
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 272, Number 1, July 1982

FINITE GROUPS CONTAINING

AN INTRINSIC 2-COMPONENT OF CHEVALLEY TYPE

OVER A FIELD OF ODD ORDER

BY

MORTON E. HARRIS

Abstract. This paper extends the celebrated theorem of Aschbacher that classifies

all finite simple groups G containing a subgroup L at SL(2, q), q odd, such that L is

subnormal in the centralizer in G of its unique involution. Under the same embed-

ding assumptions, the main result of this work allows L to be almost any Chevalley

group over a field of odd order and determines the resulting simple groups G. The

results of this paper are an essential ingredient in the current classification of all

finite simple groups. Major sections are devoted to deriving various properties of

Chevalley groups that are required in the proofs of the three theorems of this paper.

These sections are of some independent interest.

1. Introduction. Let L he a finite group. If L — L' and L/Z(L) is simple, then L is

said to be quasisimple. If w is a set of prime integers, then Ov'(L) is the subgroup of

L generated by all 77-elements of L and Oj(L) is the maximal normal 77-subgroup of

L. Clearly 0"'(L) is the intersection of all normal subgroups M of L such that

I L/M\v — 1. Also O(L) = 02(L) is the maximal normal subgroup of L of odd

order. If L = L' and L/0(L) is quasisimple, then L is said to be 2-quasi-

simple.

Let G denote a finite group. A subnormal quasisimple subgroup of G is said to be

a component of G and a subnormal 2-quasisimple subgroup of G is said to be a

2-component of G. Clearly every component of G is a 2-component of G. Also E(G)

denotes the subgroup of G generated by all components of G, L2,(G) denotes the

subgroup of G generated by all 2-components of G, F*(G) — F(G)E(G) where F(G)

is the Fitting subgroup of G, S(G) denotes the maximal normal solvable subgroup of

G, 9H(G) denotes the Schur multiplier of G and Z*(G) denotes the full inverse

image in G of Z(G/0(G)). A subnormal subgroup L of G such that O(L) — 0(G)

and L/0(L) is isomorphic to PSL(2, 3) or to SL(2, 3) is called a solvable

2-component of G. As in [1] for simplicity of terminology, when it is not necessary to

distinguish between 2-components and solvable 2-components, we will refer to both

as 2-components. Also, when advantageous, we will refer to a 2-component which

definitely is 2-quasisimple as a perfect 2-component. If z is an involution of G and if

J isa 2-component of Cc(z) such that z E J, then J is said to be intrinsic in Cc(z).
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Finite simple Chevalley groups over finite fields of odd characteristic are listed in

[16, §17.1] and specifically exclude 2G2(3)' s PSL(2, 8). We shall usually adhere to

the notation of [16, §17.1]. Note that in the notation for the "twisted" groups, the

field order parameter is always the order of the smaller field involved in the

definition.

For any odd prime integer/;, a finite group G is said to be a Chevalley group over

a finite field of characteristic/? if

(a) G is quasisimple and G/Z(G) is a simple Chevalley group over a finite field of

characteristic/;; or

(b)p = 3 and G s SL(2, 3) or G s PSL(2, 3).

Unless mentioned to the contrary, all groups in this article are finite. As is

standard in the theory of finite groups, a simple finite group is nonabelian.

In order to state efficiently the main results of this paper, we introduce

Definition 1. Let p denote an odd prime integer. A finite group H will be said to

be of ty\l(p)-type if it satisfies the following three conditions.

(a) H is 2-quasisimple and H/Z*(H) is isomorphic to a simple Chevalley group

over a finite field of characteristic/?;

(b) | Z*(H) | is even; and

(c) if H/Z*(H) is isomorphic to PSL(2n, pr) or to PSU(2«, pr) for positive

integers n and r, then | Z*(H) \2 = | <9lL(H/Z*(H)) \2.

Also a finite group H such that H/0(H) s SL(2, 3) will be said to be of

<3H(3)-type.

Note that any finite 2-quasisimple group that satisfies conditions (a) and (b) and

that does not satisfy the hypotheses of condition (c) is of 91t(/?)-type.

We now state the three main results of this paper. The first result can be viewed as

an extension of [3, Corollary III].

Theorem 1. Let G be a finite group such that 02(G) is 2-quasisimple. Suppose that

z is an involution of G such that CG(z) contains an intrinsic solvable or perfect

2-component L such that L is of <31t(/?)-iy/?e for some odd prime integer p. Then

02(G)/0(02(G)) is isomorphic to a Chevalley group over a finite field of characteris-

tic p or G/0(G) is isomorphic to Mxx.

Theorem 2. Let W be a 4-subgroup of the finite group G and let W* = {zx, z2, z3).

Suppose that CC(W) contains solvable or perfect 2-components L, and L2 such that

z, E L, and L, is of ^Jii(p,)-type with p, an odd prime integer, for i — 1 and 2. Then

0(G)02(L,) is subnormal in G or Or(L¡) is contained in a unique perfect 2-component

K, of G such that K,/0(K¡) is isomorphic to Mxx or to a Chevalley group over a finite

field of characteristic p, for i — 1 and 2.

Theorem 3. Let G be a finite group such that F*(G) is simple. Suppose that G

contains a 4-subgroup W such that CC(W) contains a perfect 2-component L such that

L C\ W ¥= \ and L is ofGM,( p)-type for some odd prime integer p. Let w E (L n W)*.

Then (LLi<Cg(-w))) is a single 2-component of CG(w) or F*(G) is a simple Chevalley

group over a finite field of characteristic p.
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At this point, it is appropriate to discuss the significance of the hypotheses, the

methods of proof and the importance of these results.

Suppose that A is a 2-quasisimple group such that K/Z*(K) is a simple Chevalley

group over a finite field of odd prime characteristic p and assume also that there

does not exist an involution t in A such that CK(t) contains a perfect intrinsic

2-component of 9H(/?)-type. Then, by Lemma 5.3, K/0(K) is isomorphic to

(i) PSL(2,/?") for some positive integer n,

(ii) 2G2(32"+ ' ) for some positive integer n, or

(iii) a Chevalley group over a field of 3 elements and of Lie rank at most 4.

(In the cases of (iii) there is however an involution t in A such that CK(t) contains

an intrinsic solvable 2-component by Lemma 5.2.) Consequently perfect intrinsic

2-components of 91c(/?)-type of centralizers of involutions are, with these excep-

tions, available for such groups A. This observation and the results of this paper will

be used in an inductive setting in [26] to show that a proof of the Unbalanced Group

Conjecture and the fi(G)-Conjecture and the classification of all finite groups G with

F*(G) simple that contain an involution t such that CG(t) possesses a perfect

2-component A such that K/Z*(K) is isomorphic to any simple Chevalley group

over any finite field of odd characteristic depends on the solution of a few specific

"standard component problems" related to the exceptions (iii) above.

This paper and [26] include an alternate approach to the results of J. H. Walter in

[38] and [39],

Theorem 2 is a consequence of Theorem 1 and Theorem 3 is a consequence of

Theorems 1 and 2. The proof of Theorem 1 is basically a combination of the

fundamental results of M. Aschbacher in [3], of the ideas of M. Aschbacher, J. G.

Thompson and J. H. Walter contained in [37] and of the insights of the author that

accrued from the research for [24].

In order to illustrate the significance of condition (c) in the definition of groups of

91t.(/?)-type and with [3, Corollary III] in mind, consider a finite simple group G

with an involution / such that CG(t) possesses a perfect intrinsic 2-component A with

A/Z*(A) isomorphic to a simple Chevalley group over a finite field of order q = p"

with/? an odd prime and n a positive integer that is not PSL(2, q). By a fundamental

property of such a group A (cf. Lemma 5.4), there is an involution z in A such that

z ¥= t and CK(z) contains both an intrinsic 2-component J, with Jx/0(Jx) = SL(2, q)

and at least one other 2-component J2 of 91l(/?)-type. Set H — Cc(z). By [3,

Corollary III], we may assume that 0(H)Jx is not subnormal in H. Also assume for

simplicity of the present discussion that 0(H) = 1 and q ¥= 3; in which case both Jx

and J2 are perfect.

Suppose that A is of 91t(/?)-type. Then the critical condition (c) in the definition

of groups of (Dlt(/?)-type (cf. Lemma 5.4) enables one to choose J2 such that t or tz

lies in Z(J2). Straightforward arguments using L-Balance [18, Theorem 3.1] and

properties of 2-components imply that /, and J2 both he in the same intrinsic

component X of E(H) = L2,(H) with Z(X) n (t, z)= (z). Set X= X/Z(X).

Then J2 is an intrinsic 2-component of C%(t) of <3H(/?)-type and we conclude, by

induction, that A is a simple Chevalley group over a finite field of characteristic /?.
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Since /, at PSL(2, q) and Jx is a component of C^(t), it follows from the known

possibilities for X that X = Ptl(m, qx) with m > 1 and qx a power of p. By repeating

this argument, if necessary, we reduce to the case in which A/0(A) s Spin(7, q).

Suppose on the other hand, that A is not of 9H(/?)-type. In this case, if (/,, J2) is

contained in a single component X of E(H) (which is not even necessarily the case),

then J2 is neither of 91t(/?)-type in A= A/Z(A) nor intrinsic in C¿(t) since

J2 n (t, z)— (z) and | Z*(J2) \2 <| Z*(J2) \2. Consequently a wider inductive set-

ting seems required in order to identify X under these conditions and so the

treatment of this particular problem is postponed to [26].

Finally we remark that the bulk of the proof of Theorem 1 is devoted to treating

the cases in which L/Z*(L) is a simple Chevalley group over a field of 3 elements

and in which L/0(L) = Spin(7, q) for an odd prime power q.

In §2, we present various results that are required in our proofs of Theorems 1-3.

Some of these lemmas are of independent interest. In §3, we utilize [12] to survey the

conjugacy classes of involutions and semi-involutions and their centralizers in the

classical linear groups over finite fields of odd order. These results are required at

various points in our proofs in this paper, in [26] and are also of independent

interest. In §4, we apply the theory of linear algebraic groups to survey the

conjugacy classes of involutions and their centralizers in various Chevalley groups

and their automorphism groups over finite fields of odd order. In some of these

lemmas, since the machinery is available and for the sake of completeness, we derive

more information than is actually required in this paper. However all of these results

are required in [26] and are also of independent interest. In §5, we utilize our

previous work to derive additional results that are required in our proofs of

Theorems 1-3. Finally §§6-8 are devoted to proving Theorems 1-3, respectively.

Our notation is fairly standard and tends to follow the notation of [16]. In

particular, if A is a group and Y E X, then i(T) denotes the set of involutions of Y.

Also if A is a group such that (| X/X' \, |91t(A)|)= 1, then X has a universal

covering group and it is denoted by Cov( X) (cf. [21]).

Finally, the author would like to thank Professors Daniel Gorenstein and Michael

O'Nan of Rutgers University, Professor Nicholas Burgoyne of the University of

California at Santa Cruz and Professor Edward Cline of Clark University for

stimulating discussions about this paper and the referee for excellent suggestions.

2. Preliminary results. In this section, we present several lemmas that are required

at various points in our proofs of Theorems 1-3. Some of these results are of

independent interest.

The first lemma is well known and is presented without a (trivial) proof.

Lemma 2.1. Let it be a set of prime integers. Let G be a group and let N be a

subnormal subgroup of G such that \ G:N\m, = 1. Then 0"(G) = 0"( N) and 0„(G)
= OAO%G)) ■ 0,.(N).

Lemma 2.2. Let X and M be subgroups of the group G with M <G. Let tr be a set of

prime integers and set G — G/M. Then the following two conditions hold.

(¿)Ov(X)<0„(X);and

(b)0"(X)= CT(A).
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Proof. Clearly MO„(X) < MX and (MO„(X))/M s 0„(X)/(M n 0„(X)) is a

it-group; thus (a) holds. Also MO\X) < MA and (MA)/(A/0"(A)) s

X/(Q"(X)(M n A)) which is an epimorphic image of X/0"(X). Thus

0"( A) < 0"( A). On the other hand, if x is a w'-element of A, then x is a w'-element

of A and hence 0"( A)< 0"(A). Thus (b) also holds and we are done.

Lemma 2.3. Lei 7/ and A ¿>e subgroups of a group G and set M = (H, A). Ao/e ifta?

[#, A] < M (cf. [16, Theorem 2.2.1(iii)]) and set M = M/[H, A], Then the following

two conditions hold.

(a) M = H * K; and

(b)(KH)=[K,H]K<_ Mand(HK)=[K,H]H < M.

Proof. Since Â7= (H, K) and (#JÍ] = [i/, K]= I, (a) holds. For (b), note

that [A, H] « (A") and (A//>= (Ä") = <Ä>. Thus (b) also holds.

Lemma 2.4. Let G be a not necessarily finite group such that G — H X K for

subgroups H and K. Let a be an endomorphism of G such that a2 leaves H invariant

and Ha = A. Then a2 leaves K invariant, Ka < H and Cc(a) = {hk \ h E CH(a2)

andk = ha G A} s CH(a2).

Proof. Clearly A"2 = H"' < Ha = K, so that a2 leaves A invariant and Ka <

H"2 < H. Let h E H and k E A and suppose that (hk)a = hk. Then ha = k,

ka — h,ha = k" = h and the lemma follows.

Lemma 2.5. Let G be a not necessarily finite group with a nontrivial subgroup H of

index 2 such that H = Kx X K2 for subgroups A, and K2. Assume that A, and K2 are

conjugate in G. Then the following two conditions hold.

(a) There is an involution t E G — H such that K[ = K2 and CH(t) — (kxk\ \ kx E

Kx)^Kx;and

(h) á(G -H) = tG = t".

Proof. Let x E G - H. Then x2 = kxk2 where k, E K, for i - 1,2 and Af = A2.

Hence kx = k2, k2 = kx, (kxxx)2 — 1 and (a) holds. Assume that y = uxu2t E

i(G — H) where u, E K, for /' = 1,2. Then 1 — y2 = uxu2u\u2, hence u\ = u~2,

u2tu2x = u2uxt = y and (b) also holds.

Lemma 2.6. Let a be an endomorphism of the group G such that ga E gZ(G) for all

g E G. Then the following two conditions hold.

(a) a is the identity on G'\ and

(b) the function a: G -> Z(G) defined by ga = g'xga is a group homomorphism.

Proof. If g, h E G, then [g, h]a = [ga, ha] = [g, h]. Thus (a) holds. If g, h E G,

then (ghyx(gh)a = h~xg-xgaha = (g-xga)(h~xha). Thus (b) holds and we are done.

Lemma 2.7. Let G be a group such that (\ G/G' |, | 911(G) |) = 1. Let H be a

subgroupof G such that H< G' D Z(G)_and (| G/G' |, | H \) = I, let M = Cov(G)

and set G — G/H. Then (| G/G' \, \ 911(G) |) = 1 and M is a universal covering group

ofG.
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Proof. Let a: M -» G and m: G -» G denote the canonic epimorphisms. Let

ß = it o a. Thus /?: M -» G is an epimorphism, Ker(ß) = a~x(H) and Ker(a) s

911(G). Note that a~x(G') = M'Ker(a) = M' since Ker(a) « M' D Z(M). Thus

Ker(0) < M' and G/G' = G/G' s M/M'. Also o([M,Ker(j8)]) = [G, if] = 1, so

that [M, Ker(ß)] < Ker(a) < M' n Z(M). Fix fc G Ker(/3) and define t: M -

Ker(a) by mT = [m, k] for m EM. If m„ w2 G M, then

(mxm2Y = [mxm2, k] = [mx, k][mx, k, m2][m2, k] = [mx, k][m2, k] = m\m\

by [16, Lemma 2.2.4(i)] since [mx, k] E Z(M). Thus t is a homomorphism. Since

(|M/M'|, | Ker(a) |) = (| G/G' \, | 911(G) |)=1, we conclude that Im(r) = 1.

Hence k E Z(M) and ker(ß) < M' n Z(M). Now [21, Theorem 3(ii) and Corollary

1.2] imply that M is a covering group of G. Thus ker(/?) s 9H(G) by [21, Lemma

l(i)]. Since ker(a) < Ker(ß) and a(Ker(/?)) = H, it follows that Ker(0)/Ker(a) s

//. Thus | 9]t(G) | = | Ker(/?) | = | #11 Ker(a) | and | 911(G) | is relatively prime to

I G/G' | = | G/G' |. The result now follows from a celebrated result of I. Schur (cf.

[21, Theorem 3]).

Corollary 2.7.1. If G is a quasisimple group, then G is a homomorphic image of

Cov(G/Z(G)). If G is a 2-quasisimple group, then G/0(G) is a homomorphic image of

Cov(G/Z*(G)).

Lemma 2.8. SL(2,3) is a universal covering group of SL(2, 3) and of PSL(2,3).

Proof. By [28, V, Satz 25.5; 21, Theorem 3(i)], SL(2,3) is a universal covering

group of SL(2,3). Then Lemma 2.7 implies that SL(2,3) is a universal covering

group of PSL(2,3).

The next result is obvious.

Lemma 2.9. Suppose that L is a solvable 2-component of the group G. Then

O(L) = 0(G), 02(L) < 03(L) and 0(L)02'(L) <L= 0(L)03'(L) = 02(L).

Lemma 2.10. Let G be a group with O(G) = I, let H = 02(G), let N < Z(G) and

set G = G/N. Suppose that G is isomorphic to PSL(2,3) or SL(2,3). Then the

following two conditions hold.

(a) G = N * H and H is isomorphic to PSL(2,3) or to SL(2,3); and

(b) if G s SL(2,3), then H s SL(2,3).

Proof. Clearly Z(G) < 02(G) and (b) follows from (a). Also 02(G) = 02(G) = H

by Lemma 2.2. Thus G — N * H and we may assume that G = H — 02(G). Set

Q = 02(G) and observe that | G|= 3 | Q\ and G = Q(p) for some element p of

order 3. By [16, Theorem 5.3.5 and Theorem 2.2.1], we have Q = [Q, (p)]CQ(p) and

[Q,(p)]<G. Set G = G/[Q,(p)]. Then G = CQ(p)* (p)= 02(G) and hence

CQ(p) < [Q, (p)] — Q — G'. Consider the natural epimorphism tt: G -> G = G/N.

Since Ker(7r) = N =£ Z(G) n G', it follows from Lemma 2.8 and [21, Lemma l(ii)]

that G is a homomorphic image of SL(2,3). Thus (a) holds and we are done.
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Lemma 2.11. Let G be a group. Then the following six conditions hold.

(a) E(G) is the irredundant central product of the distinct perfect components of G

and J is a perfect component of G if and only if J is a minimal perfect normal subgroup

ofE(G);
(b)Z(E(G))^Z(F(G)) = CG(F*(G))and[S(G),E(G)]=l;

(c) every perfect 2-component is normal in L2,(G), L2,(G) is the irredundant product

of the distinct perfect 2-components of G and J is a perfect 2-component of G if and only

if J is a minimal perfect normal subgroup of L2,(G);

(d) if J is a perfect 2-component of G, then J = 02(0(G)J) = (0(G)J)(cc) and

[S(G), J] < O(J);
(e) if J and K are distinct perfect or solvable 2-components of G, then [J, K] =£ 0( J )

n 0(K);and

(f) if J and K are distinct perfect 2-components of G, then the following three

conditions are equivalent: (j) [J, K] = I, (ii) [/, A] < Z(J), (iii) [/, A] « Z(K).

Proof. Clearly (a) and (b) follow from [5, §1], (c)-(e) follow from [18, §2] and (f)

follows from Lemma 2.6(a).

Lemma 2.12. Let N be a normal subgroup of the group G, let H be a 2-quasisimple

subgroup of G such that H ^f N and set G = G/N. Then the following three conditions

hold.

(a) H is 2-quasisimple andH/Z*(H) ~ H/Z*(H);

(b)Q(H)= 0(H)\_and

(c)Z*(H)= Z*(H).

Proof. Clearly N n HjZ Z*(H), H' =~H'= H and H/Z*(H) = H/Z*(H) is

simple. Also O(H)^ 0(H) by Lemma 2.2(a). Thus Z*(H)^Z*(H) and both (a)

and (c) hold. Since Z*(H)/0(H) is a 2-group, (b) also holds and we are done.

Lemma 2.13. Let G be a group such that Or(G) is 2-quasisimple. Set M = O2 (G)

and G = G/S(G). Then the following three conditions hold.

(a) S(G) = 0(G)Z*(M) = CG(M/0(M)) = CG(M/Z*(M));
(h) Z*(M) = S(G) n M and 0\S(G)) = O(G); and

(c) M = 02(G) = F*(G) andM = M/Z*(M).

Proof. Clearly

S(G) n M = Z*(M)

and

0(G)Z*(M) < S(G) < CG(M/0(M)) = CG(M/Z*(M)).

Also   CG(M/0(M))C\M=Z*(M)<i_G,   \CG(M/0(M))/Z*(M)\   is  odd   and

[CG(M/0(M)\ Z*(M)] <0(M). Thus

CG(M/0(M)) = 0(G)Z*(M) = S(G)   and    02(S(G)) = 0(G).

Clearly M = O2'(G) = M/Z*(M) and C¿iM) = 1. Thus F*(G) = M and the proof

is complete.
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For the convenience of the reader, we restate [18, Theorem 3.1; 22, Proposition 1;

23, Proposition 1].

Lemma 2.14. Let G be a group, let M be a normal subgroup of G, let B be a

2-subgroup of G, let K be a 2-component of CG(B) and set G — G/M. Then the

following three conditions hold.

(a) L2,(NG(B)) = L2,(CG(B)) < L2,(G);

(b) if K is perfect, then A < M or K is a perfect 2-component of C¿t5); and

(c) if K is solvable, then 02(K) < M or 0(C¿XB))K is a solvable 2-component of

CöiB).

Lemma 2.15. Let K be a perfect 2-component of the group G and let B be a

2-subgroup of G such that [A, B] < Z*(K). Then [A, B] < 0(A), 02(CK(B)) =

CK(B)(X\ CK(Bfœ) is a perfect 2-component ofCG(B) such that

(00)

and

K= 0(K)(cK(B)<ao)) = (0(G){CK(B)(X)))

í/o(í)SQ(ür/o(Q(fir).

Proof. Set G = G/0(G). Then Ais a perfect component of G and [ K, B] =£ Z(A).

Thus [A, B] = 1 by Lemma 2.6(a) and hence A is a component of C(](B) and

[A, B] < O(A). Set A= 0(G)A. As A <l < X, we have 02(A) = A(oo) = A.

Hence

x=o(g)ck(b) = o(g){ck(bT)),

CX(B)(X) = CK(B)(X) = 02\Cx(B)) = 02\CK(B)),

K=0(K)CK(B)ix)

and CK(B)(,X) is a perfect 2-component of CG(B). Thus

^0(i)(Q(ßf») = {0(G)CK(BrT\

K/0(K)*Ç49y^/o(cK(Bf°>})

and we are done.

In the next three lemmas, let B denote a 2-subgroup of the group G, let N and H

be normal subgroups of the group G with N < Z*(H) and set G = G/N. Also let

M denote the full inverse image in H of C¡f(B). Thus M = Cfj(B), N < M -

[hEH\[h,B]<N], CH(B)SCG(B), CN(B)<CG(B) and CN(B) < CH(B) =

CM(B).

Lemma 2.16. The following four conditions hold.

(a)[H,N]^0(N)<G;

(h) 02(M) = 0(N)02(CH(B));

(c) 0(M) = 0(N)Q(C„(B)); and_

(d) 0(CH(B)) = 0(C¡¡(B)) = O(M).
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Proof. Clearly [H, N] < 0(H) D N = O(N) < G, so that (a) holds. Also

NCH(B) *zM = {h E H\[B, h] < N] and N has a normal 2-complement. Set G =

G/Q(N) and note that 02(M)=02(M), 02(M) = O^M), Ñ < 02(Z(H)) and

CH(B)— Cf¡(B) by [16, Theorem 6.2.2], Consequently, to prove (b), it suffices to

assume that 0(N)= 1. Let it E M with \m\ odd. Then «r stabilizes the chain

BN>N^l. Hence m E CH(BN) = CH(B) by [16, Theorem 5.3.2] and (b) holds.

Then

O(M) = 0(02(M)) = 0(N)0{02(CH(B))) = 0(N)0(C„(B))

and (c) holds. For (d), let L denote the inverse image in H of 0(C¡j(B)) = O(M).

Then NO(CH(B)) = NO(M) < L < M, \ L/N | is odd and [L, N] < O(N). By [16,

Theorem 7.4.3], we conclude that L = 0(L)N. Since [B,0(L)]^ O(L) n N =

O(N), we have O(L) = 0(N)C0(L)(B). As 0(C„(2?)) < C0(L)(B) < C„(5), we

have 0(CH(B)) — C0(L)(B). Thus (d) holds and we are done.

Lemma 2.17. Let K be a 2-component of CH(B). Then the following two conditions

hold.

(a)Kis a 2-component ofCjj(B) andK/Z*(K) s K/Z*(K); and

(h) K = CNK(BYX) if K is perfect and A = 02(CNK(B)) if K is solvable.

Proof. As K = K/(K n N) and A n N < Z*(A), we have

K/Z*(K)^K/Z*(K).

Clearly A < < CH(5) < CG(B), 02(K) 4 A and 0(C¡¡(B)) =0(CH(B))

< A if A is solvable. Thus (a) follows from Lemma 2.14. Set X= CNK(B) =

CN(B)K. Since CN(B) < CG(5), we have C^Ä) < Z*(CH(B)) and [A, Cw(fi)] <

0(A). Thus A(oo) = A if A is perfect. Suppose that A is solvable. Since

02(C^(fi)) = 0(CN(B)) < 0(C„(B)) < A - 02(A) < A,

we have A = 02( A) and we are done.

Lemma 2.18. Let J be a 2-component of C¡f(B) and let A denote the full inverse

image ofJin H. Set L = CK(B)ioo) if lis perfect and L = 02(CK(B)) if lis solvable.

Then the following four conditions hold.

(a)L = JandL/Z*(L)=J/Z*(J);
(b) L is a perfect 2-component of CH(B) if J is perfect;

(c) L is a solvable 2-component of CH(B) if J is solvable; and

(d) if | N | « odd, then L/0(L) s J/0(J), L = 02(CK(B)) if J is perfect and
02(CK(B)) < L = CK(B) if lis solvable.

Proof. Note that [A, B] « N < K < 5 M and A = N02(K) since 02(7) = J.

ThusO(A)<02(A) <  < 02(M) = 0(N)02(CH(B)) by Lemma 2.16. Hence

02(A) = 0(A)(02(A)n02(C„(5))),

[02(K),B]<0(N),       J= 02(K),

and

02(A) n Cc(5) - 02(A) n 02(CH(B)).
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Suppose that / is perfect and L = CK(B)(x). Then L < 02(CH(B)) n 02(A),

L S  < CM(B) = CH(B) < CG(B) and L = (02(CH(B)) n 02( A))(oo). Hence

7= 7(0C) = o2(A)no2(c//(ß))(0O) = L

and A = AL. Let Y denote the subgroup of L such that N Ci L < Y o L and

Y= O(L) and let T G Syl2(A n L). Then NHL = 0(N n L)T, | T/A n L | is

odd, [L, T] =s 0( A n L) < O(L) and T G Syl2(Y). Applying [16, Theorem 7.4.3],

we conclude that Y = 0(Y)T. Hence 0(Y) = O(L), [L, Y] < O(Y) < < CG(B)

and T < Z*(L) < S(L). As L/Y s 7/0(7), which is quasisimple, 5(L)/0(L) is a

2-group and [L, 5(L)] < T. Then L stabilizes the chain S(L) > Y > O(L). Since

L = 02(L), we have [L, S(L)] =£ O(L) by_[16, Theorem 5.3.2]. Thus L is 2-

quasisimple, S(L) = Z*(L) and L/Z*(L) s 7/Z*(7).

Suppose that 7 is solvable and L = O^C^iß)). Then L< < CM(B) =

CH(B) < CG(B), L < 02(A) n CG(B) = 02(K) n 02(CH(B)) < CK(B) and

hence

L=02(02(A)n02(C//(5))).

Thus 7= 02(7) =02(A)= 02(02(A)}= L. Let Y denote the subgroup of L

such that AnL<T<)L and y= O(L). Then, as above, Y < < Cc(5), T =

0(L)T where T G Syl2(A n L) and [L, 7]_< O(L). However O(L) < 0(CH(B))

= 0(CG(B)) n H *i CK(B) since _0(C¿(B))=0(CH(B))<J. Thus O(L) =

0(C„(B)). Note that L/l"s J/0(J), which is isomorphic to PSL(2,3) or SL(2,3).

Set L = L/0(L). Then 02(L) = 02(L) = L, f ^ 02(Z(L)) and Lemma 2.10

implies that L is isomorphic to PSL(2,3) or SL(2,3). Thus (a)-(c) hold.

For (d), assume that \N\ is odd. Then K = NL implies that CK(B) = CN(B)L.

Here both | CN(B)\_and \ CK(B)/L\ are odd. Thus L = 02(CK(B)) if 7is perfect

and L = CK(B) if / is solvable. Also L D N < O(L), J = L s L/(L n A) and (d)

is clear. The proof of this lemma is now complete.

