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ASYMPTOTIC ESTIMATES OF SUMS

INVOLVING THE MOEBIUS FUNCTION. II
RY

KRISHNASWAMI ALLADI

Abstract. Let « be a positive integer and /¿(n) the Moebius function. If n > 1, let

P(n) denote its largest prime factor and put P(\) = 1. We study the asymptotic

behavior of the sum M*(x, y) = 1xx,n*.x,p(„)<yi>.(n) as x, y -» oo and discuss a few

applications.

1. Introduction. For a positive integer n let P(n) denote its largest prime factor if

n > 1, and put P(l) = 1. Let ¡i(n) be the Moebius function. The aim of this paper is

to study the asymptotic behavior of the sum

(l.i) M*(x,y)=   2   m(«)

P(n)<y

as x, y -» oo, and discuss some applications.

In a recent paper [2], I studied the sum

(1.2) M(x,y)=    2    M(«),

p(n)>y

where p(n) is the smallest prime factor of n if n > 1 and p(l) = oo. There are

striking differences in the asymptotic behavior of these two functions and this

motivated the present exposition.

The functions M*(x, y) and M(x, y) can be considered as weighted versions of

the two well-known functions

(1.3) *(x,y}~    2    1

P(n)«v

and

(1.4) Hx,y)=   2    i

p(n)»y

respectively. If a remains fixed as x -» oo, it is known (see [5, 4]) that

(1.5) lim   *<*• *'/a> = p(„)

x

-
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and

$>(x   xx/a)

(1.6) lim    (no   !=«•»(«)
x^œ     (X/lOgx)

both exist for every a > 1, and that p(a) and w(a) satisfy certain difference-

differential equations. By the use of analytic methods de Bruijn [4, 5] determined the

asymptotic behavior of $(x, y) and ^(x, y) as x, y -* oo independently. In [5] he

expressed the opinion that the asymptotic behavior of ^(x, y) is more complicated

than <t>(x, y). Similarly we feel that M*(x, y) has a more complicated asymptotic

behavior than M(x, y). We now summarize our results.

Let 2 < y «£ x and ß = x/y. We show in §2 that for y > /x

(1.7) M*(x,v0=^--^{l + O(Z<(ß))}+o(-^r),
'ogy      log x \ log^x /

where/(ß) and Ä(ß) are continuous functions that tend rapidly to zero as ß -» oo.

Next, let a = log x/log v, where 2 < y < x. If a > 2, we show in §3 that

(1.8) M*(x,,)=f^+0j-^),
log"1 j' \ logJ y /

where m*(a) is continuous for a > 2 and is given by means of a difference-differential

equation. From (1.7) and (1.8) it easily follows that if a is fixed, then

*-oo  (x/log¿ y)

■
exists for every a > 1.

In §4 we discuss some properties of m*(a). We show that

(1.9) m*(a)-dw(a)/da,

where w(a) is as in (1.6). We also prove that

(1.10) m*(a)^p(a),

where p(a) is as in (1.5). One can deduce from either (1.9) or (1.10) that as a -» oo

(1.11) m*(a) « exp{-alog a — aloglog a + 0(a)).

We also prove that m*(a) changes sign at least once in every interval of length 2

contained in [2, oo).

From (1.11) it is clear that (1.8) fails to yield an asymptotic estimate for M*(x, v)

if a is large. So in §§5 and 6 we consider the problem of asymptotically estimating

M*(x, y) for long ranges of a.

In §7 we use the results of §6 along with (1.10) to show that

«e(logx)"'sup
exp{(log jc)5/8+'} *iy*ix

M*(x,y)

*(*,y)

holds for every e > 0. This partially sett'ss a conjecture due to Erdös that M*(x, v)

= o(^(x, y)) as x -» oo, uniformly for y > 2.
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Next, we show in §8 by the use of (1.7), (1.8) and the results of §4, that M*(x, y)

changes sign quite often if y is not too small in comparison with x. On the other

hand we showed in [2] that M(x, y) < 0 for all large x provided

exp{(logx)V8+£} <y <x - x7/12+E,

where e > 0 is arbitrary.

Finally we use estimates (1.7), (1.8) and the results of §7 to show that if | g |*£ 1,

then

2    Án)g(P(n))\(1.12) sup
logx'

and discuss some consequences of (1.12).

