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Abstract. Considering countable locally convex inductive limits of weighted spaces

of continuous functions, if "V = { V„ )„ is a decreasing sequence of systems of weights

on a locally compact Hausdorff space X, we prove that the topology of %C( X) =

ind„^ C(Vn)0(X) can always be described by an associated system V =■ V<v of

weights on X; the continuous seminorms on °V0C( X) are characterized as weighted

supremum norms. If CV= {v„}„ is a sequence of continuous weights on X, a

condition is derived in terms of "V which is both necessary and sufficient for the

completeness (respectively, regularity) of the ( Lß)-space %C( X), and which is also

equivalent to %C( X) agreeing algebraically and topologically with the associated

weighted space CV0(X); for sequence spaces, this condition is the same as requiring

that the corresponding echelon space be quasi-normable.

A number of consequences follow. As our main application, in the case of

weighted inductive limits of holomorphic functions, we obtain, using purely func-

tional analytic methods, a considerable extension of a theorem due to B. A. Taylor

[37] which is useful in connection with analytically uniform spaces and convolution

equations.

The projective description of weighted inductive limits also serves to improve

upon existing tensor and slice product representations. Most of our work is in the

context of spaces of scalar or Banach space valued functions, but, additionally, some

results for spaces of functions with range in certain (LB)-spaces are mentioned.

Introduction. Countable locally convex inductive limits of weighted spaces of

continuous or, in particular, holomorphic functions naturally arise in great profusion

throughout such fields as linear partial differential equations and convolution

equations, distribution theory and representation of distributions as boundary values

of holomorphic functions, complex analysis in one and several variables, and

spectral theory and the holomorphic functional calculus. However, perhaps because

the structure of general locally convex inductive limits is rather intricate, functional

analytic applications have been restricted by a widespread belief that it was not

possible to describe an inductive limit topology or the corresponding continuous

seminorms in a setting which is general enough to include a substantial part of the

applications, while at the same time, and above all, being "useful" for providing

convergence results and direct estimates in terms of the seminorms. One aim of the
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present article is to demonstrate that, in the case of weighted inductive limits, it is

indeed possible (and, somewhat to our own surprise, not even too difficult) to give a

natural, sufficiently general, and useful projective description of the limit space, the

inductive limit topology, and the continuous seminorms.

In a setting which includes some of the more interesting cases, the fundamental

problem to which we shall address ourselves in the sequel can be described roughly

as follows: If <V= {F„}„eN is a decreasing sequence of systems Vn of weights on a

locally compact Hausdorff space X, E is a locally convex space, and A(X, E) is a

linear subspace of the space C(X, E) of all continuous E-valued functions on X,

then is it possible to characterize the inductive limit topology of "i0A(X, E) —

ind„^ A(Vn)0(X, E) by a system of weighted seminorms? Or, in particular, when can

C\A(X, E) he identified algebraically and topologically with its associated weighted

space AV0(X, E) (cf. [7])? Of course, our main interest hes in those cases where

A(X, E) — C(X, E) or when A(X, E) is the space, say, of (E-valued) holomorphic

functions on an open subset X of CN (N > I). Also, the case for scalar functions

(i.e., when E — C) clearly deserves the bulk of our attention.

In §0, we make the notation precise, recall some preliminary facts (mainly from

[7]), and discuss the basic problem in more detail. The general characterization

results are contained in §1. First of all, we prove (Theorem 1.3) that, for a Banach

space E, CV0(X, E) always induces the inductive limit topology on its dense

subspace \C(X, E). It follows (Theorem 1.6) that %A(X) = AV0(X) holds

whenever A(X) is a semi-Montel space under the compact-open topology and

T= {u„}„eN is a decreasing sequence of strictly positive continuous weights satisfy-

ing the condition

(V) for each zi£N, there exists m > n such that vm/vn vanishes at infinity.

Condition (V) is satisfied in virtually all applications, and Theorem 1.6, among

other things, covers the case of holomorphic functions on an arbitrary open subset X

of C^, extending a theorem due to B. A. Taylor [37] in several respects.

Likewise in §1, we show, for instance, that the maximal system V of associated

weights can be reduced to a smaller system of weights with a more manageable form,

and we also deduce a number of refinements of the general theorems in particular

cases. Finally, we note (Example 1.12) that a result analogous to Theorem 1.3, even

in very restricted settings, does not hold for weighted spaces of type CV(X); indeed,

while 'YC(X) = CV(X) is always valid algebraically, and the two spaces even have

the same bounded subsets, the inductive limit topology can be strictly stronger than

the weighted topology of the associated space CV(X).

In §2, we present a detailed study of the weighted (ZJ?)-spaces ^^(X); i.e., the

scalar case for a decreasing sequence T= {u„}„eN of strictly positive continuous

weights on X. This includes a complete classification of several interesting properties

in terms of the sequence T. In particular, the algebraic equality \C(X) = CV0(X)

is shown to hold (and hence the two spaces are topologically isomorphic) if, and

only if, Tis regularly decreasing, a condition which, by the way, coincides with the

property (wV) introduced in the appendix of [7], Moreover, °V being regularly

decreasing is equivalent to %C(A") being (a-) regular, or boundedly retractive, or
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(sequentially) complete, respectively. Such a classification was apparently not even

known in the case of sequence spaces (i.e., when X = N) where %C(N) is an

inductive limit of weighted c0-spaces.

As one illustration of the utility of our theorems, we deduce consequences for

e-tensor products in §3, and thereby improve upon previous results from [7]. Among

other things, we obtain a representation

%C(X,E) = %C(X)®eE

for spaces of continuous vector valued functions (Theorem 3.1 and Corollary 3.3)

and a slice product theorem

(% ® %)0c(xt x X2) = (%)0C(XX) ®e(%)0C(X2)

for continuous functions of several variables (Theorem 3.7) which had seemed

inaccessible in [7] (without the projective characterization of weighted inductive

limits). Again, some consequences for holomorphic functions (Corollaries 3.2 and

3.8) are derived.

§4 is mainly devoted to a discussion of related work. We describe the relation

between our Theorem 1.6 and Taylor's theorem [37] in some detail, as well as give

reasons for the importance of such results in the theory of analytically uniform

spaces (Ehrenpreis [11], Berenstein-Dostal [2]). In fact, our Theorem 1.6 has recently

been applied by S. Hansen [18], [19] in his approach to the Fundamental Principle of

Ehrenpreis, and by Grudzinski [17] in his study of convolution equations. We also

point out that the spaces 0(5) in Ferrier's book [12] are covered by our Theorem 1.6

whereby the inductive limit topology of these spaces can be described in a natural

way.