Lemma 2.19. Let z be an involution of the group G and set H — CG(z). Let L be a

perfect 2-component of G and let J be a perfect 2-component of H. Then the following

three conditions hold:

(a) // Lz — L, then every perfect 2-component of CL(z) is a perfect 2-component of

H;

(h) if Lz ^ L, then CLV(z)(^ is a perfect 2-component of H,

0(CLU(z)) = 0(G) n (CLL,(z))

and CLL.-(z)(oo)/0(CLZ/(z)(oo)) is a homomorphic image ofL/0(L); and

(c) there is a perfect 2-component K of G such that either (i) Kz = K and J is a

perfect 2-component of CK(z), or (ii) Az ¥= KandJ = CKK!(z)(-0C). Also, in either case,

[J, KKZ] = [J, L2,(G)] = (JLr(G)y= KK:

Proof. Suppose that U = L. Then L < < G, CL(z) < < H and (a) holds.

Assume that U =t= L and set M = LU and G = G/0(G). Note that M < <G,

z E 5(G), H= C¿i¿) and L = 02(0(G)L) = (O(G)L)(0O) by Lemma 2.18. Clearly
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L and Lz are distinct components of G, M =LLZ = L*LZ < < G and CM(z) =

C^(z) < < H. Moreover L2,(Cj¿(z)) — C^z)(oo) and is a homomorphic image of

L s L/0(L) by [17, Lemma 2.1] and L2.(C^z)) is a component of //. Set

$= CM(z)(x\ Then |= C^J)(oo) and hence 0(0)} is the full inverse image

in G of L2,(C^(z)). Since £^ <(<KG)%) n Q(z) = C0(G)(z)£, we have £ =

(O(G)^n CG(z))_(oo). Thus % is a 2-component of # by Lemma 2.18. Also £ =

L2-(C¿(z)) and $_is quasisimple. Thus 0(Cj¡t(z)) <_C¿70), so that 0(C^(z)) *s

Z(M) = Z(L)Z(LZ) by [17, Lemma 2.2]. Since Z(L) is a 2-group, 0(CM(z)) =

0(G) n Cj^z) and (b) holds. Clearly the first part of (c) follows from (a), (b) and

[18, Lemma 2.18 and Corollary 3.2]. Also / = /' < AAZ < L2,(G), so that / <

[J, KKZ] < [J, L2,(G)] = (JL^G)) < KKZ by Lemma 2.3. Thus / <X =

[J, KKZ] < KKZ = Y and X is not solvable. Set Y= Y/S(Y). Clearly A < Y,
Kz < Y, 5(A) = Z*(A) = S(Y) n A, S(KZJ = Z*(KZ) = S(Y) n Az, A =

(5(y)A)(00), A" = (5(y)Az)(0O) and 1 ** A < Y = AA2" where A s K/Z*(K) and

Az - KZ/Z*(KZ) are simple. Suppose that AS(y) = AAZ. Then (AAz)(oo) = AAZ

= A(oo) < X and A = AAZ. Thus to conclude the proof of the lemma, it suffices to

assume that A^AZ and Y=K~XK*. Howeverjf X = K, then / = /<"><

(KS(Y)YX) = K and hence Az = A. Similarly A~= Az is impossible and the proof

of this lemma is complete.

Our next result sharpens [1, Theorem 2(2)].

Lemma 2.20. Let G be a group, let z E i(G) and let K be a 2-component of CG(z).

Suppose that L is a perfect 2-component of G such that Lz ¥= L. Then exactly one of the

following two conditions holds.

(a) [A, L] «S O(L) and [A, Lz] *S 0(L2); or

(b)K=CLV(zf»\

Proof. Assume that G is a counterexample of minimal order to the lemma.

Applying [1, Theorem 2] and Lemmas 2.17-2.19, we conclude that O(G) = 1,
G = (LLz)(0(CG(z)) X <z», G(oo) = E(G) = L*LZ, A< 02(G) = LLzO(CG(z))

= NG(L) = NG(LZ) and |G/02(G)|=2. Thus A is solvable by Lemma 2.19.

Clearly 02(G) = Z(L)* Z(LZ) = Z(E(G)) = CG(E(G)) and F*(G) = E(G). Set

J = C£(G)(z)<00) and G = G/02(G). Thus J is a perfect component of CG(z) with

O(J) = 1 by Lemma 2.19 and hence [A, J] = 1. But 7, = (xxz | x E L>< CE(G)(z)

and Jx is a homomorphic image of L. Thus Jx< J and hence [ A, /,] = 1. Now [2,

Lemma 2.5] implies that A = 02(A) < CG(E(G)) - 02(G). This contradiction

completes the proof.

The next result is a slight refinement of [1, Theorem 2(4)].

Lemma 2.21. Let z be an involution of the group G, let H = CG(z), let L be a

2-component of G and let A be an intrinsic 2-component of H = CG(z). Then

[A, L] *s O(L) or 02(K) < L.

Proof. By [1, Theorem 2(4)], we have [A, L] < 0(G) or 02(A) < L. Suppose

that [A, L] =£ 0(G) and 0(G) ¥= O(L). Then L is perfect and A < NG(L0(G)) <

NC(L) since L = 02(LO(G)). Hence [A, L] < O(G) D L = O(L) and we are done.
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The next lemma utilizes J. G. Thompson's concept of a critical subgroup of a

/?-group (cf. [16, pp. 185-186]) and extends [39, Lemma 4.1].

Lemma 2.22. Let G be a group with 0(G) = 1. Let z E 5(G) and let K be a solvable

2-component of CG(z). Then exactly one of the following two conditions holds:

(a) 02(A) < E(G), [02(K), E(G)] ¥> 1 and A =s CG(02(G)); or

(b) 02(K) = [CP(z), K]for every critical subgroup P of 02(G).

Proof. Let S G Syl2(A) and let p he a 3-element of NK(S) - O(K). Thus

0(XG(z))S<¡ K= 0(CG(z))(pK)= 0(CG(z))S(p).

By [16, Theorem 5.3.4], we have [0(CG(z)), 02(G)] = 1. First, we suppose that

02(A) < CG(E(G)). Then 02(G) * 1 since F*(G) = 02(G)E(G) and CG(F*(G))

— Z(02(G)). Let P be a critical subgroup of 02(G). Suppose that [P, (p)] — I. Then

p G CG(02(G)), A< CG(02(G)), Or(K) < CG(F*(G)) = Z(02(G)) and 02(A) <

Qx(Z(02(G))) n CG(z). Since Z(02(G)) < P, this is impossible. Thus [P, <p>] ̂  1.

Then [CP(z),(p)] =t 1 by [16, Theorem 5.3.4] and (b) holds by [23, Lemma 2.8].

Finally, suppose that [02(A), E(G)] ^ 1. Then 02(A) « E(G) by [1, Theorem 2]

and 02(A) 4 02(G). Hence [C0i(G)(z), A] = 1 by [23, Lemma 2.8] and

[02(G), 02(A)] = [02(G), A] = 1. Thus (a) holds and we are done.

Lemma 2.23. Let G be a group with 0(G) ~ 1. Let z G í(G) and let K be an

intrinsic solvable 2-component ofCG(z) such that 02(K) «£ 02(G). Then the following

three conditions hold:

(a)0(CG(z))=landE(G) = E(CG(z));

(b) K <  < G; and

(c) if M is a solvable or perfect 2-component of CG(z), then M <   < G.

Proof. Let P he a critical subgroup of 02(G) and let Q be the unique Sylow

2-subgroup of A. Then z£(2'</"< Z(P), P < CG(Z(P)) < Cc(z), L2,(CG(z)) =

E(G) = E(CG(z)) by Lemma 2.19 and [0(CG(z)\ P] = 1. Thus

0(CG(z)) < CG(02(G)E(G)) = Z(02(G)),

(a) holds and [A, E(G)] = 1. Let p he an element of order 3 in A. Thus p &

Cc(02(G)) and hence Q = [P, A] = [P, (p)] and [tix(Z(P)), p] = 1 by [23, Lemma

2.6], Hence [Z(P), (p)] = 1, A< CG(Z(P)) < CG(z) and (b) holds. For the proof

of (c), it suffices to consider a solvable 2-component M of CG(z) by (a). But then

[E(CG(z)), M] = [E(G), M] = 1 and 02(M) < P *z CG(z) by Lemma 2.22. Let R

be the unique Sylow 2-subgroup of M and let v be an element of M of order 3.

Suppose that R' =t I. Then [Z(P), (v)] = [Z(P), M] = 1 by [23, Lemma 2.6] and

hence M < CG(Z(P)) and M < <¡ G. Suppose that R' = I. Then P = R X CP(M)

by [23, Lemma 2.5] and hence P' < CP(M). Since zEF< Z(P), we have M <

CG(P') <CG(z) and CG(P') < G. Thus M <   < G and we are done.

Lemma 2.24. Let G be a group, let z E 5(G), let L be a 2-component of G such that

Lz ¥- L and let K be a 2-component of CG(z) such that [L, 02(K)] =£ O(L). Then

[L, K]<0(L).
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Proof. Assume that [L, K] 4 O(L). Since A = 02(A) if A is perfect, it follows

that A is solvable. Also [1, Theorem 2] implies that A *£ LLzO(CG(z)) and 02( A) <

LLZ. Thus A = (A n (LLz))0(CG(z)) and

02'(A) < CK(L/0(L)) n CK(Lz/0(Lz)) n (LLZ) = A n (Z*(L)Z*(LZ)).

It follows that a Sylow 2-subgroup of A is abelian and A acts trivially on

O2 (A)0( A)/0( A). This contradiction establishes the lemma.

Definition 2.1. A simple group A is said to be rebalanced if every group H such

that F*(H) = A has the property that (| 0(CH(t)) |, 3) = 1 for all t G í(H).

Note that if a simple group A is balanced (in the terminology of [7]) or is a simple

Chevalley group over a field of characteristic 3 (cf. [9, Lemma]), then A is

^-balanced.

The next result was suggested by situations arising in [24],

Lemma 2.25. Let G be a group and let z E 5(G). Let K be a solvable 2-component of

CG(z) and let L be a perfect 2-component of G. Suppose that the simple group

L/Z*(L) is 6-balanced. Also suppose that A < NG(L), [A, 02(A)] < O(L) and that

Or(K) is not contained in L. Then 03(K) < CK(L/0(L)).

Proof. By Lemma 2.24, we may assume that Lz = L. Set H = L(K(z)). Then

CH(z) < < CG(z), 0(CH(z)) < 0(CG(z)) = 0(A) and A is a solvable 2-component

of CH(z). Thus we may assume that G — H = L(A(z)).

Suppose that O(G) = 1. Clearly 02(A) < CG(L) = CG(L/Z(L)) = 5(G) and

5(G) n L = Z(L). If z G 5(G), then L is a perfect 2-component of CG(z) and

hence [L, K] = 1. Thus we may assume that z £ 5(G). Set G = G/5(G). Then

F*(G) — Lis simple, z G 5(G) and | A | is odd. The inverse image of C¿(z) in G is

NG((z)S(G)) = NL((z)Z(L))K(z)= NG((z)Z(L)).

Also [Z(L), 02(K)0(K)] = 1 and [CZ(L)(z), A] = 1 since 02(A) 4 Z(L) by [23,

Lemma 2.8]. Hence [Z(L), K] = 1 by [16, Theorem 5.3.4]. This implies that

A^ < CG«z)Z(L)) < AG«z>Z(L)). Thus 5(G)A < < AG«z>5(G)) and A<

0(C¿tz)) since | K\ is odd. Since L is ö-balanced, it follows that 03(A) « 5(G) and

we are done in this case.

Suppose that 0(G) ¥-1 and set G = G/0(G). Then z G 5(G), Lisa perfect

2-component of G and is a solvable 2-component of C¿\z) = CG(z) by Lemma 2.17.

Since 02(K) = 02(K), 03(K) = 03'(K) and | 0(G)Z*(L)/Z*(L) | is odd, it is

clear that the lemma follows from the above.

The next result was suggested by the proof of [24, Theorem 1].

Lemma 2.26. Let G be a group and let z E 5(G). Suppose that CG(z) contains

2-components L, and L2 with z E L2. Assume also that 0(G)Lx is not subnormal in G

if Lx is perfect and that 0(G)03(Lx) is not subnormal in G if Lx is solvable. Then

Or(L2) is contained in a unique perfect 2-component K of G. Also z £ Z*(K), A is

CG(z)-invariant, Lx < A if Lx is perfect and [A, L3(LX)] = A if Lx is solvable.
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Proof. First suppose that 0(G) = 1. Clearly 02(L2) < E(G) and [L2,02(G)]= I

by Lemmas 2.22 and 2.23. If z G Z(E(G)), then L2.(CG(z)) = E(CG(z)) = E(G), Lx

is solvable and L, < CG(E(G)) < CG(z). Since Lx is not subnormal in CG(E(G)), it

follows that z £ Z(E(G)). Hence [1, Theorem 2(4)] implies that there is a unique

perfect component A of G such that 02(L2) < A. Clearly z & Z(K) and CG(z)

normalizes A. If [L,, A] = 1, then L, < CG(E(G)) < CG(z) since all components of

E(G) with the exception of A are components of CG(z) by Lemma 2.19. Since L, is

not subnormal in CG(E(G)), we have [L,, A] = A. Thus L, *£ A if Lx is perfect by

Lemma 2.19. Suppose that L, is solvable and that [A, 03(LX)] - 1. Then 03(L,) <

CG(E(G)) < CG(z) and 03(L,)<1 < G, a contradiction.Thus 0(G) ¥= 1. Set

G = G/0(G) and let /, = 0(G)L, for /' = 1,2. Thus 7, and 72 are 2-components of

C¿Xz), z E 5(72), 7, is not subnormal in G if 7, is perfect and

03(7,) = Oy(Lx) = Q3'(LX) is not subnormal in G if 7, is solvable. Hence, by the

above, O2 (J2) = O2(L2) — O2 (L2) is contained in a unique perfect component A

of G, etc. Let A, denote the inverse image of A in G and set A = K\x). Then

A = 02(A,) is a perfect 2-component of G, A, - 0(G)A, 02(L2) < 02(72) *£ A,

z £ Z*(A), A is CG(z) invariant and is the unique perfect 2-component of G that

contains 02(L2). If L, is perfect, then Lx < Kx and hence L < A = A,(oo). Suppose

that L, is solvable. Then A~ = [03(L,X A~] = [Oy(Lx), A] and hence [03(L,), A]

= A. The proof of this lemma is now complete.

The next result of this section is a compilation of results of various authors. For

references, see [13, §2; 19].

Lemma 2.27. Let X be a simple Chevalley group over a finite field of order q where

q = p" for some odd prime p and positive integer n. Then X has a universal covering

group, Cov(A), and 5(Cov(A)) = Z(Cov(A)). Set Y = Cov(A)/0(Cov(A)). Then

exactly one of the following 16 conditions holds.

(1) As PSL(w, q) s.Am_x(q) for some integer m^2 with (m,q) ¥= (2,3);

Z(SL(w, q)) s Z(mq_X); if (m, q) ¥= (2,9), then Cov(A) s SL(m, q) and if (m, q)

= (2,9), then 0(Cov(X)) s Z3 and Y = SL(2,9);

(2) A s PSU(w, q) s 2Am_x(q)for some integer m>3; Z(SU(m, q)) s Z{m<J+i);

if (m, q) ¥= (4,3), then Cov( A) s SU(m, q) and if (m, q) = (4,3), then 0(Cov( A))

= Z3XZ3 and Y s SU(4,3);

(3) X síPSo(2m, q) sí Cm(q) for some integer m>2; Z(Sp(2w, q)) =? Z2 and

Cov(A)sSp(2m,#);

(4) A s Pü(2m + \,q)ss Bm(q) for some integer m^3; Z(Spin(2w + 1, q)) =

Z2; if (2m + 1, q) ^ (7,3), then Cov( A) a Spin(2w + 1, q) and if (2m + 1, q) =
(7,3), then 0(Cov( A)) s Z3 and Y s Spin(7,3);

(5) X = PQ(2m, q,l) = Dm(q)for some even integer m s* 4, Z(Spin(4w, q, 1)) s E4

and Cov( A) = Spin(4w, q, 1);

(6) A = PQ,(2m, q, -1) s 2Dm(q) for some even integer m s» 4, Z(Spin(2w, q, -1))

s Z2 andCov(X) s Spin(2w, ¿¡r, -1);

(7) A = i>ß(2w, <7,1) s Dm(q) for some odd integer m > 5; Z(Spin(2w, q, 1)) s

Z(4,q-\) andCov(X) s Spin(2m, q, 1);
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(8) A = PSl(2m, q,-l) = 2Dm(q) for some odd integer m > 5, Z(Spin(2w, q, -I))

= Z(4i+1) and Cov(A) s Spin(2/n, </,-1);

(9) A = £6(<?) anrf Z(Cov( A)) s Z(Xq_ f);

(10) A s £7(?) W Z(Cov( A)) » Z2;

(ll)As£8(?)SCov(A);

(12)AsF4(^) = Cov(A);

(13) A s G2(4); i/i ^ 3, then X = Cov( A) and if q = 3, then Z(Cov(A)) s Z3;

(l4)X^3D4(q)^Cov(X);

(15) X s 2£6(9) W Z(Cov( A)) =(3,q+ 1); or

(16) p = 3,n is odd, n>3andXs 2G2(q) ~ Cov( A).

Lemma 2.28. Let N be a normal subgroup of the group G, let H be a subgroup of G

that is ofGJl(p)-type and set G = G/N. Then %Z*(H)) E N or H is ofGK(p)-type.

Proof. Assume that t E <5(Z*(H)) - N. Suppose that H/0(H) s SL(2,3). Then

N n H <± H and hence N n H < O(H) and H/0(H) s SL(2,3). Thus we may

assume that H is 2-quasisimple. Then, by Lemma 2.12, H is 2-quasisimple,

H/Z*(H) s H/Z*(H), te Z*(H) =Z*(H) and ¡E 5(G). Suppose that H is not

of 91L(/?)-type. Then H/Z*(H) is isomorphic to PSL(2«, pr) or PSU(2«, pr) for

some positive integers n and r, Z*(H) has cyclic Sylow 2-subgroups and \Z*(H)\2

<\Z*(H)\2=\G3t(H/Z*(H))\2. AsZ*(H)(l N < Z*(H), \Z*(H)DN\ is even

and t & N, we have a contradiction and the lemma holds.

3. Centralizers of involutions and semi-involutions in the classical linear groups over

finite fields of odd characteristic. In this section, we shall review the survey of the

conjugacy classes of involutions and semi-involutions and their centralizers in the

classical linear groups over finite fields of odd order as presented in [12, Chapitre I,

§§3, 4, 13 and 14] and add a few observations that we shall require at various points

in the proofs in this paper.

Throughout this section, let k denote a finite field of order q—p" where p is an

odd prime integer and « is a positive integer. Also let F be a finite dimensional

vector space over k with dim(V/k) = m.

Suppose that m = 1. Then Gh(V/k) = (\Iy\\ E kx )= kx , SL(V/k) = 1 and

consequently we shall usually assume that m > 1.

Before discussing the classical linear groups, we present two lemmas that we shall

need in subsequent discussions.

Lemma 3.1. Suppose that m > 1. Let H be a finite group and let G be a subgroup of

index 2 of H such that G a GL(V/k); thus G' = SL(V/k) and Z(G) = kx . Assume

that there is an element t G H — G such that t2 E Z(G) and r acting by conjugation

on G induces transpose-inverse on G with respect to the basis B — {vx,... ,vm] of V/k.

Then the following two conditions hold.

(a) If m — 2 and a G G has matrix (_?¿) with respect to B, then CH(G') =

(Z(G), «t> and(ar)2 = (-Iv)t2; and

(h) ifm>2, then CH(G') = Z(G).



16 M. E. HARRIS

Proof. Let M = CH(G'). By [25, Proposition 2], we have M n G = CG(G') =

Z(G) = (\ly\\ E kx >, so that | M/Z(G) |< 2. First suppose that m = 2 and let a

be as in (a). Then at G M — Z(G) and it is clear that (a) holds. Consequently we

may suppose that m > 2 and | M/Z(G) | = 2. Thus there is an element ß E G such

that ßj E M.

For each integer 1 <¡ / < m, let u, denote the unique element of G such that:

u,(Vj) = Vj iîj g {(, / + 1}, «,(«,) = t>(+, and u,(v,+ x) = -v,. Clearly (u, \V*mi<

m)< G' n Cg(t) < Cg(t, ¿8). Also, for each 1 < i < m, let t, denote the unique

element of G such that t,(Vj) = Vj if/ £ {/', í + 1}, t,(v¡) = -v, and f;(u/+1) = -vi+x.

Clearly i,T = r, G G' for all 1 < i < m and hence ß E CG((t, 11 < í < m)) =

fi™ , StabG(A:ü,). Since ¿S G CG«w, | 1 < i < m)), we conclude that ß E Z(G) and

hence M = (Z(G), t). Since t £ CH(G'), we have a contradiction and the proof of

this lemma is complete.

Lemma 3.2. Suppose that m > 1 and n is even. Let H be a finite group and let G be a

subgroup of index 2 of H such that G = Gh(V/k); thus G' = SL(V/k) and Z(G) =

kx . Let a G 5(Aut(fc)) and suppose that there is an element r E H — G such that

t2 G Z(G) and t acting by conjugation on G induces a unitary automorphism (trans-

pose-inverse-automorphism induced by a) on G with respect to the basis B = [vx,.. .,vm]

of V/k. Then CH(G') = Z(G).

Proof. Let M = CH(G'), so that M n G = CG(G') = Z(G) = (XIV\ a G kx >

and | M/Z(G) \ < 2. Assume that there is an element ß E G such that ßr E M.

For each integer 1 =£ i < m, let u, and t, he as in Lemma 3.1. First suppose that

m > 2. Then, as in Lemma 3.1, it follows that ß G Z(G) and M = (Z(G), t). Since

t £ CH(G') we have a contradiction. Consequently, m = 2. Let Ck(a) = fc0, g0 =

| kQ | and let N: kx -» /cj denote the norm mapping of A://c0. Clearly ql — q and

| Ker( A) | = ^0 + 1 by [28, Lemma 8.5]. Hence there is an element c G Ker(N) with

c £ (1,-1}. Let x E G be such that ^(ti,) = cvx and x(u2) = c~'t>2. Then x E G'

and xT = x. Hence ß G CG(;c) = StabG(A:t5i) n StabG(A:u2). On the other hand,

ß G CG(ux) and hence ß E Z(G). Thus M = (Z(G), t) and since t ^ CH(G'), we

have a contradiction to complete the proof.

3A. The general linear groups. Let G = GL(V/k), H = SL(V/k) and Z = Z(G)

= (\IV\X Ekx). Also set G=G/Z. Clearly_G/H ^ kx , G'= H, ZHH =

(\Iv\\E_kx and A" = l>»Z(i_I>m) and G/H = kx/((kx)m) since the inverse

image of // in G is Z * // = (x E G \ dett» G (A:x )m).

Let u G G — Z be such that m2 = ylv for some y G kx , so that | ü \ — 2. Let

M = NG((u, Z». Thus M is the inverse image in G of C^m). Setting U — (u, Z),

we have M = AG(Í/), Í7 is abelian and CG(U) = CG(u). Clearly U =ï Z * H if and

only if | (Í/ n //)/(Z n #) | = 2 and [12,1, §4(4)] implies that | M/CG(U) \ < 2.

First assume that U is not cyclic. Then U = Z X (w) where w G 5(G — Z),

w * -Iv, CG(U) = Cc(w), wM Ç (w,(-V)w} and | wM\ = \ M/CG(U) |< 2. Also as

in [12,1, §§3 and 4], we have K = V+ @V~ where

F+ = CV(w)    and    V = {v E V\ w(v) = -v} = [V, w].
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Also 1 < dim(V+/k) < m, det(w) = (_l)*"Çr/*) and U ̂  Z * Ê if and only if

dim(V~/k) is odd and -1 g (A:x )m. Clearly G = HCG(w), wG = wH and there is an

isomorphism a: CG(U) -* GL(V+/k) X GL(V~/k) with a(Z) = <(\ V . A V) I A
G Â:x > and a(w) G Z(GL(V~/k)). Clearly

(GL(V+/k) X GL(K-/A:))' = SL(V+/k) X SL(V~/k)

and hence

a(cCc(U)(CG(U)')) = ((\Iy+ ,ÔIv-)\\,8 E kx )^ kx Xkx

by [25, Proposition 2]. Suppose that | M/CG(U) |'= 2. Then w ~ (-/K)w in M and

hence there is an involution g E M such that g: Cv(w) <-» [F, w], wg = (-/K)w and

M = Cc(£/)<g>= GL(F+/A:)wrZ2.

The above discussion shows that if x, y E 5(G), then the following three condi-

tions are equivalent: (i) x ~y in G; (ii) dim(Cv(x)/k) — dim(Cv(y)/k); (iii) x ~y

via H. Also for any integer/? with 1 < p < m, there is an involution z EG — Z such

thatdim(CK(z)/A:) = /?.

Next assume that U is cyclic. Then U= (Z,w) where w2 = ylv for some

y G kx —(kx )2. Hence A2 — y is irreducible in the polynomial ring k[X] and is the

minimal polynomial of w. Thus m is even, (A2 —y)m/2 is the characteristic

polynomial of w and det(w) = (-y)m/2. Consequently U ^ Z * H if and only if

(-y)m/2 g (kx)m. As in [12, I, §3], let A be a quadratic extension field of k such

that A = k(p) where p2 = y, so that (1, p) is a basis of K/k. As in [12, I, §3], for

v E V and a, b E k, set t>(a + bp) = va + w(v)b. Then V becomes a vector space

over A of dimension f and CG((7) = GL(F/A). Let B = {vx,..-,vm,2] he a basis

of V/K and let Gal(A//c) = (t), so that Bx = [vx,. ..,vm/2, vxp,...,vm/2p) is a

basis of V/k, for any 1 < i < f, w(v¡) = v,p and w(ü,p) = v,y, t G Aut(&), | t | = 2,

t(p) = -p and Ck(t) = k. For any v = S^2 t>,¿, with d, E K for !'"<*<$, set

x(t>) = S?/? u,t(<). Then x E GUV/k) = G, det(x) = (-l)m/2, | x |= 2 and wx

= -w since xw(u) = x(vp) — vr(p) = -x(v)p — -(wx(v)). Thus M = CG(U)(x)

« TL(F/A) and x acts like a field automorphism of order 2 on CG(U) = GL(V/K).

Since the norm N: Ax -» A:x is epimorphic, it is easy to see that G = CG(U)H and

hence wc = wH. Also it is obvious that for every 8 E (Kx ) — (Kx )2, there is an

element wx E wZ = U — Z such that w2 = 81v. Consequently all cyclic subgroups X

of G such that Z =s A and | X/Z | = 2 are conjugate via H because of the basis Bx of

V/k. Moreover, if m is even, there are cyclic subgroups A of G such that Z < A and

| A/Z|= 2 since there are elements w E G such that w2 = ylv for any y Ekx
-(kx)2.

3B. The symplectic groups. Suppose, in this section, that /: V X V -> k is a bilinear

symplectic scalar product that is nonsingular (cf. [25, §1; 29, §7; etc.]). Thus

f(vx, v2) — -f2(v2, vx) for all t>,, v2E V and m = dim(V/k) is even. Let G =

GSp(V/k) and H = Sp(V/k) he as defined in [12, I, §9]. Thus Z = <A/K| X G kx >

< G, H= G', Z(G) = Z by [25, Proposition 3] and Z n // = <-/K>. For each

u G G, there is a unique element ruE kx such that/(w(u,), m(u2)) ='*„/(ot> %) for

all t>,, v2 E V, ru is called the multiplica tor of u and the mapping y: G -* kx defined
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by y(u) = ru for u G G is an epimorphism with Ker(y) = H (cf. [25, Proposition 3]).

Set G = G/Z. Then \G/H\= 2 and the inverse image of H in G is Z * H =

{uEG\ruE(kx)2].

For w = 2, we have, by [28, II, 9.12], G = Gh(V/k), y = det and H = SL(V/k).

Let u G G — Z be such that t/2 = y/K for some y G kx , so that | w |= 2. Let

U=(u,Z) and M = NG(U). Thus {/ is abelian, Ü=(ü)satU/Z, CG(U) =

CG(U), M is the inverse image in G of C¿X¿7), U<Z*H if and only if

|(í/n H)/(ZC\ #)|=2and|M/CG(£/)|<2asin§3A.

First assume that U is not cyclic. Then U = Z X (w) where iv G 5(G — Z),

w # -V, CG((7) = CG(w), w" E [w,(-Iv)w], | ww| = | M/CG(U) \< 2 and rw2 = 1.

Suppose that rw = 1. Then w E H,U < Z * H,V = V+ L V~ where F+ = Cv(w),

V~ — {v E V\ w(v) - -v] = [V, w] and the restrictions of / to V+/k and V~/k

yield nonsingular symplectic vector spaces. Thus dim(V+ /k) is even, 2 <

dim(V+/k) < m, CG(U) s {(wx, w2) E (GSp(V+/k)) X (GSp(V~/k)) \ rw¡ = r^),

G = HCG(U) and wc = w77. Suppose that | M/CG(U) | = 2. Then w ~ (-/K)w in M

and [29, Proposition 9.13] implies that there is an involution g E M H H such that

g: V+ «■ r", w« = (-V)w and M = CG([/)<g>.