Though M*(x, y) has existed implicitly in the literature, not much attention has

been paid to it except in the special case y — x + 1, which is the well-known sum

M(x) = ¿Zx^„^xp(n). Various qualitative results have been established for functions

that generalize ^(x, y) and 3>(x, y). In most instances these results do not apply to

M*(x, y) except in a weak form. The standard reference for such questions is a long

paper of Levin and Fainleib [9], which does include a discussion of M*(x, y). But

there are some mathematical errors in [9], and their treatment also is extremely

complicated. Our emphasis has been on applications and so our results are quite

quantitative. Also, many of our results are new.

All the notation introduced so far will be retained. In addition p and q will always

denote primes. By c,,c2,... we mean absolute positive constants and implicit

constants are absolute unless otherwise indicated. Also for y > I, R(y) will denote a

monotonie decreasing function of y that satisfies the inequality

(1.13) Ä(y)«exp{-c(logy)3/5(loglogy)"1/5}    fory > 3,

where the constant c > 0 and the function R(y) are not necessarily the same when

used in different contexts. We shall also make frequent use of the following

well-known inequalities which follow from the Korobov-Vinogradov zero-free region

for the Riemann zeta function (see Chandrasekharan [7, Chapters 2 and 3]):

(1.14) M(y)«yR(y);

(1.15) v+    2     ^nW°*nY«R(y)    for, = 0,1,

where (log 1)° = 1; and

(1.16) \n(y)-li(y)\<yR(y)(logy)-1,

where ir(y) = 2pt¡yl and

/     ,„\ w    \        fmax(2,y)    dt

(»•") h(y)=f2 loi7-
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2. Estimating M*(x, y) when fx < y < x. The aim of this section is to prove

Theorem 1. Let 2 < Jx < y < x. TTze/z

vv/iere

f/3 M(z)
(2.1) f(ß)=f-

J\      t.       -2

-A.

To prove Theorem 1 we need two lemmas.

Lemma 1. For ß > 1 we have f(ß) « R(ß).

Proof. From (2.1) we obtain by partial integration

(2.2)      m-MH\l+f>*MH-  2   iM_Mfi

Lemma 1 follows from (2.2), (1.14) and (1.15).

Lemma 2. Let

F(t) = rîMidu-h
Jx     u

ThenF(t)«R(t)fort>l.

Proof. Let TV be a positive integer. From Lemma 1 we get

(2.3)

'+wr(i^*)f=r^(rf)*
=  /      -Vvl°ê " ~ '°ê ü) dv

'1 V

= logN-f(N)-f
N M(ü)logü j

1 v2
dv

Next,

(2.4)

where

0(R(N))-[NM^°do.
J\ v2

'•N M(v)logvdv _ N-^1 ,Y/    .   fn+\  logtrN M(v)logvdv _   _,  M,   .   /-n+l loj

J\       v2        B=1      K     t
x  dt

XT—   1

=   2 M(n){h(n)-h(n+l)],
n=\

(2.5) h(n)=l- + ^
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So from (2.4), (2.5), (1.14) and (1.15) we have

jNM(v)logvdv^   »  {M(n)-M{n-l)}h{n) + 0{R{N))

(2.6) =o(r(n))+  2   ¿kl +   i   ain^&i
1<S««/V       n Kn^W

= -1  + 0(R(N)).

So from (2.3) and (2.6) we deduce that

(2.7) F(N) = 0(R(N)).

Lemma 2 follows from (2.7) on observing that

HO - Hi*]) « t~x

holds for all t > 1, where [t] is the largest integer < t.

Proof of Theorem 1. Let 2 *£ vx~ *£ y < x. If 1 < « < x, p\n and p > y then

P(n) = p. Therefore

M*(x, y) = M(x) - 2 p(n) = M(x)~    2 2       /*(«),
l=Sn<e;t,/>(n)3s.>' y«p«x   Kn<*,^|n

and on writing « = m - p we get

(2.8) M*(x,y) = M(x) + 0(ß)+     2    *(»•){»(£) " »(j)} ■
i«;m=s/? v      w ;

From (2.8), (1.14) and (1.16) we deduce that

(2.9) M*(x,y) = 0(xR(y)) + 2i,

where

(2.10) 2,=     2    H(m){li(±)-li(y)}.

