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TWO CONSEQUENCES OF DETERMINACY

CONSISTENT WITH CHOICE

BY

JOHN R. STEEL AND ROBERT VAN WESEP

Abstract. We begin with a ground model satisfying ZF + AD + ACR, and from it

construct a generic extension satisfying ZFC + ô2 = w2 + "me nonstationary ideal

on w | is w2-saturated".

0. Introduction. The "axiom" of determinacy (henceforth AD) implies many

interesting propositions about small cardinal numbers, for example <o, and w2. It is

natural to ask whether these propositions are true or, more realistically, can be true

in the full universe V of sets. Our working hypothesis is that in V the axiom of

choice is true and all definable games are determined, so the question becomes

whether these propositions are consistent with ZFC together with definable de-

terminacy. (We shall be vague about "definable" when we can afford to.) In this

paper we shall consider two such consequences of AD, the first being that 82 = u>2,

and the second that the nonstationary ideal on w, is w2-saturated. We shall show

that the theory consisting of ZFC + ADL(R) together with these two propositions is

consistent. (ADL(R) is the assertion that all games in £(R), a large class of definable

games, are determined.)

In consonance with our working hypothesis, we would like to prove our result

assuming only the consistency of ZFC + ADL(R), or equivalently, that of ZF + AD

+ DC (cf. §1). At present we cannot do this. We instead assume the consistency of

ZF + AD + ACR, where ACR is the axiom of choice for families indexed by the

reals. Consistency-wise, ZF + AD + ACR is one of the strongest theories known to

man; we show in §1 that it proves the consistency of ZF + AD + DC. The only

upper bound we know on the consistency strength of ZF + AD + ACR is that of

ZF + ADR + "Ö is regular". We offer some partial justification for our use of such

a strong hypothesis at the end of the paper.

Our consistency proof is by forcing. We start with a ground model M satisfying

ZF + AC + ACR. By a two-step iteration we construct a generic extension M[C7]
„onto     M

so that z\h (h: w2   -* R  ). The forcing will add no new reals and preserve w2, i.e.,

RA/ _ RA/[C] an(J UM _ UM[C]    We then pass t0 the inner model N _ £(RM   ^ an(J

show it has the desired properties.

The paper is organized as follows: In §1 we give some preliminaries and back-

ground information. In particular, we set forth those consequences of AD whose
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truth in M will be useful to us. Except for some scattered observations and 1.3.3,

none of this material is new. In §2 we construct M[G] and prove the facts about it

stated above; it follows at once that Ai=ZFC + ADL<R) + ô2 = «2. In §3 we show

that in N the nonstationary ideal on w, is w2-saturated. In §4 we discuss some of the

open problems raised by this work.

1. Preliminaries.

1.1. Some consequences of AD. Given sets X and Y, we regard XY = [f\f: X -* 7}

as a topological space with the topology generated by basic open sets of the form

Ns={fE*Y\sEf),

where 5 maps a finite subset of A into Y. If/is a bijection between A and X' and g a

bijection between Y and Y', then from the pair (/, g) we can define a homeomor-

phism between XY and XY'. We are interested in the case X and Y are countably

infinite, so that *Yis homeomorphic to wco. We define R ="u, and call the elements

of R reals. One advantage of R over the usual reals is that it is homeomorphic to any

countable product of copies of itself.

A set of reals A is comeager iff D „<u UnE A for some sequence (U„ | n < w) of

open dense sets. A is meager iff R — A is comeager. The Baire category theorem

states that no meager set is comeager.

A set of reals A has the Baire property (or is "almost open") iff 3% (% is open

and Auñí is meager). A diagonal construction using a wellorder of R easily produces

a set of reals without the Baire property. The use of a wellorder of R is unavoidable,

and in fact

Theorem 1.1.1 (Banach, Mazur). Assume ZF + AD + DC. Then every set of

reals has the Baire property.

We remark in passing that if every set of reals has the Baire property, then the

axiom of choice for families of two-element sets fails. Specifically, there is no

function picking a member from each unordered pair of Turing degrees. (A similar

example was discovered long ago by Sierpinski.)

The notion of size provided by Baire category behaves much like Lebesgue

measure. In particular, we have an analog of Fubini's Theorem.

Theorem 1.1.2 (Kuratowski, Ulam). Let S E R X R have the Baire property.

Then S is comeager iff {x | { v | (x, v) G S) is comeager} is comeager.

If all sets of reals have the Baire property, then 1.1.2 yields the following useful

corollary.

Corollary 1.1.3 (Folk?). Assume all sets of reals have the Baire property, and let

(Aç | £ < zc) be a wellordered sequence of comeager sets. Then H í<lt A¡ is comeager.

We turn now to ordinal measures of the size of R. We must be careful in defining

such measures, since AD implies every wellordered set of reals is countable.

Definition 1.1.4.

0 = sup{a G05|3/(/:R°^°a)).
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Clearly 6 is a cardinal. Results of H. Friedman and Y. Moschovakis show that,

given AD + DC, 0 is quite large.

Theorem 1.1.5 (Moschovakis [6]). Assume ZF + AD + DC. Then 0 is a limit of

cardinals which are weakly inaccessible and measurable.

We remark that AD implies there are measurable successor cardinals, the first two

being co, and co2.

Clearly, DC implies cof(0) > to. If ZF + AD + DC is consistent, then so is

ZF 4- AD + DC + 6 regular (cf. 1.2.2). On the other hand, Solovay has shown in [8]

that ZF + AD + DC + cof(0) = co, is consistent, granted the consistency of ZF +

ADR + 6 is regular (a theory of much greater consistency strength than ZF + AD

+ DC).

The regularity of 6 is equivalent to a certain choice principle. For 5 E R3, we let

Bx,y = iz I (■*> y y z)} e B.

Definition 1.1.6. Collection is the assertion

(Vx ER3A ER(x,A)e U) ^(35 ëR3VxëR])î ER(x,BX)I)e u).

Theorem 1.1.7 (Solovay [8]). Assume ZF + AD + DC. Then Collection holds iff 6

is regular.

By effectivizing the definition of 6, we arrive at the protective ordinals. More

precisely

Definition 1:1.8. Let n E to. Then

ôxn = sup{« G OR\3f[f: R*« A {(,, y)\f(x) </( v)} is A1,,)}.

During the past 15 years, descriptive set theorists have devoted much effort to

determining the size of the ôxn 's, assuming definable determinacy where necessary.

We shall not attempt to summarize this work, but only mention that part of it is

directly useful in motivating or carrying out the work of §2. We refer the reader to

[4] for more information.

The work in question led to, and then was motivated by, the following attractive

conjecture.

Conjecture (D. Martin). Vn> 1 (0^ = «„).