It now is clear that if x, y G 5(H), then the following three conditions are

equivalent: (i) x ~y in G; (ii) dim(CK(x)/A:) = dim(Cv(y)/k); (iii) .x ~ v in /L

Also for any even integer/? with 2< p < m, there is an involution z G G — Z such

that dim(CV(z)/fc) =/?.

Suppose that rw = -1. Then w & H, U < Z * // if and only if # = 1 (mod 4),

V+ = CK(w) and r = {oe V\ w(v) — -v) = [V,w] are totally isotropic sub-

spaces of V with V= V+ © V~ and dim(F+/A:) = dim(V~/k) = f. Also there are

bases {v,\l<i<f} of V+/k and {»i+m/2| I </'<f} of V~/k such that

f(v¡, vj+m/2) = 8,j for all 1 < /', /' < f. Suppose that x E CG(U). Then x leaves

invariant both V+ and K~ and f(x(vx), x(v2)) — rxf(vx,v2) for all u, G V+ and

t?2 G V~ . Conversely, if x E GL(V/k) is such that x leaves invariant both V+ and

V~ and /(x(ü,), x(v2)) = sf(vx,v2) for all t?, G V+ , v2 E V~ and for some fixed

îëJc, then x E CG(U) and rx = s. For (a,, X2) G &x XÂ:x , let (X,/K+ , A2/K)

denote the element of CG(U) such that (a,/k+ , X2/K-)(u, + t?2) = X,t>, + X2t>2 for

all t?, G F+ and t?2 G V" . Then

Y((XrV,\2V))=X,X2   and   X= ((\xIy+,\2Iv-)\\x,\2Ekx)<Cc(U).

Also for each g G GL(F+/A:), there is a unique element g* G GL(K~/&) such that

/(^(ü,), g*(v2)) = f(vx, v2) for all t?, G F+ and v2 E V~ . Hence the mapping a:

GL(F+/Â:) -» Cff(í7) defined by a(gXoi + o2) = ^(«i) + g*(u2) for aU »,£F+,

u2 G V~ and g G GL(F+/&) induces an isomorphism of GL(V+ /k) onto CH(U).

Consequently

CQ(U) = Cff(tf)X=C„(l/) * A= C„(J7) X ((V, AV)|A G kx )

since CH(U) n A = <(X V , X" V) I X G /cx >. Note that CC(I/)' s SL(F+/A:) and

Z< A = CCc(t/)(CG(t/)')- Let gGGL(K/A:) be such that g: o¡ +* vi+m/2 for all

1 < i < f. Then g G 5(G) with rg = -1, gw = (-/K)wg G £T, (gw)2 = -JK, M =

CG(U)(g) and it is easy to see that conjugation by g induces transpose inverse on
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CH(U) = GL(V+/k) and that g: ((XIV+ ,I^)\\Ekx)~ ((Iv+ , XIV)\ \Ekx).

Clearly G = HCG(U), wG = wH and it follows from the existence of the bases of

V+ /k and of V/k described above that all involutions w of G with rw = -1 are

conjugate under H. Moreover, it is easy to see from [29, Proposition 9.13], that there

are involutions w G G such that rw = -I.

Next assume that U is cyclic. Then U — (Z, w) where w2 — ylv for some

y Ekx ~(kx )2. Since r2 = y2, we have rw - ±y. Also, let A = k(p), p, r, V/k, etc.

be as in §3A and for any vx, v2 E V, setf0(vx, v2) = pf(vx, v2) + f(vx, w(v2)). Thus

/o(«2. «i) = -p/(«i.«2> - rwy~xf(vx,w(v2)) for any vx, v2 E V.

Suppose that rw = y. Then f0(v,, v2) — -f0(v2, vx) for all vx,v2E V and /0:

V X V -» K is a nonsingular bilinear symplectic scalar product on V/K. Hence

dim(K/A) = f is even and U 4 Z * H since rw = y g (*x )2. It readily follows that

CG(<7) = {x G GSp(F/A) | rx E kx } and hence G = //C^í/) and wG = wH by

[25, Proposition 3]. Also by [29, Proposition 9.13], V/K has a basis B =

{©V\ 4° | i < » < f} such that for all 1 =s i,j =s f and 1 *s r, s < 2, we have

/0(i;<<\ cf») = 0   if i */ or r = s   and   f0(v\'\ v?) = 1 = -/0(t>2'"\ t>tf>).

Consequently ß, = {v\n, v2°, v\°p, t?2°p | 1 < i =£ f} is a basis of V/k such that for

all 1 =£ i,j < f and 1 < r, s < 2, we have

/( b£0, 0G) ) = /( „(0, vU)p ) = /( „(Opt vU)p ) = o   jf / +j or r = s,

/( üV>, t)2'>) = /( uV>P, 4°P) = 0   and    /( t/p, D2')p) = /( üV'p, €2°) = +1 •

Clearly w(t?<°) = u<0p and M<t?(°p) = v^y for all 1 <y <2 and 1 < i < f. Let

je G TL( V/K ) be induced by t with respect to the basis B of F/A as in §3A. Then

xw = (-Iv)wx, x G TSp(V/K), f(x(vx), x(v2)) — -f(vx, v2) for all t?„ u2 G F, jc G

G, I je I = 2 and M= CG(f7)(x>< rSp(F/A). Clearly every element wx E wZ is

such that w2 = rwIy with rw ei:x-(ix)2. Next suppose that A is a cyclic

subgroup of G such that Z < X, \ X/Z \ = 2 and such that X — Z contains an

element z with z2 = rzIv. Then rz & (kx)2 since A is cyclic and we may assume that

rz = y. The existence of the basis Bx of V/k above implies that A and U are

conjugate via H. Moreover, when f is even, there are such subgroups X of G. To see

this, let y E kx -(kx )2, let A = fc(p) where p2 = y as above, let W/K be a vector

space with dim(W/K) — f and let g: W X W -> A be a A-bilinear nonsingular

symplectic scalar product (cf. [29, Proposition 9.13]). Since K = k + kp, we con-

clude that g = pgx + g2 where g,: W X W -» /c is a A>bilinear scalar product on

IF/* for i = 1,2. For each 0 ^ u G W, g(v, W) = A = g(W, v) and g(u, t>) = 0.

Thus g, and g2 are nonsingular symplectic scalar products on W/k. Since g is

A-bilinear, it follows that gx(vxp,v2) = gx(vx,v2p) and hence gx(vxp,v2p) =

Ygi(t?!, u2) for all t>,, v2 E W. Thus, if m denotes multiplication by p on W/k, then

w2 = y/^, m E GSp(W/k) and rm = y with respect to the symplectic space

(W/k, gx). Since (V/k,f) and (W/k, gx) are isometric, our proof of the existence of

such subgroups A of G is complete.

Suppose that rw — -y. Then /0(t?2, vx) — r(f0(vx, v2)) for all vx, v2 G V and /0:

V X V -» A is a nonsingular T-bilinear Hermitian scalar product on K/A. Clearly
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U *£ Z * H if and only if q = -1 (mod 4). Since the multiplicators of all elements of

GU(V/K) lie in kx , it follows that CG(U) = GU(V/K). Clearly G = HCG(U) and

wG = w" by [25, Proposition 4]. Also, by [29, Proposition 8.8], V/K has a basis

B = (©j|1 « i « f ) such that /0(t>,, u,) = 8U for all 1 «i, /'<f. Consequently

5, = {ü„ u¿p | 1 < i < f) is a basis of V/K such that for all 1 < /',/' < f we have

and

/(»,, »¿) = f(vi> Vjp) = f(v,p, Vjp) = 0    if ; =£/'

/(©„ «J =f(v,p, v,p) = 0   and   /(u,, u,p) = +1.

Clearly w(v,) = v,p and vt^-p) = v,y for allí < í «6f. Let x G TL(V/K) he in-

duced by t with respect to the basis B of F/A as above. Then xw = (-Iv)wx,

x E TU(V/K),f(x(vx), x(v2)) = -f(vx,v2) for all t>„ v2 G V, x E G, | x | = 2 and

M = CG(l/)<x) < rt/(F/A). As above all cyclic subgroups A of G such that Z < A,

| A/Z | = 2 and A — Z contains an element z with z2 = -rz/K are conjugate under

H. Moreover such subgroups A of G always exist. To see this, let y G kx — (kx )2,

let A = k(p) where p2 = y and let Gal(A/&) = (t) be as above. Let W/K be a

vector space of dimension f and let g: W X W -» A be a nonsingular T-bilinear

Hermitian scalar product on W/K. Since K — k + kp, we have g = pg, + g2 where

g,: W X W -» k is a /c-bilinear scalar product on IF//c for i= 1,2. As above, it

follows that g, is a nonsingular symplectic scalar product on W/k and that

g,(u,p, t?2) = -gx(vx, v2p) andhence gx(vxp, v2p) = -ygx(vx, v2) for all vx, v2 E W.

The existence of such subgroups A of G now follows as above.

3C. The unitary groups. Assume in this section that n is even, so that q — q\ where

ao = Pn/1 and let a G Aut(fc) with | a | = 2. Set k0 - Ck(a), let N: kx -» k% denote

the norm mapping of k/k0, and let /: KX F-»<cbe a a-linear Hermitian scalar

product that is nonsingular (cf. [25, §1; 29, §7; etc.]). Thus/(t>,, v2) — a(f(v2,vx))

for all vx, v2 E V. Let G = GU(V/k) and H = U(V/k) he as defined in [12, I, §9].

Thus Z = (XIy | X G kx > = Z(G) by [25, Proposition 4]. For each u G G, there is a

unique element ru E k% such that f(u(vx), u(v2)) — ruf(vx,v2) for all vx, v2 E V, ru

is called the multiplica tor of u and the mapping y: G -> k[* defined by y(u) = ru for

m G G is an epimorphism with Ker(y) = H, cf. [29, Proposition 4]. Also [29, Lemma

8.5] implies that G = H * Z.

Note that U(V/k) s U(m, q0), U(V/k) Í) SL(V/k) = SU(V/k) s¡S\J(m, q0)

and PSU(F/*) s PSU(w, q0), etc. by our notational convention that adheres to [16,

§17.1].
Suppose that m = 2. Then V/k has a basis B — {vx,v2} such that f(vx,vx) =

f(v2,v2)= 1 and/(u,, v2) = 0. With matrices relative to the basis B, set

{-"(b)     oÏa))\a>b&k™àN^+NW = d«(-oa(b)     «(*))*°

Then, as in [28, II, 8.8], it follows that G = Z * X where y ^ = det and X n H

S\J(V/k)^SL(2,q0).
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Consequently, since G — H * Z, for greater simplicity we restrict our attention to

H = U(V/k). Note that H' = S\J(V/k)._Set Z, = Z n H = (Xly\ X G Ker(N)) =

Ker(A) and H = H/Zx. Then | H/H¿\= (m, q0 + 1), H' s H'/(ZX n H') =

?SU(V/k) and the inverse image of H' in H is H' * Z, = {w G #|det(«) G

(Ker(A))m).

Let « G H — Z, be such that «2 = y/K for some y D er(A), so that | w| = 2. Let

U = <Z„ w) and M = A"„(J7). Thus C/ is abelian, LJ= <«>, CH(U) = CH(u), M is

the inverse image in H of Cff(u), U < H' * Z, if and only if

\(UnH')/(Zxr\H')\=2    and    | M/CH(U) |< 2

as in §3A.

First assume that [/ is not cyclic. Then U = Zx X (w) where w G 5(# — Z,),

wi= -Iy, CH(U) = C„(w), wM Ç {w,(-/K)w>} and | wM| = | M/CH(U) |. As above,

we get F = K+ J. V where F+ = Cv(w), V~ = [v E V\ w(v) = -v} = [V, w] and

the restrictions of / to V+ /k and V /k yield nonsingular unitary vector spaces.

Thus there is an isomorphism

a: CH(U) -* U(V+/k) X U(V~/k),       H = H'CH(U) and w" = w"'.

Clearly U < Z, * H' if and only if (-l)**»"/*) G (Ker(A))m. If | M/CH(U)\= 2,

then [29, Proposition 8.8(b)] implies that there is an involution g G M such that g:

V+ «-> F' , w« = (-V)w and M = CH(U)(g)^ U(V+/k)wrZ2.

It now is clear that if x, v e5(H), then the following three conditions are

equivalent: (i) x ~ y- in G = GU(V/k); (ii) dim(CK(x)/Ä:) = dim(CV(.y)/A:); (iii)

x ~y in //. Also [29, Proposition 8.8] implies that for any integer/? with 1 </? < m,

there is an involution z G H — Z, such that dim(CK(z)/A;) = /?.

Next assume that Í/ is cyclic. Then u2 — ylv where y G Ker(A) — (Ker(A))2.

Now | kx | = q — 1 = (q0)2 — 1, | Ker(N) \ = q0 + 1 and 2\(q0— 1). Hence there is

an element X G *x such that X2 = y. Set u0 = u(X~xIv), so that (m0)2 = Iv, u0 G

GU(V/k), CH(U) = CH(u) = CH(u0) and NH(U) = NH((u0)X Zx).

Clearly ru¡¡ = N(X~X) ¥* 1 and A(X)2 = N(y) = 1, so that rUQ = N(X~X) = -1.

Hence m is even, V= V+ ®V where V+ = Cv(u0) and V = {v G V\ u0(v) =

-v) = [V, u0] are totally isotropic subspaces of V with dim(F+/*) =

dim(V/k) = f. Since det(«) = (-y)""72 it follows that U < Z, * H' if and only if

m2 >l io + M2 i1 I w I2 > 2 and ^0 = 1 (mod 4) if \m\2 — 2. As in §3B, it follows

that there is an isomorphism a: GL(V+ /k) -* CH(u0) = CH(U) and an involution

g G H such that gu = (-Iv)ug, NH(U) = CH(u)(g) and conjugation by g induces a

unitary automorphism on CH(U) = GL(V+ /k). Note that u(v) — Xv if v E V+ and

u(v) = -Xv if v E V~ . Next suppose that A is an arbitrary cyclic subgroup of H

such that Z, < A and | A/Z, | = 2. Then there is an element z G A — Z, such that

z2 = yly and it is now clear that X and U are conjugate via H. Moreover, when m is

even, such subgroups X of H exist since then V has complementary totally isotropic

subspaces each of dimension f by [29, Proposition 9.14].

3D. The orthogonal groups. Assume in this section that /: V X V -> k is a bilinear

symmetric (orthogonal) scalar product that is nonsingular (cf. [25, §1; 29, §7; etc.]).
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Thus f(vx,v2)=f(v2,vx) for all o,, v2 G V. Also let g: V ̂  k be the associated

quadratic form on V/k so that g(v) = { f(v, v) and f(vx, v2) = g(u, + v2) —

g(vx) - g(v2) for all vx, v2 E V(cf. [29, §10]).

In this setting, there is associated (to V/k and / ) a unique element D( V/k ) G

kx/(kx)2 called the discriminant (of (V/k,f)) (cf. [29, Definition 7.5]). Clearly if

c E kx , then cf: VX V -» A: is a bilinear nonsingular symmetric scalar product with

discriminant cmD(F/Ä:).

Note that for any given dimension m = dim(F/*) and suitable/, D(V/k) can be

either of the two elements of kx/(kx)2 and two orthogonal spaces over k are

isometric if and only if they have the same dimension and discriminant (cf. [29,

Proposition 8.9]).

Let G = GO(V/k) and H = 0(V/k) be as defined in [12, I, §9]. Thus Z =

(Xly | X G kx )< Z(G) and Z Pi H = (-Iv). Also for each u E G, there is a unique

element ru G *x such that /(m(ü,), h(ü2)) = ruf(vx, v2) for all vx, v2E V and r„ is

called the multiplicator of u. The mapping y: G -» kx defined by y(u) — ru for

u E G is such that Ker(y) = H, y'x(kx )2 = Z * H, y maps G onto kx if m is even

and onto (kx)2ifmis odd by [25, Proposition 5(b)]. Set ß = //', A = 50(K/Jt) and

G = G/Z. Then H^H/(-Iv), ß < A < H and det maps H onto <^1> so that

| H/K\= 2 by [29, Proposition 8.10].

By [29, Corollary 14.6], all maximal isotropic subspaces of V/k are conjugate

under H — 0(V/k) and the dimension of any such subspace of V/k is called the

index of V, ind(F/*). As in [29, Example 14.7], if m is odd, then ind(V/k) =

(m - l)/2 and if m is even then either ind(V/k) = f and D(V/k) = (-l)m/2(kx )2

or ind(V/k) = f - 1 and D(V) = (-l)m/2c(kx )2 where c E kx -(kx )2. Thus the

index distinguishes the two types of orthogonal vector spaces of the same even

dimension.

From our notational convection (cf. [16, §17.11]), if m is even, we have PQ,(V/k)

= Pü(m, q, 1) if ind(K/A:) = f and PQ(V/k) = PSl(m, q,-l) if ind(V/k) = f - 1.
As in [29, Proposition 20.2], there is a homomorphism a: H = 0(V/k) ->

kx/(kx)2 called the Spinornorm. The proof of [29, Proposition 20.10] yields

o(-Iy) = D(V/k)2~m(kx )2. If ind(V/k) > 0, then a(K) = kx/(kx )2 and Ker(a)

n A = ß by [29, Proposition 20.3 and Theorem 20.8]. If m > 3, then CG(ß) = Z by

[25, Proposition 5] and ind(F) > 0 and A' = H' = ß by [29, Propositions 9.2(b) and

20.9].

Suppose that m = dim(V/k) is odd for the moment. Then H = (-IV)X A and

G = Z*H = ZXK. Also, if c E kx -(kx )2, then {(V/k, f), (V/k, cf)] repre-

sents the two classes of nonisometric orthogonal spaces over k of dimension m and

we have GO((V/k,f)) = GO((V/k, cf)), 0(V/k,f) = 0(V/k, cf), etc.
Next suppose that m — dim(V/k) is even and m > 4. Then | G/(Z * H) |= 2,

Z(K) = (-Jy), -IVEÜ if and only if D(V/k) E (kx)2, K=(-IV)X2 and

H = (-ly)X Ker(a) when D(V/k) & (kx)2 and Z(ß) = (-Iv) when D(V/k) E

(kx )2 by [25, Proposition 5].

We shall now discuss the cases with 1 < m < 6.

When   m = 1,   we   have   G = Z,   H = (-Iv),   A=ß=l   and   a(-Iy) -
2~xD(V/k)(kx)2.
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Suppose that m = 2 and ind(V/k)> 0. Then [29, Proposition 9.14] implies

that V/k has a basis B = {vx, v2) such that/(t>,, vx) — f(v2, v2) = 0 and/(ü,, v2)

= 1 (i.e. V/k is a hyperbolic plane). Then D(F//c) = (-l)(kx)2, the involution

t of GL(K/A:) such that t: vx**v2 lies in H - A, G = M(t) where M =

StabOL(1//A:)(Â:i;|) fl StabGL(K//t)(/ct;2), y: G ->■ kx is an epimorphism, o: H ->

kx/(kx)2 is an epimorphism by [29, Proposition 9.9], As Z._„ í inverts A and

7/ = A(i) is dihedral. Also, passing to matrices with respect to the basis B, it is easy

to see that

H =
0      a

„-i     n
A =

a      0

0    a"1
a G ky

and that if a Ekx , then

0      a\\ /lXx2 la      0

0
-a(kxf   and    o((j     ^ ) ) = a(kx f

Suppose that m — 2 and ind(V/k) = 0. Then, as in the proof of [29, Lemma

15.1(b)], there is an element cEkx -(kx )2 such that D(V/k) = -c(kx )2 and V/k

has a basis B = (t?,, u2} such that g(axvx + a2v2) — a2 — ca\ for all ax, a2 G k.

Also if A/k is a quadratic extension field such that K = k(p) where p2 = c and if A:

Ax -» kx denotes the norm mapping of K/k, then there is a /c-linear isomorphism e:

V -» A such that A(e(u)) = g(t>) for all 0 ¥= v E V. Let t denote the involution of

Aut(A), so that CK(r) = k. Focusing attention on (K/k, N), it follows that

t G 0(K/k) - SO(K/k), | t |= 2, t inverts SO(K/k) = (XIK\X E Ker(A)) =

Zi+„ // = 0(A/A:) = SO(K/k)(r) is dihedral, G = GO(K/k) = (X/* | A G Ax >

<t>, Z(G) = Z,y:G-*kx is an epimorphism and a: 7/ = 0(K/k) -> *X/(A:X )2 is

an epimorphism since A: Ax -» *x is an epimorphism. Also, passing to matrices

with respect to the bases B — ( 1, p} of K/k, it is easy to see that

SO(K/k)= {(caa'2    ^2)|a,,a2G*andfl2-ca2=l

/ 1      0 \
T=to   -i);

0(K/k) - SO(K/k) = SO(K/k)r

ca\     -ax ) h ' a2 e k and a? - ca22 = 1 ] .

Let w = ax + a2p E Kx with {0} ¥= [ax, a2] E k, so that N(w) - a2 - ca\ ^ 0.

Let R w denote the reflection corresponding to w so that R w has matrix

1     / -a2 — cal      -2axa2 \

N(w) |    2a,a2c       a2 + ca\)

with respect to the basis B - (1, p} of K/k and o(Rw) - N(w)(kx )2. Let {bx, b2)

Ekhe such that b\ — cb\= 1, so that

bx      -b2
T = | c^     ^ | G 0(K/k) - SO(K/k).
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If ¿?, = 1, then b2 = 0, T = t = Rw for ail w = a, + a2p with ax — 0 ¥= a2 and

hence a(T) = o(t) = -c(/cx )2. If bx ¥^ I, then it is easy to see that a(T) =

2(1 - bx)(kx)2. Consequently

i>,
-2c(l-bx)(kxf

cb2    bx

for all [bx, b2] E k with ¿?2 — cb\ = 1 and bx =£ 1. Note that a maps

SO(K/k) ca-> ax,a2Ek and a,2 — ca2 = 1

(/cx)2onto Â:X/(A:X )2. For a(("¿ _?)) = -c(/tx )2 and c £ (/Vx )2. Moreover, if -c

then a(0(K/k)) = a(SO(K/k)) = kx/(kx )2 and the assertion is proved.

If m = 3, then H = (-IV)X K, A s PGL(2, ?) and ß s PSL(2, q) by [29,

Proposition 24.1].

If m = 4 and ind(K/fc) = 1, then //' = ß s PSL(2, q2) and // = (-Iv) X Ker(a)

where Ker(a) is isomorphic to PSL(2, q2) extended by a field automorphism of

order 2 (cf. [29, Proposition 24.12]).

To discuss the case m — 4 and ind(V/k) = 2, we shall apply the methods of [29,

Lemma 24.10 and Proposition 24.11]. Thus let W, W' be two vector spaces over k of

dimension 2 with bases B = [wx, w2] and B' — {w'x, w2} respectively and let V = W

®k W' so that B* = [v,j = w, <8> wj | 1 < /', /' < 2} is a basis of V/k. Define

g(22;=1 c,jV,j) = cxxc22 — cx2c2X for all {c,j | 1 < i,j < 2} Ç t Then V/k becomes a

nonsingular orthogonal vector space of index 2 and V— (kvxx + kv22) J- (Ar(—1?12)

+ kv2X) is an orthogonal sum of hyperbolic planes. Let A E GL(W/k) and A' E

GL(W'/k), so that g((A ® A^v)) = det(A)det(A')g(v) for all v E V as in [29,

Lemma 24.10]. Moreover, as in this reference, if H = {(A, A')\A E GL(W/k),

A' E GL(W'/k) and det(^)det(^') = 1}, then the mapping y such that y((A, A'))

= A®kA' is an epimorphism of H onto SO(V/k) with Ker(y) = {(alw, a~xIw.) | a

E kx } and such that y($SJ(W/k) X SL(W'/k)) = Q(V/k) = SL(2, q) * SL(2, q).

Let T, T have matrix (x0_°x) with respect to the bases B, B' of W/k and W'/k

respectively and let x and v have matrices

' 1

0
0

0
\0

-1

0
0

0
0
-1

0

0
0
0
1 /

and

1
0
0

\0

0
0
1
0

0
1
0
0

o\
0
0
1 /

with respect to the bases B* of V/k. Then

y(r<8> T') = x G 5(SO(V/k) - Q(V/k)),

y E 5(0(V/k) - SO(V/k)), xv = yx, 0(V/k) = Q(V/k)(x, y), y interchanges the

two 2-components of Q(V/k) and SO(V/k) = ü(V/k)(x) normalizes the two

2-components of ß( V/k).

If m - 5, then ß s PSp(4, ̂ r) by [29, Proposition 24.13].

If m = 6 and ind(V/k) = 3, then D(V) = -l(kx )2 and Q(V/k) is isomorphic to

SL(4, k)/A where A is the unique central subgroup of SL(4, A:) of order 2 by [29,

Proposition 24.15].



INTRINSIC 2-COMPONENT OF CHEVALLEY TYPE 25

If m = 6 and ind(V/k) = 2, then D(V) = -c(kx)2 where c G kx ~(kx)2 and

ß(F/A) is isomorphic to SU(4, k)/B where B is the unique central subgroup of

SU(4, k) of order 2 by [29, Proposition 24.15].

For the remainder of this section, assume that m > 7. Thus A' = H' = ß =

Ker(o) n A, C„(Q) = (-Iv), a maps A onto kx/(kx )2 and H/Q = E4.

Let u E G — Z be such that u2 = ylv for some y G kx , so that | ü |= 2. Let

(7 = («, Z) and M = N„(U). Thus (7 is abelian, ¿7= <w> = (7/Z, Cc(w) = CG(Í7),

M is the inverse image in H of Cjj(ü), and | M/CH(U) | < 2.

First assume that (7 is not cyclic. Then i/=ZX(w) where h>g5(G — Z),

w ^ -Iy, CG(U) = CG(w), wM Ç [w,(-Iv)w], | vwM | = | M/CH(U) |< 2 and r2 f 1.

Suppose that «l, = 1. Then w E H, U D H = (-Iv, w), U < Z * H, V = V+ ± V

where V+ = Cv(w), V = [v E V\ w(v) = -v) = [V, w] and the restrictions of/to

V+/k and F"/A yield nonsingular orthogonal vector spaces such that D(V/k) —

D(V+/k)D(V~/k). Thus

CG(U) a f>„ w2) G (GO(V+/k)) X (GO(V~/k))\rWi = rWi),

cH(u)^o(v+/k)xo(v-/k),

H = SlCH(w)   and   w" = wa.

Also w E ß if and only if dim(K~/Jt) is even and D(V/k)E(kx)2 by [29,

Lemma 20.6]. If | M/CH(U) \— 2, then there is an involution g G M such that g:

V+ ~V , wg = (-JV)w and M = CH(U)(g) = 0(F+//V) wrZ2. Also [25, Prop-

osition 5] implies that if m is odd, then G = HCG(U) and if m is even, then

G = HCG(U) if dim(K+/Â:) is even and | G: (HCG(U)) |= 2 if dim(K+/Â:) is odd.

Also if h E G = GO(V/k), then w, = wA G 5(//), CK(w,) = /r'(K+ ),

D(Cy(wx)/k) = (rh)d™^+/k'D(V+/k), [V,wx] = h-\V~) and D([V, wx]/k) =

(rh)áXm(V~/k)D(V-/k). If x, y E 5(H), then it is clear that the following three

conditions are equivalent: (i) x~y in H = 0(V/k), (ii) x~y via ß; (iii)

dim(CV(x)/A:) = dim(Cy(y)/k) and D(Cv(x)/k) - D(Cv(y)/k). Also for any

integer p with 1 < /? < m and any element a E kx/(kx )2 it is clear that there is an

involution z G H — Z such that dim(Cv(z)/k) = /? and Z)(CK(z)/A:) == a.

Suppose that rw — -1. Then w & H, U < Z * // if and only if <¡r = 1 (mod 4),

V+ = CK(w) and K~ = {v G F| w(u) = -t?} = [V, w] are totally isotropic sub-

spaces of V with V = V+ ®V , m is even, dim(V+ /k) = diraiV/k) = f and

ind(F) = f.
Suppose that q = 1 (mod 4) and let v E kx be such that p2 = -1. Also, as in §3B,

choose bases {v¡\ 1 < i < f} and {v,+m/2 | 1 < i < f} of F+/A: and K~/A: respec-

tively such that/(t>,, vJ+m,2) — \j f°r au 1 * **>/' * ? • Set //, = &d, + kv,+m/2 so

that //, is a hyperbolic plane for all 1 < í < f and V — Hx J. • • • ± #m/2. Then

U n H = ((vly)w) where ((»'/K)w)2 = -7K, ((>'/k))v)(ü/) = vü, and

(("V)w)(f,+m/2) = -w,+m/2 for all 1 «Si«?. Thus o((vIv)w) = ,™/2(*>< )2 by

[29, Example 20.4 and Lemma 20.6]. Hence U < Z * ß if and only if vm/2 E (kx )2.

As in §3B, we have CH(U) = GL(V+/k), M = CH(U)(g) where g G 5(H) and

conjugation by g induces transpose inverse on CH(U) = GL(V+ /k), G — HCG(U),

wG = wH and all involutions with r  = -1 are conjugate under H. Moreover, when
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m is even and ind(F) = f, the existence of complementary totally isotropic sub-

spaces of V each of dimension f by [29, Proposition 9.15] implies the existence of

such subgroups U of G.