We use (1.17) and rewrite (2.10) as

(2.11) Zx=     2    p(m)(x/m-^={XMWdt=z[ß   *fo*   .
.«£</      4      loS'    '>       •*»< j>   M2log(x/M)

If we integrate the last integral in (2.11) by parts, we get

(2.12) Zx=^-x(ß     f{U2]d\.
logy        J\   ulog2(x/u)

If we also integrate by parts the integral in (2.12), then Lemma 2 shows that

s  = xf(ß) _    xF(u)     Iß + 2x rß    F(u)du

'       logy       log2(x/u) I' h   ulog3(x/«)

= ?pßl-«r, + 0(Ä(ß))} + o(^L_).
logy      log2xl V   y   "S llog3y/

Theorem 1 follows from (2.9) and (2.13).
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Corollary 1. Let 2 *£ yx~ =s y < x. If ß remains fixed as x -» oo, i/ze/z

M*(x,y) _
(2.14) lim   "* Y"" =f(ß)

,„    x/logy       'yKJ

for every ß > I. If a remains fixed as x -» oo, i/ze«

(2,5) llmí£!íiZ> = _J_
ä^oo   x/log  y a

for every a satisfying 1 < a *£ 2.

Proof. Theorem 1 trivially implies (2.14). Also (2.15) follows from Theorem 1 and

Lemma 1. That proves the Corollary.

3. Estimating M*(x, y) for y < /x. Let

(3.1) m*(a)

1

1
1 + fsm*(s- 1)ifc

for 1 < a *£ 2,

for a > 2.

In this section we prove the following result:

Theorem 2. Let 2 < y < fx . Then

M*(x,y) =
_xm*(a)   ,   Jx*(,x/y2)\ '"Jjc-o

log2 y \     log2 y
+ O

log3 y

/zoWí uniformly in x, y and a.

For the proof of Theorem 2 and for later use we need

Lemma 3. Let x, y and T satisfy 2 =£ y < T =£ x. TTzen uniformly we have

Proof. From (1.1) and (1.16) we get

dij

í'*/log€

2  «.(i,)-/V(f,f)
v«;/><r

rviogí

«xi?(y)a.

2 2
y*Sp<T  \<n<x/p,P(n)<p

,(.).-/;(

¿I
m(«)

fi(«)
l<n«:/3, P(n)<x/n

y   v l"Sn*jt/í,/'(n)<í

1

logí

max(/>(n),.y)<p<niin(.x/n,7')

rmin(T,x/n)     (/£

l«n«ß ë^

+ o(ß)
max(^,P(n))  »°g S

and that proves Lemma 3.
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Proof of Theorem 2. We begin by observing that if 2 =£ y < yh < x, then

(3.2) M*(x,y) = M*(x,yh)+     2    M*i-,p\.
y*íp<Vh y

From Lemma 3 and (3.2) we get

(3.3) M*(x, y) = M*(x, yh) + /'V(| ,ï) ^ + 0(x ■ a ■ R(y)).

We will deduce Theorem 2 from (3.3) and Theorem 1 by induction on [a].

First  assume that  2 < a *s 3.   Choose yh = Jx   in  (3.3)  and  note  that   1 <

log(x/£)/log £ < 2. So by Theorem 1 we have

(J*ka*Íx   t\   d*   - f* xf(x/?)dt |   (# xw*(logx/log¿- 1)

.>■

= Z, + Z2 + 73 + Z4   respectively.

The substitution | = xx/s shows that

(3.5) /2 = 7J^ fsm*(s-l)ds.
log  * ^

On the other hand the substitution x/£2 = v shows that

(36)       r <<^_ ^Jt(V€a)^<_jE_ rw^(t;)^<<_^)

log3y Jy £ log3y J\ v log3y

while trivially

(3.7) Z4«x/log3y.

The substitution x/£2 = v also yields

(3.8) /, = -2 /•'      X-f\v)dv  =^(^2tM(l-]^Y2dv.
Jx/y2 Vl0g2(x/V)        log2X-'l V      { logxj

In (3.8) we have 0 < log t>/log x < 1/3. So from Lemma 1, Lemma 2 and (3.8), we

get

From Theorem 1 and estimates (3.3) through (3.9) we arrive at

M*(x, y) = -^—- ( 1 + ¡asm*(s - 1) ds\
(3.10) lo§xl

+0í^yl)+oí^),
\    log2 y    j UogV

when 2 < a < 3. Theorem 2 for 2 < a < 3 follows from (3.10) and (3.1).
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For x > I > 2 let 0 = log x/log £. We assume that there is <j>(0), a monotonie

increasing function of 6, such that

(3.11) M*(x,i)-
"(e) ,,**(*/¿2)\   | JÇÉÎÉ)

log2£  |        \     log2 £     /       log3 è

holds for 2 < 0 < a - 1. For instance (3.10) shows that (3.11) is valid for 2 < 0 «s¡ 3.