This is meant as a conjecture about the full universe V, where AC holds, rather

than about some inner model of AD. The conjecture, if true, provides an explicit,

definable failure of the Continuum Hypothesis (CH).

Some of the upper bounds conjectured above for the ô^'s are provable from

ZFC + ADL(R>. In fact we have

Theorem 1.1.9. "Assume" ZFC. Then

(a) ôj = w, (Suslin);

(b) o2 < co2 (Kunen, Martin);

(c) if all T£\ games are determined, then d\ < co3 (Martin);

(d) if all projective games are determined, then V« (S2n + 2 =£ (ô2n+,)+). Thus

ôj < w4 (Kunen, Martin).
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This theorem and the fact that no better upper bounds seem possible motivate

Martin's conjecture. The theorem is proved in [4, §9].

Notice that ôx < (2S°)+ for all n. Thus if even to2 =£ ô2, then CH fails. But all

large cardinal or definable determinacy hypotheses known are consistent with CH

(cf. 1.2.1), and so none of them imply even the lower bound to2 *£ ô2 conjectured

above. In the present state of knowledge, the best one can hope for the lower bounds

of Martin's conjecture is a proof that they are consistent with ZFC plus large

cardinals or definable determinacy. We show this in §2 for the bound to2 < ô2.

We return to consequences of full AD. Theorem 1.1.10 will be quite useful in §2,

while 1.1.11 will serve as our point of departure in §3. Both are proved in [4].

Theorem 1.1.10 (Martin, Solovay). Assume ZF + AD + DC. Then 8X2 = to2.

Theorem 1.1.11 (Solovay). Assume ZF + AD + DC. Then every subset of ux

either includes or is disjoint from a closed unbounded subset o/to,; moreover, if j is the

embedding generated by the closed unbounded filter ok to,, thenj(ux) = to2.

1.2. On L(R). L(R) is the natural inner model of ZF + AD + DC, if there is any.

We can define L(R) as the universe of sets constructible from the reals as urele-

ments; alternatively, as the smallest model of ZF containing all reals and all

ordinals. An easy induction on the construction of L(R) shows that in L(R) every set

is ordinal definable from a real. Using ths coding in L(R) of sets by ordinals and

reals, together with DCR in V, we have that both DC and Collection are true in

L(R).

ADL(R) is the assertion that all games in L(R) are determined. This is a strong

form of definable determinacy hopefully consistent with ZFC. By the preceding

remarks, if M is a model of ZF + ADL(R) + DCR, then L(R)M is a model of

ZF + AD + DC + 6 is regular. For the converse relative consistency result we use

Theorem 1.2.1 (Folk). Let M be a countable transitive model of ZF + AD + DC

+ V = L(R). Then there is a generic extension 91 <?/911 smc/z that

(á)%tZFC+ CH,

(b) R91 = R*, hence %pADL(R\ and

(c) if k > 0*, then k is a cardinal in 91 iff k is a cardinal in 911.

Proof. In 911, let P be {/|3a<to, (/: a -» R)}, ordered by inclusion. Let

91 = 9It[§], where § is P-generic over 911. P is to-closed by DC in 911, so (b) holds.

Since 91L(= V = L(R) and § induces a wellorder of R* = R91, (a) holds as well.

We prove (c) by a possible values argument. Work in 91L. Let k be a cardinal > 6,

and let/ G P, ß < k, and t be a term so that

/II- t is a map of ß onto k.

For 5 < ß let

Ss={y\3gDf{g\\-T(8) = y)}.

Then Ss has order type < 6, since it is the surjective image of P, which in turn is the

surjective image of R. But k = U s<ßSs since /lh t is onto. In the case k > 6 this is

an immediate contradiction, while if zc = 6 we need only observe that k is regular for

our contradiction.    ■
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Corollary 1.2.2. The following theories are equiconsistent

(a) ZF + ADL(R) + DCr,
(b) ZFC + ADL<n + CH,

(c) ZF + AD + DC,

(d) ZF + AD + DC + 0 is regular.

We do not know whether ZF + AD can be added to this list.

We originally considered the work of §2 as a proof that ZFC + ADL(R) + -CH is

consistent. As such, however, it suffers two defects: first, one must assume more

than the consistency of ZFC + ADi(R), and second, only the value 2" = «2 is

obtained. H. Friedman and H. Woodin then found a proof free of these defects, so

that e.g. ZFC + ADi(R) + 2" = to,7 may be added to the list in 1.2.2 (cf. [10]). The

Friedman-Woodin method, however, gives no information as to the possible sizes of

the projective ordinals.

Our second corollary of 1.2.1 illustrates in a small way the fact that finding ways

of generically extending models of AD to models of AC without too much dis-

turbance will yield theorems about the ground model (cf. also 2.1.12).

Corollary 1.2.3. Assume ZF + AD + DC + V - L(R). Then Vk s* 0 (k+ is

regular).

Proof. Let 9H be a countable transitive model of a sufficiently large fragment of

ZF + AD + DC + V= L(R), and let 91 be its extension as in 1.2.1. If 911 n k > 0 A

k+ is singular, then by 1.2.1(c), 9i> k+ is singular. But AC holds in 91.    ■

AD implies there are singular successor cardinals below 0, the least such being to3.

Although our ground model will be much larger than L(R), the next theorem

implies that, below 0L<R), its cardinals and cofinalities will be the same as those of

L(R).

Theorem 1.2.4 (Moschovakis). Assume ZF + AD + DC. Let k < 0L(R) and

A E k. Then A E L(R).

Proof. Cf. [6].

We consider another choice principal hopefully consistent with AD, but this time

false in L(R).

Definition 1.2.5. Unif(R X R) is the assertion that every relation on reals can be

uniformized. That is, Unif(R X R) iff V{AX | x E R) 3/: R -> R Vx ( 0 ¥=AXER^

fix) E Ax).

Theorem 1.2.6. Assume ZFC + ADL(*\ Then L(R) n -Unif(R X R).

Proof. Work in L(R). Let Ax= {y \ y is not ordinal definable from x], for x G R.

Then Ax =£ 0 since R — Ax is wellorderable. Suppose / were a choice function for

{Ax | x E R). Since /G L(R), f is ordinal definable from some x0 G R. But then

f(x0) $. Ax , a contradiction.    ■

1.3. Stronger than AD. We shall assume our ground model satisfies ZF + AD +

DC + ACR.

Definition 1.3.1. ACR is the assertion: V{AX \ x E R} 3/: R -» R Vx (Ax ¥= 0 =»

f(x) E Ax).
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So Unif(R X R) is ACR restricted to families of sets of reals. Besides

Unif(R X R), ACR also implies 0 is regular. On the other hand, if ZF + AD +

Unif(R X R) + 0 is regular is consistent, then so is ZF + AD + DC + ACR. We

prove this by considering the inner model L(R U 5(R)), the universe of sets

constructible from the reals and sets of reals as urelements.