In the "concluding remarks" of §5, we sketch a (slightly) different approach which

allows us to replace the local compactness hypothesis for X in Theorem 1.6 by the

condition that X he completely regular and hemi-compact, thereby yielding conse-

quences, say, for holomorphic functions on (DFM)-spaces. Furthermore, for (LB)-

spaces E of various types, we briefly describe some results on the (strong) regularity

of "ÍC(X, E) and %C(X, E) which arise in connection with the associated spaces

CV(X, E) and CV0(X, E), respectively.

Historically speaking, a systematic investigation of weighted inductive limits was

initiated in [7], and it is our purpose here to continue that work, although in a

somewhat different spirit and from another point of view. A "lower estimate" or a

"weighted hull" for the weighted inductive limit %C(JiC*, E) and its topology, an

associated weighted space CV0(X, E) in which the limit is continuously embedded,

was constructed in [7], but it was used there only as a tool, while the fundamental

problem of the exact relationship between these two spaces was only touched upon

and had remained open. An important stimulus to undertaking our research was the

theorem due to B. A. Taylor [37] which describes the topology of certain nuclear

( ZJ? )-spaces of entire functions. Though very useful for applications in the theory of

analytically uniform spaces in the sense of Ehrenpreis [11], the result appeared

somewhat isolated since Taylor's method of proof made extensive use of Hörmander's

results and techniques in several complex variables. But, following an idea suggested
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by [7], we were able to construct a purely functional analytic proof of Taylor's

theorem which has the advantage of being more general. (To do this, however, we

make a "detour" through weighted spaces of continuous functions, where standard

methods like partitions of unity are available, and then recover the result for

holomorphic functions by means of an open mapping lemma due to Baernstein [1].)

An analysis of the situation indicated that a general method was hidden behind our

proof and, in fact, the previously constructed "weighted hull" CV0(X, E) could give

precise information about the inductive limit space rV0C(A', E) and its topology.

From this, the present projective characterization of weighted inductive hmits has

evolved.
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0. Preliminaries; statement of the problem. The notation, definitions, and conven-

tions introduced below will be used throughout the sequel (sometimes without

further reference).

0.1. Weighted spaces. Let X denote a completely regular Hausdorff space. A

nonnegative real valued function on X which is upper semicontinuous (u.s.c.) will be

called a weight (on X). If U and V are two sets of weights on X, we write U < V

whenever, corresponding to each u E U, there exist v E V and À > 0 such that

u < Xv (pointwise on X). If, given any x E X, there is some v E V for which

v(x) > 0, we will write V > 0. A set V of weights on X is said to be directed upward

provided that, for every pair vx, v2 E V and each X > 0, it is possible to find v E V

so that Xu, ^ v and \t>2 < v. Since there will be no loss of generality, we shall

hereafter assume that sets of weights are directed upward. If a set V of weights on X

also satisfies V > 0, then V will be referred to as a system of weights (or a Nachbin

family) on X. The system % = %(X) = {XlK; X > 0, K E X, K compact), where 1^

denotes the characteristic function of the set K, will be helpful to us in what follows.

We will let E denote a (Hausdorff) locally convex (I.e.) topological vector space

which, because we wish to treat also the case of holomorphic functions, is assumed

to be complex. The set of all continuous seminorms on E will be denoted by cs(E),

while we will write C(X, E) to indicate the collection of all continuous functions

mapping X into E. We next pause briefly to recall that a real (or complex) valued

function g defined on X is said to vanish at infinity if, corresponding to each e > 0,

there exists a compact subset K of X such that x E X\K implies | g(x) |< e. Now,

taking a system V of weights on X and setting

qvJf) = sup{v(x)p(f(x)); x E X)
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where v E V,p E cs(E), and/ G C(X, E), we put

CV(X,E) = {/£ C(X,E);qvp(f)< oo for all t? E F and all/> G cs(E)}

and

CV0(X, E) = {/ E C(X, E); v(p ° /) vanishes at infinity

for all v E Fand all/) Ecs(E)].

If v E V and p E cs(E), then qv p can be regarded as a seminorm on either of the

complex vector spaces CV0(X, E) or CV(X, E); we assume that both of these spaces

are equipped with the Hausdorff locally convex topology induced by {qv ; v E V,

p E cs(E)]. In particular, the space C%(X, E) has the topology of uniform

convergence on the compact subsets of X, which will hereafter be denoted by co.

More generally, if F is a system of weights on X and A(X, E) is some prede-

termined linear subspace of C(X, E), we put AV(X, E) = A(X, E) n CV(X, E)

and AV0(X, E) = A(X, E) n CV0(X, E). Then, taking A(X, E) = C(X, E), for

instance, we have AV(X, E) = CV(X, E) and AV0(X,E) = CV0(X, E). Or, if X

happens to be either an open subset of CN, N > 1, or any other locally convex space,

a complex analytic manifold, or a complex space, we can take A(X, E) = H( X, E),

the space of all holomorphic (i.e., Gâteaux-analytic and continuous) functions

mapping X into E. While this may be the most important case in view of the

applications we have in mind, other examples include the harmonic functions or

solutions of certain homogeneous linear hypoelliptic partial differential equations (if

E = C), as well as the sheaves of " f-morphic" functions considered in [8],

In the special case that V = {Xv; X > 0} for a single weight v on X, we will write

Av(X, E) and Av0(X, E) instead of AV(X, E) and AV0(X, E), respectively. (Of

course, since we are requiring that V > 0, this requires that v(x) > 0 for all x G X.)

In case E — C, we will omit E from our notation and write AV(X), A V0(X), Av(X),

and Av0( X); if v is a weight on X, we then put qv = qv where p(z) =\z\ , z E C

Similarly, if E = (E, || • ||) is a normed space, we will simply write qv instead of

ip.ll-II-
0.2. Inductive limits of weighted spaces and the associated weighted hull. For each

«EN, let  Vn denote a system of weights on X, and assume that  Vn+X =£ Vn,

n — 1,2,_Denoting the sequence {F„}„eN by T, we define two associated systems

of weights on X:

(i) If vn E Vn and an > 0, n — 1,2,..., then putting v(x) = inf{a„u„(x), n E N},

x G X, clearly defines a weight on X. The set Fy consisting of all such pointwise

infima is, in turn, a system of weights on X.