Therefore if a > 3, we have

(3.12)

ftMJx   t\JL      ft xm*(log x/log j- I) d$
Jv   M U'Nlog«     A £log3£

<
¿log3£

Similar to (3.5) the substitution £ = x1/s shows that

/3 13n rfc x/rz*(log x/log £ - l)rf£ _ _jc

•^ | log31 log2x ¿3

On the other hand we trivially have

fr xR(x/e)dj\ ^ ft xj>($ - 1) dj
3 , I log4 a

j sm*(s — 1) ds.

rfc x<¡>(6- i) de ^x^(a-i)<
£ log4 £ log3 y

(3.14) £

Similar to (3.8) and (3.6) the substitution x/£3 = u shows that

(3.15) ffc *fl(*/£3) ¿£ „„     x       /-x/v3 Zt(«) ¿fas: f:■y £log3| log3 y J\ « log3 y

Now choose y* = vx~. Then from (3.1), (3.3), (3.10) and estimates (3.12) through

(3.15), we arrive at

(3.16) M*(x,y)-f^>logzy

cxax       x<j>(a — 1)

log3 y log3 y

We now choose £ such that it satisfies (3.11) for 2 *s 9 < 3 and

(3.17) c,a + (/>(a - 1) < <f)(a).

Clearly

(3.18) <*>(«) = c2a2

satisfies our requirements. Finally, since a > 3, the term 0(xZ?(x/y2)/log2 y) can

be added to (3.16) without any effect. Theorem 2 follows from (3.10), (3.16), (3.17)

and (3.18).

Corollary 2. Let a remain fixed as x -» oo. Then

M*(x, y)
(3.19)

for every a > 1.

lim v""'-// = m*(a)

x^ac     x/log    y

Proof. If 1 < a < 2, then (3.19) follows from (2.15) and (3.1). If a > 2, then

(3.19) follows from Theorem 2 and (1.13). That proves Corollary 2.
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(4.2) w(a)=- + - fmaX(2'a)w(t-l)dt,    for«>l.
a      a J",

4. Some properties of m*(a). Here we establish various properties of m*(a) that

will be useful in later sections. We begin with

Theorem 3. (i) For all a > 1, a =é 2, m*(a) — dw(a)/da.

(ii) For a > 1, m*(a) < p(a).

Proof. From (3.1) we get

(4.1) am*(a)'= m*(a — I) — 2m*(a),    for a > 3.

It is well known (see [4]) that w(a) satisfies

1    ,    1     rmax(2,a)

Therefore w(a) satisfies

(4.3) aw' = w(a — 1) — w(a),    for a > 2.

If h(a) = w'(a), then (4.3) shows that

(4.4) ah'(a)=h(a- l)-2h(a),    for a > 3.

It is easy to check from (4.2) and (3.1) that h(a) = m*(a) for 1 < a < 3, a ¥= 2. So

Theorem 3(i) follows from (4.1) and (4.4), because the functions h(a) and m*(a) are

continuous for a > 3.

Next, from (4.3) and Theorem 3(i) we get

(4.5) am*(a) = -fa   m*(t)dt,    for a > 3.
Ja-\

On the other hand it is well known (see [6]) that

(4.6) ap(a)=f   p(t)dt,

and that p(a) > 0 for all a > 1. So define

m*(a) |
(4.7) Z?=   sup

1<«<3       P(«)

Clearly B < oo. Choose B* > B and let

(4.8) «o = inf{«| lm*}U^>B*\.
[    '     P(") J

Then (4.7) shows that a0 > 3. So by (4.5) and (4.6) we have

(4.9) \m*(a0)\<- i"0   \m*(t)\dt<— f°    p(t) dt = B*p(a0).
a0  ■'«o-l a0   Ja0 -1

On the other hand from (4.8) and the continuity of m*(u)/p(u) for u > 3, we get

(4.10) \m*(a0)\>B*p(a0).

Estimates (4.9) and (4.10) are contradictory unless

r
(4-11) \u\ |w7")'>j4 = 0

i     p(u)
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for every B* > B. Therefore from (4.11) and (4.7) we deduce that

| m*(a) \< Bp(a)    for all a > 1,

and that proves Theorem 3(h).

Corollary 3. As a -» oo w have

m*(a) « exp{-alog a — aloglog a + O(a)}.

Proof. It is well known (see [4] and [5]) that as a -> oo

(4.12) w'(a) « exp{-aloga — aloglog a + 0(a)]

and

(4.13) p(a) = exp(-aloga — alogloga + O(a)}.

The corlloary follows from Theorem 3(i) and (4.12) or from Theorem 3(ii) and

(4.13).
Our next result is

Theorem 4. The function m*(a) changes sign infinitely often. In fact every interval

of length 2 contained in [2, oo) has a point where m*(a) changes sign.

