((S N Q) x <zl>) N Ng(T) N Ng(E)

since SN Q=TN Q. Suppose that SN Q@ # (z). Then (SN Q)N (SN Q)") #
1. Since S N Q N E = (z), we have

((SNQ))NE=(z") and (SNQ)N((SNQ)")NE=1.

Lett € 9((S N Q) N (SN Q))). Then X = C;(7) is a 2-component of C4(r, z)
such that S N L < X, Z*(X) = O(X) X (z) and X/O(X) = Spin(7, q). Also Y =
C,m(7)™ is a 2-component of C4(, z") such that E = (z, z")< Y, Z*(Y) = O(Y)
X (z"y and Y/O(Y) = Spin(7, q). A previous observation implies that (z, z")= E
< Z*(L,(Cg(7))). Since X < L,.(C;(1)), we have [ X, z"] < O(L,(Cz(T)) N X =
O(X). Hence z” € Z*(X) = O(X) X {z). Since z" # z, we conclude that S N Q =
(2),Q=O(H) X {z), H < O(H)Lby Lemma4.11,S’<SNLand "< TN L.

Applying [32, Theorem 3.4], we conclude that S N L # S. Then, Lemma 4.11
applied to H/Q = H/(Z) yields the existence of a normal subgroup ¥ of S such
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that SNL<V<S,|V/(SNL)|<2,§/Viscyclic, {v EV|v?E(z)} CSNL
and S # V if and only if there is an element x € S — L such that x> € (z). Since
2N S =9%S8NL), it follows that $(S) =4S N L)=:°N S by [20, Corollary
2.1.2]. Note that TN L € Syl(C,(z,)), Z(TNL)=E, QTNL)=TN L and
Q(SNL)y=8NLby Lemma 4.10. Hence T N L and S N L are weakly closed in
T and S with respect to G, respectively. Moreover, S = (S N L)T since H = LM,
SN LESyl,(L) and T € Syl,(M). Also [(SNL)/(TNL)|=2, TNL<S,
SNL<SESYl,(Ni(T) N NgE)), [S,T] <T[SNLT]<TNL and
(Ng(T)N NG(E))/Ny(T) = Z; imply that (S, 7 ) acts trivially on T/(T N L).

As H/(O(H)L) is abelian, we have O(H)LV <0 H. Suppose that Z(V') # (z).
Then V' # S N L and there is a subgroup F < Z(V') such that z € F and | F|= 4.
Since {v € V|v? € (z)} ={vE SN L|v* € (z)}, we have F<S N L. Since
Z(S N L) = {z), this is impossible. Thus Z(V) = (z). Also V=(S N LYXT N V),
sothat | V/(V N T)|=2and ¥V N T € Syl,(M N (O(H)LV)).

We shall now demonstrate the following condition.

HDUETEe((SNLY*, V-(SNL),S— V}and x €9, then x is conjugate in G
to an element y € J such that Q,((y)) = (z).

For, if x and 9 satisfy the hypotheses of (x), we may clearly assume that
Q,({x)) = (j) for some involution j € S — (z). Then j € S N L and by Lemma
4.10, there is an element g € H such that j8 =z, and x€ TN Y since T €
Syl,(Cy(2y))), TNV € SyL((O(H)LV) N Cy(z))) and T N L € Syl,(C,(z))).
However (S, 7)< N;(T) N Ni(T N L) and (S, =) acts trivially on T/(T N L) and
TNL<TNV<T. Thus there is an element 4 € (S, 7) such that j& = z and
x8" € 9. We have established condition (*) above.

Suppose that ¥ # S. Then there is an element x € S — V such that x? = z. By
[20, Corollary 2.1.2], x is conjugate in G to an element x, in V. By condition (x), x, is
conjugate in G to an element y € V such that y2 =z. Thus x ~y in G. Since
y?=2z=x2 we have x ~y in H. However x & O(H)LV < H and we have a
contradiction. Thus ¥ = Sand | S/(S N L)|= 2.

Choose an element x in S — (SN L) of minimal order. Since 9(S) =
9(SN L), |x|>2. Also ccg(x*) N S<SNL for all integers i = 1. Then [20,
Corollary 2.1.2] and condition (*) imply that there are elements w and v in ccl;(x)
such thatw € S — (SN L), v €SN Land ,({(w)) =((v)) =(z). Thusw~v
in H. Since w & O(H)L < H, we have a contradiction. We conclude that L/O(L)
is not isomorphic to Spin(7, q).