Here and later the notion of Wadge reducibility will be useful. For A, B ER, let

A <w5 iff 3/: R -> R (/ is continuous f\A = f~x(B)). AD directly implies that

VA, B E R (A <w5 orB^wR- A). D. Martin showed, in ZF + AD + DCR, that

<w is well founded, so that <w becomes a prewellorder after one identifies A with

R — A. Let OTw(A) he the ordinal of A in this prewellorder. Solovay showed in

ZF + AD + DCR that 0 = sup{OTw(A)\A C R} (cf. [8]). This implies that for

ic < 0, {A j OTw(A) < k} is the surjective image of R. (These facts, by the way, yield

at once the nontrivial direction of 1.1.7.) For more on <w, see [9].

Theorem 1.3.2. Assume ZF + AD + Unif(R X R) + 0 is regular. Then

L(R U 5(R)) VZF + AD + DC + ACR.

Proof. Every set in L(R U 5(R)) is ordinal definable from a set of reals, so in

verifying ACR we may assume Vx (AXE 5(R)). But then, since 0 is regular, 3k < 0

so that

VxER(Ax¥: 0 =*3BEAX (OTw(B) < «)).

Since {5 | OTw(B) < k] is the surjective image of R, Unif(R X R) gives the desired

choice function.

To verify DC, it is enough to verify DCP(R). Suppose VA ER3B ER((A, B)E

S). Since 0 is regular and to < 0, 3/c < 0 so that

OTw(A) < k - 35 (OTw(B) <kA(A,B)eS).

But {51 OTw(B) < k] is the surjective image of R, so DCR gives a DC sequence for

S. (Note Unif(R X R) => DCR).    ■

Thus ZF + AD + ACR is equiconsistent with ZF + AD + Unif(R X R) + 0 is

regular, and DC can be added to either theory without increasing its consistency

strength. We conclude by showing ZF + AD + Unif(R X R) proves the consistency

of ZF + AD + DC. This follows at once from 1.2.6 and the next theorem.

Theorem 1.3.3. Assume ZF + AD + DCR + 3A E R (A £ L(R)). Then there is a

nontrivial elementary j: L(R) -> L(R), and so ZF + AD + DC is consistent.

Proof. If A E R and A £ L(R), then 0L(R) < OTw(A). Thus 0L(R> < 0. By 1.1.5,

let k be measurable with 0L(R) < k < 0. Let U he a normal ultrafilter on k and

consider the ultrapower

(*L(R) n L(R))/U.

By DCR the ultrapower is well founded. It is enough to show that Los' theorem

holds for this ultrapower. This is done by the usual induction, except in the

existential quantifier case, whose usual proof would require AC in L(R). For this
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case, suppose that for U a.e. a < k

L(R)*3v<p(v,fx(a)---fn(a)),

where/ G L(R) n *L(R) for i < /z. We want an/ G L(R) n KL(R) so that for Í/ a.e.

a < k

L(R) 1= <p(/(«), /,(«),. • • ,/„(«))•

Define in L(R), for a < k, Aa — {x E R\ 3v (v is ordinal definable from x A

y(v, fx(a),... ,/„(«)))}. We claim that there is a fixed A E R so that Aa = A for ¿7

a.e. a. If not, let X = [a | Vß < a (AB ¥* Aa)}; then X E U D L(R) and Va, ß E X

(a¥= ß^Aa^ AB). Since 0L(R) < k, we have a S < 0L(R) so that OTw(Aa) < 8 for U

a.e. a, say for all a G Y, where Y E U n L(R). But then A n T is the surjective

image of R by a map in L(R), a contradiction since A n T has order type > 0L(R).

Let A = Aa for U a.e. a. By hypothesis A ¥^ 0, so let x E A. Fix in L(R)-definable

wellorder W of the class of K G L(R) so that v is ordinal definable in L(R) from x.

Then we can define in L(R)

f(a) - W- least v so that <p(u, /,(<*),.. .,/„(<*)),

= 0   if no such v exists,

and / is as desired.    ■

We do not know how the consistency strength of ZF + AD + ACR compares

with that of the theories including ADR investigated in [8]. Of course ZF + AD +

ACR is consistent relative to ZF + ADR + 0 is regular by 1.3.2. It seems plausible

that ZF + ADR is much stronger than ZF + AD + ACR.

Kunen's argument adapts to show that the conclusion of 1.3.3 implies that R* (the

analog of 0J for L(R); cf. [8]) exists. Recent work of Martin and Steel shows that the

determinacy of games of R whose payoff set is n] (when coded as a set of reals

under the map UR«R) implies 3 A CR(^ $ L(R)). Thus, if we assume ZF + AD

+ DC, we have the following analog of a theorem of Martin and Harrington (cf. [3])

about 0$: n] games on R are determined iff R* exists.

2. We want to extend generically a model M of AD to a model N of AC without

adding reals or collapsing to^. (This will imply N i= Ô] = to2 by 1.1.10.) To obtain AC,

we must add a wellorder of RM. Moreover, since to2 is the surjective image of R in M,

our wellorder must have length at least to2, as otherwise it will collapse to2. The
l-i

natural conditions for adding such a wellorder would be functions h: a -^R for

a < to2, ordered by inclusion. Unfortunately, when a > to, there are no such h in M.

So we first fix up M by adding enough to,-sequences; this gives us a model M*. We

will have RM* = RM and to^* — to^. Forcing over M* with the natural conditions

above then gives the desired N.

If the second forcing is to work, we need to,-DC in M*. Now to,-DC follows (for

reals, anyway) from ACR plus the existence of a uniform counting of the countable

ordinals, i.e. of a function / so that Va < to, (f(a) maps to onto a). Assuming

M t= ACR, it will be enough to add such an / and preserve ACR.
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Each condition for adding f to M consists in part of a proper initial segment of /,

called the stem of the condition. A condition must also restrict the possible

extensions of its stem, as otherwise to2 will be collapsed. Now for a < to,, the set of

possible length a extensions is a topological space homeomorphic to R. We allow a

condition to restrict the length a extensions of its stem to a comeager set in this

space. The basic reason this method of restriction preserves to2 is that, by 1.1.3,

MtVh: R^ to2 3ß < to23C Ç R (Cis comeager A h"C E ß).

We now describe the spaces we shall use. For « < ß < to,, let

TmJt=    X    »(« + «).
W:

Let Ta g have the product topology generated by the function topologies on its

factors. Each Taß is homeomorphic to R. We sometimes identify Taß with (/:

(ß-a)Xw->w + ß| V8Vn (f(8, n) < to + 8)}. If / G TaB and a < 8 < ß, then

we let fs(n) = f(8, n).
We proceed to the construction of M*. Although we are mainly interested in a

ground model M of ZF + AD + ACR, we can get underway with much weaker

assumptions about M.