To prove Theorem 4 we need

Lemma 4. The function m*(a) has infinitely many zeros. Every open interval of

length 1 contained in [2, oo) contains a zero of m*(a).

Proof. From (4.3) and Theorem 3(i) we have

(4.14) am*(a) = aw'(a) = w(a — I) — w(a).

It follows easily from (4.14), that m*(a) cannot be either positive or negative for all

large a, because otherwise the left and right sides of (4.14) will be of opposite sign.

Therefore m*(a) = 0 for infinitely many a.

If a, > 3 is a zero of m*(a), then from (4.14) and the mean value theorem we see

that m*(a2) — 0 for some a2 satisfying

(4.15) a,-l<a2<a1.

Lemma 4 follows from (4.15).

Proof of Theorem 4. Let a, > 3 be a zero of m*(a). By (4.5) we have

(4.16) C   m*(s)ds = 0.
ax — 1

It follows easily from (3.1) that m*(a) cannot vanish identically in an interval of

length 1 contained in (1, oo). Therefore from (4.16) we deduce that there is a point a2

where m*(a) changes sign and

(4.17) a, — 1 < a2 < a,.

Theorem 4 follows from Lemma 4 and (4.17).

5. Construction of A*(x, y). From Corollary 3 we see that Theorem 2 becomes

inefficient for large values of a. We will now construct a function A*(x, y) that

approximates M*(x, y) for much longer ranges of a. Our method, though similar, is
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more natural compared to de Bruijn's procedure of constructing an approximation

to ^(x, y) (see [5]).

We want a function A*(x, y) that satisfies a recurrence similar to (3.3). More

precisely we want

(5.1) A*(x, y) = A*(x, /) +/^*(f ^)róf¿ + £(*> y> *),

where E(x, y, h) is small. We can then show from (3.3) and (5.1) by induction on

[a], that A*(x, y) — M*(x, y) is small for long ranges of a.

We begin by considering a function A*(x, y) given by

(5-2) A*(x, y) = £l r J logx-logt \
log y •/,      \       log y       /

where w(u) is defined to be zero for u < 1 and r(t) to be chosen later.

From (5.1) and (5.2) we get

v( u\ - f°°      x       / log x - log / \ x        / log x - log t
E(x, y,h) = -.-w\-;--w\ —--——

(53) ^i   [ log r    \       log y       /      log y"    \      log y"

_v [y- w((log(x/£) - logz)/log£)

L ílocr^í *
rfr(0.

From (4.2) it follows by a simple change of variables that

log x — log t \     1

(5.4) W\       logy      >logy

= ^   /lOg^-lQg^ \        1        +   ry>J\Qg(x/t)-]Qgt \       de

\      logy*      /logy'1     Jy     \ log£ /£log2£

holds for 1 =£ t ^ x/yh. So the integrand in (5.3) vanishes for t < x/yh. Thus if the

integrator r(t) is chosen properly, then E(x, y, h) can be kept small.

From (2.9) and (2.10) we know that for fx < y < x

M*(x,y) -2, «xÄ(y).

We combine (2.11) and (4.2) to recognize that

(5.5) xf~ilogx-logt\M(tldt
1      log y ',      \       log y       /      f 2

We therefore choose r(t) = f(t) and get

(5.6) dr(t) = M(t)dt/t2.

With this choice of r(z) we have

Theorem 5. Let 2 *£ y *£ yh < x. 77z<?«

£(x, y, A) « x/cix/y^Oogy)"1.
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E(x, y, h) «^- H    lM{t)2ldt « xR(x/yh)(logy)-\
10g V-   Jx/yh t

Proof. From (4.12) and (4.2) we deduce that w(a) = 0(1). So from (5.3), (5.4),

(5.6), (1.13) and (1.14), we get

x      f<*>    \M(t)\dt

x/y"

and that proves Theorem 5.

Theorem 5 is useful when y* — o(x). In fact we will use it only when yh «£ 4x .

6. On the difference M*(x, y) — A*(x, y). The aim of this section is to prove

Theorem 6. For 2 *£ y < x we have

M*(x, y) - A*(x, y) « xa2R(y).

Proof. Let

(6.1) E*(x,y)=M*(x,y)-A*(x,y).

We begin by observing that (2.9) and (5.5) imply

(6.2) E*(x,y)<c3xR(y)

when \[x < y < x. So (6.2) shows that Theorem 6 is true when 1 < a < 2.

Next from (6.1), Theorem 5, (5.1) and (3.3), we deduce that

de
(6.3) E*(x, y) - E*(x, yh) - fyhE*U,è) c4xaR(y),

£'v/log£

when 2 «s y =£ yh *s {x . We will deduce Theorem 6 from (6.3) by induction on [a].