In the general case, Lemma 5.4 implies that there is an involution u € L — Z*(L)
such that C;(u) possesses 2-components J;, and J, such that ¥ € J,, J,/O(J,) =
SL(2, q), {z,uz} N J, # @, J, is of I(p)-type and J,/Z*(J,) is isomorphic to a
Chevalley group over a finite field of order q. Set W = (u, z), M = C;(W), $, = J;
if J; is perfect and ¢, = O(M)J; if J; is solvable for i = 1,2. Then §, and §, are
2-components of M, u€$,, 4$,/0(%,)=SL2,q), {z,uz}N$,# @, ¢, is of
M (p)-type and §,/Z*($,) = J,/Z*(J,). From an observation above, we conclude
that C;(u) contains a unique perfect 2-component K such that M < N;(K),
(0%(%)), O%($,))<K, u€ Z(K), z€ K— Z*(K) and K/Z*(K) is a simple
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Chevalley group over a finite field of characteristic p. Note that ¢,/0(%,) and
4,/0(%,) are both isomorphic to Chevalley groups over a finite field of order gq.
Consequently Lemma 5.8 implies that K/O(K) = Spin(2m + 1, q) for some odd
integer m = 3. From the preceding discussion and Lemma 5.8, we must have m = 5,
J,=%,<K, J,/O(J,) = Spin2(m — 1),q,1) and Z*(K) = O(K) X {u). Conse-
quently we may assume that L /O(L) = Spin(2r + 1, q) for some odd integer r = 5.
Thus Lemma 4.12 implies that we may assume that J, /O(J)) = J,/0(J,) = SL(2, q).
Since SL(2, ) and Spin(2(m — 1), g, 1) are not isomorphic, we have a contradiction
and our proof of Theorem 1 is complete.

7. A proof of Theorem 2. We now commence to prove Theorem 2. Thus let G, W,

#* =1z, 25,23}, L, Ly, p, and p, satisfy the hypotheses of Theorem 2 and
assume that G is a counterexample of minimal order to the theorem.

Assume that O(G) # 1. Set G = G/O(G). Then z, € L,, L, is a 2-component of
Cz(W) and L, is of 9N ( p,)-type by Lemmas 2.17 and 2.28. Hence, since | G |<| G|,
either (a) 02(L )=0%(L,) 2 <G or (b) O*(L) —02(L ) is contained in a
unique perfect 2-component K, of G such that K, = M,, or K, is isomorphic to a
perfect Chevalley group over a finite field of characteristic p; for i = 1 and 2. Let
i € {1,2}. Thus (b) holds and Lemma 2.18 yields a contradiction. Hence O(G) = 1.

Suppose that L, and L, are both solvable. Thus p;, = p, = 3. Set M = C;(z,) and
J, = O(M)O0*(L,). Thus O*(L,) < 0%(J,) by Lemma 2.9. Assume, for the mo-
ment, that J, 9 < M. Suppose that 0?(J,) < O)(G). Then O(M) = 1, E(G) =
E(M)and J, = O¥(L,) 9 < G by Lemma 2.23. Since 0%(J,) = 0?(L,), we have
O%(L,) © < G. Suppose that 0%(J,) € 0,(G). Then Lemmas 2.21 and 2.22 imply
that there is a unique perfect component K of G such that 0?(L,) < 0?(J,) < K.
Clearly J, < N;(K) and z; € Z(K). Then Lemma 6.1 applied to K/, implies that
K = M,, or K is a Chevalley group over a field of 3 elements. Now assume that J, is
not subnormal in M. Then Lemma 2.26 implies that O%(L,) is contained in a
unique perfect 2-component K of M. Also z, & Z*(K), K is Cu(W) = Cyp(z,)-
invariant and [K, O¥(L,)] = K. Applying Lemma 6.1 to KL,, we conclude that
K/O(K)=M,, or K/O(K) is a Chevalley group over a field of order 3. Then
Lemma 2.25 implies that O?(L,) < K and z, € K. Also Lemma 5.8(b) implies that
K is of 9M(3)-type. By Lemma 2.19, K is contained in a unique component K of G.
Then (O*(L;)|i = 1,2)< K and Theorem 1 eliminates this case. A similar argu-
ment applied to C;(z,) now yields a contradiction. Thus, by symmetry, we may
assume that L, is perfect.