(ii) All those weights on X which are pointwise majorized by some member of V^

also form a system which we denote by Fy and term the maximal system associated

with £V.

Obviously, Fy< Fy and Fy< Fy, while Fy contains every system F of weights

on X with the property that V < Vn for every n E N. So, for instance, if we require

%(X) *£ Vn for each n E N, then %(X) E Fy. Attention will sometimes be re-

stricted to the set Fy consisting of all continuous elements in Fy. If Fy > 0, then it is

a system of weights on X.
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In the special case that Vn — {Xvn; X > 0}, n G N, we will also denote the

sequence {u„}„eN by Tfor simplicity; observe that v G Fy if, and only if, v is a

weight on X and v/v„ is bounded for n = 1,2,_If the sequence T= {V„]„or {v„)n

is clear from context, we will omit Tfrom our notation and simply write V, V, and

V

Proposition. Let X denote a locally compact and a-compact space and CV= {vn }n e N

a decreasing sequence of strictly positive continuous weights vn on X. Then the set V is

equivalent to V; i.e., not only is V E V, but also V < V (whence, clearly, AV(X, E) =

AV(X,E) and AV0(X, E) = A F0( X, E) algebraically and topologically).

Proof. It suffices to show that an arbitrary v — inf{a„t>„; n E N} G V is

dominated pointwise by a continuous weight v E V. But, fixing a sequence (Km)meN

of compact subsets of X with Km E Km+X, m = 1,2,..., and X — UmeNATm, we

can inductively choose positive numbers /?„ 3= an, n— 1,2,..., such that ßx — ax

and

/8„(inf{t;n(x); x G Kn}) > sup^u/x); x G K„_x,j =l,...,n-l),

n = 2,3,....

Then v — inf{/}„»;„; n E N) G V and obviously v < v. To see that v is continuous

(and hence belongs to V), fix m G N and note that, for n — m + 1, m + 2,...,

mf{ßnvn(x); xEKm)> /?„inf{t;„(x); x G Kn)

sup{ßjVj(x);xEKn_x,j= l,...,n- l)

sup{ßjvj(x);xEKm,j= l,...,n- l};

for eachy G Km, therefore,

ßnvn(y)>inf{ßnv„(x);xEKm}

> sup{^(x); x G Km,j = \,...,n-\)> ßmvm(y).

Thus tJ = inf{)3nt)n; n — l,...,m) pointwise on Km, and, since all the weights v„ are

continuous, ü is continuous on Km. Because m E N was arbitrary, this concludes the

proof.    D

For a I.e. space E, a sequence T= {Vn]nexs of systems of weights on X with

V„+x < Vn, n = 1,2,..., and a subspace A(X, E) of C(X, E), we consider the

following (weighted) I.e. inductive limits:

CVA(X, E) = indAVn(X, E), respectively, %A(X, E) - ind^(F„)0(A-, E);
n— n->

i.e., we take the (increasing) union of all spaces AVn(X, E), respectively,

A(Vn)0(X, E), and endow it with the finest (here always Hausdorff) I.e. topology

which makes all the injections AVn(X, E) -* °VA(X, E), respectively, A(Vn)0(X, E)

~* %¡A(X, E), continuous. It is easy to see that %i(X, E) can be continuously

injected into AV(X, E), as can CV0A(X, E) into AV0(X, E). The investigation set

forth in this article centers around the further relationships between these two pairs

of spaces.

>

>
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Let us now pause to observe that, according to our conventions, choosing

A(X, £) = C(X, E) defines "(C(X, E) and %C(X, E), while °ÏH(X, E) and

%H(X, E) arise by putting A(X, E) = H(X, E). Also, °VA(X) and %A(X) stand

for "iA(X, C) and %A(X, C), respectively.

Assume next that {£„, i„m]„ meN is an injective system of I.e. spaces with the I.e.

inductive limit E — ind„_ En being a Hausdorff space. We will also consider

"diagonal" inductive limits of the form

mA(X,E) = indAVn(X,En)   and   6Ù%A(X, E) = indA(Vn)0(X, En)

(cf. [7]).

0.3. Strong regularity conditions for I.e. inductive limits. Let us recall some notation

introduced in [6], If the I.e. space E is represented as the I.e. inductive limit ind„_ En

of an increasing sequence of I.e. spaces EnE E (each endowed with a topology

which is stronger than the one induced by E), the inductive system (Z%,)„eN (or its

limit space E) is called

(i) regular (respectively, compactly regular) if, for every bounded (respectively,

compact) subset B of E, there exists n G N such that B is a bounded (respectively,

compact) subset of En;

(ii) boundedly retractive if, for every bounded subset B of E, there exists n E N

such that B is bounded in En and the topologies of E and En coincide on B;

(iii) strongly boundedly retractive if E is regular and, for every n EN, there exists

m > n such that the topologies of E and Em coincide on each bounded subset B of

En.

It is clear that

strongly boundedly retractive => boundedly retractive =* compactly regular,

and one can also show (under our countability assumption) that

compactly regular => regular => Hausdorff.

Boundedly retractive inductive limits preserve quasi-completeness. On the other

hand, Neus [25] proved that a compactly regular inductive limit E — ind„^ En of

normed spaces En is already boundedly retractive whence clearly also strongly

boundedly retractive. It then follows that a compactly regular inductive limit of a

sequence of Banach spaces is a quasi-complete (DF)-space and hence complete. In

particular, every countable strict inductive limit E — ind„^ En where En is closed in

En+X for n = 1,2,..., and each Silva space (i.e., countable injective compact I.e.

inductive limit of Banach spaces) is strongly boundedly retractive.

Finally, using a theorem of Grothendieck on countable I.e. inductive limits of

(DF)-spaces (cf. [23, I, §29, 5.(4)]), if the I.e. space E = ind„^ En is an inductive

limit of complete (ZXF )-spaces En, then the second requirement in the definition of

the strong boundedly retractive property (i.e., for every n E N, there exists m^> n

such that the topologies of E and Em coincide on each bounded subset B of E„)

already suffices to guarantee regularity. (This is a remark due to J. Mujica.)

0.4. Condition (V) and its consequences. At this point, we would like to recall some

results from [7] which will be needed later.