Next assume that U is cyclic. Thus U = (Z,w) where w2 = ylv for some

y £ (kx )2. Thus rw — ±y since r2 — y2 and m is even. Also let A = k(p), p, t, V/k,

N: Kx -* kx , etc. be as in §3A and, for any vx, v2 E V, setf0(vx, v2) = pf(vx, v2)

+ f(vx, w(v2)). Consequently

fo(v2,vx) = pf(vx,v2) +yr~xf(vx,w(v2)).

Suppose that rw - y. Then/0(u2, vx) =f0(vx, v2) for all vx, v2 E Fand/0: VX V

-» A is a nonsingular A-bilinear symmetric scalar product on V/K. Also U 4

Z * H since rw = y g (Â:x )2. It readily follows that CG(U) = {x E GO(F/A) | r, G

A:x }, CH(I/) = 0(K/A), G = #CG([/) by [25, Proposition 5(b)] since kx < (Ax )2

and wc = wH. Let a — a + bp he any element of D(V/K). Then [29, Proposition

8.9] implies that V/Khas a basis £ = .{e,| i<i<Cf} such that

/o(ü/> «/) = H

Consequently #, = {v,,v,p\ 1 < f=s f} is a basis of V/k such that

/( v, ,Vj)= f( v, ,Vjp)=f( v,p ,Vjp) = 0   Ui¥= j,

f(v„vl)=f(v,p,v,p) = f)   and   f(v„v,p) = l    ifl<i<?,

/(»m/2. Um/2) = A, f(»m/2P> Vm/2p) = Y¿>

and f(vm,2, vm/2p) = a. Calculating the discriminant of K/& using 5, yields

(-l)m/2A(a) G D(V/k). However (Ax )2 is the inverse image of (Â:x )2 in Ax under

N. Thus Z)(F/A) = a( Ax )2 is uniquely determined. Clearly w(v¡) = v,p and w(v,p)

= u,y for all 1 < / < f. Let x G TL(F/A) be induced by t with respect to the basis

B of B/K. Then xw = (-/k)m?x, x G TO(F/A), /(x(u,), -x(u2)) = -/(«i, «2) for a11

u,, «2 G K, x G G, |x|= 2 and NG(U) = CG(U)(x). Suppose that A is a cyclic

subgroup of G such that Z « A, | A/Z | = 2 and such that X — Z contains an

element with z2 = r,Iy. Then rz £ (ftx )2 since X is cyclic and we may assume that

rz — y. The existence of the basis Bx of V/k and the discussion above imply that X

and U are conjugate via H. Moreover, when m is even, such subgroups A of G

always exist. To see this, let y G kx ~(kx )2 and let A = k(p) with p2 = y, t, N:

Kx -» &x , etc. be as above. Let If/A be a vector space of dimension f and let g:

WXIf ^i be a nonsingular orthogonal scalar product on W/K such that if

a G D(W/K), then (-l)m/2A(a) G />(K/Jfc). Since K = k + kp, we have g = pgx

+ g2 where g,: W X W -» A: is a A-bilinear nonsingular orthogonal scalar product on

If7//: for i — 1,2. Also g/t^p, u2) = gx(vx, v2p) and hence g,(u,p, v2p) =

ygx(vx,v2) for all vx,v2 E W. Also, as above, we conclude that D((W/k, gx)) =

0 iff**/,

1 if !</=/<
2 -

iff =/' T
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D(V/k). Since dim(W/k) - m, we conclude that (W/k, gx) and (V/k, f) are

isometric. Then the existence of such subgroups A of G follows as in §3B.

Suppose that rw = -y. Then/0(u2, vx) = -r(fQ(vx, v2)) and p'xf0: VX V -> A is a

nonsingular Hermitian scalar product on V/K. Clearly IK Z * H if and only if

q = -1 (mod4) and since the multiplicators of all elements of GU(V/K) lie in kx ,

it follows that CC(U) = GU(V/K), G = HCG(U) and wH = wH. Also [29, Prop-

osition 8.8] implies that V/K has a basis £ = {vt | J < i « f) such that p~xfQ(v,, v¡)

= 8,j for all 1 < /,/ < f. Consequently 5, = {v„ v,p | 1 < /' < f} is a basis of K/A

such that /(«,., o,) =/(©,., Vjp) = f(v,p, vjP) = 0 for all / */ with 1 « /, j < f,

f(v„ v,) = 1, f(v,p, v,p) = rw and f(v„ v,p) = 0 for all 1 < i < ?. Thus (-y)m/2 G

D(V/k), ind(F/A) = f if f is even and md(V/k) = f- 1 if f is odd. Let
x G TL(V/K) be induced by t with respect to the basis B of V/K. Then xw =

(-ly)wx, x G // = 0(F/A), |x|= 2 and AG(i/) = CG(U)(x)< TU(V/K). It is

easy to see that all cyclic subgroups A of G such that Z < X, | A/Z | = 2 and X — Z

contains an element z with z2 = -rzIv are conjugate under //. Finally, when m is

even, ind(V/k) = f if f is even and ind(V/k) = f — 1 if f is odd, such subgroups

A of G always exist. To see this, let y E kx ~(kx )2, A = k(p) with p2 = y, t, A:

Ax -> kx , etc. be as above. Also let W/K be a vector space of dimension f and let

g: W X W -» A be a nonsingular skew-Hermitian scalar product on F/A. Let

g = pg, + g2 where g,: W X W -> A: is a A-bilinear nonsingular scalar product on

W/k for i = 1,2. Then g,(ü„ t>2) = gx(v2, vx), gx(vxp, v2) = -g(vx, v2p) and hence

gx(vxp, v2p) = -yg](ui, u2) f°r all «,, u G IF. As above, we conclude that (W/k, gx)

is a nonsingular orthogonal vector space with dim(W/k) = m and (-y)m/2 G

D((W/k, g,)). Then by hypothesis, Z)(K/A) = D(W/k). Thus (V/k,f) and (IF/A,
g,) are isometric by [29, Proposition 8.9] and the existence of such subgroups A of G

follows as in §3B.

This concludes §3.

4. Applications of the theory of linear algebraic groups. In this section, we apply

the theory of linear algebraic groups to survey the conjugacy classes of involutions

and their centralizers in various Chevalley groups and their automorphism groups

over finite fields of odd order. In some cases, since the machinery is at hand and for

completeness, we derive more information than is actually required in this paper.

However all of these results are utilized in [26] and are of independent interest.

We begin this section with some results on endomorphisms of linear algebraic

groups that are slight reformulations of some results in [33, 35]. Then we combine

these results with the methods and results of [30, 35]. The remainder of this section

presents our applications of this material to the Chevalley groups over finite fields of

odd order.

Our first results concern the following situation.

G is a linear algebraic group and a is an endomorphism of G onto G such that

G0 = CG» = {g G G | o(g) = g) is finite. _

The basic results about the structure of G„, conjugacy, etc. are contained in [35,

§§10-15], The first result in this context that we specifically mention is a conse-

quence of [35, Corollary 10.9].
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Lemma 4.1. Let G be a connected linear algebraic group and let a be an endomor-

phism of G onto G such that G„ is finite and Ker(a) = 1. Let H — G (a) (the

semidirect product) and let g E G. Then ga and a are conjugate via an element of G.

Lemma 4.2. Let G be a connected linear algebraic group and let a: G -» G be an

endomorphism of G such that a is an automorphism of the underlying group. Let n be a

positive integer, set F = G0„ = {g E G\a"(g) — g] and assume that F is finite. Thus

Ga = {g G G\ a(g) — g) is finite, a0 — a \F induces an automorphism of F and

a0" = 1. Set H — F(a0) ( the semidirect product). Let fa0 E H with f E F and | fa0 \= n.

Then fa0 and a0 are conjugate via an element of F.

Proof. Since (/a0)" = (fa(f)a2(f) ■ ■ ■ o"-x(f))o0" = 1, we have /*(/)

•••a" '(/)= 1. By [35, Theorem 10.1], there is an element xGG such that

xa(x)~x = /. Hence o(x'x) = x~xf, a2(x~x) = x~xfa(f), etc. and a"(x'x) =

x~xfa(f) ■ • • o"~x(f) = x"1. Thus x G F, xa0x~x = xa(x)~xa0 = fa0 and we are

done.

Suppose that A is a not necessarily finite group and that a is an endomorphism of

A. Then Hx(a, A) denotes A modulo the equivalence relation: a ~ b if a = cba(c)~x

for some c G A. As an example, if a is the identity on A, then Hx(o, A) is the set of

conjugacy classes of A.

For the next two results, as above, we let G be a linear algebraic group and let a be

an endomorphism of G onto G such that G0 is finite. Consequently o(G°) = G° by

[36, §1.13, Proposition 2(b)] (where G° denotes the irreducible component of G that

contains the identity of G). For convenience of the reader, we restate [33, I, 2.6].

Lemma 4.3. Suppose that G is connected and that A is a (closed) subgroup of G fixed

by a. Then the natural map from Hx(a, A) into Hx(a, A/A°) is bijective.

The second result in this context that we present is a slight refinement of [33, I,

3.4(b)].

Lemma 4.4. Suppose that m E Gis such that a(m) = m and G — (G°, m)= G°(m).

Let M = cclG(m) and let A = CGo(m), so that a(A) ^A, A = C¿-(m) D G° is a

closed subgroup of G, A/A° is a finite group and C¿\m) — A(m). Let 31 be a set of

representatives in A of the cosets in a representative choice from the equivalence classes

of Hx(a, A/A°) and suppose that % = {a, E A \ I < i < n) where | 3Í | = n. For each

a, E 31 with 1 *£ /' « n, choose (by [33, I, Theorem 2.2]) an element g, E G° such that

g,o(g,)~x = a,. Then the following three conditions hold.

(a) mg' G GJor all \<i<n;

(b) {mg' | 1 *s / < «} is a set of representatives for the orbits of Ga on Ma =

(x G M| a(x) — x}; and

(c) CG(^mg') = C(Go)j;m*0(wg'> and

q&¿m*) = (CGo(mg'))a = (A*>)a = (<x G A \ a,a(x)a;x = x))" = (Aßa)S'

where ß, denotes the inner automorphism of G induced by aj , for all 1 < i < n.
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Proof. Note that C¿Xm) and hence A — C¿Xm) n G° are closed subgroups of G

by [6,1, (1.7), Proposition (c)]. Clearly a(mg:) — a(g,)~xma(g¡) — g~xa,majxg, = mgi

and (a) holds. Since C¿\m) — A(m), it follows that G° acts transitively (by

conjugation) on M. Suppose that mgi — mg,h for some h E Ga and 1 < f,/ < 9. Since

G„ = (G°)a(mgj), we may assume that A G (G°)0. Then g¡hg~x E A = CGo(m) and

gjh = ag, for some a E A. Thus (gjh)a(gjhyx = g^g,-)-1 = a, = ag,a(g,yxa(ayx

— aa,a(a)'x ~ a, and hence i —j. Now [33, I, 3.4(b)] yields (b). Choose any /' with

1 < / < n. Clearly

CGa(mg') = C{Go)a(mg')(mg')    and    C(Go)o(m^) = (C&(m*<))a = U*').-

Let x6/l. Since the following three conditions are equivalent: (i) xg/ G G„, (ii)

á>i°"(g1TlCT(;c)0"(í>,)gf1 = x and (üi) «,<K*)«,_1 = x, we also have (c). The proof of

this lemma is now complete.

Next, we introduce some (standard) notation and results from [30, 7].

Let/? be a prime integer, let A be an algebraic closure of Z/(pZ), let ® denote a

complex semisimple Lie algebra and let tt denote a faithful representation of ©. Let

G = G„ K denote the Chevalley group obtained from the triple (©, m, K) (cf. [7,

§3]). In this construction and notation, G is a (connected) semisimple linear algebraic

group, B is a Borel subgroup of G, H is a maximal torus of G, U — Bu (the unipotent

radical_of B), B = ÜH, Ñ = N¿ÍH), W=Ñ/H, etc. (cf. [34, §5; 7, §3]). Clearly,
since H is abelian, W acts on H by conjugation.

Let P(tt) denote the set of weights of m and let r„ denote the Z-module generated

by P(tr). Then H can be described as follows.

for x G Hom( Ym, Kx ), associate to x the automorphism of V,

(4.1) (the representation space of tt ), defined by :

h(x)v — x(m)v for each v E Vm and m E P(tt).

Then the mapping x -* h(x) is an isomorphism of HormT,,, Ax ) onto H.

Moreover, letting $ denote the root system of ©, we have

if X GHom(r„ix),a G $ and w G A,

(4.2) V ,
thenh(x)xa(u)h(x)~  = xa(x(a)u).

For « G $, set 3ca = (xa(u) \ u E A), so that H < N¿Xd¿a) and the mapping

u -» xa(u) is an isomorphism of (A, +) onto £a. Then U — (3£a | a G $+ ) and

U~ — (£a I a G $~ > is the unipotent radical of the Borel subgroup that is "oppo-

site" to ¿"relative to H (cf. [6, IV, §14]).

Note that every semisimple element of G is conjugate in G to an element of H by

[36, §§2.12 and 2.13] and IF controls the G-fusion of elements of H by [35, 6.3]. Also

if X G Hom(r„, Ax ), then [30, Proposition 1, (i)-(iii)] holds and

4(*(x))/fe(*(x))°).-Hi/(ll?)
where IFX and W° are as in [30, §2].

Let E denote the O-mc-clule generated by 4> and fix a IF-invariant inner product

(*, *) on E and for any Z-submodule r of E set T-1 = (x G E \ (x, y) E Z for all

y G T}. Also, as in [30, §2], ad denotes the adjoint representation of © and sc
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denotes the simply connected representation of O. Thus Tad =s r„ =s Tsc < E, Tad is

the Z-submodule of E generated by $, rsc is the Z-submodule of E generated by all

weights of & and IF stabilizes Tsc, r„ and Tad. Also F¿ , T¿ and r¿ are IF-stable and

rst< ^ * ra-j. With this action of W on T„ and with trivial action of W on Ax , the

isomorphism of (4.1) becomes a IF-isomorphism.

As a standard, if 0 * ô G £, set ß* = 2ß/(ß, ß) and for í G Ax and a E $, let

ha(t) = h(x) where x is the unique element of

Hom(r„, Ax ) such that \(m) = t<-m'a"> for any m E Vw.

We shall frequently be concerned with the following situation.

t is an (algebraic group) endomorphism of G = G„ K onto itself that leaves H and

U invariant and such that (i) GT is finite or (ii) t is an automorphism of G as an

algebraic group.

Suppose that t satisfies (i). Then, as noted above, [35, §§10-15] presents many

basic results in this situation. Note also that if y is any (algebraic group) endomor-

phism of G onto G such that Gy is finite then y is conjugate via Inn(G) to an

endomorphism of G that leaves H and U invariant by [35, Corollary 10.10],

Next suppose that r, as above, satisfies (ii). Then [35, §§7-9] presents many basic

results in this situation. In particular, C¿Xt) is closed, C^t)0 is reductive and

contains every unipotent element of C¿Xt) and the structure of CGtT)/CGtT)° is

given by [35, Lemma 9.2]. Also, if G is simply connected, then C¿Xt) = Cg(t)° by

[35, Theorem 8.2 and Corollary 9.4], Clearly t fixes V~ and Ñ and C¿Xt)° =

<c7T, #T,(tT)T> by [35, Lemma 9.2(a) and the proof of Theorem 8.2] and C¿ít) =

(UT, NT) by uniqueness in [35, 6.3]. For example, when t is the inner automorphism

of G induced by the element h(x) E H where x G Hom(r„, Ax ), then the structures

of C¿ít), C¿tT)° and CGtT)/(CGtT)°) are readily apparent (cf. [35, 8.3(c); 30,

Proposition 1; 30, §8]). Note also that if y is any semisimple automorphism of G,

then y is conjugate via Inn(G) to a semisimple automorphism of G that leaves H and

U invariant by [35, Theorem 7.5].

Let X denote the element of Aut(A) such that X(w) = up for all m G A, let n be an

arbitrary positive integer and set q = p", a = X" and A = C^X). Then CK(X) is the

prime subfield of A and A is the unique subfield of A of order q.

Since G, H, N, U and U~ are all defined over CK(X), both X and a induce, in a

natural way, endomorphisms of G that leave invariant H, N, U, U~ and B = UH

and that we shall also denote by X and a, respectively. Thus X" — a as endomor-

phisms of G, X and a are automorphisms of G as a group, C¿tX) = Gx < C¿ta) — G„,

Ga is finite and X-invariant, etc. Let G = (Ua,(U~)„). Then G is the Chevalley group

associated with the triple (®,tr,k), G= 0P'(G„), G„ = G(Ha), Ña = (H„)(ÑX),

N — H(NX), Ha is the image of Hom(r„, Ax) under the isomorphism of (4.1),

HonuT^, Ax) = (x e Hora(r„ Ax)|x^' = l}and/70 = {h EH\h«-x = l},etc.

(cf. [35, §12; 7, §3]).
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As on [30, p. F-5], we fix a generator % of Ax and define a homomorphism

r;-Hom(rw,Ax)by

(4.4) X-xx   wherexx(¿) = ^'£,for¿Grw.

Clearly this yields an exact sequence of IF-modules

(4.5) 1 - (q- 1)1?-. TÏ-* Hom(r„ Ax ) - 1.

Next we impose the additional assumption that (5? is a simple Lie algebra. Let

B = (a,,... ,a,} be a set of simple roots and let a0 denote the highest root of $.

Then G is a simple linear algebraic group and a0 = 2'=1 m ¡a, where each w, is a

positive integer. As in [30, §3], set

(4.6) öD= {¿G£|0<(oI.,¿)foralll < i < /and (a0, ¿) < ? - l}.

Then the remaining definitions and results of [30, §§3-5] yield the following three

lemmas.

Lemma 4.5. Assume that © is a simple Lie algebra and that m is a positive divisor of

q — 1. Then every element of G of order m is conjugate in G to an element of Ha of the

form h(x\)for some X E fy n r£ .

Lemma 4.6. Assume that © is a simple Lie algebra and let ß, 8 E fy n Tj-. Then the

following four conditions are equivalent.

(a) h(xß) ~ h(xs) in G;

(b) h(xß) ~ h(xs) via G;
(c) ß ~ 8 via W„; and

(d) ß ~ 8 via Q„.

Lemma 4.7. Assume that © is a simple Lie algebra. Then the following two conditions

hold.

(a) ß„ a %/y a I? /T¿ - rsc/rw; ató

(b) i/fi G ¿D n I?, rten Q„>/8 s C^AÍx^MQíAÍX/,))0).

Also, as in [30, §7], let {S,,... ,&,} be the Z-basis of r¿ such that (S;, a,) = r5,7

for all 1 < i, / < /. Then we have the following elementary extension of [30,

Proposition 7].

Lemma 4.8. Assume that @ is a simple Lie algebra, let 8 E fy n T¿~ and let m be a

positive divisor of q — 1. Then h(xg) is an element of H of order m if and only if the

following four conditions hold.

(a) 8 = ((q — l)/w)(2'=1 a,&,)for nonnegative integers a, with 1 < i < I;

(h) 2'=] a,m, « m;

(c)m(S,T„)<(q-l)Z;and

(d) if f is a proper divisor of m, then f(8, T^) ̂  (q — \)Z.

Proof. Clearly | h(Xs) \ = m if and only if (i) %miS'>1 > = 1 for all ju G Tw and (ii) if

/ is a proper divisor of m, then % f(S,>i) =£ 1 for some ¡i E Tw. Clearly (a)-(d) imply
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ÍG^lnr,1 and \h(xs)\=m. Conversely, since 8ET^<T^d, we have 8 =

2'=1 c¡&i for integers c, with 1 < i < /. Then (q — 1) | mc, for all 1 < f <i since

rad < r„. From the fact that 5 G ty, we conclude (a) and (b). Since (c) and (d) follow

from (i) and (ii), we are done.

Now utilizing the facts noted above, we shall derive various results that we require

about Chevalley groups over finite fields of odd order. Consequently, for the

remainder of this section, we assume that /? is odd. Also let A, = CK(a2) so that

A «£ kx and A, is the unique subfield of A of order q2.

As observed before, by our notational convention, if m is an even integer and V/k

is an orthogonal finite dimensional vector space with dim(F/A) = m, then

PQ(V/k) = PQ(m, q, 1) if ind(F/A) = f and PQ(V/k) = Pü(m, q,-l) if
ind(F/A) = f — 1 (cf. §3D). Also, as is standard and throughout the remainder of

this paper, we set PQ(6, q, 1) = PSL(4, q), Spin(6, q, 1) = SL(4, q), i>ß(6, q,-l) =

PSU(4, q), Spin(6, q, -Í) = SU(4, q), Pß(5, q) = PSp(4, q), Spin(5, q) = Sp(4, q),

PÜ(4, q, 1) = PSLÍ2, q) X PSL(2, q), Spin(4, q, 1) = SL(2, q) X SL(2, q),

fß(4, q, -1) = PSLÍ2, q2) and Spin(4, q,-l) = SL(2, q2).

Lemma 4.9. Let X = Cov(E1(q)). Then the following six conditions hold.

(a) Z( A) = (z) where z is an involution;

(h) there is a unique conjugacy class ® of involutions of X such that if t G ®, then

Cx(r) contains a 2-component J with t G / and J = SL(2, q);

(c) if ñ, t and J are as in (b), then Cx(t) contains, besides J, precisely one other

2-component Jx andJx = Spin(12, q, 1) with Z(JX) = (t, z).

(d) {t, z, tz) is a set of representatives of the conjugacy classes of involutions in X;

(e) there are elements yx, y2 of Xsuch that y2 = z and L2,(Cx(y,)) = E(Cx(y,)) for

i = 1,2, ^(C^y,)) is a quotient of SL(8, q) if q = 1 (mod 4) and of SU(8, q) if

q = -1 (mod4) and E(Cx(y2)) is a quotient of Co\(E6(q)) if q = 1 (mod4) and of

Co\(2E6(q)) ifq^-l (mod4); and

(f) all elements y of X such that y2 — z are conjugate in X to yx or y2.

Proof. Let © = E7, let w denote the simply connected representation of @, so

that G is a simply connected linear algebraic group, and let B = {ax,.. .,a7) be as in

[8, Planche VI]. Then rad = 2Z]=xZa, and T„ — Tsc = 2j=1 ZZ¿, where {w,,... ,w7} is

as in [8, Planche VIl_ Also G = Ga = A by [35, Theorem 12.4] and C^h) is

connected for all h E H by [35, Theorem 8.1]. Thus, we have ß„ = 1, S, = w, for all

1 < f ■'< 7, F¿- = rad, r^ = T„ and a0_= 2a, + 2a2 + 3a3 + 4a4 + 3a5 + 2a6 + a7.

Then Lemmas 4.4-4.8 imply that G and G each have three conjugacy classes of

involutions represented by h(x\ ) for /' = 1,2,3 where

X,=£y-3„   X2 = ^—w6   and   X3 = ^— (2Z57)«= (q- 1)«7,

Also (4.4) yields

*(Xx,5 = hal-l)ha5(-l)hai(-l) = hao(-l),

Ä(xxJ) = A«2(-l)M-l)    and

h(Xx2) = ha2(-l)hai(-l)hai(-l).
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Setting L, = (3E±ao>, L2 = (3E±a. | 2 < i =£ 7), L3 = (Z±ai) and L4_= <£±„0,

X ±0. |1 < í < 5> [30, Proposition^], Lemma 4.7(b) and_(4.2)jmply¿ Z(G) = Z(G)

= <Á(xx3)>, QWXx,)) = (¿, * L2)H, C¿tA(XA2_)) = (L3 * U)H, L, < C¿ih(xXi))
for/ = 1,2, L, < C¿tA(xx2_)) for/ = 3,4, LX^L3 = SL(2, A), Z(L,) = </.(Xx,)>>

Z(L3) = <Aai-l)>, L2^L4^ Spin(12, A), Z(L2) = (h(Xx,), h(Xx¡))^E4 and

Z(L4) = <A(xx3), A(xx2)> s E4. Also

Cc(Mxx1)) = CG(Mxx1)Mxx3))    and    z(cG (Mxx,))) = (Mxx,), Mxx3)>-

Thus h(xX])h(x\3) ~ h(X\2) m both G and G. Moreover, setting L, = C^(a) and

L2 = Cfi>), we have L, ^SL(2, *), Z(LX) = (A(xx,)>, ¿a s Spin(12, fc, 1), Z(L2)

= <Ä(Xx,),MXx3)>s£4and

Cc(Mxx,)) = CG(/z(Xx,)Mxx3)) = CG(/i(xx,))0 = (¿i * ¿2)(^)-

Thus (a)-(d) hold.

For (e) and (f), let v he an element of order 4 in Ax . Then Lemma 4.8 implies that

G contains precisely two conjugacy classes of elements y such that y2 = z and these

two conjugacy classes have representatives

yi=h(XXi)=ha2(v3)ha5(v)hat(-l)hJv3)

and

y2 = Mxx5) = hax(-l)hai(v3)h4-l)hai(v)hai(v3)

where

.*        Q ~ 1 /-.- \      q — I - ,    ,        q — 1 /„_ x      <7 — 1 _
x4 = —4— (2«2) = —T- "2   and   X5 = —^— (2«7) = —^— u7.

Also, as above, we have C^y,) = LXH and C¿ty2) = L2H where L, = (X±a.,

X ±„01 1 < 1 « 7 and ¡: ̂  2) and L2 = (X ±a. | 1 < /' < 6). Note that if u E Kx , then

K(u) = h4u2)h4u2)h4u3)h4u*)hai(u3)ha6(u2)hai(u).

Thus L, is a quotient of SL(8, A), z G Lx, y, G L, if and only if 8 | (q — 1),

L2/Z(L2) = E6(K) and z & L2. Suppose that q = 1 (mod4). Then y G A, (y,, y2>

< G0 and we have (e) and (0 in this case.

Finally assume that q = -1 (mod4). Then f £ A and a inverts both y, and y2. Let

w be an element of Nx such that the w induced automorphism w of $ satisfies w:

ax <-> a6, a3 «■» a5, a7 <-> -a0 and fixes a2 and a4. Then w2 E H and w inverts y, and

y2. Letting ß denote the inner automorphism of G induced by w, it follows that ßa

fixes both y, and y2 and ßa is conjugate via Inn(G) to a by Lemma 4.1. Since (Lx)ßa

is a quotient of SU(8, q) and (L2)ßa is a quotient of Cov(2£6(<7)) by [35, §11],

Lemma 4.4 implies (e) and (f) in this case also and we are done.

Lemma 4.10. Let X = Spin(7, q) with Z(X) = (z> and let S E Syl2(A). 77ie« the

following six conditions hold.

(a) Z(5) = (z) s* Z2, ß,(5) = SandS has a normal 4-subgroup;

(b) all involutions of X — Z(X) are conjugate in X;
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(c) if t E 5(A— (z)), then \X: Cx(t)\2 = 2, Cx(t) contains precisely three 2-

components Jx, J2 and J3. These 2-components may be indexed so that SL(2, q) ss,J,

<¡ Cx(t) for all 1 < i < 3, Z(JX) = <z), Z(J2) = (t), Z(J3) = (tz) and

CX(JX * J2 * J3) = (z, t). Also there is an involution r E Cx(t) — (Jx * J2 * J3) such

that Cx(t) — (Jx * J2 * J3)(t) and J,(t) has semidihedral Sylow 2-subgroups for all

1 < i < 3;

(d) there are two elements yx, y2 of Xsuch that y2 = z andL2,(Cx(y,)) = E(Cx(y,))

for i = 1,2, E(Cx(yx)) s Sp(4, q) with Z(E(Cx(yx))) = <z>, E(Cx(y2)) s SL(4, q)

ifq = 1 (mod4), E(Cx(y2)) f* SU(4, q) if q = -1 (mod4) andZ(E(Cx(y2))) = (y2>;

(e) all elements y of X such that y2 = z are conjugate in X to yx or y2; and

(f) if E is a normal 4-subgroup of S, then T = CS(E) is a maximal subgroup of 5,

ß,(T) = T, Z(T) = EandTE Syl2(Cx(E)).

Proof. Let © = B3, let w denote the simply connected representation of ©, so

that G is a simply connected linear algebraic group, and adopt the notation of [8,

Planche II]. Let B — {ax, a2, a3}, so that Tad = 2f=1 Za„ T„ = Tsc = 2-=1 Zco, where

{to,, w2, w3} are as in [8, Planche II], a0 = ax + 2a2 + 2a3, &, = ü¡, for /' = 1,2,

S3 = 2<o3, r¿ = 2?=, ZS, < r„, r;= 22=1 Z«, + Z(2a3J, ß, = 1,G = &, * X and

we may assume that X — G. Then, as in Lemma 4.9, G and G have precisely two

conjugacy classes of involutions represented by h(xx), h(xXl) where

Q ~ 1 t~- \ ,    -,        Q — 1 _
X, =—-—(2ux)    and   X2 = —r—w2-

Also setting z = h(xx¡) and t = h(xXl), we have z = Aa(-_l),_i = A„o(-l) =

*«,(-!)*«,(-!). Z(G) = Z(G) = (z> and C^t) = (/0 * 7, * /,)# where /, =

(X±ai>s SL(2, A) for all/ G {0, l,3},Z(/0) = (t),Z(J3) = (z> andZ(/,) =_<te>.