Set M = C, (z,) and J, = O(M)L,. Assume, for the moment, that J, < < M.
Then there is a unique perfect component K, of G such that L, < J{®) < K. Then,
since J{® = O(J{*))L, is a 2-component of Cx(z,), Theorem 1 implies that K,isa
Chevalley group over a finite field of characteristic p,. Suppose that O%(L,) is
contained in a perfect 2-component K, of M = C;(z,). Then O*(L,) is not
contained in Z*(K,), K, is unique, K, = [L,(M), O*(L,)] and L, < Ny(K,).
Then Theorem 1 applied to the group K,L, implies that K,/O(K,) = M,, or
K,/0(K,) is isomorphic to a Chevalley group over a finite field of characteristic p,.
Suppose that K, < K. If z; € Z(K)), then K, = K, and p, = p, which is impossi-
ble. Thus z, & Z(K,). Set K, = K,/Z(K,). Then K, is a perfect 2-component of
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Cx(z)), py = p, and K, is a Chevalley group over a field of characteristic p, by
Lemma 5.1. As (O%(L,), 0?(L,))< K|, this is impossible. Hence, since z, € K|,
K, is contained in a unique component X of G with X # K| by Lemma 2.19. Since
[K,, X] =1, X = K, and again we have a contradiction. Consequently 0%*(L,) is
not contained in a perfect 2-component of M and hence L, is a solvable 2-component
of Cy(z,) = Cz(W) by Lemma 2.19. But then Lemmas 2.21-2.23 imply that
O(Cz(W)) < O(M), J, = O(M)L, is a solvable 2-component of M and [J,, X] =1
for all components X of G with X # K,. However 0O?(L,) < 0%*(J,) and J, <
N;(K,). Suppose that O%(J,) < K,. Then Lemma 5.7 applied to the group K,J,
implies that p, = 3 = p,. Since 0?(L,) < 0%(J,), this is impossible. Hence 0%(J,)
< K, and [1, Theorem 2(3)] implies that [0%(J,), E(G)] = 1. Consequently O%(J,)
< 0,(G) by Lemma 2.22. Then 0%*(L,) = 0%*(J,) < < G, which is impossible.
Consequently J; = O(M )L, is not subnormal in M.

Now Lemma 2.26 implies that O*(L,) is contained in a unique perfect 2-
component K of M. Also z, & Z*(K), Kis C;(W) = Cy(z,)-invariant and L, < K.
Thus z, € Z(K), K=K /Z*(K) is a Chevalley group over a field of characteristic
p, by Theorem 1 applied to KL,. Since L, is a perfect 2-component of Cg(Z,), we
have p, = p, by Lemma 5.1. Also K is contained in a unique component of X of G
by Lemma 2.19, L, < K if L, is perfect and Cy(z,) contains a solvable 2-component
X, such that L, = O(L,)X,, 0%(L,) = 0*(X,) and O(C(z,)) < O(K) if L, is
solvable by Lemma 5.7. Moreover, K is properly contained in a unique component X
of G. Then, Theorem 1 implies that K is not of 9M( p,)-type. Thus K = PSL(2r, q)
or K = PSU(2r, q) where r is an integer, r = 2 and ¢ = p{ for some positive integer
s. Note that L, is a perfect component of Cg(Z,) with | Z(Ly)|, #| @]L(L /Z(L IR
since z;, € Z(L,) N Z(K). Then Lemma 5.5 implies that Ll =L, and L,/Z(L )=
PSL(r, ¢*). Hence L, = L, by Lemma 2.18. Since L,/Z*(L,)=L,/Z(L,), the
Sylow 2-subgroups of Z*(L,) are cyclic. Hence z, = z,. ThlS contradiction com-
pletes our proof of Theorem 2.

We remark that Theorem 1 follows easily from Theorem 2. For, assume Theorem
2 and let G, z, L and p be as in the hypotheses of Theorem 1. Then 0?(G) is
2-quasisimple and, by Lemma 6.1, we may assume that L is perfect. Then, by
Lemma 5.4, there is an involution ¢t € L — Z*(L) such that C,(¢) contains 2-
components J and K of IM(p)-type with t €J and Z(K) N {z,z} # &. Set

= (t, z). Then Theorem 2 yields the conclusion of Theorem 1.