Theorem 2.1.1. Let M be a countable transitive model of ZF + DC + VA ER (A

has the Baire property). Then there is a generic extension M* of M so that

(a) "M H M* E M;

(b) cardinals and cofinalities are preserved;

(c) M* N 3fVa < to, (f(a) maps to onto a).

If in addition MtACR then

(d)M*tACR;

(e) M* 1= DC.

If in addition MtAD+ V= L(R U 5(R)), then

(f)M*V03x-DC.

Proof. In M, we define a condition to be a pair (/, A) such that / G T0a for

some a < to,, and X = (XB I ß < to,), where
onto      p

(l)Vfi<a(/a: to -> to+ 5), and

(2) Xß E Toß for ß < to,, and for ß > a {h E Taß\f h G A^) is comeager, and

(3) Vß > a '
onto

(a) (a < 5 < ß A/ g E XB) =» gs: to - to + 8,

(b)a<8<ßAf'gEXB -/"gr 8 E Xs,
(c) a *s 8 < ß Af'g E Xs =* {h E TSB \f ~g~h E XB) is œmeager.

We visualize conditions as trees. We call/the stem of (/, A), and A the restriction

of(/,A).

If (/, A) and (g, Y ) are conditions, then (g, ?)<(/, X) iff (fEgAgE

Adom(g) A Vß s* dom(g) ( Y^ E Xß)). Let P he the set of conditions and P =? (P, <).

Let P' = {(/, A) | (/, X) satisfies (1) and (2) above}, and let P' be 5' with the

obvious order extending < on P. Then P is dense in P'; in fact if (/, X) E P' then

3 y (Vß (Yß E Xß) A (f, Y) G P). We omit the easy proof. The only non trivial part,
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arranging that (/, Y) satisfy 3(c), uses 1.1.2 and 1.1.3. So we could have forced with

P'; using P just simplifies some details. Since P is dense in P', one need only worry

in the sequel whether an alleged condition is in P'; if so, one can always refine its

restriction to get a true condition.

Our next lemma will not be used in the proof of 2.1.1. (It will be used in the

proofs of 3.1.1 and 3.1.2.) We mention it here because it looks as if it might be useful

in an attempt to do without AC R in M in proving our main results.

Lemma 2.1.2. There is a function F G M such that

(i) dorn F = {(/, X, <p) | (/, A) G P A 3Y((f, ?)<(/, X) A (/, Y ) H- <p)}, and

(n) (/, F(f, X, <p)) < (/, X) and(f, F(f, X, <p)) lr <p, for (f, X, <p) G dorn F.

Proof. Let F(f, X,<p) = Z, where for ß < w,,

Z0= U {Yp\(f,Y)<(f, X)wd(f,Y)\\-<p}.

If F(f, X, <p) — Z, then clearly (/, Z) is a condition extending (/, A). Suppose for a

contradiction that (f,Z))K- <p. Let (g, W)<(f, Z) and (g, W) II- -tp. Then g G

Zdom(g) sog G Tdom(g) for some f so that (f,Y)X <p. Let Vß = Wß n Yß for ß < o:x.

Then (g, V) is a condition extending both (g, W) and (/, Y), a contradiction.    ■

Let G be P-generic over M, and M* = M[G]. We prove 2.1.1 in a sequence of

lemmas.

It may appear at first glance that P is to-closed, but this is not true. One could

have a decreasing sequence (/„, A") in P so that U n<af„ & Xß, where ß =

dom(U n /„). Our proof 2.1.1(a) relies on the fact that Xß is fat enough that this is

unusual.

Definition 2.1.3. If t is a finite function with domain a subset of to, X u and

V(a, n)E dom(i) (t(a, n) < u + a), then for any ß < ô such that dom(?) E [ß, 8)

X w

r,i      _ t r e T    \f e- f\
if iß.» - 1/ G y/s,fil' £/)•

That is, [t]ß$ is an interval of Baire or basic clopen set in TßS. We drop the

subscripts when they are understood.

Lemma 2.1.4. Let U be an open dense subset of P, p = (/, A) a condition with

/G r0a and for ß>alet Sß={gE Ta,ß\3Y (</"g, Y)< p A </g, Y ) G U)}.

Then 3ßV8> ß (Ss is comeager).

Proof. Recall that a set is comeager if it is nonmeager on every interval, since all

sets are almost open. For each interval [t] so that dom(r) n (o X w) = 0 there is a

ß, > sup(ô I 3/z ((8, n)E dom(i))} so that 5^ is nonmeager on [t]. (If not, let for

dom(i) C ß X to

zß = xß - (sß n [t])

and let Zß = Xß otherwise. Now let (/g, ?><(/, Z> and t E g. Then (/g, Y) has

no extension in U.)

Notice that if ß > ß,, then S^ is nonmeager on [z] (by 1.1.2). Now let ß < to, be a

limit ordinal so that for each interval [t] of Taß, ß, < ß. Then Sß is comeager in Taß,

and so 5S is comeager on Ta $ for all 8 s= ß (by 1.1.2).    ■
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Lemma 2.1.5. P is (w, oo) distributive.

Proof. Let (U„ \ n < to) be a sequence of open dense subsets of P, andp E P. Let

Sß he the Sß of 2.1.4 for U„. By 2.1.4 let ß < to, be so that Vn (Sß" is comeager in

Taß). Let g E r\nS¡¡. Using 2.1.2 (or DC in M) it is easy to find Y so that

(f*g,Y)^p and (f*g,Y)E nn<wc/.    ■

Of course, 2.1.1(a) now follows.

Lemma 2.1.6. Vk ((Mi=k is a cardinal iff M* t= k is a cardinal) A cof m(k) —

cof    (ic)).

Proof. We use a possible values argument. Suppose

( /, X) It- t maps y into k,

where t is a term. It will be enough to find a condition p extending ( /, X) and a

map h EM with dom(h) — y so that p ll-ran(T) E ran(h). Lemma 2.1.5 gives the

desired/) and h if y < co,, so assume y > ux.

Let/ G T0a. Let a < ß < co, and 5 < y. For any g with/ g G Xß we define

T)Sg= the uniquetj < k such that 37 ((/ g, Y) \\-t(8 ) = tj),

= 0   if no such tj exists.

(At most one tj has the property in question.) Now let

ss,ß - (tj < #c t tj = tjs g for nonmeager many g G Taß].