Assume that 4x < y < Jx . Choose yh = /xf. For these values of x, y and h, we see

that £ in (6.3) satisfies

(6.4) M *£ £ =£ x.

So from (6.2), (6.3) and (6.4) we get

(6.5) | E*(x, y) \< c3xR(y) + f ^^ + c4xaR(y) < c5xaR(y),

for 2 < a < 3.

Let c6 = 2c5. We will show by induction on k that there is an increasing sequence

üj, such that if

then

(6.6) \E*(x,y)\^c6ajXR(y).

To begin the induction we observe that (6.5) and (6.2) show that (6.6) is true for

y'=2 and j — 3. Now let k > 4, and let (6.6) be true up to k — 1. In view of the

induction hypothesis it suffices to show (6.6) for

(6.7) x'/^y^x1/«*-1'.

xl"<y<x,
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With x, y as in (6.7), we choose h = k/(k - 1) so that xx/(k  X) =£ yh < vx~. Also, for

these values of x, y and h we see that £ in (6.3) satisfies

(!)

i/(*-D x
(-(

So by induction we have

\E*(x,y)\<c6xak_xR(y)

We will choose ak such that

y

c6xR(y)[ak^(i +-¡^-[) + k

(6.9) fl*-'(fc- ¡)+/c<^-

Clearly a^ = 2/c2 satisfies (6.9).

Finally, for y > 2 there exists a unique /c such that (6.7) is true. Also k « a.

Theorem 6 follows from (6.9) and (6.6) by induction on [a].

Remarks. From (5.2) we can get a series expansion for A*(x, y) by repeated use

of integration by parts. The procedure is similar to (2.12) and (2.13). With r(t) given

by (5.6) we get the representation

(6.10)    ^,y)=Äi+-2L_ rv(l0gf-l0*M¿^.
log y      log2 y J\       \       log v-       /    t

The expansion can be continued, but at each step in the integration by parts the

proper anti-derivative has to be chosen to get a term of smaller order of magnitude

that its predecessor. This requires a little computation like the one carried out in the

proof of Lemma 2. The series expansion is finite, but of arbitrary length. Theorem 6

then shows that we have a similar representation for M*(x, y) by adding the term

0(xa2R(y)) to the expansion for A*(x, y). This is useful when y is large, for then

R(y) will not make a significant contribution.

7. Partial solution to a problem of Erdös. Motivated by the classical result (1.14), P.

Erdös raised the following problem: Determine the range of values of y with respect

to x, such that

(7.1) M*(x,y) = o(*(x, y)),    asx^oo.

In fact he conjectured that (7.1) holds uniformly in y, for y > 2. We give a partial

solution to this problem by proving the following result:

Theorem 7. Let e > 0 be arbitrarily small. Then

\M*(x,y)
sup

exp{(log*)V8+«Kv^       *(x,y) '***'
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Proof. From (6.10), Theorem 6, and Theorem 3(h), we get

*.<,.,,«iiZWi + _jl_ i»,IJsu-Jsii)laid«
(7.2) log^        log2 y A    I       logy       ft

+ xlog2 xR(y),

for 2 < y < x.

It is clear from (1.5) that p is a decreasing function. So Lemma 1 shows that if

y < /x, then

_2L_/-Mto8*-to8/)JA0lA = -4-(f^+fM
log2y-'i    V       logJ'       /      t log2 y l •'i        Jft)

„xp(a- 1/2)   |  xZ?(y/y)

log2 y log2 y

In [6] de Bruijn proved that

1 Í r( es — I     ]
(7.4) p(a) ~-== exp  -a£ + y + /   -ds\    asa->oo,

/27ra I yo       * J

where £ is the positive solution of

(7.5) e« - 1 = «£.

It follows from (7.4) and (7.5) that

(7.6) p(a — 5) « p(a)/aloga .

Therefore from (7.2), (7.3), (7.6), (1.13), Lemma 1 and (4.13), we deduce that

í  \ I 1
xp(a)4aloga      „ ¡. ,5/8+Ei /—

(7.7) |M*(x,y)|«t       ¿\ forexp{(logx)5/8+E}<y^-

On the other hand, from either (7.2), Lemma 1 and (4.13), or from Theorem 1 and

Lemma 1, we see that

x
(7.8) sup    |M*(x,y)|«r—-.

Jx*íy*¿x ""S*

From de Bruijn's main result for ^(x, y) (see [5], equation (1.3)), (4.13) and

(1.13), it follows after a little computation that as x -* 00, we have

(7.9) <f(x, y) ~ xp(a)    for exp{(logx)5/8+£} <y < x.