Then,'as in [30, §8], CG(t) = C¿it)a = (/0 * /, * /3)(//a) where SLÍ2, k) « (/;.)o =

J, < CG(t) for all i G {0,1,3}, Z(J0) = (t), Z(J3) = <z> and Z(JX) = (tz). Also

r« I* fV-Ofo4-ij(«*-J)
by [34, §9], (//j n /, = </iai(X)>, (Fj n /3 = (A0i(5C)>, (F0) n /0 = (A^OO)

where  AO0(«) = ha¡(u)hai(u2)ha<iu)  for  all  u E kx ,   \ CG(t):   (J0 *JX*J3)\=2

and  \CG(t)\=q3(q2- I)3. Thus (b) holds,  CG(t) = (J0 * Jx * J3)(haj(%))  and

\G: CG(t)\2 = 2.

Set M = Cx(t) and let {/,/, A) = {0,1,3}. Then

Jj * Jk = Jj XJk< CM) < CM(*a) < ^Af(*%) = V*í%*..

Since C^xa(l)) = ((//„) n JJ) X ((//„) n /,), we have CM(Xa) = JJ XJkX Ha

and CM(J,) - Jj X Jk. Thus CX(J0 * Jx * J3) = (t, z>= Z(M) and M/CM(J,) =

PGL(2, q). For r G {0,1,3}, let uar be as in [34, p. 30, (R5)]. Then <coao, ua¡, w0)) is

abelian, w2 = t, w2 = rz and to2 = z. Hence X = wa wa wa is an involution and X

inverts Aa/3C). Thus f = Aa2(%)X G 5(M) and M = (J0 * /, * J3)<t>. Moreover,

for r G {0,1,3}, we have (/r<T»/Z(/r) s PGL(2, q) and [27, Lemma 2.2] readily

implies that //t) has semidihedral Sylow 2-subgroups. Thus (c) holds. Next let

TG Syl2(M) and let T< VE Syl2(A). Then T= Cv(t), Z(T) = (t, z), ttx(T) =

T, | V: T\= 2 and Z(V) = <z>. Thus (t, z) <  V, T = Cv((t, z» and (f) holds.
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Clearly Nx((t, z» = MV, J3 < MV and J0MV = J0V = JXMV = Jxv = {J0, /,} since

tv — t(z). By the discussion in §3D, there is an element a G MV — M such that

a2 E (z) and [a, J3] < (z). Hence [a, J3] = 1 and a Sylow 2-subgroup of (J3, a) is

not quaternion. Thus J3a contains an involution. Since MV = M(a), (a) also holds.

For (d) and (e), let v be an element of order 4 in Ax . Then Lemmas 4.5-4.7 imply

that G contains precisely two conjugacy classes of elements y such that y2 = z and

these two conjugacy classes have representatives

y, = Mxx,) = M-^M"3)'  whereA. = ixi(2%) = ^(^3)

and

Y2 = Hxx2) = ha¡(-l)hai(-l)h4v),    whereX2 = ^1(2£1) = ^(20,).

Also by [30, Proposition 8], we have C¿\y2) = LXH and C¿ty2) = L2H, where

y, G L, = <£±„0, SL«,, X±«2 )= SL(4, A) and z G L2 = (X±ol2, I±aa )~

Sp(4, A). Suppose that q = 1 (mod4). Then v E k, y, G C^a) = SL(4, A), z G

C[(a) s Sp(4, A) and we have (d) and (e) in this case. Finally, suppose that q = -1

(mod4). Then v &k and a inverts both y, and y2. Let 8 = ax + a2 + a3. Thus

8 E 4> and cos, as defined on [34, p. 30, (R5)], has coefficients in the prime subfield

of A and is such that us E N and (us)2 = ha(-l). Set w — us. Then the w induced

automorphism w of 4> satisfies: w: a, «-» -a0 and iv(a,) = a fory = 2,3. Thus w also

inverts y, and y2.

Letting ß denote the inner automorphism of G induced by w, it follows that ßa

fixes both y, and y2 and ßa is conjugate via Inn(G) to a by Lemma 4.1. Since

(Lx)ßa s SU(4, A) and (L2)ßa s Sp(4, A:) by [35, §11], we have (d) and (e) in this

case also by Lemma 4.4 and our proof is complete.

Lemma 4.11. Let X= Spin(l,q) and Z(X) — (z) where z is an involution. Let

St = Aut( A), S = Inn( A) and let © be an arbitrary subgroup o/3t with 33 < 6. Then

the following nine conditions hold.

(a) i>fl(7, q) s ß(7, q) = » = 31' and& < Si s PTO(l, q);

(b) 21/99 - Z2 X Z„;
(c) /Aere are involutions ax, a2, a3 in Si — 33 such that 33a, = 33a2 = 33a3,

S3<a,)S 50(7, q) at PGO(l, q), E(Cx(a,)) = L2,(Cx(a,)) and Z(E(Cx(a,))) = (z)

for i = 1,2 and 3, E(Cx(ax)) = SU(4, q) if q = I (mod 4), £(Cx(a,)) a SL(4, ö) //
q = -1 (mod4), .EXC^aj)) s Sp(4, 0) a«t/ E(Cx(a3)) contains precisely two compo-

nents /, and J2, Z(JX) = Z(J2) = (z) a«i/ /, and J2 may be indexed so that

Jx = SL(2, q) andJ2 = SL(2, q2);

(d) all involutions in 93a, are conjugate via an element o/33 to ax, a2 or a3;

(e) 33 contains precisely one conjugacy class of involutions ® such that if j E ®, then

Cs(t) contains an intrinsic 2-component J with J/0(J) ~ SL(2, q);

(î) //S, t and J are as in (e), then 0(C%(t)) = 0(Ce(t)) = 1 and Cm(r) contains,

besides J, two other 2-components Jx andJ2 such that t G /, = SL(2, q),J2 = PSL(2, q)

and C%(J * Jx * J2) — (t);

(g) ifn is odd, then 02'(3i) = ^(ax);
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(h) // n is even, then there is an involution r E SI — (33(a,)) such that Cx(t) at

Spin(7, Jq), Z(Cx(t)) = (z), all involutions of St — 33(a,) are conjugate via an

element of33<a,> to t and5(93Ta,) = 0; and

(i) z/4 11 6/33 |, then n is even and 33<t)< 6.

Proof. Observe that the natural epimorphism of X onto A/Z(A) a ß(7, q) s

Pß(7, q) induces an isomorphism of Aut( A) onto Aut( A/Z( A)) by [21, Corollary

4.1].

Adopt the notation of the previous lemma. Note that Z(G) = (z), set G = G/(z)

and observe that [6, II, Theorem 6.8] implies that G is a connected linear algebraic

group and the natural epimorphism of G onto G = G/(z) is a morphism of linear

algebraic groups. Also X and a induce endomorphisms of G, Ga = XK where

K =JA G H\ a(h)h-_x E <z>}, X = X/Z( X) =PS2(7, q) s ß(7, q), X = 0»'(Ga)

= (Ga)' and \XK/X\ = 2. Moreover X leaves G„ invariant. Letting X* denote the

restriction of X to G„, it follows that X* induces an automorphism of G0 of order n,

cg„(\*)(x) ~ ! and G„(X*)=Aut(X) with X corresponding to Inn(A) (cf. [11,

§12.5]). By [25, Proposition 5], | iTO(7, q) | = | 311 and PTO(l, q) is isomorphic to a

subgroup of ä = Aut(A) s Aut(A/Z( A)). Thus (a) and (b) hold. Also Lemma 4.10

implies that G possesses three conjugacy classes of involutions which are represented

by ,-w'    '"'' ^~r^l'  '■
i=hax(-l),    yx=hax(-l)h4v3)    and    y2 = h a(-l)h a2(-l)h a}(v).

Let w be as in Lemma 4.10. Then w E Nx, w inverts y, and y2, w2 = 1 and tw — tz.

Thus for any/ G (/, y,, y2}, we have/ G G„ and

CS(j) = Qv7)<*> = Á'gTXX/)),   where C¿(j)° = Qt/Í
Choose g G G such that ga(g)~x = w, so that ga(g)'1 = w.

Lemma 4.4 implies that G„ has 6 conjugacy classes of involutions represented by

{/, ig, y,, yf, y2, y|} of which only three conjugacy classes He in X by Lemma 4.10.

Clearly Jq — Jx and (e) holds. Also it is easy to see from §3D and [25, Proposition

5(d)] applied to PTO(l, q) that (e) and (f) hold. Alternatively (f) also follows easily

from the proof of Lemma 4.10. For, with t, J0, J0, etc. as in Lemma 4.10, we have

NG^x.y(J0 * Jx * J3) = C¿-£t)(X*) and hence it suffices to study Cx(t)(X*) =

(JÔ* /, * J3)H„(X*). Set L = Cx(t)(X*) and let {/, /, k] = {0,1,3}. Then, as in
Lemma 4.10,

Jj * Jk - Jj X¿I.« CL(J,) < Q(3Eai) < AL(Xa) = JjJklaHa(X*).

Also, since QJX/1)) = (H„ n /y) X (Ha n /,), we have CL(3Ea() = (JÇ X Jk)Zar

Consequently CL(J¡) = J,X Jk and CL(J0 * Jx * J3) = (t, z). Now Lemma 2.7 im-

plies (f). Let ß denote the inner automorphism of G induced by w~x. Note that

ßa = aß, ß2 — 1 and (ßa)2 — a2 as endomorphisms of G.

First let A = C¿tO- Then A — C¿-((t, z)) and both ß and a leave A invariant. As

in Lemma 4.10, (/0, /,, J3] is the set of 2-components of Cx(t) = Aa. Also

Cx(tg) = CG(.tg) = ((CctOW*, (ßo)(J0) = /, and (ißa)(/3) - J3. Then Lemma

2.5 and [30, §8; 35, §11.6] imply that CG\t)ßa contains precisely two 2-components
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$-, and %2 and by suitable indexing we may assume that fx = (J3)ßa * SL(2, A),

Z(h)= <z>4-2 - C{J-oXf0(ßo) » SL(2, A,) and Z(f2) = <z>.
Next let A = C¿tYi) = CGX(y,)). Thus ß and a both leave /I invariant and, as

above, (L,)„SS_L(4,A), Z((f,)0) = <y, > if 4 | (q - 1), Zftlj).) = <x) if

4{(fl — 1) and (Lx)a is the unique 2-component of Cx(yx) = Aa. Also C^yf) =

(^J*, (ßa)(Lx) = Lx and, as above, (L,)^ s SU(4, A), Z((Lx)ßa) = <y,) if

41(9 - 1) and Z((L,)^) = <z> if 4 | (a - 1).

Next let A = c¿Xy2) — C¿X(y2)). Thus ß and a both leave A invariant, and, as

above (L2)a a (L2)^0 a Sp(4, k) and Z((L2)J = Z((L2)ßo) = (z>.

Clearly (g) holds. Suppose that n is even, let m — f and set t* = (X*)m. Thus t* is

the restriction of Xm to G„, (Xm)2 = a and Cx(t*) = C¿iXm) s Spin(7tv/^). Also

Lemma 4.2 implies that all involutions of (G„)t* are conjugate via G„ to t*. Thus (h)

and (i) hold. Finally (c) and (d) follow from the above and §3D and the proof of this

lemma is complete.

Lemma 4.12. Let X = Spin(2w + I, q) with m > 4. Then the following five condi-

tions hold.

(a) Z( A) = (z) where z is an involution;

(h) there is an involution t E X — Z( X) such that Cx(t) contains 2-components /,

andJ2 withJx =J2 = SL(2, q), Z(JX) = (t) andZ(J2) = </z);

(c) m is odd if and only if there is a conjugacy class & of involutions in X such that if

t G ®, then Cx(r) possesses a 2-component J with z E J and J/0(J) = SL(2, qx)

with qx = pr for some positive integer r;

(d) if m is odd and ®, t and J are as in (c), then ® is unique, qx = q, O(J) — 1

and Cx(r) possesses, besides J, precisely one other 2-component f and $ =

Spin(2(w - 1), q, 1) with Z(%) = (z, t>; and

(e) there is an involution j E X such that Cx(j) contains a component J with (z,

j) — Z(J), J = Spin(2w, q,l) if m is even and J s Spin(2(m — 1), q, 1) // m is odd.

Proof. Let © = Bm, let it denote the simply connected representation of © so that

G is a simply connected linear algebraic group and adopt the notation of [8, Planche

II]. Thus B = {«„... ,am], rad = 2f=I Za„ Tv = Tsc = 2™, Z«„ a0 = ax +

2r=22«,., S, - 5, for all Ki_<m-* I, &m = 2«m, T^ = 2™, Z&, < T^ T¿=
2r=",' Za, + Z(2am), X s G = G„ and ß„ = 1, etc. Then, as in Lemma 4.9, G and G

have precisely 1 + [f ] conjugacy classes of involutions which are represented by

I A(xx)    A =     t—"> withy even and 2 </ < m — 1

U {a(xx,)-A(xx2) I *i =^y-(2w.)andX2 = ^— (2wm) if in is even}.

Then, as in Lemma 4.9, we have Z(G) - (h(xx¡)), h(xx¡) = A„ (-1) and hao(-l) =

A(Xx) witb X =22—w2. Also t — ha (-1) satisfies (b) and it is easy to see, as in Lemma

4.9, that (c)-(e) hold.
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Lemma 4.13. Let X — Spin(8, q, 1). Then the following three conditions hold.

(a) Z(X) = E4 and Z(X)= (tx,t2) where tx and t2 are distinct commuting

involutions;

(b) all involutions in X — Z(X) are conjugate in X; and

(c) if't G 5(A — Z( A)), then Cx(t) possesses precisely four 2-components Jx, J2,J3,

J4. Also the 2-components of Cx(r) can be indexed so as to satisfy the following

conditions:

(i)Jx s SL(2, q) and Z(JX) = (r>;

(ii)/2 s SL(2, q) andZ(J2) = (rtx);

(iii)J3 s SL(2, q) andZ(J3) = (rt2); and

(iv) J4 s SL(2, q) and Z(J4) = <t/,/2>.

Proof. Let © = D4, let m denote the simply connected representation of © so that

G is a simply connected linear algebraic group and adopt the notation of [8, Planche

IV]. Thus B = {«„ a2, a3, a4}, Tad = 2f=, Za„ T„ = Tsc = 2f=, Zw„ a0 = ax + 2a2

+ a3 + a4, &, = w, for all 1 < / < 4, T¿ = T„, G = G„ = A and Q„ = 1, etc. Then,

as in Lemma 4.9, G and G have precisely 4 conjugacy classes of involutions

represented by

ÎA(xx,)|A1 = ^«2,X2 = ^(2co,),X3=^(2â33),X4=^(2o4)}.

Also, as in Lemma 4.9, we have

As G = G0,  h(Xx¡) = hao(-l) = hai(-l)h4-l)hai(-l),

A(xx2) = Aa3(-1)AQ4(-1),  A(xx3) = A„,(-l)Aa4(-l),

A(xx4) = Aa,(-l)Aa3(-l),  Z(G) = (h(XXl), A(xx3)>

and (a) and (b) hold. Also, setting t = A„(-1) and observing that ha(-l) =

rh4-l)hat(-\), Aa3(-1) = TAai(-l)Aai-l) and A„4(-l) = TAai(-l)Aaj(-l), it'readily

follows, as in Lemma 4.9, that (c) holds and we are done.

Lemma 4.14. Let X = Spin(8, q, -1). Then the following four conditions hold.

(a) Z( A) = (z) where z is an involution;

(h) all involutions in X — Z(X) are conjugate in X;

(c) // t G 5(X — Z(X)), then Cx(r) possesses precisely three 2-components Jx, J2,

J3. Also the 2-components of Cx(r) can be indexed so as to satisfy the following three

conditions:

(i)Jx s,SL(2,q2)andZ(J) = (z);

(ii) J2 = SL(2, q) and Z(J2) = (t); and

(iii)J3 = SL(2, q) and Z(J3) = (tz); and

(d) if y E X is such that y2 = z, then C^y) contains a unique 2-component L with

L s SL(4, q)orL = SU(4, q).

Proof. Assume the notation of Lemma 4.13 and let p denote the graph automor-

phism of order 2 of the root system of D4 such that p(a,) — a, for / = 1,2 and

p(a3) = a4. Then p induces a semisimple automorphism of G, which we shall also

denote by p, such that if a G $ and u E A, then p(xa(u)) = xp(M)(a). Also, as

.2-,
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endomorphisms of G, we have op = pa and (op)2 = a2 and we may take X = Gop —

C¿-(ap). Then (a) with z = A (-1)A„4(-1) and (b) follow from Lemma 4.13. Also

t_= hao(-l) G_5(A- Z(A)) and_Cx(T) = Q(t)op. Since C^t) = LH where L =

J0 * Jx * /3 * J4 and SL(2, A) s J, = (3£a , 3£_„_> < C¿tO for all i E (0,1,3,4}, the

methods of [30, §§2 and 8] imply that Cx(t) = (% * %x * $)H where H = Cfj(op),

SL(2, q) ^ Cja(ap) = Cjo(o) * £0, SL(2, 9) s Cj(op) = Cft») » $„ Z(£0) = <t>,
Z($,) = (tz>, SL(2, <?2) a CjÁ(op) = f= (x4u)x4o(u)), x_4u)x_4o(u)) \ u

E A,) andZ(f) = <Aa3(_l)Aa4(_l)>= <z>. Thus (c) holds.

For (d), let v he an element of order 4 in Ax . Lemma 4.8 implies that G contains

precisely two conjugacy classes of elements y of order 4 such that y2 = z and these

two conjugacy classes have representatives

r1=A(xD = Aai(-l)Aa/p3)Aa4(^))

where X, = —-—(2w3 + 2w4) = —-—(<ö3 + w4)

and

Y2 = A(xx2) = h4-l)h4-l)h4v)h4v),    whereX2 = ^(2«,) = S^rHl.

Also we have C^y,) = LXH and C¿Xy2) = L2H where y, G L, = (£±„0,

^*«,. *±a2)= SL(4, A), y2 ^ L2 = (X±a2, X±„3, X±„4> is of type A3 and z G L2.

Suppose that q = 1 (mod4). Then v E k, y, G C¿(pa) s SL(4, q) and z G Cr(po)

s SU(4, ̂ r) by [35, §11]. It follows that (d) holds in this case. Finally, suppose that

q = -1 (mod 4). Then v £ A and pa inverts both y, and y2. Also, from [8, Planche

IV], it follows that there is an element w E N with coefficients in the prime field of

A such that w2 E H and such that the w induced automorphism w of 4> satisfies w:

a, *-» -a0, w(a2) — a2 and w: a3 «-> a4. Then, by [34, p. 30], we have y™ = y~x for

/' = 1,2. Letting ß denote the inner automorphism of G induced by conjugation by

w, it follows that ßpa fixes both y, and y2 and ßpa is conjugate via Inn(G) to pa by

Lemma 4.1. Since (Lx)ßpa s SU(4, q) and (L2)ßpa s SL(4, q) by [35, §11], we have

(d) in this case also.

Lemma 4.15. Let X = Spin(2m, q,l) for some even integer m > 6. Then the

following three conditions hold.

(a) Z(X) = E4 and Z(X) = (/,, r2) wAere /, and t2 are distinct commuting

involutions of X;

(h) there is a unique conjugacy class of involutions Ü of X such that if t E Si, then

Cx(r) possesses a 2-component J with t G / andJ/0(J) s= SLÍ2, q); and

(c) if Ü and t are as in (b), then O(J) = I, J is the unique 2-component of Cx(t)

that contains r, Cx(r) contains precisely two other 2-components Jx andJ2 such that, by

appropriate indexing, we may assume: Jx = SL(2, q) andJ2 = Spin(2w — 4, q, 1) and,

by appropriate indexing of Z(X)*, we may also assume: Z(JX) — (tí,) and Z(J2) =

(tí2,í,>.

Proof. Let © = Dm, let it denote the simply connected representation of © so that

G is a simply connected linear algebraic group and let B = {a,,... ,am] be as in [8,
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Planche IV]. Then Tad = 2™ i Za, and r, = rsc = 2|"=j ¡SB, where {ü¿ 1 < i < m] is

as given in [8, Planche IV], e,. = Z¿, for all 1 < / < m, r¿ = r„, G = Gff_ = X, Qv= 1

and a0 = ax + 2™=222aJ + am_, + am, etc. Then, as in Lemma 4.9, G and G have

precisely 3 + (m — 2)/2 conjugacy classes of involutions represented by

93 = | A(xx) | X = —~—w, with /' even and 2 < /' < m — 2 \

í — i l
U (A(xx,)|^, = i-Y-(2w,)with/G {l,m- 1,«}}.

Also Z(G)  » £4, A(xx,)  =  ham ,(-l)Aa(-l),    A(Xx_,)  =  Aai(-l)Aaj(-l) •••

Aa_3(-l)Aam_,(-l)m/2A0j;-l)('"-2)/2,   A(XXm) = A(xAm_,)A(xx,)   and   Z(G) =

(A(Xx )> A(Xx _ ))• In addition, it is easy to see that ju = A(xx) with X =^—w2 is the

unique involution of 33 satisfying the conditions required in (b) and that the

conditions of (c) hold in CG(p) = (C¿Xn))a.

Lemma 4.16. Let X— Spin(2w, q, -1) for some even integer m>6. Then the

following five conditions hold.

(a) Z( A) — (z) where z is an involution;

(h) there is a unique conjugacy class ®, of involutions in X such that if t G ®,, /Aen

Cx(r) possesses a 2-component J with r E J andJ/O(J) = SL(2, q);

(c) z/8,, t and J are as in (b), iAe« O(J) = 1, / is the unique 2-component of C^(t)

/Aai contains r and Cx(t) contains, besides J, precisely two other 2-components Jx and

J2 which may be indexed so that Jx s SL(2, q),J2 = Spin(2 m — 4, q, -I), Z(JX) — ( tz )

and Z(J2) — (z);

(d) iAere is a unique conjugacy class ñ2 of involutions in X such that if r E ®2, then

Cx(t) possesses a 2-component J with z E J and J/0(J) = SL(2, ^f,) vvAere qx = pr

for some positive integer r; and

(e) // S2, t and J are as in (d), then O(J) = I, qx = q2 and the following two

conditions hold:

(i) Cx(t) possesses, besides J, exactly one other 2-component f; and

(ii) ^ Spin(2m - 4, q, 1) and Z(%) = (t, z>.

Proof. Assume the notation of Lemma 4.15 and let p denote the graph automor-

phism of order 2 of the root system of Dm (cf. [11, §12.2]). Then p induces a

semisimple automorphism of G, which we shall also denote by p, such that if a G $

and u E K, then p(xa(u)) = xp(a)(w). Also as endomorphisms of G, we have

pa = ap and (op)2 — a2 and we may take X — Gap. Note that Z(G) = (h(xx ),

A(xxm_,)>, Z(G)pCT = (A(xx,)> and for each even integer /' with 2 < / < m — 2 and

for X, =32z^ü,, we have

A(xx,) = Aa,(-l)Aa3(-l) ■ • • hai4-l)((ham4-l)h4-l)),/2).

Thus Z(A) = (z) where z = h(xx¡) = A„m_l(-l)A„ (-1) and X possesses precisely

I + (m — 2)/2 conjugacy classes of involutions represented by 93 = (A(xx)|X

=-V"Wi with /' even and 2^/'<w — 2}U{z}. Thus (a) holds and it follows via

arguments similar to those above that A(x*2) = A„ (-1) is the unique involution of 93

satisfying the conditions required in (b), that A(xxm 2) is the unique involution of 93

satisfying the conditions required in (d) and that (c) and (e) also hold.
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Lemma 4.17. Let X = Spin(2w, q, I) for some odd integer m > 5. Also let Z(X) =

(y) wAere \y\—(4,q— 1) and let z be the unique involution in Z(X). Then the

following three conditions hold.

(a) TAere is a unique conjugacy class ® of involutions of X such that i/têS, iAe«

Cx(t) contains a 2-component J with r E J andJ/0(J) s SL(2, q);

(b) //®, t and J are as in (a), then O(J) — I, J is the unique 2-component of Cx(r)

that contains t and Cx(r) contains, besides J, precisely two other 2-components Jx and

J2. Also by suitable indexing we may assume /, s SL(2, q), J2 at Spin(2/n — 4, q, 1),

Z(JX) = (tz), Z(J2) = (z> if q = -1 (mod 4) and Z(J2) = (ry) ifq^l (mod 4);

and

(c) there does not exist an involution r E Xsuch that Cx(r) possesses a 2-component

J with zEJ andJ/0(J) s SL(2, q2).

Proof. Let © = Dm, let tt denote the simply connected representation of © so that

G is a simply connected linear algebraic group and let B = (a,,... ,am} be as in [8,

Planche IV]. Then Tad = 2™i Za, and T„ = rsc = S^yZS, where {w,_| 1 < z =£ m} is

as given in [8, Planche IV], e, = w, for all 1 *£ /' < m, T^d = Tv, G = Ga = X, ß„ = 1

and a0 — a, + 1JI22aj + am_, + am, etc. Let v he an element of order 4 in Ax .

Then Z(G) = (h(Xß))~Z4 where 0 =^(4^m) = (q - I)5W,

h(xß) = h4-l)h4-l) ■ ■ ■ ham4v">-2)h4v>")

and h(xß)2 = ham(-l)h4-l). Also Z(G) = Z(G) if 4|(^-1) and Z(G) =
(h(Xß)2) if 4\(q— I). Moreover, as in Lemma 4.9, G and G have precisely

2 + (m — 3)/2 conjugacy classes of involutions represented by

(— i 1
A(xx) I A = —^—"/ with /' even and 2 < /' < m — 3

2 J

U {a(xa,),A(xXi)|X1 =^(2«,)andX2 = ^(ä?m_1+^m)}.

Here A(xXl) = A0m_,(-l)Aa(-l) = A(x^)2 and p = h(X\) with X =^w2 is the

unique involution of 93 satisfying the conditions required in (a). Finally, since

V- - ha/i-lMXß)2 - h4~1), both (b) and (c) readily follow.

Lemma 4.18. Let X — Spin(2w, q, -I) for some odd integer m > 5. Also let Z(X) =

(y) wAere \y\— (4, q+ 1) and let z be the unique involution in Z(X). Then the

following three conditions hold.

(a) TAere is a unique conjugacy class of involutions U of X such that if t E ®, iAen

C^t) contains a 2-component J with t E J andJ/0(J) = SL(2, q);

(h) if®,T andJ are as in (a), iAew O(J) = l,J is the unique 2-component of Cx(t)

that contains r and Cx(r) contains, besides J, precisely two other 2-elements Jx and J2.

Also by suitable indexing we may assume Jx = SL(2, ¿¡r), J2 = Spin(2w — 4, q, -1),

Z(JX) = (tz), Z(J2) = (z)ifq=l (mod 4) and Z(J2) = (Ty> if q = -1 (mod 4);

and

(c) there does not exist an involution t G X such that Cx(t) possesses a 2-component

J with zEJ andJ/0(J) s SL(2, q2).
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Proof. Assume the notation of Lemma 4.17, let p denote the graph automorphism

of order 2 of the root system of Dm (cf. [11, §12.2]) and assume that p induces an

automorphism of G as in the previous lemmas, etc. Then we may take A = Gap,

Z(X) = (h_am4-\)h4~l)) ifq=l (mod 4) and Z( A) = <A(x„)> ifq=-\ (mod 4)
and both G and X have precisely 2 + (m — 3)/2 conjugacy classes of involutions

with representatives as in the proof of Lemma 4.17. Also the methods of the proof of

Lemma 4.14 and the information in the proof of Lemma 4.17 readily yield (a)-(c).

Lemma 4.19. Let X = Es(q), let Si = Aut(A) and let 33 = Inn(A). Then the

following five conditions hold.

(a) SI = 33/1 where A n33= 1, A s 93 = ST and A is the subgroup of% induced by

Aut(A), so that A = Aut(A:) s Z„;

(b) 33 contains involutions t and v such that CSB(i) possesses precisely two 2-

components Jx and J2 and by appropriate indexing we may assume that Z(JX) = Z(J2)

= (/>, /, s SLÍ2, q), J2 s Cov(£7(<7)), | Cs(/)/(/, * J2)[= 2 and C^(JX * J2) =

(i) and such that Z(C^(v)') = (v), Cig(t>)' is a proper quotient of Spin(16, q, 1),

| C9(v)/C9(v)'\= 2andC9(C9(vY) = (v);

(c) {/, t>} is a set of representatives for the conjugacy classes of involutions o/93;

(d) ifn is odd, then 02(SI) = 93; and

(e) if n is even, then the unique involution t G A is such that C^t) = Eg(Jq) and

5(St- ¿?) = ts.

Proof. Clearly (a), (d) and (e) follow from Lemma 4.2, [35, Theorem 12.4; 11,

Theorem 12.5.1]. Also (b) and (c) follow from [30, §9 and Proposition 9(ii)] or the

methods of this section.