Then Ss ß is countable since any family of disjoint nonmeager sets in Ta ß is

countable. Also, for comeager many g G Ta ß we have Tjä G Ss ß (by 1.1.3 a

wellordered union of meager sets is meager). Thus we can set

Yß={fgEXß\V8<y(VsgESSiß)},

and Yß= 0 for ß < a. Now (g|/ g G Tß} is a wellordered intersection of sets

comeager in 7^, so comeager in Taß by 1.1.3. Thus (/, Y) is a condition. Clearly

(/,?)<(/, A) and VÔ< y

(/,y>T(r3)G   U sSß.
ß<0>!

Let h(8, ß, f ) be the f th element in the increasing enumeration of Ss ß. Then h EM

(it is defined without AC) and h maps a subset of y X to, X to, onto

U s<y U ß«o, ^«,/9- Since y > to,, we may assume dom(h) — y. Thenp = (f,Y) and

/z are as desired.    ■

Lemma 2.1.7. M* N 3/Va < to, (/(a) ma/w to ozzto a).

Proof. Let g = U {/| 3A((/, A) G G)}. By density, dom(g) = cof. Since af =

uf, from g we get the desired/.    ■

We now add Mt= ACR to our hypotheses on M, and thereby obtain some choice

principles in M*. The key is that if Mt= ACR then the forcing language is full.

Lemma 2.1.8. Suppose also MtACR. Then if p II- 3v <p(v), then p II- <p(r) for some

term t.
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Proof. We work in M. Let p = (/, A). Part 3(a) of the definition of P implies

that there is a one-one map of U a<ß<a Xß+X into R, where a = dom(f). Applying

ACR, we have functions

g»Yg,       gHV

defined for those g such that / E g and 3ß (g G Xß+X) and 3Y3r ((g, Y) lh <p(r)),

with the property

(g,yg)lr-<p(Tg).

Let rg = (g, Tg).

Now we can define the term r. Roughly, t waits for a condition r to appear in the

generic object (one must by density). If g is of minimal length such that r appears,

then t acts like t .

Precisely, we put (q, a) into r iff for some g

rg is defined Aq^rg.

Vy < dom(g) (r_v is defined => q is incompatible with /■   ), and

3i > q ((s,a) E Tg).

It is easy to check that p\\-<p(r).    ■

Lemma 2.1.9. If M ¥ACr, then M*tACR and M*tDC.

Proof. Suppose p lh Vx G R 3 v <p(x, v). Then by 2.1.8, Vx E R 3t (t is a term

Ap II- <p(i, t)). Using ACR in M, we pick for each x E R a witness term tx. For

terms p, t, let [p, t] be a term for the pair of sets named by p and r, and let

a - {(q,[x,Tx])\q G P A x E R). It follows that p I h Vx G R<p(x, a(x)).

DC is proved similarly.    ■

We could also have shown M* t= DC under the additional assumption that

Mi=F=L(R).

Lemma 2.1.10. Suppose MvZF' + AD + ACR+ V'= L(R U 5(R)). Then M* N

co,-DC.

Proof. Suppose Q, S E M* and

(i) M*t=Va<co,V/:a^S3vG5'((/, v) GO).

We will first find in M* an S' E S so that (i) holds with S' replacing S, and S' is the

surjective image of R in M*.

Fix terms S, Q denoting S and Q respectively. Let p E G and

p II- Va < co,V/: a -> S 3y G 5 ((/, y) G Q)-

We work in M for a while now. Since V = L(R U 5(R)), there is a definable map

u of 05 X R X 5(R) onto V. We define now a strictly increasing sequence («^ | ß <

co,) of ordinals < 0, and a sequence (^ | ß < co,) of sets of ordinals each of order

type < 0. Let Tß = {«(tj, x, B) | tj G Aß A x E R A OTw(B) < Kß}. Choose k0 and

A0 large enough that 0 G T0. For X a limit, let «x = sup{«ß | ß < X] and Ax =

U /8<x /l^. Finally, suppose k^ and Aß are given. Since (/| 3a < co, (/: a -> 7^)} is
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the surjective image of R, and since 0 is regular, there is a k' < 0 so that if a < co,

and (ts j 8 < a) is a sequence of terms in Tß, then there is a term t such that

0 lh t is a function with domain à,

0 \\- t(8) — rs, for each 8 <a,

and

t = m(tj, x, B)   for some 5 with OTw(B) < k'.

Moreover, we can effectively find A' D Aß so that A' has order type < 0, and for

each (ts | 8 < a) as above, there is a term t = w(t/, x, B) as above, with tj G A'. Let

kj8+ , > k' and Aß+X D A' be large enough that if t is a term, t E Tß, then for some

term a E Tß+X,

/? IF 3a < to, (t: a -> S) =>[(t,o) E Q Aa E s].

By 2.1.8, such a a exists. We can effectively find such a Kß+X < 0 and AB+l of order

type < 0 because T¿ is the surjective image of R and 0 is regular. (Recall 0 =

sup{07;(5) | 5 ç R}; cf. the proof is 1.3.2.)

We move back to M*. Let S" be the set of denotations of terms t G U ß<W| Tß

such that q\\- t E S for some q G G. The construction and the fact that

aM n M* E M guarantee that (i) holds with 5' replacing S. Since 0 is regular,

sup{Ky81 ß < co,} < 0 and U ß<a Aß has order type < 0, and thus U B<a Tß is the

surjective image of R. Thus S" is the surjective image of R.

We may then assume that S' = R. But then 2.1.7 gives a one-one map z:

(Ui<u/R) -» R. Let F: R^R be such that Vx G R (r'(x) exists =*

(r'(x),' F(x)) G Q); such an .Fexists by Unif(R X R) in M*. Define/: co, -» R by:

/(a) = F(i(ff a)). Clearly,/is the required co,-DC sequence.    ■

Theorem 2.1.1 has been proved.    ■

At the moment we do not see how to replace the use of Baire category with that of

Lebesgue measure in the proof of 2.1.1. If M i= ZF + DC + All sets of reals are

Lebesgue measurable, can one construct a generic extension M* of M satisfying

2.1.1(a), (b) and (c)?

There are some variants of the model M* of lesser interest. Given M \= ZF + DC

+ All sets have the property of Baire, we can force over M with conditions

analogous to those used above, except that the space Taß is replaced by Xas.s<» "co.

This forcing adds a sequence (xa \ a < co,) of reals; if we let M' = M({xa \ a < co,}),

then M' t= every wellordered set of reals is countable, but M' f {xa | a < to,} has the

Baire property. A dual forcing gives a model M" where all wellordered sets of reals

are countable but there is a non-Lebesgue measurable set. Neither the M' forcing

nor the M" forcing adds reals or collapses cardinals. Finally, it is possible to

generalize these notions of forcing so as to add an to2-sequence of reals without

adding new reals or collapsing cardinals. We do not know how to add a K-sequence

of reals, for k > co2, without adding reals or collapsing cardinals.