114 K. D. BIERSTEDT, REINHOLD MEISE AND W. H. SUMMERS

The following is clearly a sufficient condition (in terms of X and "V) for
CVA(X,E) = %A(X,E):

(V) For each n E N there exists m> n such that, given an arbitrary element

vm E Vm, some vn E Vn can be found so that, for every e > 0, there exists K E X, K

compact, with vm(x) < evn(x) for all x G X\ K.

In the special case that V„ = [Xvn; X > 0], n = 1,2,..., condition (V) can be

expressed as follows:

(V) For every n E N there exists m > n so that vm/v„ vanishes at infinity.

Further, if inf{u„(x); x G K} > 0 for each compact subset K of X and each

n — 1,2,..., then, in the presence of condition (V), a weight «onl belongs to F if,

and only if, v/vn vanishes at infinity for each n EN.

Observe that a completely regular space X on which there is a decreasing sequence

CV= {u„}„eN of (strictly positive) weights with property (V) must necessarily be

a-compact, and hence countable at infinity in the locally compact case; for n G N

and m > n as in condition (V), X is the union of the compact sets

^xGA; —rT^Tf '       k-l,2,....

Thus, whenever X is locally compact and there exists a sequence C\T= {v„}„ on X

which satisfies (V), (C(X), co) is complete and metrizable whereby any semi-Montel

subspace (A(X),co) of (C(X),co), being quasi-complete, is already complete and

hence closed in (C( X), co).

We turn to other consequences of condition (V).

(a) Let us suppose that % < F„ for each n G N and that T= [Vn)n satisfies (V). If

we fix « and m as in (V), and let 5 denote an arbitrary bounded subset of

AVn(X,E), then AVm(X, E), *fA(X, E) = %A(X, E), and the compact-open

topology all induce the same topology on B.

(h) If, in addition, AV„(X, E) is a (DF)-space for each n E N, the inductive limit

"ÍA(X, E) = indn_AVn(X, E)is strongly boundedly retractive.

(c) Under the conditions of (b), let us also assume that ^ is a /cR-space and E is

complete. Then °VA(X, E) is also complete whenever A(X, E) is closed in

(C(X,E), co).

Instead of (V), a weaker condition (wV), which is recalled in §2 below, proved

sufficient for (b) and (c) (see the appendix of [7]), but (wV) does not imply

"ÍA(X, E) = C\A(X, E) or the topological part of (a), nor does it give the next

result.

(d) Let C\T= {u„}„eN denote a decreasing sequence of weights vn on X such that

inf{ü„(x); x E K] > 0 for each compact subset K of X and n = 1,2,_ If we

suppose that condition (V) holds and that (A(X),co) is a semi-Montel space, then

'YA(X) — \A(X) is a Silva (or (DFS)-) space, and hence is separable, complete,

Montel, and the strong dual of a Fréchet-Schwartz space. Moreover, in this case,

'YA(X) = %A(X) is a topological linear subspace of 'YC(X) = %C(X).

The last statement in (d) is the key to our results in the context of spaces of

holomorphic functions (cf. §4 for a discussion of applications); it allows us, in

particular, to deduce Theorem 1.6 below from a corresponding result for spaces of
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continuous functions (Theorem 1.3) in the proof of which we utilize functions with

compact support and continuous partitions of unity. Thus, even though this asser-

tion has already been established in [7, Satz 1.14], we shall here try to convey some

insight into the argument.

Our main tool is an open mapping lemma due to A. Baernstein II [1] which asserts

that a continuous linear mapping T from a semi-Montel space F into a (DF)-space

E with the property that the preimage T~X(B) of each bounded subset B in E is

bounded in F must in fact already be a topological isomorphism into E. (Baernstein

uses some duahty theory to establish his lemma; the essential point lies in an

application of Ptak's open mapping theorem to the transpose of T with respect to

the strong duals. Different proofs and some extensions have subsequently been given

by B. Ernst and W. Ruess.)

To obtain the final statement from (d) above, it is then enough to apply

Baernstein's lemma to the inclusion mapping T: ^iA(X) -» 'YC(X) while taking into

account the first part of (d) along with the fact that 'YC(X) is always a regular

inductive limit in our setting.

Moreover, this final assertion in (d) suggests the following (rather general)

Problem. Under what conditions does either <YA(X, E) or %A(X, E) become a

topological linear subspace of TC(X, E)or %C(X E), respectively?

This special case of the general "subspace problem" for inductive limits is of

particular interest for A(X, E) = H(X, E) (cf. [7]). A positive solution is given in (d)

only under restrictive conditions; in fact, we do not know whether such a result is

also true, say, for holomorphic functions with values in a Banach space, and it is not

clear whether the inductive limit topology of <Y0A(X) is in general strictly stronger

than the topology induced by 'Y^X).

In order to clarify the role of condition (V), it may be useful to note a partial

converse to (a) in a restricted setting.

Proposition. Let X be a completely regular space and let <Y= {v„}„ denote a

decreasing sequence of strictly positive continuous weights on X. For fixed n E N and

m > n, if Cvm(X) induces co on each bounded subset B of Cvn(X), then the quotient

vm/vn must necessarily vanish at infinity.

Proof. Supposing that vm/vn does not vanish at infinity, there exists e > 0 such

that sup{üm(x)/t;„(x); xGAr\ÄT}>efor each compact subset K of X. Now, let 6

denote the system of all compact subsets of X, directed with respect to inclusion. To

each K E 6, we choose a point x^- G X\K with vm(xK)/vn(xK) > e. Since X is

completely regular, there exists a continuous function fK on X with 0<^fK*z I,

fK(xK)= l,andfK\K = 0,KEe.

Putting gK=fK/vn, we observe that [gK; K E Q) is a bounded net in Cv„(X)

which clearly converges to zero with respect to co but fails to converge to zero in

Cvm( X) because

9v,Í8k) = swp{vm(x)\gK(x)\; x E X)

>vm(xK)\gAxK)\ = H^>e,        KEG.    a
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0.5. The basic problem. Given a completely regular space X, a sequence <V=

{F„}„eN of systems of weights on X with Vn+1 < Vn, n .= 1,2,..., a I.e. space ZJ, and

a subspace yl( A', Zs) of C(A", E), the basic problem is to determine when

%4(A-, £)=^F(A-, £)    and   %A(X, E) = AV0(X, E)

algebraically or both algebraically and topologically. If all the systems Vn consist of

continuous functions, one may also be interested in replacing the maximal system V

assciated with T by V or, more generally, by smaller subsystems of weights which

have additional properties.