The same references in the proof just above yield

Lemma 4.20. Let X= F4(q), let 31 = Aut(A) and let 93 = Inn(A). Then the

following five conditions hold.

(a) 31 = 93/4 wAere A Pl93= 1, A = 93 = ST and A is the subgroup of% induced by

Aut(A), so that A s Aut(A) s Zn;

(b) 93 contains involutions t and v such that Cm(t) s Spin(9, q) with Z(Cm(t)) = (t),

Cçg(v) has precisely two 2-components Jx and J2 and by appropriate indexing we may

assume that Z(JX) = Z(J2) = (v), Jx a SL(2, q), J2 s Sp(6, q), \ Cçg(v)/(JX * J2) |

= 2 and Cs(/, * J2) = (u);

(c) (/, v} is a set of representatives for the conjugacy classes of involutions o/93;

(d) ifn is odd, then 02'(3I) = 33; and

(e) if n is even, then the unique involution t G A is such that Cïï(t) s F4(Jq) and

5(31 - 93) = t8.

Lemma 4.21. Let X=3D4(q), let SI = Aut(A) and let 93 = Inn(A). Also let

k2 = CK(o3), so that \k2\= q3. Then the following four conditions hold.

(a) St = 93,4 wAere A n93= l,A = 93 = 3l' and A is the subgroup o/3I induced by

Aut(A2), so that A = Aut(A2) s Z3„;

(b) 93 has one conjugacy class of involutions and if t E 5( 93 ), then the structure of

Cm(t) is as given in [14]; in particular, C<g(t) has exactly two 2-components Jx and J2
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which may be indexed so that Z(JX) = Z(J2) — (/), /, s SL(2, q), J2 s SL(2, q3),

| C9(t)/(JX * J2)\=2andC^(Jx * J2) = (7>;

(c) ifn is odd, then 02'(3I) = 93; and

(d) if n is even, then the unique involution t E A is such that Cm(r) at 3D4(^/q) and

5(3t-93) = TS.

Proof. Clearly A s SB and (b) follows from the methods above or [14, Theorem

and (2A)(iii)]. Also (a) follows from results of R. Steinberg, [34, Theorem 36]. Thus

(c) holds. Suppose that n = 2«, for some integer «, and t is the unique involution of

A. Then Cb(t) s,3D4(Jq) and t is induced from the field automorphism of A:2 of

order 2. Let <S) = 93(t), so that 5(31 - 93) = 5(^ - 93).
To conclude the proof, we shall apply Lemma 4.2 as follows. Let © = D4, let tt

denote the adjoint representation of © and let G denote the Chevalley group

obtained from (©, tt, A). Let q0 = /?"' and a0 = X"1 G Aut(A) so that o0(u) = u"°

for any « G A and denote the a0-induced endomorphism of G also by a0. Then

a02 = a and CK(o0) — k0 has order q0. Also let p denote the element of Aut(G)

induced by the graph automorphism of order 3 (cf. [35, §11; 11, Proposition 12.2.3]).

Then p3 = 1, pa0 — o0p as endomorphisms of G (cf. [11, p. 225]), (p2o0)2 = pa,

(pa)3 = o3, C¿Ípo, a0o) = C^Oq) < C¿\pa) < C¿Xa3) and (aQo)2 = a3. Also

C¿-(po) s 3D4(q) by [34, §11, Theorem 35 and Corollary] and Lemma 4.2 now

implies that 5(6D — 93) = t93. The proof of this lemma is now complete.

Lemma 4.22. Let X= G2(q), let SI = Aut(A) and let 33 = Inn(A). 77ie« the

following four conditions hold.

(a) A s 33 = ST W 31/33 is cyclic;

(b) 33 has one conjugacy class of involutions and if t G 5(33), /Aen C^(t) has

precisely two 2-components Jx and J2 and by appropriate indexing we may assume that

Z(JX) = Z(J2) = (/>, /, s/2 a SL(2, q), | Cm(t)/(JX *J2)\=2 and Ca(/, * J2) =

(0;
(c) if p =£ 3, then SI = 93/1 wAere 93 D St = 1 and A is the subgroup of% induced by

Aut(A), so that A ~ Aut(A) s= Zn, O2 (Si) = 33 when n is odd and, when n is even, the

unique involution t G A is such that Cb(t) s G2(Jq) and 5(31 — 33) = t93; and

(d) if p = 3, then SI = 33/1 where 33 n A = 1, A = Z2n and the unique involution

t EAis such that 5(31 - 33) = t33, Cs(t) s G2(Jq) ifn is even and C^t) s 2G2(q)

if n is odd where 2G2(q) is simple if q > 3 and 2G2(3) = Aut(PSL(2,8)).

Proof. Clearly A s 93 and (b) follows from [30, §9 and Proposition 9(ii)] or [14,

§2], Suppose that p ¥= 3. Then Lemma 4.2 and the proof of [11, Theorem 12.5.1]

imply (c). Suppose that/? = 3. Then [11, Proposition 12.4.1, Theorem 12.5.1 and p.

225] imply that 3Í = 33/1 where A n 33 = 1 and A = (g) where g2 is the automor-

phism of X induced by X G Aut(A). Since Aut(A) = (X)ss Z„, we have (d) when n

is even. When n is odd, then Lemma 4.2, [11, p. 225 and Lemma 14.1.1 ; 31, Theorem

7.8 and (8.4); 11, Proposition 12.4.1 and p. 268, Note] and the fact that a Sylow

3-subgroup of 2G2(3) is nonabelian by [31, (5.5)] yield (d). Clearly (a) holds and we

are done.
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Lemma 4.23. Suppose that q — 3" where n — 2m + 1 for some integer m > 1. Let

X =2G2(q), let Sí = Aut(A) and let 93 = Inn(A). Then the following two conditions

hold.

(a) 31 = 93/1 wAere /in33=l, A s 93 = ST = 02(3t) and A is the subgroup of%

induced by Aut(A), so that A = Aut(A:) s Zn; and

(b) 93 has one conjugacy class of involutions and if t E 5(93), then Cm(t) — (t)X J

where J s PSL(2, q).

Proof. Clearly [31, Theorem 9.1] implies (a) and (b) is well known (cf. [16, §16.6]

or [10, Appendix 1]).

Lemma 4.24. Let X= E7(q), let 31 = Aut(A) and let 93 = Inn(A). Then the

following four conditions hold.

(a) SI' = 33, 31/33 = Z2XZn and there is a subgroup g of 31 ímcA that 93 < ©,

| e/33 | = 2, S = (5(©)> and 31 = ®A where S n A = 1 and A is the subgroup of 31

induced by Aut(A), so that A » Aut(A) a Z„;

(b) ifn is odd, then 02(3I) = E;

(c) if n is even, then the unique involution t G A is such that Cb(t) s En(Jq) and

5(31 - 6) = ts; and

(d) Ê contains five conjugacy classes of involutions which may be represented by

{t,\ 1 ̂  i ^ 5} such that

(1) /, G 33, Cm(tx) contains precisely two 2-components Jx and J2 which may be

indexed so that Z(JX) = Z(J2) = (/,), /, s SL(2, ?), J2 is a proper quotient of

Spin(12, q, 1), | CE(/,)/(/, *J2)\=2 and CE(/, * J2) = (/,);

(2) t2 E 33, Csg(i2) contains exactly one 2-component J such that J is a quotient of

SL(8, q)ifq= 1 (mod4) and o/SU(8, q) if q = -1 (mod4) and CE(/2) n CE(/) is

cyclic;

(3) t3 E 93, Cm(t3) contains exactly one 2-component J such that J is a quotient of

Cov(E6(q)) if q = 1 (mod4) and of Cov(2E6(q)) if q = -1 (mod4) and CE(/3) n

CE(/) is cyclic;

(4) t4 E Ê — 93, Cffl(/4) contains exactly one 2-component J such that J is a quotient

c?/SU(8, q) if q = 1 (mod 4) and of SUS, q) if q = -1 (mod4) and CE(/4) n Ce(/)
is cyclic; and

(5) t5 E (£ — 33, Ctg(/5) contains exactly one 2-component J such that J is a quotient

of Cov(2E6(q)) ifq = 1 (mod 4) and of Co\(E6(q)) if q = - 1 (mod 4) and CE(í5) n
CE(/) is cyclic.

Proof. Let © = E7, let tt denote the adjoint representation of © and let G denote

the linear algebraic group obtained from the triple (@,7r, A). Note that G =

0_P'(Ga) s X, Ga = GH„, GJG = HJ(G n Ha) a Z2 by [35, Corollary 12.6(b)],

Ha s Hom(rad, A:x) and G D Ha corresponds by [11, Theorem 7.1.1] to Im(Res)

where Res: HomíT^, Ax) -» Hom(rad, Ax) denotes restriction to rad. Letting X*

denote the restriction of X to Ga, it follows that X* induces an automorphism of G of

order n, CGa(X.y(G) = 1 and 31 = Aut(£7(?)) s G„(X*> (cf. [11, §12.5]). Let B =

(a,,... ,a7}, (w,,...,w7}, etc. be as in [8, Planche VI]. Also let w E Nx he such that

the w induced automorphism w of $ satisfies w: a, <-> a6, a3 <^ a5, a7 <^ -a0 and
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fixes a2 and a4; thus w2 G Hx. Here rad = 2j=, Za„ T^d = Tsc = 2j=1 Zw„ | T^/T^ \

— 2, e, — w, for all 1 =s /' < 7 and a0 = 2a, + 2a2 + 3a3 + 4a4 + 3a5 + 2a6 + a7.

Also by [30, Proposition 3], Z2 s Qi = (î(?_i)e w). Then it follows that G has three

conjugacy classes of involutions represented by t,■ — h(xx.) for /' = 1,2,3 where

\   - <?~ !-     -v    _4_1-     -v    _ <J- 1 -
A,--2-«„   X2-^-«2>   X3--^— «7,

'. = Aa3(-l)Aa5(-l)Aa7(-l) = Aao(-l),

'2 = Aa2(»'3)Aa5(í')Aa6(-l)Aa7(í'3),

^3 = Aai(-l)Aa2(,3)Aa4(-l)Aa5(,)Aa7(,3)

for some element v E Kx of order 4. Also /, G G„ = G for /' = 1,2,3 and C¿tí,) =

(L, * L2)/i where L, = (£±0o)=SL(2, A), L2 = (I±a,v2 *£ i <tj)_\& a proper

quotient of Spin(12, A) and Z(LX) = Z(L2) - (/,), Q(f2) = (L3H)(w) where

L = (Í±a¡ \i E {0, 1,3,4,5,6,7}) is a quotient of SL(8, A) and C¿Xt3) =

(L4H)(w) where L4 = (I ±„, | 1 < /' <_6> is a quotient of Cov(£6(A)).

Next we apply Lemma 4.2. Let g G G be such that go(g)~x = w. Then G = Ga has

five conjugacy classes of involutions represented by [tx, t2, /f, t3, tg). Also if ß

denotes the inner automorphism of G induced by w'x, then CG(tf) = ((C¿-(t¡))ßa)g

for /' = 2,3. Now Lemmas 4.2 and 4.9 yield (a)-(c).

As in [30, §8], we have CG(tx) = (/, * J2)H„ where /, = (X±Qo)a SL(2^), J2 =

(2£±aj 12 < i < 7) is a proper quotient of Spin(12, q, 1) and Z(JX) = Z(J2) = (/,).

Clearly \CG(tx)/(Jx * J2)\= 2 and

cg(jx * j2) = cG(tx) n cg(jx * j2) = c^iy, * y2)

^^((X_O0>*(Xai|2</<7» = (i,>;

thus part (1) of (d) holds.

Similarly CG(/2) = (J3Ha)(w) where J3 = (X±a,.| /' G {0,1,3,4,5,6,7}) is^a quo-

tient of SL(8, q). Also, it is clear that CG(t2) n CG(J3) = Cf^J3). Since (H, J3) =

L3H, we have (í2>< C¡¡(J3) < C^L,) = (i2>. Thus CG(t2) n C^-AJ = (z2>.

Note that CG(if) a C£t2)ßa = (J3°(Hßa))(w) where /3° = Of'((L3)^0)_is_a quo-

tient of SU(8, q) by [35, §11.6]. Also, it is easy to see that (H, J30)- L3H. Since

CG\t2)ßa n C¿XJ3°) < Hßa and C^(L3) = (/3), we conclude from Lemma 4.9 that

(2) and (4) of (d) hold.

Also, as above, CG(/3) = (J4Ha)(w) where J4 — (X ±a. | 1 ** z < 6) is a quotient

of Cov(E6(q)) and CG(t3) n CG(/4) = C^/4). Here (H,J4)= L4H and

Cif(L4) s (x G HonuX Ax ) | X(«,) = 1 for all 1 < z < 6} s Ax ,

so that CG(t3) n CG(J4) is cyclic.

Finally, as above, CG(/f ) a C£t3)ßa = (J4%Hßo))(w) where J4° = 0"'((L4)ßo) is

a quotient of Cov(2£6(^)) and (H, J4°) = L4H. Since C^/j)^ n C^J?) < Z/^,,, we

conclude that (3) and (5) of (d) hold and we are done.
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Lemma 4.25. Let X = E6(q), let SI = Aut(A) and let 93 = Inn(A). Then the

following five conditions hold.

(a) 31 = SI'(/1 X (t*>) wAere 31' n (A X (t*>) = 1, A is the subgroup of SI

induced by Aut(A), so that A s Aut(A) s Zn, and where t* is the automorphism of X

of order 2 induced by the graph automorphism of order 2 of the root system of type E6,

93 = 02'(3l'), | St'/93 |= (3, q - I), t* inverts 31'/93 and A X (t*>s Z„ X Z2;

(b) 31' and 93 have precisely two conjugacy classes of involutions which may be

represented by involutions t and v such that t E CS(Z)' s Spin(10, q, 1) and

C%,(C^(t)') is cyclic and such that Cçg(v) possesses precisely two 2-components Jx and

J2 which, by appropriate indexing may be assumed to satisfy: /, s SL(2, q), J2 is a

quotient o/SL(6, q), Z(JX) — Z(J2) — (v) and C<&.(JX * J2) = (v);

(c) 31't* is ^-invariant and 5(SI't*) decomposes into two %'-orbits (under conjugacy

by elements of 31'), these two 31''-orbits may be represented by t* and At* for some

involution h E Ca,((T*)X A) where C%.(t*) = F4(q) and C^(hr*)' is a quotient of

Sp(8, q);

(d) ifn is odd, then 02'(3I) = 3I'(t); and

(e) if n is even and <p denotes the unique involution of A, then 5(31 — 3I'(t*)) = <p®'

U (T*yf, Cm(<p)' a E6(Jq) and C8(t*<p)' a 2E6(Jq).

Proof. Let © = E6, let tt denote the adjoint representation of © and let G denote

the linear algebraic group obtained from the triple (©,77, A). Let t denote the

automorphism of G induced by the graph automorphism f of $ (of order 2) such

that t(x0(m)) = xf(a)(w) for all u E A and all a E $. Clearly tX = Xt as endomor-

phisms of G, both t and X leave invariant G„, G = Op(Ga) = X, Ga = GH„,

GJG = HJ(G n Ha) and G = (G„)'. Letting X* and t* denote the restrictions of X

and t to GD, respectively, it follows that X* and t* induce commuting automor-

phisms of G of orders n and 2, respectively; CG (^»w^.^^G) = 1 and 31 =

Aut(£6(^)) = G„((X*>X(T*» (cf. [11, §12.5]). Let B = {ax, a2, a3, a4, a5, a6},

{<o,, ío2, co3, w4, io5, a>6), etc., be as in [8, Planche V]. Then Tad = 2f=, Za¡, rad = Tsc

= 2f=, Zw,, I rsc/rad I = 3, e, = w, for all 1 < z < 6, a0 = a, + 2a2 + 2a3 + 3a4 +

2a5 + a6 and it follows that G has two conjugacy classes of involutions represented

by t, = h(xx ) for i = 1,2 where X, =V("i + "e)> '\_= A„3(-l)Aa (-1), X2 =V"_2_

and t2 = Aai(-l)Aa4(-l)Aa6(-l) = AJ-1). A_lso /,. G_Ga for z = 1,2, C^t,) = LXH

where L, = (3£±a.]i G (0,2,J,4,5}>, tx E Lx andLx = Spin(10, A) and C¿Xt2) =

(L2 * L3)H where L2 = (£±^> s SL(2, A), _L3 = (Í±ct¡ | i E {1,3,4,5,6}),

is a quotient of SL(6, A) and Z(L2) = (t2)= Z(L3).

As_in [30, §8], we have CGJ/,) = Jx(Ha) where /, G /, = (3£ ±a¡ \ i E (0,2,3,4,5}>

=_(L,)„ s Spm(10, 9,1) by [35, Theorem 12.4], Clearly CG(,JX) = C{^(JX) and

(if, /,)= LXH = C¿-(tx). Since

C/7(L,) s {x G Hom(r„, Ax ) | x(a,) = 1 for all i E {0,2,3,4,5}}

= {xGHom(rw,Ax)|X(«,) = l forall2<z<5andx(a6) = x(«,r'}

~ /rx— ^    1

it follows that CG(JX) is cyclic.
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Similarly, we have CGJ/2) — (J2 * J3)(Ha) where J2 — (£ + «„) = SL(2, q), Z(J2)

- (t2),J3 = (£±a,|z G°{1,3,4,5,6}> is a quotient of SL(6, q) and Z(J3) = (t2).

Clearly CG(/2 * J3) = C^J2 * J3) and (H, J2, J3)= (L2 * L3)H = C¿tí2). As

above, it follows that Cj¡(L2 * L3) — (t2)— CG(iJ2 * J3).

Let tt* denote the simply connected representation of © and let G* denote the

simply connected linear algebraic group obtained from the triple (©, tt*, A). Also

let A: G* ^> G be the universal covering of G and extend X, t and a = X" to

endomorphisms of G* in the obvious way so that X, t and o are compatible with A.

Clearly (4.1) and (4.2) imply that Ker(A) s Hom(rsc/r„, Ax ) where | rsc/r„ | = 3.

Thus, if/? = 3, then Ker(A) = 1 and if /? ¥= 3 and v is an element of order 3 in Ax ,

then Ker(A) = (f)= Z3 where/= h4v)h4t>~x)ha¡(v)h4v'x). Note that t inverts

Ker(A) and Ker(A) < (G*)„ if and 'only if 3\(q- 1)/now the proof _of [35,

Corollary 12.6(b)] implies that GJG = Z(3 ,_,, and t* inverts Ga/G. Thus (G0((X*>

X (t*»V = G„ and both ja) and (b) hold.

For (c), observe that G(t) is a linear algebraic group and that G is a normal

closed subgroup of G(t) by [6, Chapter I, 1.11]. Since G is a simple group (cf. [7,

§3.2(3)]), it follows that (G(t>)° = G byJ6, Chapter I, (1.2), Proposition]. Also a

induces an endomorphism of G(t) with (G(t))„ = G„(t) finite. On the other hand,

every involution of Gt is conjugate via G to an element of NG^Ty(B) n Ag<t:>(//) =

H(t) by [35, Theorem 7.5; 36, §2.12, Corollary 2 and §2.8, Theorem 2(c)]. Note that

f : a, <-> a6, a3 <-» a5 and fixes a2 and a4. For each 1 < i <£ 6, let H, = {A(x) | x(aj)

= 1 for all/ ¥= i with 1 «$/ ^ 6}, so that H, is a subgroup of H Then H = ©f=, H„

H\ = H6, H¡ = H5 and [t, H2 X M4] = i. For / G {2,4}, let A) =_A(x) G Ä) be

such that x(aj) = -1> so that A; is the unique involution of flk Also A2 =

Aa(-l)Aa (-1)A„ (-1) and A4 = ha (-1). Then Lemma 2.5 implies that every involu-

tion of Ht is conjugate via H to an involution in (A2, A4)t. Clearly

( A2, A4, I±a2, I±a4>< C¿ít) and (A2, A4>< Hx < Ha. For; G {2,4}, let co0j be

as defined in [34, p. 30, (R5)]. Then

("«2."«4>^CG(T)nÄx^CG(T)niV0    and    (A2t)u- = A2A4t=(A4t)w-""1<-,).

Consequently every involution of G t is conjugate via G to an element of {t, A2t}

where {t, A2t} C (G(t»0 = G0(t>. Also, [35, (9.4) and (9.8)] imply that C¿Xt) and

C¿XA2t) are connected and_reductive linear algebraic groups. Hence Lemma 4.32

implies that 5(G0t*) = (t*)g° U (A2t*)c°.

The methods of [11, Chapter 13] can be used to determine the structure of C¿\t)

and C¿tA2T). For this process, let S denote the set of orbits of f on $ and for each

orbit 0 G S, let ae = („ee)A ® I denote the average of the vectors in 0.

Then {ae|0G§} is the corresponding root system for C¿\t) and {a2, a4,

(a, + a6)/2, (a3 + a5)/2} is a base for this root system. Since each element of

(N/H)T can be represented by an element of NT, as follows from [35, §8.2(5)], we

conclude that C<j(t) = ((3Ea | a E $ and f(a) — a), (xa(«)xT(a)(w) | u E A))s

F4(A) and (Q(t))0 = Cg(.t*) ^ F4(k).
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Note that A2 = A(x) for the element x G Hom(Tad, Ax ) such that x(«,) = 1 Ior

ail 1< i < 6 with i * 2 and x(o2) = -1. Let S, = {0 G S 11 0 |= 1 and x(«) = 1
for a G 0}, let S2 = {0 G § 11 0 |= 2 and x(«) =1 for a G 0} and let S3 =

{0 G S 11 0 |= 2 and x(«) = -1 for a E 0}. Then [ae | 0 G S, U S2 U S3} is the
corresponding root system for C¿~( A2t), is of type C4 and has base

(        ax + a6    a3 + a5    2a2 + a3 + 2a4 + a5 )

l"4'       2      '       2      ' 2 )'

Then [35^ (9.2), (9.3), (9.8) and the proof of (8.2)] imply that C¿tA2T) = (Hk%T, L)

where L = ((Xa | {a} G S,), (xa(w)xT(a)(w) | u E A and {a, f(a)} G S2 >,

<*«("K-(«)(-") I " e A and {a, f(a)} G S3». Hence ((Q(A2t))0) = CGo(A2t) and

Cg(A2t)' is a quotient of Sp(4, A). This completes the proof of (c), and (d) is

immediate. Finally, suppose that n is even and let <p be as in (e). Then <p corresponds

to (X*)"/2 = (X"/2)\Go. Since (X"/2L2 = X" = a and (X"/2t)2 = a, Lemma 4.2 im-

plies that 5(G0(X*)"/2°) = ((X*)"/2)c° and 5(G„(X*)"/2t*) = ((X*)"/2t*)c°. Clearly

CG(iX*)n/z) = CciX"/2) and Cg(X*"/2t*) = Q(X"/2t). Thus (e) holds and we are

done.

Lemma 4.26. Let X = 2E6(q), let 31 = Aut(A) and let 93 = Inn(A). Then the

following three conditions hold.

(a) SI = 31 'A where 31' fl A = 1 and A is the subgroup o/SI induced by Aut(A:,), íí?

that A sAut(A,)sZ2„, 33 < SI' and | 31 '/33 | = (3, ̂  + 1);

(b) 31' anfi? 33 have precisely two conjugacy classes of involutions which may be

represented by involutions t and v such that t E C^t)' = Spin(10, q, -1) and

C%,(Cm(t)') is cyclic and such that C%(v) possesses precisely two 2-components Jx and

J2 which by appropriate indexing may be assumed to satisfy: /, s SL(2, q), J2 is a

quotient o/SU(6, q), Z(JX) = Z(J2) = (v) and CW(JX * J2) — (v); and

(c) if <p denotes the unique involution of A, then St'(<p)= (5(31)) and 5(3I'<jp)

decomposes into two SI '-orbits ( under conjugacy by elements of SI '), these two SI '-orbits

may be represented by <p and h<p for some involution h G Ca-( A) where C^,(tp) s F4(q)

and C%,(h<p)' is a quotient of Sp(8, q).

Proof. We use the notation of the previous lemma except that we consider GOT

and set G = Op'(GaT). Then (GOT)' =_G s= A, X and t leave G0T invariant, GOT =

GHaT ^ Gai and Gar/G s HaT/(G n HaT). Letting X* and t* denote the restrictions

of X and t to GOT, we have (X*)" = t* = o |G , | X* |= 2«, CG,X.^(G) = 1 and

31 = Kut(2Eb(q)) s GOT(X*) (cf. [34, Theorem 36]'). Note that [35, Corollary 12.6(b)]

and the proof of Lemma 4.25 readily imply that | GaT/G\= (3,q+ 1) and that t

inverts GOT/G. Clearly (i,,/2)<G. Then Lemma 4.4 implies that G„T has two

conjugacy classes of involutions represented by /, and t2. Also, as above, CG(tx) =

J\(HaT) where /, G/, = ((xa(u)\u E k, a E {±a2, ±a0, ±a4}), (xaj(M)xa (a(t/)),

x„4u)x_4o(u))\u E A,»= (L,)aT st Spin(10, q,-l). Clearly C¿;r(/,) = C^(/,)

and (H, Jx)— LXH — C¿Xtx), so that CG (/,) is cyclic. Similarly, we have CG (f2) =

(J2 * J3)(HOT) where /2 = <3E ±tt0 >^ SL(2, q), Z(J2) = (t2), J3 = ((I±a4>,

(xa(t/)xT(a)(a(i/))| « G A, and a G {±a,, ±a3}>) is a quotient of SU(6, q) and

Z(J3) — (t2). Since (//, J2, J3)= (L2* L3)H, we conclude, as above, that

CG (/2 * /3) = </2>. Thus both (a) and (b) hold.
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For (c), as in the preceding lemma, we have 5(G„tt*) = (t*)g°* U (h2T*)G",

QJO = C¿tT)aT = CcÍt), s F4(k) and CgJA2t*) - C¿ih2T)ar. However A2 G

Q(A2t)ot and C¿tA2T) is connected. Thus C¿tA2T)OT = C¿ih2T)paT = CGtA2T)j8Ta =

CGX(h2)T)a where ß denotes the inner automorphism of C¿~(A2t) induced by conjuga-

tion by A2. Now (c) follows from Lemma 4.25 and our proof is complete.

The information about Aut(PSL(2, q)) that we require appears in [14, §1]. For the

remaining cases we present

Lemma 4.27. Let X = PSL(/rz, q) for some integer m > 3, let 31 = Aut(X) and

33 = Inn( A). Then the following four conditions hold.

(a) 31 = 6(/l X (t*)) wAere 6 n (A X (t*>) = 1, A is the subgroup of% induced

by Aut(A), so that A at Aut(A) = Z„, t* is the graph automorphism of order 2 induced

by the graph automorphism of order 2 of the root system of type Am_x, 93 — (£',

PGL(w, q) a 6 < 31 andt* inverts 6/93 s Z(m q_X);

(b) if m is odd then 5(Kt*) = (t*)e and if m is even, then 5(6t*) decomposes into

three orbits under conjugation by ©;

(c) ifn is odd, then 02'(3I) = ©(t*>; and

(d) if n is even and q> denotes the unique involution of A, then 5(31 — 6(t*)) = <ps

U (t*<p)s, CB(qp) = PGL(m, Jq) and C9(r*<p) = PU(m, Jq).

Proof. Let © = Am_x, let tt denote the adjoint representation of © and let G

denote the linear algebraic group obtained from the triple (®, tt, A). Let t denote

the automorphism of G induced by the graph automorphism f of $ or order 2 such

that t(x0(u)) = xf(a)(u) for all m G A and all a E <E>. Clearly tX = Xt as endomor-

phisms of G, both t and X leave invariant G„ s PGL(w, q), (Ga)' = G = PSL(/rz, q)

and GB/G = Z(mq_X). Letting X* and t* denote the restrictions of X and r to Ga,

respectively, it follows that X* and t* induce commuting automorphisms of G„ of

orders n and 2, respectively,

Cc,«a->x<t.»(G) = 1 = G„ n ((X*>X (t*))

and

% = Aut(PSL(m,q))^Ga((X*)X(T*))

(cf. [11, §12.5]). Let B = {a„.. .,am_,}, {«„.. .,«„_,}, etc., be as in [8, Planche I].

Thus, we may assume that f: a, «-> am_, for all 1 < z < (w - l)/2 and that f fixes

am/2 if w —J is odd. Then, from [8, Planche I], we conclude that f inverts rsc/rad.

Note that_Gö = G(Ha), GJG ^ HJ(G n Ha) * Z(m,?_,)( Tsc = Z5, + Tad and
f(to,) = -w, + r for some r G Tad. As in Lemma 4.25, it is easy to see that t* inverts

G„/G. This may also be demonstrated as follows. If x G Hom(r„, Ax ), then xxf

extends to an element of Hom(rsc, Ax ) by defining

(XXT')(*w, +s) = x(r)zx(s)x(f(s))    for all z G Z and s E Tad.