Theorem 7 follows from (7.7), (7.8) and (7.9), because for x, y satisfying the

conditions of the theorem, we have logy > (log x)5/8 and a < (log x)3/8.

Remarks. If we assume the Riemann Hypothesis, then we can prove by a minor

modification of the above argument that

,,,. \M*(x,y)\  _    1
(7.10) sup

.^ ..      *(x, y)        logx
exp{c7v/1ogx   loglog x}*;^«* v       J ' "
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It may be felt that it is perhaps more appropriate to compare M*(x, y) with

(7.11) **(*,/) = 2 f2(«).
Kr<x, P(ny<y

Methods similar to the proof of Theorem 6 show that

**(x, y)~6*(x,y)/772,

for x, y satisfying the conditions of Theorem 7. So it does not matter at this stage

whether we have ¥ or ¥*.

Based on Theorem 7 and (7.10) we make the following stronger version of Erdös'

conjecture:

\M*(x,y)\         1
sup-~—+P- <-.-.

2*r*x   *(*,>-)      l°êx

The problem of determining the size of the ratio

r(x, y) = M(x, y)/$(x, y)

is easier. The function r(x, y) -» 0 as x -» oo if and only if a -» oo (see [2] for

details).

8. Positive and negative values of M*(x, y). For large x and y, M*(x, y) changes

sign quite often. More precisely we have

Theorem 8. (i) Let a0 > 2. Then there exists x0(a0), such that, for all x > x0(a0),

M*(x, y) changes sign at least once as y ranges over the interval (x1//(a°+2), x1/a°).

(ii) Let N(x) denote the frequency with which M*(x, y) changes sign for y E (Jx, x).

Then N(x) -» oo as x '-* oo.

Proof. If a0 < a < a0 + 2, then by Theorem 2 we have

(»■i) ^*.>>-*rH+«&irHlog2 y °\logJy/

Theorem 8(i) follows from (8.1) and Theorem 4.

To prove Theorem 8(h) it suffices to prove, in view of Theorem 1, that f(ß)

changes sign infinitely often as ß -» oo.

Let s = a + it and a > 1. Then

1 V «"ix / n= 1 "

p(n)   f°° dx

x7
n*íx I n= 1

(8.2) , oo /    \ i
_      1       y   ¡¿("I _ 1

where Ç(s) is the Riemann Zeta function. Similarly

(8.3) r^idx=i    fora>1.
■'i     xi+l sÇ(s)

Therefore by (2.2), (8.2) and (8.3), we have

for a > 1.(8.4) r as-
^i X

00 f(x)dx _ 1

, xs í(í-l)f(j)'
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The right-hand side of (8.4) remains analytic for | j — 1 |< 1. So if f(x) is of the

same sign for all large x, then by Landau's theorem (see Apóstol [3, pp. 237-248])

the left side, and hence the right side, are analytic for a > 0. This contradicts the fact

that f(s) has zeros on the line a = {. That proves Theorem 8(h).

The function M(x, y) behaves differently in this respect. I showed in [2] that for

each e > 0, there is x,(e), such that

M(x, y)<0,   ifexp{(logx)5/8+E} <y < x - x7/12+E.

From (8.3) one can deduce by the use of Landau's theorem, the classical result

that M(x) changes sign infinitely often as x -» oo. Though motivated by this result,

Theorem 8 is very much different because it describes the frequency of sign changes

of M*(x, y) when x is large and fixed, and y alone varies in an interval that depends

on x.

9. The sum 22^n^xp(n)g(P(n)). In an earlier paper [1] I observed that any

arithmetic function g, satisfies

(9.1) 2    »(d)g(p(d)) = -g(P(n)),
d\n,d>\

and discussed some applications of (9.1). One of the applications involved the result

= o(x),(9.2) A(x) = sup 2    Á^)g(p(n))
l^n^x

and I discuss this very briefly now since it is relevant for our purpose.

Let ((x)) = x — [x]. If g is a bounded function, then from (9.2) and partial

summation we get

(9.3) 2    p(n)g(p(n))((x/n))=o(x).

But then by (9.1) we have

2  g(/K«)M«)líl=   2     2  Ád)g(P(d))
n

2«nSx  d\n,d>\2<n<x

(9.4)
2    g(P(n)).