As a superficial inspection of the situation and some relevant examples tend to

show, the problem should not be considered as a question of whether the two

identities hold in each case. Instead, it consists in finding (rather) general conditions

on X, % E, and A(X, E) which imply equality and which are satisfied in concrete

examples important in the applications. (In fact, this problem first arose in these

much more restricted settings.) After first establishing the general results, we will

discuss examples and applications (in §§3 and 4) in order to illustrate our methods.

An interpretation of an algebraic equality, say CYC(X, E) = CV(X, E), might be

that V yields a complete description of the weight conditions which the functions in

the inductive limit space satisfy, while the space CV(X, E), on the other hand, is

exhausted by the increasing sequence (CVn(X, E))n(EN of subspaces. However, if

AV0(X, E) induces the inductive limit topology on its subspace CVQA(X, E), then

this fact is much more interesting because it yields a ready, and in some sense the

best possible, description of the continuous seminorms for the otherwise quite abstract

inductive limit topology; the natural topology of each space A(Vn)0(X, E), n =

1,2,..., is given by a system of weighted seminorms, but it is not at all clear, a

priori, that the inductive limit topology of "{0A(X, E) can be characterized in the

same way. Of course, an algebraic and topological identity CV0A(X, E) = A V0(X, E)

also tells us something about the weighted topology of A F0( X, E).

It should perhaps be further emphasized that a major difficulty which has to be

overcome when dealing with the (natural) I.e. inductive limit topologies occurring in

many parts of analysis is the fact that in general there exists no nontrivial

description of the continuous seminorms in such a topology: But yet, direct

estimates and computations require a useful characterization of such seminorms! In

our special situation, much information on the weighted spaces A V0( X, E)is already

available, and therefore, in the presence of a complete identity CV0A(X, E) =

A V0( X, E), the interplay between the two structures can be used to resolve a number

of questions concerning these spaces.

It is quite natural to split our original problem into two different parts: a scalar one

(E — C) or, as it turns out, the case of Banach range spaces E, where most of the

methods developed in the scalar case still work, and a second in which more general

I.e. spaces E are admitted. Given a solution of the first part of our problem, the

connection of the second part with questions on e-products and e-tensor products

(terms defined in §3 below) becomes clear. Since, for example, A(Vn)0(X, E) =

A(Vn)0(X)eE, n = 1,2,..., and A V0(X, E) = A F0(X)eE hold under fairly general
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hypotheses on X, °V, E, and A(X, E), we see the relation to the abstract problem of

knowing when inductive limits and e-products commute, and some progress has

already been realized in this direction in [7]. Results in general topological tensor

product theory (see [16]) then suggest trying countable inductive limits E — ind„^ En

of Banach spaces as a first generalization and to take (DF)-type spaces E as the next

step.

In this paper, we will primarily concentrate on the case of normed spaces E.

However, the reader will find some results for more general I.e. range spaces E in

§§3 and 5. A study of criteria for the commutativity of inductive limits and e-tensor

products has recently been undertaken in [20] where, using the results of a previous

version of this article, Hollstein obtains new solutions in some (restricted) vector-val-

ued cases, mainly when A(X, E).= C(X, E) (see also 3.3 below).

1. The general results. Throughout this section, we use the conventions introduced

in 0.1 and 0.2, but two additional hypotheses will be in effect. First, we assume that

X is also locally compact. This being the case, it is clear that, given any system F of

weights on X, the space Cc(X, E) of all E-valued continuous functions on X which

have compact support is densely contained in CV0(X, E). We will further require

that £ is a normed space.

Before we prove our main result on the relation between tYQC(X, E) and

CVQ(X, E), we need some preparation; the essential idea is contained in the

following lemma.

1.1. Lemma. c\f0C(X, E) and CV0(X, E) induce the same topology on the dense

subspace CC(X, E).

Proof. The canonical injection of %C(X, E) into CV0(X, E) being continuous, it

suffices to show that, given an arbitrary neighborhood U of zero in %C( X, E), there

exists v E V such that {/G CC(X, E); q¡f(f) = supx(EXv(x)\\ f(x)\\ < 1} is con-

tained in U. Now, since U is a neighborhood of zero in the I.e. inductive limit

topology and each Vn is directed upward, there exist vn E Vn, n = 1,2,..., such that

r(U„eNZ?J C U where Bn = [fEC(V„)0(X, E); qv<f) < 1} andT denotes the

absolutely convex hull. Putting v = inf{2"un; n E N], we have v E V C V; fix

/ G CC(X, E) with qA[f) < 1. For each n E N,

F„={xEX;2"v„(x)\\f(x)\\>l}

is a closed subset of supp/. If x G rineNFn, then 2"u„(x)|| /(x)|| > 1 for all n E N

whereby tJ(x)||/(x)|| > 1. But this contradicts q¿(f) < 1, and so rineNFn is neces-

sarily void.

Therefore, setting U„ = X\Fn, n E N, since supp/ is compact, there exists

meNso that supp/ C LH=1 U„. Now let {<¡p„}™=, C Cc(X) be a finite continuous

partition of unity on supp/which is subordinate to the covering [Un}™=l. Putting

g„ = 2\J, 1 < n < m, we note that g„ G CC(X, E) E C(Vn)0(X, E), while g„(x) =

0 if x G X\ U„ = Fn and x G U„ implies

vn(x)\\gn(x)\\ = <p„(x)2"vn(x)\\f(x)\\<l;
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i.e., g„ G Bn, 1 < n < m. Consequently,

mm t \

f= 2<p»/ = 1 2-"g„Gr \jBn .  n
n=\ n=\ VnGN       '

1.2. Lemma. Given a I.e. space (Ex, t,), let E2 denote a linear subspace and t2 a Le.

topology on E2 which is finer than the topology induced by t, . If t, and t2 induce the

same topology on some dense linear subspace D of (E2, t2), then t2 = rlXE .

Proof. Since tixd — t2^d, for any closed neighborhood of zero U in (E2, r2) we can

find an open neighborhood of zero F in (Ex,tx) such that F n D E U n D. Now,

since D is dense in (E2, t2),

vn e2e vn e2= vn d e u= u,

where all closures are taken in (E2, t2). Hence we have also riXE > t2.    D

The inductive limit topology on <\C(X, E) can, at this point, be readily char-

acterized as the relative weighted topology induced by CV0(X, E).