Now [11, Theorem 7.1.1] implies that t* inverts HJ(G D Ha) and GJG. Thus (a)

and (c) hold. Also (d) follows from Lemma 4.2 and [35, §11.6]. For any I « i < m —

1, let H, = (A(x) | x(«>) = 1 for all / ¥= i with 1 <j «G m - 1}, so that ^ is a
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subgroup of H and H, s Ax . Clearly H = ©/ÜJ ' H, and_Lemma 2.5 implies that

5(Ht) = th if m — 1 is even and 5(Ht) = tw U (At)77 where A is the unique

involution of Hm/2 if /n — 1 is odd. As in Lemma 4.25, we observe that G(t) is a

linear algebraic group and (G(t))° = G. Also o induces an endomorphism of

G(t) with (G(t))„ = G0(t), and C^t) is a connected linear algebraic group by

[35, 8.3(b)]. Thus, by Lemma 4.4, we may assume that m — 1 is odd. Since

| CGtAT)/(CGtAT))°|= 2 (cf. [10, §4.3]), (b) follows from Lemma 4.4 and we are

done.

Remark 4.28. Let G = GL(w, A) for some integer m > 3, the group of nonsingu-

lar m X m matrices over A. Let H = SL(w, A) = {x G G| det(x) = 1} and let t

denote the transpose-inverse automorphism of G. Then G — H' — G(oo) and [29,

Proposition 8.9] implies that Cg(t) = 0((V/k, /)) and Ch(t) = SO((V/k, /))

where (V/k, /) is a nonsingular orthogonal vector space of dimension m with

F>((V/k, /)) = (Ax )2. Also if c E kx -(kx )2 and A denotes the inner automor-

phism of G induced by the m X m diagonal matrix with c in position m and 1 in the

remaining (diagonal) positions, then tA = A"'t and (At)2 = t2 = IG. Also, by [29,

Proposition 8.9], Cg(At) s 0((V/k, /)) and Ch(At) at SO((V/k, /)) where (V/k,

/) is a nonsingular orthogonal vector space of dimension m with D((V/k, /)) =

c(Ax)2. Suppose that m is even and let g denote the inner automorphism of G

induced by the matrix A on [11, p. 3]. Then Tg = gT, g2 = IG # g and CH(Tg) =

Sp(K/A) where V/k is a nonsingular symplectic vector space of dimension m by [29,

Proposition 9.13]. Suppose that n is even and let o0 = X"/2, so that a02 = a. Clearly X

and o0 induce automorphisms, in the natural way, of G which we shall also denote

by X and o0. Then X"/2 = o0 ^ IG — a02 and to0 — o0t, etc. Letting CK(o0) — Ck(o0)

= A0, we have CG(o0) = GL(w, A0) and CH(o0) — SL(w, A0). Also, by [29,

Proposition 8.8], we have CG(a0T) = U(V/k) and Ch(oqt) = SU(F/A) where V/k

is a nonsingular unitary vector space of dimension m.

Lemma 4.29. Assume that n is even and let X— PSU(m,Jq) for some integer

m 5* 3, ze/ SI = Aut( A) and let 93 = Inn( A). 77ze« the following two conditions hold.

(a) 31 = E/l wAere 6 <1 SI, © n A — 1, A is the subgroup of% induced by Aut(A),

so that A s Aut(A) s Z„, 33 = 6', PU(m,{q) s 6 < 31 s PTU(m, Jq), and S/33

= Z{m^+X);and

(b) if cp denotes the unique involution in A, then 5((£<p) decomposes under conjuga-

tion by © into one orbit if m is odd and into three orbits if m is even.

Proof. Utilize the notation of Lemma 4.27 and set o0 - X"/2 and G = Op'(GaoT).

Clearly a02 = a, t<j0 = o0t, (to-0)2 = a,

G0oT s PU(m, Jq~), G = G^T at PSU(m, {q)

and

GO0T<G>PGL(m,«5,).
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Let X*, t*, a0* denote the restrictions of X, t and a0 to G„ T, respectively. Then

t* = a* = (X*)"/2, (X*)" = IG„ Cô^<K.y(G)-\ and 31 = Aut(PSU(m, Jq)) a

G„ T(X*) (cf. [34, Theorem 36]). Thus (a) holds. Clearly a0T induces an endomor-

phism of the Unear algebraic group G(t), (G(T»a T = G„ t(t) and (b) follows as in

Lemma 4.27.

Remark 4.30. Suppose that n is even and let a0 = X"/2 and k0 = Ck(a0). Let

(V/k,f) be a nonsingular unitary vector space of dimension m. Then [29, Proposi-

tion 8.8] implies that V/k has a basis B = {«,,... ,t>m} such that /(u,, c ) = 5,- ■ for

all 1 < z',/ «5 w. Then IF = 2J1, A0t>, is a vector space over A0 of dimension m and

(W/k0,f\w/k) is a nonsingular orthogonal vector space with D(W/k0) = (Aq )2 by

[29, Proposition 8.9]. If aB: U(V/k) -» GL(wi, A) denotes the monomorphism

defined via the basis B, then Im(aB) is invariant under o0, Im(afl)a = O(IF/A:0)

and aB(SU(F/A))0o = SO(W/k0). Next let N: kx -* AJ denote the norm map, let

c E kx he such that N(c) £ (k% )2, let v'¡ = v, for all 1 < /' < m - 1 and v'm - cvm,

let B' = {v'x,...,v'm] and let W' = 2,™ ikQv¡. Then B' is a basis of V/k such that

/(«,', t?j) = 8,j for all 1 < /',/ < m with /' ¥= m or/ ^= m andf(v'm, v'm) = A(c), IF' is a

vector space over A0 of dimension m and (W'/k0, f\Wyk/) is a nonsingular

orthongonal vector space with D(W/k0) = A(c)(Aj )2 by [29, Proposition 8.9], If

aB,: U(V/k) -» GL(w, A) deotes the monomorphism defined via the basis B then

Im(afl,) is invariant under o0, Im(aB,)a = O(W'/k0) and aB,(SU(F/A))„ =

SO(W'/k0). Next, suppose that m is also even. By [29, Proposition 9.14], V/k has a

basis B* = {w,(¡), w2(,)| 1 «S ¿ < f J such that/(wi''\ w2(,)) =/(w2(,), w{°) = 1 for all

1 « z < f and f(w{/\ w{sJ)) = 0 if i #/ or r = 5 with 1 < /,/' < f and 1 < r, 5 < 2.

Let d G Ax be such that a0(d) - -d and set /* = df. Then W* = 2™JX2k^ +

2^/,2A0vf^') is a vector space over A0 of dimension m and (W*/k0, f* \w*/k<l) is a

nonsingular symplectic vector space by [29, Proposition 9.13]. If aB.: U(V/k) -»

GL(«, A) denotes the monomorphism defined via the bases B*, then Im(aB.) is

invariant under a0 and lm(aB,)„ = Sp(IF*/A0) = aß,(SU(F/A))CT .

Clearly, the following two results are easy consequences of the methods utilized in

this section.

Lemma 4.31. let X = PSp(2w, í¡r) for some integer m > 2, let SI = Aut( A) and let

33 = Inn( X). Then the following three conditions hold.

(a) SI' = 93, SI = (5/1 wAere 93 < S < 31, © s (2m, A), | 6/93 |= Mfl6=l

and /I is iAe subgroup of% induced by Aut(A), so that A s Aut(A) at Z„;

(b) ifn is odd, then 02'(3t) = 6;

(c) ifn is even, then the unique involution t E A is such that Cs(t) = PGSp(2w, Jq~)

anrf5(3I-6) = TS.

Lemma 4.32. Let X = PQ(m, q) for some odd integer m^l,let% = Aut( X) and

let 93 = Inn( A). Then the following three conditions hold.

(a) SI' = 93, SI = 631 wAere 93 < E < SI, 6 a PGO(m, k) s SO(m, q), | 6/93 |

= 2, A D 6 = 1 and A is the subgroup o/SI induced by Aut(A), so that A = Aut(A:) s

z„;
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(b) ifn is odd, then 02(3I) = 6; and

(c) if n is even, then the unique involution t G A is such that C^t) s SO(m,Jq)

amf5(SI-e) = Tg.

Lemma 4.33. Let X — 5ß(2m, q, I) for some integer m 3s 4, let SI = Aut( A) and let

93 = Inn(A). Then the following seven conditions hold.

(a) There is a normal subgroup 6 o/SI such that 6' = 93, 6/93 =E4if m is even and

6/33 s Z(4q_,, if m is odd;

(b) SI contains a subgroup A induced by Aut(A), so that A = Aut(A) s Z„;

(c) C%(A) contains a subgroup B such that B (1 A — I, \B\— 2 if m ¥= 4 and

5s23z/m = 4WSI = 6(5X/l)ivz7A6 n (B X A) = 1;

(d) 6 5/33 = 24 if m = 4, 6 5/33 ss Ds if m is even or m is odd and q = 1 (mod 4)

and 65/33 = E4ifm is odd and q = -1 (mod 4);

(e)ifT E 5(B), then 6(t)s PGO(2m, q, 1);

(f) ifn is odd, then 02'(3t) = 65; and

(g) ifn is even and <p denotes the unique involution of A and z/t G 5(5), then

5(6<p)=<A    5(6T<p) = (T<pf,    CE(<p)' = 5ß(2m,^,l)

and C^Ty)' = Pti(2m,j7j,-l).

Proof. Let © = Dm, let tt denote the linear algebraic group obtained from the

triple (©, 77, A). Let 5 denote the group of automorphisms of G induced by the

group of graph automorphisms of $, as in Lemma 4.27. Thus 5 s 23 if m — 4 and

| 5 |= 2 otherwise and [5, X] = 1 as endomorphisms of G. Also 5 and X leave

invariant G„ and G = Op'(Ga) = (G„)' = X. Let X* == X |G and for A G 5, let b* =

b \G. Then, as endomorphisms of G, | X* | = n, X* commutes with 5* = (b* \ b E B),

B*^B, CGo(<x.)x/n(G) = 1 = G0 n ((X*)X B*) and 31 a Ga((X*)X B*) by [11,
Theorem 12.5.1]. Also from [8, Planche IV], we have rsc/rad a E4 if m is even and

r^/r^ a Z4 if m is odd. Note that G„ = G(Ha) and GJG = HJ(G n H„) a

Hom(rsc/rad, Ax ) by [11, Theorem 7.1.1]. Applying [35, Corollary 12.6(b)] and the

proofs of Lemmas 4.13, 4.15 and 4.17 (as in Lemma 4.25), we conclude that (a)-(d)

and (f) hold. Note that PTO(2m, q,l) is isomorphic to a subgroup of 3Í and if

| St |^| 5rO(2w, q, 1) |, then m = 4 and | 311= 3 | PYO(2m, q,l)\. Thus we may

assume that n is even and q = 1 (mod4). Let cp = (X*)"/2 and let t G 5(B*). Then

(g) holds by Lemma 4.4 and [35, §11.6]. Note that (5(PÜ(2m, q, 1))>= Pti(2m, q, 1)

and that ( 5(PO(2m, q, 1))> = PO(2m, q, 1) and ( 5(PGO(2m, q, 1))) =

PGO(2m, q, 1) from §3D. Thus there is a monomorphism 8: PGO(2m, q, 1) ->

6(t, <p)= 6 U 6t U 6<p U 6t<p. Then §3D and (g) imply that 8(PGO(2m, q, 1)) <

6(t>. Since I 5GO(2m, <7,1)| = | 6(t>|, we have 8(PGO(2m, q,l)) = 6(t> and we

are done.

Lemma 4.34. Assume that n is even and let X — Pil(2m, Jq~,-l) for some integer

m>4,let'ñ = Aut( A) and let 93 = Inn(A). 77ze« the following five conditions hold.

(a) TAere is a normal subgroup 6 of SI such that 6' = 93, | 6/33 \— 2 if m is even,

and 6/33 a Z(4 ̂  +1) if m is odd;

(h) SI contains a subgroup A induced by Aut(A), so that A a Aut(A) s Z„;
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(c)St = SAandG. HA = 1;

(d) SI s PrO(2m, Jq,-1); and

(e) if tp denotes the unique involution of A, then 6(qp)a PGO(2m, Jq~, -1) and <p

inverts 6/93.

Proof. Utilize the notation of Lemma 4.33 but let t G 5(5) and set a0 = X"/2 and

G = Op(Ga T). Clearly a02 = a, tX = Xt and (to0)2 — a. Thus X and t leave

G„oT invariant, G = (G„oT)' a A, a0 \G^ = t |Gaor, G0qT = GHa¡¡T and GaoT/G a

Ha J(G n //0 T). Applying [35, Corollary 12.6(b)] and the proofs of Lemmas 4.13,

4.15 and 4.17, we conclude that | G JG | = 2 if m is even and Ga¡¡J/G at Z(4 ^ +,> if

?w is odd. Also t inverts G„ T/G in all cases. Let X* = X 1^  . Then
a0T/ loaOT

(X*)"/2 = a0 |Goot = t |Goot # /¿^        CG^(X.}(G) = 1

and

SI a G„oT(X*>

by [34, Theorem 36]. Thus (a)-(c) hold. Since PTO(2m,jq,-l) is isomorphic to a

subgroup of 31 and I PTO(2m, Jq ,-l) I = I 311, we have (d). Since

(5{PGO(2m,{q,-l)))= PGO(2m, fq , -l)

by §3D, | 5GO(2m, Jq, -1) |= 2 |.G0oT | and (G0oT(X*»/G0oT a Z„, we have (e) also

and we are done.

Finally, we note that §§3A-3D and Lemmas and Remarks 4.27-4.34 give a

complete survey of the conjugacy classes of involutions in the automorphism groups

of the classical linear groups over finite fields of odd order that extends [12].

5. Additional preliminary results. In this section, we utilize our previous work to

derive further results that are required in our proofs of Theorems 1-3 (as presented

in §§6-8, respectively).

Throughout this section, /? will denote an odd prime integer and q = p" for some

positive integer n.

Lemma 5.1. Let X be a simple Chevalley group over a finite field of order q. Let

z G 5(A) and set H = CG(z). Then the following seven conditions hold:

(a) every 2-component H is a Chevalley group over a finite field of order q, q2, q3 or

q* andE(H) = L2,(H);

(b)H/E(H) is solvable;

(c)ifq=3,thenO(H)= 1;

(d) if H possesses a solvable 2-component, then q = 3;

(e) H does not contain a 2-component J with z E J and J = Spin(7, pr) for any

positive integer r;

(f) ifq t 3, then S(H) = CH(E(H)) and S(H) is cyclic or dihedral; and

(g) if q = 3 and ES(H) denotes the product of all solvable 2-components of H, then

CH(E(H)ES(H)) is cyclic or dihedral.
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Proof. Clearly [9, Lemma (c)] yields (c). Applying Lemmas 4.19-4.26, it follows

that we may assume that A is a classical linear group. Then Lemmas 3.1-3.2, [25,

Propositions 2-5] and §§3A-3D yield the result.

Lemma 5.2. Let K be a 2-quasisimple group such that K/Z*(K) is a simple

Chevalley group over a finite field of order q. Then exactly one of the following three

conditions holds.

(a) TAere exists an involution t E A such that CK(t) possesses an intrinsic 2-

componentJ with J/0(J) s SL(2, q);

(h)K/0(K)^PSU2,q);or

(c) p = 3,n is odd, n>3and K/0(K) =2G2(q).

Proof. Let A be a counterexample of minimal order to this lemma. Then

O(A) = 1 by Lemma 2.19 and hence Z*(A) = Z(A) = 02(A). Let L = Cov(K).

Then L = Cov(K/Z*( A)) by Corollary 2.7.1 and there is an epimorphism tt: L -> A

such that 0(L)< Ker(-tr) =£ Z(L). Now Lemmas 2.14, 2.27, 4.9, 4.10, 4.12-4.26 and

§§3A-3D force the conclusion of this lemma.

Lemma 5.3. Let K be a 2-quasisimple group such that K/Z*(K) is a simple

Chevalley group over a finite field of order q. Then exactly one of the following five

conditions holds.

(a)A/0(A)sPSL(2,<7);

(b)/? = 3, n is odd, n » 3 andK/0(K) s2G2(q);

(c)q = 3 and K/0(K) is isomorphic to PSL(3,3), PSU(3,3), PSL(4,3), PSU(4,3),

PSp(4,3), G2(3), 5ß(7,3), 5ß(8,3,1) or to 5ß(8,3,-1);

(d) q = 3, | Z*(A) |2 = 2 and K/Z*(K) s PSU(4,3); or

(e) A contains an involution t such that CK(t) possesses a perfect intrinsic 2-component

ofGK(p)-type.

Proof. Let A be a counterexample of minimal order to this lemma. Then, as in

the previous lemma, we have O(A) = 1. Moreover, we must have q = 3 by the

previous lemma. Suppose that A is simple. Then Lemmas 4.19-4.26, Lemma 2.14

and §§3A-3D yield a contradiction. Thus 5(A) = Z(A) = 02(A) ^ 1. Since,

A = CK(j) for any involution/ G Z( A), we conclude that A is a proper quotient of

SL(2w, 3) or of SU(2w, 3) for some integer m > 2. However Lemma 2.14 and §§3A

and 3C yield a contradiction in this case also and we are done.

Lemma 5.4. Let K be a 2-quasisimple group such that K/Z*(K) is isomorphic to a

simple Chevalley group over a finite field of order q. Assume that t is an involution in

Z*(K) and that K/Z*(K) is not isomorphic to PSL(2, q). Then there is an involution

z E K — Z*(K) such that CK(z) possesses a 2-component J with z E Z(J) and

J/0(J) = SL(2, q) and at least one other 2-component L of GJ\L( p)-type with L/Z*(L)

isomorphic to a Chevalley group over a finite field of order q. Moreover, if K is of

91c(p)-type, then L may be chosen to satisfy Z(L) n {/, tz] ¥= 0 also.

Proof. As above, we may assume that O(A) = 1. Then §§3A-3C and Lemmas

2.14, 2.27, 4.9, 4.10 and 4.12-4.18 imply the desired conclusions.

Our next result is clearly a consequence of §§3A and 3C.
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Lemma 5.5. Let X — PSL(2w, q) or X — PSU(2m, q) for some positive integer

m "» 2. Let z E 5(A), let H — Cx(z) and let L be a 2-component of H. Then the

following two conditions hold.

(a) IfL is a 2-component of H, then either L is isomorphic to SL(/, q) or to SU(/, q)

for some integer j with 2 <y< 2m — 1 or L/Z(L) a PSL(w, q2); and

(h) ifL is a perfect 2-component of H such that | Z*(L) |2 * | 91t(L/Z*(L)) |2, then

L/Z(L) at PSL(w, q2) and L is the unique 2-component of H.

Lemma 5.6. Let X be a simple Chevalley group over a finite field of characteristic p

such that 1911(A) | is even. Assume that X contains an involution z such that

H = Cx(z) contains distinct solvable or perfect 2-components J and L such that z E L

and J/0(J) = PSL(2,q). Then O(J) = 1, |91t(A)|= 2 and exactly one of the
following six conditions holds.

(a) A s />ß(7, q), and L = SL(2, q);

(b) X at PQ(2m + 1, q)for some integer m > 4, L at ß(2w — 2, q, 1) if m is odd or

if m is even and q = 1 (mod 4) and L as ß(2w — 2, q, -1) if m is even and q = -1

(mod 4);

(c) n is even, X at 5ß(8, r, -1), r2 = q andL = SL(2, r);

(d) n is even, X = Pü(2m, r, -1) for some even integer m > 6, r2 = q and L at

ß(2w - 4, r, 1);

(e) n is even, X s 5ß(2w, r, 1) for some odd integer m> 5, r2 — q, r = -I (mod 4)

and L s ß(2w — 4, r,-1); or

(f) n is even, X at 5ß(2m, r, -1) for some odd integer m^ 5, r2 — q, r = I (mod 4)

and Lsß(2/rz - 4, r, 1).

Proof. Applying Lemmas 2.27 and 4.24 and §§3A-3C, we conclude that X s

Pü(m, ps) for positive integers m and s with m 3= 7. Since ß(3, q) ~ PSL(2, q) and

ß(4, q, -1) s PSL(2, q2), it is easy to see that this result follows from §3D.

Lemma 5.7. Let G be a group such that O''(G) is 2-quasisimple and

02(G)/0(02(G)) is a Chevalley group over a finite field of order q. Assume that G

contains an involution z such that H = CG(z) possesses a solvable 2-component J such

that 02(J) is not contained in Z*(02'(G)). Then q = 3, z £ S(G), 0(H) ^O(G)

and02'(G) n H contains a solvable 2-component J\ such thatJx < < H,J = 0(H)Jx

and02'(J) = 02(JX).

Proof. Let G be a counterexample of minimal order to this result and set

M = 02(G).

Suppose that z G Z*(M). Then A= CM(z)(oo) is a perfect 2-component of H

such that M = 0(M)K = (0(G)A)(oo) by Lemma 2.15. Since [/, A] *£ 0(A) <

0(M) by Lemma 2.11, we have [/, M] < 0(M) and hence/ < S(G) = 0(G)Z*(M)

by Lemma 2.13. Since 02(S(G)) = 02'(Z*(M)), we have a contradiction. Thus

z g S(G) since Z*(Af ) = S(G) n M.

Next observe thatjr = 3_implies 0(H) < 0(G). To see this, set G = G/S(G).

Then z G 5(G), F*(G) = M= 02(G) and 0(C¿-(z)) = 1 by Lemma 2.13 and [9,
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Lemma (c)]. Since 0(H)< 0(C¿iz)) by [18, Proposition 3.11], we have O(H) <

02(S(G)) = O(G) and our assertion is proved.

Suppose that O(M)^ I. Set G=G/0(M). Then 02(G) = M^M/Q(M),

Z*(M)=Z*(M), z E 5(G), H = C¿tz), 0(H)=0(H) and / is a solvable 2-

component of H by Lemmas 2.2, 2.12, 2.16 and 2.17. Since | G|<| G\, we have

q = 3, 0(H) < O(G) — O(G) and there is a solvable 2-component/, of CM(z) such

that / = 0(H)Jx by Lemma 2.18. Hence 0(M)J = 0(M)0(H)Jx. As C0(M)(z) <

O(H), we have / = 0(H)Jx. Also, since Jx< <J, we have 02(J) = 02(JX).

Thus O(M) = 1, 5(G) = 0(G) XZ(M) = CG(M) and M is quasisimple.

Suppose that O(G) ¥= 1. Set G- G/0(G). Then, as above, we conclude that

q = 3, H = C¿iz), O(H) < 0(G) and (O(G) X M) (1 H possess a solvable 2-

component £ such that / = 0(H)$. As 0(G) *s H since z G M, we have 0(tf ) =

0(G) and / = £. Thus / = 0(G) X (M n /). Set /, = Af n /. Then /, = M n

/ < < 7/, /, < < At* n //,/,< /, 0(Af n //) < O(if) n M = 1, /, is a solvable

2-component of Af n /f and 02(J) = 02(/,). Consequently 0(G) = 1 and 5(G)
= Z(M) = 02(M).

Suppose that 5(G) ^ 1. Set G= G/5(Af). Then O^^z))! is a solvable 2-

component of C¿t¿") by Lemma 2.14 since Or(J) ^ 5(G). Thus q = 3, 0(#) = 1,

0(C¿tz)) «S 0(G) = 1 and / < M = 02(G). Thus / is a solvable 2-component of

M D H. This contradiction implies that 5(G) = 1, F*(G) = M and Af is simple.

Let R = 02(J). Then R < <5nM, H 11 M < H, E(H) = L2,(H) =

£(# n AT) and [5, £(#)] = [5, £(# n Af)] < [/, E(H)] = 1 by Lemmas 2.11

and 5.1. Let T G Syl2(5), so that either T = g8 or T = E4 and z g T. Thus «7=3

by Lemma 5.1(f) and 0(H) = 1 by [9, Lemma (c)]. Let ES(H n M) denote the

product of all solvable 2-components of H n Af. Suppose that / is not a solvable

2-component of H d M. Then

[5, £(// n M)E5(H n M)] <[/, £(// n M)ES(H n A/)] = 1

by Lemma 2.11 and Lemma 5.1(g) yields a contradiction since (z, 5><

CHnM(E(H n M)ES(H n M)). Thus / < H D A/ which is also a contradiction and

the proof is complete.

Lemma 5.8. Let W be a 4-subgroup of the group G and let W* = {z,, z2, z3}.

Suppose that CG(W) contains solvable or perfect 2-components Lx and L2 such that

z, G L,, z2 G L2 and Lx/0(Lx) = SL(2, q). Assume that 0(CG(z))Lx is not subnor-

mal in CG(zx) if Lx is perfect and that 0(Cc(z x))0y(L,) is not subnormal in Cc(zx) if

Lx is solvable. Then there is a unique perfect 2-component K of CG(zx) such that

02(L2) <ç A. Moreover the following two conditions hold.

(a)z2 Ö Z*(A), CG(W) < NG(K),LX ¥° L2,LX < Kifq ^ 3 and[K, 03(LX)] = A

if q = 3; and
(h) if K/Z*(K) is a simple Chevalley group over a finite field of characteristic p,

then z, G Z(A) and exactly one of the following four conditions holds:

(i) K/0(K) = Spin(7, q), CK(z2) contains unique 2-components /,, J2, J3 such that

z, E J„ J, < CG(W) and J,/0(J,) = SL(2, q) for i = 1,2,3. Also, for i E {1,2}, we

haveJ, = L,ifq^3 andJ, < L, = 0(CG(W))J, ifq=3;



INTRINSIC 2-COMPONENT OF CHEVALLEY TYPE 57

(ii) A/0(A) s Spin(2w + l,q) for some odd integer m>5; W < L2 < CG(W),

L2/0(L2) a Spin(2(m — 1), q, 1), L2 is a 2-component of CK(z2) and CK(z2) con-

tains exactly one other 2-component J. Moreover, z, G / < CG(IF), J — Lx if q ¥= 3

andLx = 0(CG(W))J if q = 3;
(iii) n is even, A/0(A) s Spin(8, r, -1) wAere q = r2, Lx < CG(W), Lx is a

2-component of CK(z2) and CK(z2) contains precisely two other 2-components J2 and

J3. Moreover J, < CG(IF) and J,/0(J¡) = SL(2, r) for i — 2,3 and, by appropriate

indexing, we may assume that z2 E J2, z3 E J3, J2 — L2 if r ¥= 3 and L2 — 0(CG(W))J2

if r — 3; or

(iv) n is even, K/0(K) = Spin(2w, r,-1) for some even integer m > 6, q = r2;

{Lx, L2] is the set of 2-components of CK(z2), L2/0(L2) ai Spin(2(/rz — 2), r, 1),

IF < L2 < CG(W) and Lx < CG(W).

Proof. Set H = CG(zx). As 02(Z(Lx)) = (z,>, we have L, ^ L2. Clearly CG(IF)

= CH(z2) and Lemma 2.26 implies that 02(L2) is contained in a unique perfect

2-component A of /f. Moreover Lemma 2.26 yields z2 (£ Z*(A), CG(IF) < NG(K),

CK(z2) < CG(W), L, < A if f ^ 3 and [A, 03'(L,)] = A if q = 3. Thus, for the

remainder of this proof, we may assume that A/Z*(A) is a simple Chevalley group

over a finite field of order qx — pr for some positive integer r. Recall that A/Z*(A)

is ^-balanced when /? = 3. Thus [1, Theorem 2(3)] and Lemma 2.25 imply that

02(LX) < A and z, G Z(K). Set Af = AL,L2. Then M(oo) = 02(M) = A and

Q/(z2) = CK(z2)LxL2. Clearly 02(LX) and 02(L2) are not contained in Z*(K).

Also, if L, is solvable for z = 1 or 2, then 0(Lt) = 0(CG(W)) ^ 0(CM(z2)) <

CM(22) S < CG(W) and hence 0(CG(IF)) = 0(L,) = 0(CM(z2)). Consequently,

L, and L2 are 2-components of CM(z2) and <¡r, = 3 if L, or L2 is solvable by Lemma

5.7. Also, Lemma 5.7 implies that CK(z2) contains 2-components/, and /2 such that

Jt< < CM(z2) < < CG(W), Or(L,) = 02(/;), /, = L, if L, is perfect and L, =

0(CG(IF))/; if L,. is solvable for i = 1 and 2. Since O(A) = O(H) n A and

z2 ^ Z*(A), we may assume that G = H = A. Then Lemmas 2.16-2.18 and induc-

tion imply that we may assume that 0(G) = 1 and hence that 5(G) = Z(G) = 02(G).

Set G - G/Z(G). Then | 911(G) | is even since z, G Z(G) and z2 G 5(G). Clearly

L, n Z(G) = (z,), Lx/0(Lx)^PSU2,q), z2 E L2 and L, and L2 are 2-

components of C¿-(z2) by Lemma 2.17. Then Lemma 5.6 implies that Z(G) = (z,)

and G satisfies one of conditions (a)-(f) of Lemma 5.6. Then Lemmas 4.10, 4.12,

4.14, 4.16, 4.17 and 4.18 combine to complete this proof.

6. A proof of Theorem 1. We begin this section with an extension of a portion of

[3, Corollary III] that is the solvable 2-component case of Theorem 1.

Lemma 6.1. Let G be a group such that 02(G) is 2-quasisimple. Suppose that

z E 5(G) and H = CG(z) possesses an intrinsic solvable 2-component J. Then the

following three conditions hold.