Corollary 2.1.11. Suppose ZF + AD + ACR is consistent. Then ZFC + ADL(R)

+ 8\ = co2 ts consistent.
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Proof. Let M be a countable transitive model of ZF + AD + ACR + V =

L(R U 5(R)) and let M* be the generic extension of M given by 2.1.1. In M* let

P = [h | 3a < co2 (h: a -> R)}, and let P = (P, D). Let G be P-generic over M*.

Clearly P is co,-closed, so DC in M* implies that RM* = RM'lGX and co,-DC in M*

implies that cof = cof *[C]. Define in M*[G]: N = L(R, G). Then N t= AC since U G

maps co2 onto R". Since RN = RM, we have Ai= ADL(R) and (8¡)N = (0¡)M. Clearly

«f > a" > cof-W, but also cof = co^ by 1.2.4. Thus cof = co^. We have then

N1= ZFC + AD¿(R) + ô2 = co2.    ■

In §3 we shall show that the following is true in the model A just constructed.

(•)      Vf: co, - co, 3g: co, - co, (Va (/(a) < g(a)) A 3x G R (g G L[x])).

In ZFC + "All nj games are determined" +(*) one can prove that 82 = co2.

As we saw in 1.2.3, the existence of generic extensions satisfying choice of ground

models satisfying AD gives information about the ground models. For example

Corollary 2.1.12. Assume ZF + AD + DC. Then Vk (co, «S k < 0 => cof(x+ ) >

co2).

Proof. We work for a moment in ZF + AD + DC. Suppose co, *£ k < 0 and

(Aa|a<co,)isa strictly increasing sequence with limit k+ (cof(ic+ ) 2* co, by DC).

By playing a Solovay-style game (cf. Theorem 7.1 of [4]) we have a function G so
onto

that iff: co -» a, then G(f): k -» k+ and Xa E ran(G(f)).

Now let M be a countable transitive model of a sufficiently large fragment of

ZF + AD + DC, and let M* be as in 2.1.1. Suppose that the situation of the last
onto

paragraph occurs in M. In M* we have (/a | « < "i) so that fa: co -» a. Then if

H(a, ß) = G(fa)(ß), then H maps to, X k onto (k+)m. This contradicts 2.1.1(b).

■

Martin has shown that ZF + AD + DC proves Vzi > 2 (cof(co„) = co2). We

believe the proof of 2.1.12 will someday generalize to show, in ZF + AD + DC, that

wu < « < 6 ■» cof(ic+ ) > ww+1.

An argument similar in spirit to that of 2.1.12 answers a question of [1]. Namely,

assuming ZF + ADR + 0 is regular, one can show that the two supercompactness

measures on Pw(co2) defined in [1] are both identical to the measure defined

(implicitly) in [8, §3]. We omit the proof.

3. The nonstationary ideal on co, in N. The first link between determinacy and

large cardinal ideas was the result of Solovay—Theorem 1.1.11—that co, is measura-

ble, granted AD. Later results of the same sort include the measurability of each 0,¡

and Moschovakis' result, Theorem 1.1.5. Any of these can be used to show the

consistency of ZFC + 'there exists a measurable cardinal' by a standard relative

constructibility argument, but more can be accomplished by other means. Work of

John Green has established, from the consistency of ZF + DC + A'2-determinacy,

the consistency of ZFC + 'there is a cardinal with a normal measure concentrating

on measurables'.

For the record, an ideal I of subsets of ic is A-saturated iff P(k)/I has the A-chain

condition. The theory of saturation of ideals has a long record of intimacy with that
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of large cardinals, for the details of which one should consult Kunen [5]. The best

relative consistency results between the theories of saturated ideals on u>x and large

cardinals are the theorem of Kunen [5] that the consistency of ZFC + "there is a

huge cardinal" implies that of ZFC + "there is an co2-saturated ideal on co,", and the

result of Mitchell [7] that the consistency of ZFC + "there is an co2-saturated ideal

on co," implies that of ZFC + "there is a cardinal k which is 52(«)-measurable".

In this section we shall show that the ideal NSU of nonstationary subsets of co, is

co2-saturated in the model A of 2.1.11. This settles a question left open by the Kunen

result quoted above, and provides consistency strength consequences of determinacy

hypotheses in the theory of saturated ideals.

H. Woodin has recently constructed, from a ground model of ZF + ADR + 0 is

regular, a model of ZFC with an ideal I on co, so that 5(co,)/7 has a dense set of size

to,. This property of I is ostensibly stronger than co2-saturatedness. Woodin's ideal is

not NSa¡ (cf. [10]).

Finally, our proof easily implies that Chang's conjecture does not follow from the

assumption that NSU is co2-saturated.

Throughout this section, M and M* are the models of 2.1.1. We assume M

satisfies all the hypotheses of 2.1.1. The first step is to identify NSU in M* with the

ideal generated by the nonstationary ideal on co, in the sense of M. This is

accomplished by the following lemma.

Lemma 3.1.1. Suppose \p: co, -» co, and $ G M*. Then 3<p: to, -> co, (<p G M A Va

(\¡/(a) K <p(a))). Thus every cub subset o/co, in M* has a cub subset in M.

Proof. To prove the first assertion, letp — (/, X) be a condition with/G T0a,

and let t be a term such that/? It- t: co, -» có,. It suffices to find q < p and <¡p: co, -» ux

in M so that Va < co, (q II- r(â) < <p(ä)).

Working in M, let ß < co, be given. By 2.1.4 we can find a < y^ < co, so that for

almost all g G Tay/¡, 3Y38 (</g, Y) lh T(jS) = 8). By 1.1.3 we can fix 8ß < co, so

that Sp={gG Taßyß | 37 «/g, 7) Ih r(ß*) < 8ß)] is comeager. Now for y > a let

ZY = {g G Xy | Vß < co, (yp <y^gl(yß-a)ESßA

gt (y - yp) E F(gf (yp - a), X,"r(ß ) < Sp"))}.

(Here F is the function of 2.1.2 which picks a restriction forcing a given statement.)

Using 1.1.2 and 1.1.3 we can see that (g G TaS \f g E Zs) is comeager. Let Zs = Xs

for 8 < a. Then q = (/, Z) is a condition, q <p, and if <p(ß) — 8p for ß < ux, we

have q Ih t(/?) < <p(ß) for ß < co,.

Now if <p pointwise dominates the increasing enumeration of some cub C E co,,

then {a | q>"a E a) is a cub subset of C. The second assertion of 3.1.1 follows at

once.    ■

By a similar argument we can also show that if U is a K-complete ultrafilter on an

ordinal A in M, where k > co2, then U generates a «-complete ultrafilter on A in M*.