1.3. Theorem, (a) If X is a locally compact (Hausdorff) space, E is a normed space,

and £T= {Vn]„els is a sequence of systems of weights on X with Vn+X < Vn for each

n E N, then the canonical injection from "{QC(X, E) into CV0(X, E) is a topological

isomorphism.

(h) Assume, moreover, that E is a Banach space and %< Vn, n = 1,2,_Then

CV0(X, E) is the completion of\C(X, E).

(c) Under the conditions of(h), if, additionally, T= {Vn]n satisfies condition (V) (of

0.4) and CVn(X, E) is a (DF)-space for each n E N, then

*{C(X, E) = %C(X, E) = CV0(X, E)

as topological vector spaces.

(d) Let X be locally compact and E be a Banach space. If Vn = [Xvn; X > 0} for a

decreasing sequence of weights vn on X such that inf(t>„(x); x G K] > 0 for each

compact subset K of X, n = 1,2,..., and

(V) for every n EN there exists m > n such that vm/vn vanishes at infinity,

then the algebraic and topological identity %C( X, E) = CV0( X, E) is valid, and hence

CV0(X, E) is an ultrabornological (DF)-space.

Proof, (a) In view of Lemma 1.1, it suffices to apply Lemma 1.2 with (Ex,tx) —

CV0(X, E), (E2, t2) = %C(X, E), and D = CC(X, E).

(b) In this case, %E V, whereby CV0(X, E) is complete for any complete I.e.

space E. Since %C(X, E) D CC(X, E) and thereby is dense in CV0(X, E), it

remains to apply (a).

(c) and (d) Using 0.4.(c) (only for locally compact spaces X which are necessarily

countable at infinity here), we can conclude (c) from (b). The assertion (d) is nothing

but a reformulation of (c) under shghtly stronger hypotheses, but it is in this form

that 1.3(c) is usually applied in concrete examples.    D
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1.4. Corollary, (a) Under the conditions of 1.3(a), CY0C(X, E) is a topological

linear subspace of "(C(X, E) which has the approximation property (a.p.) whenever

the normed space E does.

(b) In case E — C, if I denotes a continuous linear functional on %C( X), then there

exist a bounded Radon measure ft, on X and a weight v G V such that

{*) l(f)=ffvdp,       fE\C(X);

conversely, for any bounded Radon measure p on X and any v E V, (*) defines a

continuous linear functional I on %C( X).

(c) Under the conditions of 1.3(b), suppose that T— {F„}„ with Vn — \Xvn; X > 0}

for a decreasing sequence of weights vn (such that inf(t>n(x); x E K] > 0 for each

compact subset K of X and n = 1,2,...). Then CV0(X, E) is a barrelled (DF)-space.

Proof, (a) Since the canonical injections %C(X, E) -* CÏC(X,_E) -> CV(X, E)

are continuous and CV(X, E) induces the weighted topology on CV0(X, E), the first

assertion follows immediately from 1.3(a). Since CC(X, E) E \C(X, E), 1.3(a)

implies that Y^X, E) is a dense topological linear subspace of CV0(X, E). From

Corollary 2 in [27] (also see [5.1.]), CV0(X, E) has the a.p. whenever E does, and this

leads to the desired conclusion because the a.p. is inherited by dense subspaces.

(b) %C(Ar) is a dense topological linear subspace of CV0(X), and hence "{^(X)'

= CV0(X)'. The result now follows as a consequence of known representation

theorems for the elements of CV0(X)'; cf. [14] (also see [35] or [22]).

(In the same way, of course, similar characterizations of continuous linear

functionals on CV0(X, E) yield analogous representation theorems for CV0C(X, E)',

where E is an arbitrary normed space.)

(c) This follows from 1.3(b) because °V0C(X, E) is here an ultrabornological

(DF)-space, and the completion of a barrelled (DF)-space inherits these properties.

D

1.5. Remark. In [7, 2.3], a modification of an idea due to G. Köthe (in the context

of sequence spaces) led to the following example. For the open unit disk X of C, we

take CV= [vn]n, where the continuous weights v„ on X are defined by

v„(r><p)

1, r = 0 or 0 < r < 1 and <p e

1 - r, 0 < r < 1 and 9 G I-, - J

I + rni- + (p), 0 < /* < 1 and <p G I-,-J

1-™(<P-|), 0<r<l and 9g(^,^)

n ' n

1,2,.

Then <Y0C(X) = ind„^ C(vn)0(X) is not a regular inductive limit and hence not

even sequentially complete. In view of 1.3(b), %C(A') must be a proper (dense
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topological) subspace of its associated space CV0(X). This example then demon-

strates that the assumptions of 1.4(c) are not sufficient—not even in the scalar case

E = C and not even with continuous weights vn, n — 1,2,...—for the identity
"(0C(X, E) = CV0(X, E).

On the other hand, as we have shown in 1.3(d), it does suffice to add condition (V)

for the case of Banach spaces E. A more detailed investigation of conditions for

completeness of %C(X, E) (and hence for the identity %C(X, E) = CV0(X, E))

without (V), but in the restricted setting that £ is a Banach space and <Y= {v„}„, is

undertaken in the next section; Theorem 2.3 will improve upon Theorem 1.3(d)

considerably.

1.6. Theorem. Let X be a locally compact space and take CV= [vn}„ to be a

decreasing sequence of weights vn on X such that inf{un(x); x G K] > 0 for each

compact subset K of X, n — 1,2,_Further, we suppose that condition (V) holds and

that (A(X), co) is a semi-Montel space. Then, as topological vector spaces,

YA(X) = %A(X)=AV0(X).

Hence AV0(X) is a Silva space, and here Corollary 1.4(b) applies as well to <V0A(X).

In particular, this holds when X is an arbitrary open subset of CN, N^l, and

A(X) = H(X) is the space of all holomorphic functions on X.