8. A proof of Theorem 3. We now present a proof of Theorem 3. Thus let G, W, L,
p and w satisfy the hypotheses of Theorem 3 and assume that G is a counterexample
to Theorem 3.

Set H = Cy(w), H= H/O(H) and K = (L">™) and let t € W — (w). Thus L
is a perfect 2-component of C,;(t) and K = KK, where K, and K, are distinct
2-components of H by Lemma 2.20. Also K=K, *K,, L= (kk!|k, €K,) and
the mapping k, - k,k! is a homomorphism of K, onto L by [17, Lemma 2.1].
Consequently K, and K, are of IN( p)-type by Lemma 2.28. Thus w &€ K, U K, by
Theorem 1.
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Suppose that K; N K, = 1. Then there is an involution k, € Z*(K,) such that
w = k ki, k, # ki, [k, ki] = 1 and it is clear from Lemma 2.15 that Theorem 2
applies to the 4-subgroup (k,, k! of G to yield a contradiction. Thus K, N _I? , # L

Hence there is an involution k € Z*(K,) N Z*(K,) N Cy(t). Since kk* = 1, we
conclude from Lemma 2.27 that

L/z*(L) =K,/Z*(K,) = K,/Z*(K,) = PQ(m, p", *1)

for some positive integers m, n with m even and m=8, |Z¥(L)|,=2<
| ML/ZHLY) |, = 4 =| ZX(K)) |, =| Z*(K;) |, and (k) € Syl(Z*(K)) N
Z*(Kz)) since w &€ K, U K,. Moreover there is an element », € Z*(K,) such that
v2 € (k), (v,, k)€ Syl,(Z*(K))), v{ # v, [v), »i] =1 and w = »»|. Set », = »],
M = Cy(k), M = M/(O(M) X (k)) and J, = CK,_(k)‘°°) OZ(CK'_(k)) fori=1,2.
Then Lemmas 2.14 and 2.15 imply that J, is a 2-component of C,(w) with
K, = O(K,)J, and (v,,k) € Syl,(Z*(J)) fori = 1,2, O(M) = 1,% € $(M) and J, is
a 2-component of C,;(W) such that (#,) € Syl,(Z*(J,)) and J,/Z*(J,) = L/Z*(L)
fori = 1,2. Alsow € (#,, #,)= E,. Set B = (»,, »,, k). Thus B is abelian of order
8, wEB, B =E, and [K;, B] < O(K;) and [J,, O(J,)] < O(J,) for i = 1,2. Set
;= G, (B)*™ = 0%*(C;(B)) for i = 1,2. Thus J, = O(J,)$, and §, is a 2-component
of C;(B) = Cy(B) such that Z*(§,) = 0(3 ) X (k, ;) for i = 1,2. Also g is a
2-component of C,;(B) such that Z*(} ) = 0(} ) X (%) and 3/2*(& ) =
$¢./Z*(%,) =L/Z*(L) for i = 1,2 by Lemmas 2.12 and 2.14. If §, < < M, then
O(M)§, <9 < M and Theorem 1 yields a contradiction for i =1 or 2. Thus
Theorem 2 and Lemmas 2.17-2.18 imply that ¢, is contained in a unique perfect
2-complete K of M such that H/O(K) is a Chevalley group over a finite field of
characteristic p. Since J, = O(J,)%,, we have J, < K. If [K,w] < Z*(K), then
H = O(H)J, and Theorem 1 yields a contradiction since k € K. Thus [K,w] =K
and w € B< L,(Cy(w)) < L,(M) so that w acts as an inner automorphism on
% = K/Z*(H). However J, is a perfect 2-component of Cs(w) such that J, /Z*(J,)
=L/Z*L) and K is not of G.)IL( p)-type by Theorem 1 since k € K. Consequently
we have K = PSL(2r, q) or K = PSU(2r, q) where r is an integer with r =2 and
q = p* for some positive integer s. Then Lemma 5.5 and the fact that J, /Z*(J)) =
PQ(m, p", 1) for positive integers m, n with m = 8 yield a contradiction. This
completes our proof of Theorem 3.
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