For let/? lh À EX for some term À, where p — (/, X) and/ G T0a. For each ß < A

there is t\p > a so that Sp = {g E T     \ 37 ((/ g, Y) decides ß G À)] is comeager
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(by 2.1.4). Fix y so that for U a.e. ß < A, y = r\ß. By 1.1.3 fix g G T so that

y = T/« => g G Sß. By symmetry, we may assume that for U a.e. ß < X, 37 ((/ g, 7)

Ih ß G À). For each such ß pick a 7^ witnessing this using 2.1.2. Let Zs = Dß Y§ n

Ae. Then (/, Z)<p, and there is a set 5 G U so that {f,Z)\Y ß E A. The

K-completeness of the ultrafilter generated by U in M* can be shown similarly.

We refer hereafter to the nonstationary ideal on to, in M* as /. By I+ we mean the

set of stationary subsets of to, in M*. We say that a subset of co, in M is large if it

includes a cub set, and small if it is disjoint from a cub set. By 1.1.11, every subset of

co, is either large or small.

Lemma 3.1.2. In M* there is an isomorphism between P(o¡x)/I and RO(Q).

Proof. Working in M*, we define a map 5: Q -> 5(co,)/7 — (0}. Let C7 G Q be

given. Thus q: (co2 — co,) X co -» co2 and ¿7 is finite. Since q is finite, q G M. By 1.1.11

we can find in M a sequence (qa\a < ux) which represents q in the ultrapower of M

by the closed unbounded filter on co, in M. Now Los' theorem holds for this

ultrapower for formulae whose quantifiers range over wellordered sets, and so we

have a cub C E M so that for a E C

qa: (co, -a) X co -> co,

and

qa(ß,n)<ß

and

t7a is finite.

Now let F = U {/| 3 A ((/, A) G G)] where M* = M [G]. Thus F: co, X u - co,.

By a density argument, [a\qa E F] meets every unbounded subset of C in M, and

so by 3.1.1 is stationary in M*. We set

B(q)={a\qaEF]/I.

To see that B(q) is well defined, notice that if (ra | a < ux) also represents q, then

ra — qa for all a in some cub C, and so [a | ra E F]/I = {a \ qa E F)/I.

To see that 5 is order preserving, let r < q in Q. Then c7a E ra for all a in some

cub C (by the restricted Los theorem). So {a\ra E F) (1 C E [a\qa E F) and

B(r) ^ B(q). On the other hand, if r 4 q then t7a (£ ra for all a in some cub C E M.

By density, {a | ra Ç .F A <7a (£ F} meets every unbounded subset of C in M. By

3.1.1,5(/-)4 5(t7).

We next show that ran(5) is dense in5(co,)// — {0}. Let D/I be nonzero. Let D

be a name for D and pick any p E G so that p Ih D is stationary. Let p = (/, A),

where /G T0Ä. Working now in M we shall find r < p in 5 and <7 G Q so that

r Ih 5(c7) < D/I. By density, some such r is in G, and we are done.

In M we define, for 8 < a < y < co,,

SU =(«£ TSJ {h E Ta¡y\3Y((fYh, Y) < (/, X) A

(f g h, 7) Ih ä GZ))} is comeager].

Notice that Say E S   , if y < y'.
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Claim, {a | 3y (Sa   is comeager)} contains a cub.

Proof. Otherwise, let C be cub so that a E C => Vy (Say is not comeager). For

a E C and y > a, let [ta y] be an interval on which Say is meager. Let ta = tay for

cofinally many y. Then Say is meager on ta for all y, so Uy<W| Say is meager on ta.

Now, using Födor's theorem, we may assume that for some fixed t, a E C => ta = t.

Using 1.1.2 and 1.1.3 it is easy to define a condition (/, Z) < (/, A) so that for

a E C,f g E Za, and iÇgwe have

g e U say,
y<»,

and

Vy > aV/z (/V* G Zy =»¿7 ((/g**, 7*)lh â G I))).

Let (Çg and (/g, î)<(f, Z). Then (/ g, Z) lh Z) n C = 0, a contradiction

proving the claim.

So let Sa he comeager for all a E C, where C is a cub. For a E C, let [gj be an

interval of T so that for comeager many g G Ty a, [h G T | 37 ((/ g /z, 7) Ih a

G Z))} is comeager on [qa]. Let q be represented by (t7a | a < co,) in the ultrapower

of M by the cub filter. Thus q G Q, as desired.

By our standard manipulations (using 1.1.2 and 1.1.3) we can find (/, Z) < (/, X)

so that whenever a G C, / g h G Zy and qa E hv/e have

(/VA,Z)H-dE¿.

Set r = (/, Z). Then for a G C

r Ih qa E F => a G Z>,

so

rlh5(t/)^Z)/Z,

as desired.

Thus 5(co,)/Z — {0} has a dense subset isomorphic to Q. To finish the proof, we

must show that 5(co,)/Z is complete in M*. Since we do not have the full axiom of

choice in M*, we sketch this otherwise standard proof.

It suffices to show that suprema exist for subsets of the canonical dense set which

we shall identify with Q. Since Q is wellorderable and has the co2-chain condition, it

suffices to find the supremum of a family (ba | a < co,) of disjoint members of Q.

Let (aa | a < co,) extend (ba \ a < to,) to a maximal disjoint family in Q, and let

{ca | a < co,} = [ba | a < co,} U [aa | a E co,}. Pick representatives Ca for ca. For

this we use co,-AC. Now define C'a = Ca— U ß<aCß. Then let D be the union of

those C'a that came from bßS (as opposed to üß's). D/I is the supremum of

{/3Ja<co,}.    ■

Now let N be as in Corollary 2.1.11. Since N has the same subsets of co, as M* and

satisfies AC, we have the following

Theorem 3.1.3. If ZF + AD + DC + ACR is consistent, then so is ZFC + ADL(Jk)

+ 'the nonstationary ideal on co, is u2-saturated'.
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To handle Chang's Conjecture first notice that no consistent theory of the form

ZFC + (3^4 E o32) Lu [A] \=<p can possibly imply it. For suppose such a theory did

imply Chang's Conjecture. Working in the theory let A and a be such that A E a,

a = «%lA], La[A*] ¥ q>, where A* = {ß ¡ ß + 1 G A], and cof-41 has the smallest value

it can have for such an A and a. Then L[A] satisfies Chang's Conjecture, so Z.a[^4]

has an elementary substructure of length greater than or equal to cof but with

bounded intersection with cof'41. This collapses to some La.[A'] t=tp, with A' E a'.