(a) 0(H) < 0(G);

(b) there is an intrinsic solvable 2-component /, of H n O2(G) such that /, < < H,

02(J) = 02(JX) andJ = 0(H)Jx; and

(c) either G = 0(G)02'(G) and G/0(G) = Mxx or 02'(G)/0(02'(G)) is a

Chevalley group over a field of 3 elements.
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Proof. Assume that G is a counterexample of minimal order to this lemma and

set Af = 02(G). Suppose that z G Z*(M) = 5(G) n Af. Then A = CM(zfx) is a

perfect 2-component of H and M = 0(M)K. Thus [/, M] < 0(M) and / <

CG(Af/0(Af )) = 5(G) = 0(G)Z*(Af) by Lemmas 2.11 and 2.3. As/= 02(J), this

is impossible. Thus z £ 5(G) and 5(G) n / < 0(/).

Suppose that S(G) *_1 and set G = G/5(G). Then_F*(G) = Ms Af/Z*(Af),

z G 5(7) and 0(C¿Xz))Jis a solvable 2-component of G by Lemmas 2.13 and 2.14.

Hence 0(H)^ 0(C¿(z)) = 1 by [18, Proposition 3.11], and G = M = Mxx or Mis a

Chevalley group over a field of 3 elements. Thus 0(H) < 02(5(G)) = 0(G) and

Lemma 5.7 implies that G = Ms Af,,. Then Z*(M) = O(M) since | 91L(M,_,) |= 1

(cf. [13, §2]) and 5(G) = O(G). Then G = 0(G)M, M/0(M) s M,, and /is the

unique 2-component of C¿\z) = H by [4, Table 1]. Also we conclude that CM(z)

contains a unique 2-component A from Lemma 2.18. Moreover A is solvable,

A < < H,z E K and J = K. Hence 0(G)/ = 0(G)A. Since C0(G)(z) = O(H), we

have / = 0(H)K and 02(J) = 02(A) by Lemma 2.1. Thus 5(G) = 1 and F*(G)

= M is simple. Then [3, Corollary III; 4, Table 1] imply that G = M = M,, or M is

a Chevalley group over a finite field of odd order. Consequently Lemma 5.7 implies

G = M = Mxx. Thus O(H) — 1 by [4, Table 1] and we have a contradiction, which

concludes our proof of this result.

We now commence to prove Theorem 1. Thus let G, L, z and /? be as in the

hypotheses of Theorem 1 and assume that G is a counterexample of minimal order

to the theorem.

Thus L is perfect by Lemma 6.1, L < 02(G) = G and Lemmas 2.12-2.14 imply

that 0(G) = 1. Consequently 02(G) = Z(G) = CG(02'(G)) = 5(G) and z G Z(G)

since G =£ L.

Suppose that Z(G) ¥= 1 and set G = G/Z(G). Then G is simple, |G|<|G|,

z G 5(G) and L is an intrinsic perfect 2-component of C¿~(z) of 9H(/?)-type by

Lemmas 2.12 and 2.28. Then, by induction, G = Mxx or G is isomorphic to a

Chevalley group over a finite field of characteristic/?. Since | 91L(M,,) |= 1, we have

a contradiction. Thus Z(G) — 1 and G is simple. Then [3, Corollary III] and Lemma

5.1 imply that G does not contain an involution u such that CG(u) contains an

intrinsic 2-component / with J/0(J) = SL(2, pk) for some integer k > 1.

Suppose that IF is a 4-subgroup of G with IF* = {z,, z2, z3} and such that

CG(IF) contains 2-components Lx, L2 such that z, G L,, z2 G L2, Lx/0(Lx) =

SL(2, pk) for some integer A > 1 and L2 is of 9H(/?)-type.

Applying Lemma 5.8, we obtain a unique perfect 2-component A of CG(z,) such

that 02(L2) < A, z2 £ Z*(A), CG(IF) < AG(A), L, < A if /?* # 3 and

[A, 03(L,)] = A if pk = 3. Set A= AL2. Then A< CG(z,) < G, 02(A) = A,

¿2 < < Q(¿2) = CK(z2)L2 < < CG(W), 0(L2) < 0(Cx(z2)) < 0(CG(W)) and

hence L2 is an intrinsic 2-component of Cx(z2) of 91L(/?)-type. We conclude, by

induction, that A/0( A) is a Chevalley group over a finite field of characteristic/? or

A = 0( A)A and A/0(A) at K/0(K) s M,,. Also, when /?* = 3, K/0(K) is al-

ways ^-balanced since Mxx is balanced. Then [1, Theorem 2(3)] and Lemma 2.25

imply that 02(LX) < A. Thus z, G Z(A), K/Z*(K) is a simple Chevalley group

over a finite field of order p" for some integer n > 1 and Lemma 5.8 yields a great
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deal of information about this situation. In particular, L2/0(L2) is not isomorphic

to Spin(7, pr) for any positive integer r.

Set#= CG(z), Q = CH(L/0(L)) and H = H/0(H).

First suppose that L/0(L) = Spin(7, q), where q—p" for some positive integer

n. Let 1 # 5 be a 2-subgroup of Q. Then Lemma 2.15 implies that / = CL(5)(co) =

02(CL(B)) is a 2-component of CG(B(z)) with z EJ,L = 0(L)J and J/0(J) s

L/0(L). Hence / is contained in a unique 2-component A of CG(5) by Lemma

2.19. Thus / is a 2-component of CK(z) and hence A= A/Z*(A) is a simple

Chevalley group over a finite field of characteristic/? by induction since A < CG(B)

< G. Assume that z £ Z*(A). Then z G 5(/), / is a 2-component of C¿(z) and

J/0(J) = Spin(l,q) since Z*(/) = O(H) X (z>. Then Lemma 5.1(e) yields a

contradiction. Thus z G Z*(A), / = CK(zfx), K = 0(A)/ = (O(CG(5))/)(0o) and

A/0(A) s //0(/) s L/0(L) s Spin(7, ?) by Lemma 2.15. Let/ G 5(H - L) he
such that CH(j) contains an intrinsic 2-component / with J/0(J) s SL(2, pr) for

some positive integer r. Then Lemma 2.21 implies that [/, L]< O(L) since/ G / —

L. Hence/ G / < Q and the remarks above with W — ( /, z) yield a contradiction.

Thus, if j E 5(H — L), then CH(j) does not contain an intrinsic 2-component /

with J/0(J) s SL(2, pr) for some positive integer r. Hence, if A is a perfect

2-component of H with K ¥= L and A/0(A) isomorphic to a Chevalley group over a

finite field of order q = ps for some positive integers s, then K/0(K) s PSL(2, 4)

and q =£ 3 or p = 3, s is odd, s > 3 and A/0(A) s 2G2(q) by Lemma 5.2. Thus

L char H and g char /f.

Let 5 G Syl2(H). Thus S n Q < S, S C\ L < S, S (1 Q C\ L = (z)< Z(S) and

[5 G Q, S n L] = 1. Note that all involutions of L — (z) are conjugate in L and

zG n 5 ¥= [z] by Glauberman's Z*-theorem [15, Corollary 1].

Let t G 5(5 — L) be such that Cg(t) contains an intrinsic 2-component A with

K/0(K) ~ L/0(L). Suppose that Cl(t) contains a perfect 2-component / such

that zEJ and J/0(J) is isomorphic to one of the following groups: Spin(7, q),

SL(4, q), SU(4, q), SL(2, q2), Sp(4, 4) or n is even and J/0(J) = Spin(7, ̂  ). Then

z G Z(J), J is a perfect 2-component of Cg(t, z) and / is contained in a unique

perfect 2-component Y of Cg(t) by Lemma 2.19. Since / is a perfect 2-component of

91L(/?)-type of CY(z), we conclude by induction that Y/0(Y) is a Chevalley group

over a finite field of characteristic/?. Clearly Y ¥^ K by Lemma 4.10 and hence

X— C/c(z)<-cc) = 02'(Q-(z)) is a perfect 2-component of Cg(t, z) = Ch(t) such

that t G X and A/0(A) s A/0(A) by Lemma 2.15. Then A is contained in a

unique perfect 2-component <?) of /f. By induction, ^/O(^) is isomorphic to a

Chevalley group over a finite field characteristic of /?. Hence ^ = L, i?l = 0(6?J)A

and Tel<1 = L Since t Í L, we have a contradiction. Moreover as Cjj\L) =

Q < H, we may apply Lemmas 4.10-4.11 to the quotient H/Q to conclude that

t = t,t2 where t, G 5(5 n Q) and t2 G 5((5 ill)- (z)). Then Cl(t) =

0(Cl(t))Cl((t, t2», 0(Cl(t)) < O(L) and Cl((t, t2» contains a 2-component A

such that z G A and A/0( A) s SL(2, q) by Lemma 4.10. Thus Cg((t, z» contains

a 2-component / such that z E J and J/0(J) s SL(2, q). Suppose that [A, z] «S

0(A). Then Lemma 2.15 implies that Y = CK(z){00) = O2 (C^z)) is a 2-component

of Cg((t, z)) such that t G Y and Y/0(Y) st L/0(L). Applying an observation
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above with W — (t, z) yields a contradiction. Thus [A, z] = A and Lemma 2.21

implies that z G A. Then Lemma 4.10 implies that Cg((t, z)) contains a 2-component

/, such that t G /, and Jx/0(Jx) s SL(2, q). As noted above, this implies that t G L

and we have a contradiction.

We have shown that if t G 5(5) is such that Cg(t) contains an intrinsic 2-

component A such that K/0(K) = L/0(L), then t G L. Hence zc n 5 =

5(5 n L), zG D H = 5(L), (zG n H) = L and 5 G Syl2(G) since Z(5 C\ L) = (z)

and 5 n L = (5(5 n L)> by Lemma 4.10(a).

Let z, G 5(L - (z>) and let z, = zg for g G G. Then z, ~ zxz in L, zG n Hg =

5(Lg), (zG n_Hg)= Lg and z ~ z,z in Lg. Hence AG((z, z,»/CG((z, z,))sZ3.

Note that «^»Cziz-,)^ C^z-,)=CH(z,), ß = 0(H)C^zx), C¿izx) =CL(zx),

LCH(zx) = H,\L: CL(zx) \2 = 2 =\H : CH(zx) |2 and (z, z,) is the center of a Sylow

2-subgroup of CL(z,) by Lemma 4.10. Also CL(zx) contains precisely three 2-

components /,, J2, J3 such that z G /,, z, G /2, zz, G J3, 0(J¡) < O(L) and J,/0(J¡)

= SL(2, <?) for i ■= 1,2,3. Set £ = (z, z,), M = CG(£) = CH(zx), %, = J, if q # 3

and 5/( = 0(M)/j if ^ = 3 for z = 1,2,3. Thus, as CL(z,) < M, we have J, < M and

5/, is a 2-component of M for z = 1,2,3. Suppose that DC is a 2-component of M such

that z, G % and 9C/0(!rC) s SL(2, q). Then we conclude from Lemma 2.21 that

02'(!rC) < L. If q ¥= 3, then % = 02\%) <Land% = J2 = %2. Suppose that q = 3

and set 5 = L%. Then 3C < < CB(zx), 02(B) = L, CB(zx) = CL(zx)%< < M

and 0(%) < 0(CB(zx)) < O(M) = OCX) = 0(f2). Hence 9C = 0(M)/2 = <¿2 by

Lemma 5.7. Thus %= f2 in all cases. It follows that f, < M for i; = 1,2,3 and

NG((z, z,» permutes %x,%2 and £3 in the obvious way. Applying [18, Proposition

3.11] and Lemma 4.11(f) to the group H/Q, we conclude that 0(C^(z,)) < ß < M

= Q(f,) and hence O(M) = Mn 0(//). This implies that |(. < Â7 and |(. s

SL(2,í) for / = 1,2,3. Also C^xf2%3) = ß X(z,> by Lemma 4.11(f). Moreover

Lemma 4.10 implies that one may choose z, such that z, G 5 n L, zf = zx(z),

Cs(zx) = T G Syl2(M), Z(T n L) = £ o 5 and | 5 : T\ = 2. By the Frattini argu-

ment, there is a 3-element w G NG(T) D NG(E) such that w acts transitively on £#

and on J,,^,^. Thus

<5, tt)< AG((5 n ß) X <z,» n NG(T) n AG(£)

since 5 n Q = T n g. Suppose that 5 n ß ¥= (z>. Then (Snß)n ((5 n ß)w) ^

1. Since 5 n ß n £ = (z>, we have

((snß),)n£={z')   and   (5 n ô) n ((5 n ß)*) n £ = l.

Let t G 5((5 nQ)D ((5 n g)")). Then X = Cl(t)(oo) is a 2-component of Cg(t, z)

such that 5 n L =£ A, Z*(X) = O(A) X (z> and X/0(X) ~ Spin(7, $). Also 7 =

CLir(T)<00) is a 2-component of Cg(t, z') such that £ = (z, z'r>< F, Z*(T) = O(Y)

X (z") and T/0(T) s Spin(7, q). A previous observation implies that (z, z*) = £

< Z*(L2,(Cg(t))). Since A< L2,(Cg(t)), we have [X, z«]< 0(L2,(Cg(t))) n A =

0( A). Hence z* G Z*( A) = 0( A) X (z>. Since z" ¥= z, we conclude that S D Q =

(z),Q = 0(H)X (z), H' < 0(H)Lby Lemma 4M, S' < S n L and T' < mi.

Applying [32, Theorem 3.4], we conclude that 5 n L ¥= 5. Then, Lemma 4. II

applied to H/Q = H/(z) yields the existence of a normal subgroup F of 5 such
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that5n£< F<5, | V/(S D L) |< 2, 5/Fis cyclic, {t? G F|t;2 G (z)} Ç5H £

and 5 ^ F if and only if there is an element x G 5 — L such that x2 G (z). Since

zG n 5 = 5(5 n L), it follows that 5(5) = 5(5 n L) = zG n 5 by [20, Corollary

2.1.2]. Note that T n L E Syl2(CL(zx)), Z(T n L) = E, ß,(£ n L) = T D L and

ß,(5 n L) = 5 n L by Lemma 4.10. Hence T n L and 5 n £ are weakly closed in

F and 5 with respect to G, respectively. Moreover, 5 = (5 n L)T since // = LM,

S n LE Syl2(L) and £ G Syl2(M). Also | (5 n L)/(T n L) | = 2, T n L o S,

S nL<i S ESyl2(NG(T) n AG(£)), [S,T] < £'[5 n L, T] < £i~l£ and

(NG(T) n NG(E))/NM(T) s 23 imply that (5, tt) acts trivially on T/(T n L).

As H/(0(H)L) is abelian, we have 0(H)LV < H. Suppose that Z(V) ¥= (z>.

Then F^SflL and there is a subgroup £ < Z(V) such that z G £ and | £ | = 4.

Since {t? G F|u2 G (z)} = (t? G 5 n £ | u2 G (z)}, we have £<s5 n £. Since

Z(5 n L) = (z), this is impossible. Thus Z(V) = (z>. Also V = (5 n £)(£ n F),

so that | V/(V n £) |= 2 and V n £ G Syl2(M n (O(H)LV)).

We shall now demonstrate the following condition.

(*) If S" G {(5 n £)*, V - (5 n L), 5 - V] and x G <3~, then x is conjugate in G

to an element y G ?Fsuch that ß,((.y)) = (z).

For, if x and 5" satisfy the hypotheses of (*), we may clearly assume that

ß,((x)) = (/) for some involution y G 5 — (z). Then/ G 5 n L and by Lemma

4.10, there is an element g G H such that jg — z, and xg E T D 5" since £ G

Syl2(Cff(z,)). £ n F G Syl2((0(/f)£F) n CH(zx)) and £ n £ G Syl2(CL(z,)).

However (5,7r>< AG(£) n AG(£ n £) and (5, w> acts trivially on £/(£ n L) and

£ n £ < £ n F^£. Thus there is an element A G (5, tt) such that jgh = z and

xgh El We have established condition (*) above.

Suppose that V ¥= 5. Then there is an element x G 5 — F such that x2 = z. By

[20, Corollary 2.1.2], x is conjugate in G to an element x, in V. By condition (*), x, is

conjugate in G to an element y E V such that y2 — z. Thus x ~ v- in G. Since

y2 = z = x2, we have x ~ y- in H. However x £ 0(H)LV< H and we have a

contradiction. Thus F = 5 and | 5/(5 D L) | = 2.

Choose an element x in 5 — (5 n £) of minimal order. Since 5(5) =

5(5 n £), | x |> 2. Also cclG(x2') n 5 < 5 n £ for all integers i > 1. Then [20,

Corollary 2.1.2] and condition (*) imply that there are elements w and v in cclG(x)

such that w E S - (S n L), v G 5 n L and ß,((w» = ß,((ü)) = (z). Thus w~v

in Zf. Since w S 0(H)L < H, we have a contradiction. We conclude that L/0(L)

is not isomorphic to Spin(7, <¡r).

In the general case, Lemma 5.4 implies that there is an involution u E L — Z*(L)

such that CL(u) possesses 2-components /, and J2 such that u G/,, JX/0(JX) s

SL(2, q), {z, uz) n J2 =£ 0, J2 is of 9lt(/?)-type and J2/Z*(J2) is isomorphic to a

Chevalley group over a finite field of order q. Set IF = (u, z), M — CG(IF), f, = J,

if J, is perfect and f, — 0(M)J, if J, is solvable for z = 1,2. Then fx and ^2 are

2-components of M, uE%x, ix/0(fx) = SL(2,q), {z,uz} D f2 ¥= 0, f2 is of

91L(/?)-type and 5/2/Z*(5/2) s/2/Z*(/2). From an observation above, we conclude

that CG(u) contains a unique perfect 2-component A such that M «s NG(K),

(02'(£,), 02'(£2)><A, uEZ(K), zEK-Z*(K) and A/Z*(A) is a simple
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Chevalley group over a finite field of characteristic /?. Note that fx/0(fx) and

$-2/0($-2) are both isomorphic to Chevalley groups over a finite field of order q.

Consequently Lemma 5.8 implies that A/0(A) s Spin(2w + 1, q) for some odd

integer m > 3. From the preceding discussion and Lemma 5.8, we must have m > 5,

J2 = h < *. Ji/0(J2) = Spin(2(w - 1), q, 1) and Z*(K) = O(K) X (u). Conse-

quently we may assume that £/0(£) s Spin(2r + 1, q) for some odd integer r > 5.

Thus Lemma 4.12 implies that we may assume that Jx/0(Jx) s J2/0(J2) = SL(2, q).

Since SL(2, q) and Spin(2(w — 1), q, 1) are not isomorphic, we have a contradiction

and our proof of Theorem 1 is complete.

7. A proof of Theorem 2. We now commence to prove Theorem 2. Thus let G, IF,

IF* = {z,, z2, z3}, £,, £2, /?, and /?2 satisfy the hypotheses of Theorem 2 and

assume that G is a counterexample of minimal order to the theorem.

Assume that 0(G) ¥^ 1. Set G = G/0(G). Then z, E L,, L, is a 2-component of

C¿XW) and L, is of 9H(/?,)-type by Lemmas 2.17 and 2.28. Hence, since | G |<| G |,

either (a) 02(L,)=02'(Ll) < < G or (b) 02'(L,) =02'(L/) is contained in a

unique perfect 2-component K, of G such that A, s M,, or A, is isomorphic to a

perfect Chevalley group over a finite field of characteristic p, for z = 1 and 2. Let

z G {1,2}. Thus (b) holds and Lemma 2.18 yields a contradiction. Hence O(G) = 1.

Suppose that £, and £2 are both solvable. Thus/?, = p2 = 3. Set M = CG(z,) and

/, = 0(M)03'(£,). Thus 02(£,) < 02(/,) by Lemma 2.9. Assume, for the mo-

ment, that /, < < M. Suppose that 02(/,) < 02(G). Then 0(M) = 1, £(G) =

£(M) and /, = 03(£,) < < G by Lemma 2.23. Since 02(/,) = 02(£,), we have

02(£,) < < G. Suppose that 02(/,) 4 02(G). Then Lemmas 2.21 and 2.22 imply

that there is a unique perfect component A of G such that 02(£,) *£ 02(/,) < A.

Clearly /, *£ NC(K) and z, £ Z(A). Then Lemma 6.1 applied to A/, implies that

A s M,, or A is a Chevalley group over a field of 3 elements. Now assume that /, is

not subnormal in M. Then Lemma 2.26 implies that 02(L2) is contained in a

unique perfect 2-component A of M. Also z2 £ Z*(K), A is CG(IF) = CM(z2)-

invariant and [A, 03(£,)] = A. Applying Lemma 6.1 to A£2, we conclude that

A/0(A) ~ M,, or K/0(K) is a Chevalley group over a field of order 3. Then

Lemma 2.25 implies that 02(£,) < A and z, G A. Also Lemma 5.8(b) implies that

A is of 9lt(3)-type. By Lemma 2.19, A is contained in a unique component % of G.

Then (02(L,) \ i — 1,2)< 5C and Theorem 1 eliminates this case. A similar argu-

ment applied to CG(z2) now yields a contradiction. Thus, by symmetry, we may

assume that L, is perfect.

Set M = CG(zx) and /, = 0(M)Lx. Assume, for the moment, that /, < < M.

Then there is a unique perfect component A, of G such that £, < /,(oo) «E A,. Then,

since/,(°o) = O(/,(0O))£, is a 2-component of C^z,), Theorem 1 implies that A, is a

Chevalley group over a finite field of characteristic /»,. Suppose that 02(£2) is

contained in a perfect 2-component A2 of M = CG(zx). Then 02(£2) is not

contained in Z*(A2), A2 is unique, A2 = [£2,(M), 02(£2)] and £2 < NG(K2).

Then Theorem 1 applied to the group A2£2 implies that A2/0(A2)sMn or

A2/0(A2) is isomorphic to a Chevalley group over a finite field of characteristic/?^

Suppose that A2 < A,. If z, G Z(KX), then A, = A2 and /?, = p2 which is impossi-

ble. Thus z, £ Z(A,). Set A, = A,/Z(A,). Then A2 is a perfect 2-component of
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CK~(zx), /?, = p2 and A2 is a Chevalley group over a field of characteristic/?, by

Lemma 5.1. As (02(LX), 02(£2))< A,, this is impossible. Hence, since z, G A,,

A2 is contained in a unique component A of G with A ¥= A, by Lemma 2.19. Since

[A,, X]= I, X = K2 and again we have a contradiction. Consequently 02(L2) is

not contained in a perfect 2-component of M and hence £2 is a solvable 2-component

of CM(z2) — CG(IF) by Lemma 2.19. But then Lemmas 2.21-2.23 imply that

0(CG(W)) < O(M), J2 = 0(M)L2 is a solvable 2-component of M and [J2, X] = 1

for all components A of G with X ¥= A,. However 02(L2) < 02(J2) and /2 <

NG(KX). Suppose that 02(/2) < A,. Then Lemma 5.7 applied to the group A,/,

implies that/?2 = 3 = /?,. Since 02(L2) < 02(J2), this is impossible. Hence 02(/2)

4 A, and [1, Theorem 2(3)] implies that [02'(J2), E(G)] = 1. Consequently 02(/2)

< 02(G) by Lemma 2.22. Then 02(L2) = 02(J2) < < G, which is impossible.

Consequently/, = 0(M)£, is not subnormal in M.

Now Lemma 2.26 implies that 02(L2) is contained in a unique perfect 2-

component A of M. Also z2 £ Z*(A), Ais CG(IF) = CM(z2 )-invariant and £, «K A.

Thus z, G Z(K), K = A/Z*(A) is a Chevalley group over a field of characteristic

p2 by Theorem 1 applied to A£2. Since £, is a perfect 2-component of C^(z2), we

have /?, = p2 by Lemma 5.1. Also A is contained in a unique component of % of G

by Lemma 2.19, £2 *£ A if £2 is perfect and CK(z2) contains a solvable 2-component

A2 such that £2 = 0(£2)A2, 02(£2) = 02(A2) and 0(CK(z2)) < O(A) if £2 is

solvable by Lemma 5.7. Moreover, A is properly contained in a unique component %

of G. Then, Theorem 1 implies that A is not of 9IL(/?,)-type. Thus A s PSL(2r, q)

or A = PSU(2r, q) where r is an integer, r > 2 and q — p\ for some positive integer

5. Note that £, is a perfect component of C^(z2) with | Z(£,) |2 ̂ | 9lt(£,/Z(£,)) |2

since z, G Z(£,) D Z(A). Then Lemma 5.5 implies that £, = £2 and £,/Z(£,) s

PSL(r, í2). Hence £, = £2 by Lemma 2.18. Since L,/Z*(£,) s £,/Z(£,), the

Sylow 2-subgroups of Z*(£,) are cyclic. Hence z, = z2. This contradiction com-

pletes our proof of Theorem 2.

We remark that Theorem 1 follows easily from Theorem 2. For, assume Theorem

2 and let G, z, £ and /? be as in the hypotheses of Theorem 1. Then 02(G) is

2-quasisimple and, by Lemma 6.1, we may assume that £ is perfect. Then, by

Lemma 5.4, there is an involution t EL — Z*(L) such that CL(t) contains 2-

components J and A of 9tt(/?)-type with / G/ and Z(A) n {z, tz) # 0. Set

IF = (/, z). Then Theorem 2 yields the conclusion of Theorem 1.

8. A proof of Theorem 3. We now present a proof of Theorem 3. Thus let G, IF, L,

p and w satisfy the hypotheses of Theorem 3 and assume that G is a counterexample

to Theorem 3.

Set H = CG(w), H = H/0(H) and A = (LL^H)) and let / G IF - (w>. Thus L

is a perfect 2-component of C¿(t) and A = A,A2 where A, and A2 are distinct

2-components of H by Lemma 2.20. Also A = A, * A2, £ = (A,Aj | A, G A,) and

the mapping A~, -* kxk\ is a homomorphism of A, onto L by [17, Lemma 2.1].

Consequently A, and A2 are of 91t(/?)-type by Lemma 2.28. Thus w £ A, U A2 by

Theorem 1.
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Suppose that A, n A2 — 1. Then there is an involution A, G Z*(A,) such that

w = kxk\, A, ¥= k{, [A,, k{] — 1 and it is clear from Lemma 2.15 that Theorem 2

applies to the 4-subgroup (A,, k{) of G to yield a contradiction. Thus A, n A2 ^ 1.

Hence there is an involution k E Z*(KX) n Z*(K2) n CH(t). Since AA' = 1, we

conclude from Lemma 2.27 that

L/Z*(L) s A,/Z*(A,) s A2/Z*(A2) s PÇl(m, p", ± 1)

for some positive integers m, n with m even and m s* 8, | Z*(£) |2 = 2 <

| 91L(£/Z*(£)) |2 = 4 =| Z*(A,)|2 =| Z*(A2) |2 and ( A > G Syl2(Z*(A,) n

Z*(K2)) since w <$. A, U A2. Moreover there is an element vx E Z*(A,) such that

v2 E (A), (vx, k)ESyl2(Z*(Kx)), v\ * vx, [vx, v\] = 1 and w = vxv\. Set v2 = v\,

M = CG(k), M = M/(0(M) X (A)) and /, = CK¡(k)(o0) = 02'(CK.(k)) for i = 1,2.

Then Lemmas 2.14 and 2.15 imply that / is a 2-component of CM(w) with

A,. = 0(K,)J, and (/>,., A) G Syl2(Z*(J,)) for z = 1,2, O(M) = 1, w> G 5(M) and J, is

a 2-component of C¡¿(w) such that (¿?)G Syl2(Z*(J;)) and JJZ*(J/) s L/Z*(L)

for z = 1,2. Also w G (#„ ¿'2)s £4. Set 5 = (z',, r2, A). Thus 5 is abelian of order

8, wEB, B s £4 and [A„ 5] < 0(A,) and [/„ 0(J,)] < 0(4) for i = 1,2. Set

j-, = C,(5)(oo) = 02'(Cy(5)) for z = 1,2. Thus/; = 0(/,)£, and ¡j.,. is a 2-component

of CG(5) = CM(B) such that Z*(£,.) =? 0(%,) X (A, rf) for i = 1,2. Also |(. is a

2-component of Q(5) such that Z*(%) = 0(|,.) X (p.) and £,./Z*(J.,.) s

f,/Z*($i) s L/Z*(L) for z = 1,2 by Lemmas 2.12 and 2.14. If |. < < M, then
0(M)f, < < M and Theorem 1 yields a contradiction for i = 1 or 2. Thus

Theorem 2 and Lemmas 2.17-2.18 imply that 5rx is contained in a unique perfect

2-complete % of M such that %/0(%) is a Chevalley group over a finite field of

characteristic /?. Since /, = 0(./,)£,, we have /, < %. If [9C, w] < Z*(%), then

5C = 0(%)JX and Theorem 1 yields a contradiction since A G %. Thus [DC, w] = %

and iv G 5 < LT(CM(w)) < L2,(M) so that w acts as an inner automorphism on

DC = DC/Z*(DC). However/, is a perfect 2-component of C^(w) such that/,/Z*(/,)

s L/Z*(L) and DC is not of 9H(/?)-type by Theorem 1 since A G DC. Consequently

we have DC s PSL(2r, q) or DC s PSU(2r, q) where r is an integer with r > 2 and

q = ps for some positive integer s. Then Lemma 5.5 and the fact that /,/Z*(/,) s

£ß(w, /?", ±1) for positive integers m, n with m 3* 8 yield a contradiction. This

completes our proof of Theorem 3.
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