From (9.3) and (9.4) we deduce that if g is bounded, then

(9.5) lin,  I    2   ^(»» = c-i   »W/v-»-^
*^°°   X   2<»«x n = 2

The equivalence in (9.5) generalizes the well-known result

oo /     \

2 ^ = o
n— 1

and has an interesting application to the Prime Number Theorem for Arithmetic

Progressions. For details see [1].
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Later, in [2], I employed asymptotic estimates for M(x, y) and proved that

A(x) ~ 2x/logx, as x -> oo. Our aim now is to use asymptotic estimates for

M*(x, y) along with the dual of (9.1), given by

(9-6) 2    p(d)g(P(d)) = -g(p(n))    forn>l,
d\n,d>\

to estimate

(9.7) 2    ^(n)g(P(n))
2>ïn«ïx

B(x) = sup

so that we can obtain an analogue of (9.5). So we now derive

Theorem 9. For x > 2 we have B(x) « x/log x.

Proof. We first recognize that

2    p(n)g(P(n))=  2 2 v(n)g(P(n)),
2<nSi psix   2*in*ix,P(n)=p

and on writing n = m ■ p this is seen to be

(9-8) =2g(/>) 2 p(n) = -lg(p)M*l^,p).
/>«x 2<n*ix,P(n)=p

From (9.7) and (9.8) we see that

p*x

(9.9)

Next we write

2
(9.10)    2«***

B(x)=    2
2«p<Sx

M
'(!•>)

M;
&>) 2       + 2 +2

/>«exp{(logx)3/4}        expfOogx)3-74)^«,/?        Jx<p<Hx

= Sx + S2 + S3 respectively.

From (4.13) and (7.9) we see that

(9.11)
/>«exp{(logx)3/4}

Next from Theorem 7 we get

2 =*(x,exp{(logx)3/4})«3/41 \  j¡.-_   X

logx '

(9.12)        ,S2«
1

*(î->)
*{x,Jx~) x

log X ,.. _    \ p log x log X '
6       exp{(logx)3/4}<p«,&      "F 6 6

To estimate S3 we use the well-known result (see Halberstam-Richert [8, pp.

105-110])

(9.13) ir(x) - ir(x — t) <&-.-    forl=£i<x.
v   t        v 'logt
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More precisely from (9.13), (1.13) and (1.14), we get

s3«   2   -r(-)«t^+    2    -*(-)
¿£*P    \pl     log^c     xl/i%^xP    \pl

(9-14) <<lotx+      ^ 2 Hp)

x y       xR(k)        x

Kfc<Jt '

Theorem 9 follows from estimates (9.9) through (9.14).

From Theorem 9 and (9.7) we obtain by reasoning similar to (9.3) and (9.4), that if

g is a bounded function, then

(9.15) Bm i    2    *(/>(»)) = C

if and only if

(9 16) I   ^(w)g(f(w)) = _c>

n = 2

There is however an important difference between this equivalence and (9.5). If g is

bounded, then in this case there is always a c' that satisfies (9.15) and so (9.16) is

always convergent. In fact the value of c' is given by the convergent infinite series

(9.17) 2 lLd n (l-1)=C.

To realize this we write

(9.18) 2    g(p(n))=      2       +       2       =S4 + S5.
2*n«x />(n)<logx       p(n)>logx

By the Eratosthenes-Legendre Sieve and Mertens' Theorem (see [8, pp. 30-36]), we

have

s4=   2   sip)       2       1
j?<log x 1 <n^jc,^(n)=/ï

(9.19)

=   2  g(p)       2        i
/7<log jc \^n^x/p,p(n)^p

2 g(F)if n(i-i) + 0(2«**)
/>«logx iy q<P

\ log log X /log log X /

where c' is given by (9.17). On the other hand the Selberg sieve method [8, p. 105]

shows trivially that

I-!«.!* 9<logxV ?/        lOg lOg X
p(n)>logx

and so (9.15) follows from (9.18), (9.19) and (9.20).
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In other words the infinite series in (9.16) is always convergent, and (9.17) shows

that the sum can be calculated if we rearrange by collecting terms with a common

largest prime factor and arrange these terms lexicographically. That is

S   p(n)g(P(n)) _  »   p(n)g(P(n))

n = 2 " n=2

= 1s(p)   2   tísi—2^i ÜÍ1--M = -•,
p n = 2 p        P       q<P ^ P '

P(n)=p

where the dash indicates summation over square free numbers. If we collect the

terms with a common largest prime factor in (9.16), we have a genuine rearrange-

ment, because there are only a finite number of square free integers with a given

largest prime factor. On the other hand, if we collect the terms of the infinite series

in (9.5) with a common smallest prime factor, we do not have a rearrangement,

because there are infinitely many square free numbers with a given smallest prime

factor.
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