Now a' 3= cof-41 > cof» [A'X. By a condensation argument of Hajnal, La[A] and

La,[A'] satisfy the statement "there is only one uncountable cardinal". Thus a' =

cof-41, and a' is regular in L[A']. By HajnaPs theorem again, cof'1,4'1 = cof'4'1. But

then a' = to2 [A''. Hence, A' and a' satisfy the conditions imposed on A and a, but

cof'1 < cof"41.

The model N above could be augmented by the isomorphism of 5co,/Z and

RO(Q) which lies in M*. Thus we have

Corollary 3.1.4. If ZF + DC + AD + ACR is consistent, then so is ZFC +

Po}x/NSa =RO(Q).1/ a), v-t/

By the preceding argument this latter theory cannot imply Chang's Conjecture if it

is consistent. But it does imply the co2-saturatedness of NSU . Hence

Corollary 3.1.5. If ZF + DC + AD + ACR is consistent, then ZFC + NSU¡ is

ic2-saturated does not imply Chang 's Conjecture.

4. Open problems. The first question is whether the hypothesis in our main results

(2.1.11 and 3.1.3) is best possible.

(Q.l) Does Con(ZF + AD + DC) imply either of Con(ZFC + AD£(R) + 8X2 = co2)

or Con(ZFC + ADL(R) + NSU¡ is co2-saturated)?'

We would regard a positive answer to Q.l as a significant improvement on our

main results, because there is a natural candidate for an inner model of ZF + AD +

DC, namely L(R). No such candidate inner model for ZF + AD + ACR is known.

The presence of AD£(R) in the conclusion of Q.l may seem unnatural. In fact,

Con(ZFC + NSU is co2-saturated) is known under no hypothesis other than that

we have used. And although L. Harrington has shown that Con(ZFC) implies

Con(ZFC + 8\ = co2) (cf. [2]), Harrington's method breaks down if one wants even

n¡-determinacy in the conclusion. (It is natural to consider nj-determinacy in

connection with the size of ô2, since n¡-determinacy implies that ô2 is the second

uniform indiscernible [4].) In fact, Martin has shown in unpublished work that

Con(ZFC + n]-determinacy + 82 = co2) implies Con(ZFC + there is a measurable

cardinal), so that "ô2 = co2" has strength of its own in this context. We are led to

(Q.2) Can Con(ZFC + n¡-determinacy + 8X2 = co2) be established using any large

cardinal or determinacy hypothesis weaker than Con(ZF + AD + ACR)?

(Q.3) Same as Q.2 for Con(ZFC + NSU¡ is co2-saturated).

We turn from weakening our hypothesis to strengthening our conclusions. Our

forcing method adds to a ground model M of a strong determinacy hypothesis a

1H. Woodin (private communication) has answered Question 1 in the affirmative on both counts.
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wellorder of RM while adding no new reals and preserving co2. Can we extend the

method so as to preserve higher cardinals and cofinalities as well? The next two

questions would probably yield to such an extension.

(Q.4) Con(ZFC + AD1-« + V« (ôxn = co„))?

(Q.5) Con(ZFC + the nonstationary ideal on co2 is co3-saturated)?

Such an extension of our forcing seems to require some new descriptive set

theory. We have used heavily the existence in M of a map | | : R -» co, and a

sequence (Ia \ a < co,) such that Ia is an co,-saturated, wellordered-additive ideal on
onto

(x G R 11 x |= a}. Now fix any map II II : R -» co2 in M. No sequence (Ja\a< co2)

with analogous properties is known. One symptom of the difficulties is that for any

extension M** of M so that M**i=3/: co2 -> R Va < to2 (ll/(a)|| = a), we have

M**i=card(cof )<to2 for n s= 2. The reason is that MtVn>2 (cof(co„) = co2).

Indeed, by abstracting the essentials from the proof of 2.1.12 we get

Proposition 4.1. Assume ZF + AD + DC. Then there is no (Ja \ a < co2) such

that Va < co2

(i) ( Ja is an ideal on {x G R 11| x || — a),

(ii) (Ja is u3-additive) and

(iii) (Ja is (¿„-saturated).

Proof (Sketch). Suppose (Ja \ a < co2) were such a sequence. Each Ja is toü)+1-

additive. Using DC we see that each Ja is «„-saturated for some n. Fix n so that for

cofinally many a < co2, Ja is «„-saturated. We may assume Ja is «„-saturated

Va < to2. Fix g: co2 -» co„+, cofinal. By the coding lemma of [6] and the uniformiza-

tion theorem for projective relations, there is a function F: "to -*uu so that

VxVa < to2 (Ilx II = a -» F(x) codes a map of «„ onto g(a)). Using «„-saturatedness

and «w-additivity in a possible values argument like that of 2.1.6 (but simpler), we

get a map of «„ onto con+,.    ■

However, 4.1 is not a serious blow to the program of extending our method to

larger cardinals. The natural attempt to define category-type measures on {x | ||x||

= a} for a < co2 would involve topologies whose basic intervals are determined by

nodes of T2, which is a tree on co X «w. (It is the tree constructed implicitly in

Theorem 6.3 of [4].) Thus one would only expect «w+,-saturation.

Another limitation on carrying our results further is an unexpected connection

between saturation properties of the nonstationary ideals on the ô^'s and the

conjecture V« (8xn — con). Notice here that the nonstationary ideal on k is k+ -saturated

iff VA < k (A regular => the non-A-stationary ideal on k is k+ -saturated). (Thus Q.5

breaks into two questions.)

Proposition 4.2. Assume ZFC + ADL(R) + 8\ = u3 + ô4 - co4. Let I be the ideal

of non-ux-stationary subsets of u3. Then I is not u4-saturated.

Proof. By §17 of [4], there are functions/,: co3 -* co3 for a < co4 so that {ß |/a(ß)
î-i

<fy(ß)} contains an co,-cub set for a < y < co4. Let gß: fUi(ß) ->ß for ß > co2. Let

Ay,s = {ß I gßifsiß)) = y) for Y < w3 and 5 < to4.
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Notice that 8 ¥= 8' => (AyS n AyS,) E I. Thus if I is «4-saturated we have 8y < «4

so that AyS£I^8<8y. Let 8 = sup{8y \ y < «3}. Since 5 < «4, {ß|/s(ß)G

dom(g^)} £ I. Since I is normal, for some fixed y < «3 we have {ß | gß(fs(ß)) = y}

£ 7. That is, ,4Y s £ 7. But r5? < ô, a contradiction.    ■

Proposition 4.2 is due to Martin and, to a lesser extent, to Steel.

Finally, two questions about NSU¡ we do not know how to attack.

(Q.6) Con(ZFC + 5(«,)/A5Mi has a dense subset of size «,)?

(Q.7) Con(ZFC + ASU) is «2-saturated + CH)?
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