Proof. 0.4(d) imphes that the Silva space ^A(X) = %A(X) is a topological

linear subspace of 'YC(X) — \C(X) under our assumptions, and since CV0(X)

induces the weighted topology on AV0(X), we obtain the desired conclusion from

1.3(d) by taking intersections with the space A(X). For the remark on Corollary

1 -4(b), it suffices to apply the Hahn-Banach theorem.    D

Theorem 1.6 gives a new, purely functional analytic and rather easy proof of a

theorem due to B. A. Taylor [37] on "complex representations" for spaces of entire

functions and its extension to arbitrary open subsets X of CN. For a more detailed

discussion of Taylor's theorem, a comparison of the methods, and applications

(above all, in relation to the theory of analytically uniform spaces due to L.

Ehrenpreis [11]), we refer to §4.

Clearly, in the general situation of 1.3(a), if A(X, £) is a subspace of C(X, £), the

canonical injection of CV0A(X, E) into AV0(X, E) is a topological isomorphism

whenever CV0A(X, £) is a topological linear subspace of ^^(X, £). Since we would

then have %A(X, E) = AV0(X, E) algebraically and topologically if %C(X, E) =

CV0(X, E) as vector spaces, any positive solution of the Problem in §0.4 will provide

information about the topologies of CV0A(X, E) and AV0(X, £).

Having derived our general results, we now proceed to show that, in the setting of

Theorem 1.3(d) and Theorem 1.6, respectively, we may restrict our attention from

the maximal system F to a subsystem V of weights of a rather special form. Again,

we will utilize continuous partitions of unity, but this time countable ones on the

whole space X.

1.7. Definition. Let X denote a locally compact and a-compact space and let

CY= (u„}„eN be a decreasing sequence of weights on X such that inf(t>„(x);

x G K] > 0 for each compact subset K of X and n — 1,2,... ; we fix a sequence
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(Kn)n of compact subsets of X such that KnEKn+x, n— 1,2,...,   and X —

Let a — (a(n))n(£N denote an arbitrary strictly increasing sequence of natural

numbers. Since X is paracompact, we may now choose a continuous partition of

unity (<p¡,a))„ which is subordinate to the covering (Ka(n+X)\Ka(n_X))n of X, where

a(0) = 0 and K0 = 0, and for which q>\a) is strictly positive on Ka(X). For a constant

c > 0, we set v0 = c on X and define

00

¿U*)=  2 vk„x(x)W(x),       xEX.
k= 1

1.8. Lemma. Every Sae is a weight in V (which is strictly positive on X).

Proof. vac is clearly well-defined. Since at most three terms in the sum on the

right-hand side of its definition do not vanish on Ka(n+X)\Ka(n_X), n = 1,2,..., vac

is a weight on X which is continuous whenever all vn, n = 1,2,..., are continuous.

To show va c G F, fix n E N. For each x £ Ka(n+ X), <f4a)(x) = 0 for all k < n and

hence
,T       /„) 00 „ /„\ 00

VnkX) k = n+\ Ü«(JC) /c = «+l

because {vn]n is decreasing. But on Ka(n+X), m^a) vanishes for each k > n + 2 and the

u.s.c. functions ü0, vx,...,vn are bounded by some constant M > 0. Hence, for all

x ei^+ip

*U*) = v1 ..i(;c)pt-^) <_M_•
ü„(x)        *, "»(*)    ^inf{i)n(x);xGJrífl(„+1)}'

i.e., üa c/t)„ is bounded on X Since « G N was arbitrary, we have established our

claim.    D

We will now let V — Fy denote the subset of V = Fey which consists of all

weights of the form va where a = (a(n))n runs through all strictly increasing

sequences of positive integers and c is an arbitrary positive constant.

Supposing that X is locally compact and the sequence T satisfies (V), in which

case X is necessarily countable at infinity (see 0.4), we would prove F < V.

To this end, fix v G V. Given n E N, if m > n is chosen as in condition (V), vm/vn

vanishes at infinity, and since v/vm is bounded, v/vn also vanishes at infinity. By

induction, we may therefore choose a strictly increasing sequence a = (a(n))n of

natural numbers such that

^r\<\    forall* £*„(„_„,       « = 2,3,....
»„(*)

Taking a corresponding continuous partition of unity («p*/')*. and a constant

max sup{t>2(y);y G Ka(2)), ,    , -——-y   ,

infl^Xy)^ GÄTfl(1)j /

we claim that «<«„„.
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In fact, if x G Ka(X),

v(x) < c inf{<p\a)(y); y G Ka{X)} < v0(x)<p\"\x) < t5a>c(x),

while x G Ka(2)\KaiX) implies ç4fl)(x) = 0 for ail k > 3, and hence by our choice of

c,

2

v(x) ^ v2(x) =  2 <p{a)(x)v2(x) < <p\°\x)c + <p2°\x)vx(x)
fc=l

2

=    2   ^_,(x)(r4a)(x) = Üac(x).
/c=l

Otherwise, there exists n > 3 such that x G Ka(n+ X)\Ka(„_X). Since then <p(g\x) = 0

for all /c G {« — 1, «, « + 1}, we have

v(x)*vH(x)=   "i   <#>(*K(*)<   "i"   ^*K-.(*) = »,,,,(*).
k=n-l /c = «-l

But F < V E V obviously implies that F is a system of weights on X and that

AV0(X, E) = AV0(X, E) holds for an arbitrary I.e. space £ and an arbitrary

subspace A(X, E) E C(X, £). Thus, we have proved the following result.

1.9. Proposition. In Theorem 1.3(d) and Theorem 1.6, the maximal system V = Fy

associated with "{can be replaced by

V— {va c; a = (a(n))n strictly increasing sequence ofpositive integers, c > 0},

where vac is defined as in 1.7.

Consequently, under the conditions of 1.3(d) and 1.6, respectively, the weights v

which occur in the integral representation theorem 1.4(b) for %C( X)' and CV0A(X)',

respectively, may all be taken from F instead of V. If all the weights v„, n = 1,2,...,

are continuous, V E V. Hence F may be replaced by Fin Theorems 1.3(d) and 1.6,

and in Corollary 1.4(b) under the conditions of 1.3(d), whenever the original system

Tconsists of continuous weights vn, n = 1,2,_(This last consequence, however,

follows more directly from the proposition in 0.2.)

Of course, our construction also allows for other reductions; we will here note a

particularly obvious one.

1.10. Remark. Let X denote an open subset of C^ (= R2"), N > 1, and suppose

that all vn, n = 1,2,..., are C°°-functions. Then we may take C°°-partitions of unity

{?4a)}/tEN m lne definition of va c, and so it turns out that it suffices to consider only

infinitely differentiable weights (of the form va c). As a consequence, for the three

results which we mentioned at the end of 1.9, in this case F may also be replaced by

a subsystem of C°°-functions.

At this point, let us also add that, for open subsets of CN, more precise results and

certain additional properties of the weights in V may be obtained if locally finite

open coverings of X and subordinate partitions of unity are constructed using the

method of Whitney (e.g., see Pedersen [26, p. 399]) instead of the general approach

of Definition 1.7.
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Proposition 1.9, well understood, clearly opens the possibility of proving Theorem

1.3(d) using only weights in V. We note such a proof below; it is direct, quite

different from our first, demonstrates another point of view, and also shows

immediately that it is not necessary to assume completeness of the normed space £

in 1 3(d^

Direct proof of Theorem 1.3(d) for an arbitrary normed space £.

(i) Firstly, we claim that °VC(X, E) = CV(X, E) algebraically. To prove this, we

will assume only that X is locally compact and a-compact; condition (V) is not

needed here. (Also see [7, 2.8]; more general, and more precise, results of this type

will be given in §5 below.)

Fix /£ CV(X, £); we would show that qv(f) = supxeA-ü„(x)||/(x)|| < oo for

some n E N. If this is not the case, then, given n G N and Cn > 0, there exists

y = y(n, C„) such that vn(y)\\ f(y)\\ > Cn. Now, X = UneNKn where Kn is compact

and Kn E Kn+,, n = 1,2,_Therefore, since ü„/is bounded on compact subsets of

X, a simple induction argument yields a strictly increasing sequence a = (a(n))n of

positive integers so that, for some point x„ G Ka(n+X)\Ka(n_X), v„(x„)\\ f(xn)\\ > n,

n = l,2,...(fl(0) = 0,A;0= 0).

Construct the weight vac = 2™=1 vk_xq>ik) E V E V as described in 1.7, where

c > max{ü!(x,), ü2(x2)}. Then,

00

¡V(*i)=  2 vk_x(xx)^\xx) = vQ(xxWxa\xx) + vx(xxW2a\xx)
k=\

2

>vx(xx) 2 <l4fl)(*i) = vx(xx),
k=\

00

%,Âx»)= 2 «*-i(*J<JÍa)(*J
k=\

>   ï   vn(x„Wka\x„)

Hence

9çJf)>*ia,Âx»)if(x,

for each n E N, which obviously contradicts/ G CV(X, £).

(ii) The inductive limit topology of <YC(X, E) is finer than the weighted topology

of CV(X, £), and, subject to condition (V), we want to show that the converse holds

as well. In view of condition (V) (and reducing the sequence {t>„}„6N if necessary),

we may assume without loss of generality that vn+x/vn vanishes at infinity for

« = 1,2,_We now observe that each neighborhood of 0 in <YC(X, E) contains a

set

u=t(uu„)

n+\

=     2    vk-\(xnWka)(xn)
k = n-\

Vn(Xn)>       « = 2,3,....

«B(*JH/(*»)||>«
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with

U„= If ECv„(X,E);qVa(f)= sup vn(x)\\f(x)\\<pn},       « = 1,2,...,

where (p„)„ is a decreasing sequence of positive numbers and the closure is taken in
CVC(X, £).

Fix a sequence (Kn)nels of compact subsets of X with X = UneNAT„ and

Kn E Kn+X, n = 1,2,_ Inductively, we can find a strictly increasing sequence

a = (a(n))n^N of positive integers such that

^±M<£±i    forallx$Ka(n),
v„(x)       2"  '

n = 1,2,_  Now, put a(0) — 0, Ä"0= 0, u0 = c = 1,  and take a continuous

partition of unity ((p(na))„ subordinate to the covering (Ka{n+X)\Ka(^n_X))neN. We

define u = vac = ^k=ivk-Mka) G FC F (cf. 1.7, 1.8). At this point, it suffices to

show that, for

1,fECV(X,E);q¿(f)=supv(x)\\f(x)\\<minll,——-^---)   ,
xex                                 \     2SupxeKaii)Vx{x) j J

—
UEU.

To do so, let us first note that any f E C(X, E) can be represented in the

following way:

/= 2<pia)/= 2 ¿/,.    A = 2><û)/,
n=l n=\

where the series converges uniformly on compact subsets of X. Moreover, if /

belongs to CV(X, £), then the first part of the present proof shows that there exists

n0 E N so that/ G Cvn (X, £). But, in this case, with respect to the norm qv , the

partial sums of the series 2„ f„/2" are all bounded by qc (f ), and so 0.4(a) implies

that the series also converges with respect to the inductive limit topology of

TC( X, E ). Hence, the proof of our claim is reduced to showing that f EU implies

f„E Un,n= 1,2,...; i.e.,

<7¿(/)< min  1,-- Pi —-\    implies   qVn(fn)<p„,
\     2sup{vx(x);xEKa(2)] j

which we verify by the following straightforward computation:

supt;1(x)||/1(x)||=   sup   t),(jc)2<p(1a)(x)||/(x)||
xEX x£Ka(2)

<4  .
XEX

sup   vx(x))lsupv0(x)<p\a\x)\\f(x)\\)
~£Ka(1) '     x£X '

=£2Í   sup   o,(*))(sup   2 ^-.(^)«P</)(^)II/(^)II^
vxeAro(2) ' \ jcex k=\ I

= 21   sup   vx(x)\q6(f)<px,
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while, for« = 1,2,...,

up»„+.(*)ll/,+ .(*)l|=     sup      %^t^(x)2"+VK,(*)IA*]
xex %(x)

^-^|2"+'suPt;„(x)^1(x)||/(x)||
¿ x<EX

00

<ft,+ iSuP   2 Vk-\(xWka\x)\\f(x)\\ = Pn+tfáf) < Pn+\-
xBX *=l

Finally, recall that condition (V) implies CVC(X, E) = %C(X, E\ while the

identity CV(X, E) = CV0(X, E) can be deduced as follows: Fix/ G CV(X, E) and

v E V; by part (i) of the proof, there exists « G N so that/ G Cvn(X, E). Now, since

vn+\/vn vanishes at infinity and v/vn+x is bounded, vf = (v/vn+x)(v„+x/vn)vnf

vanishes at infinity; i.e.,/ G CV0( X, £).    D

Let us note two refinements which follow from the preceding proof.

1.11. Remark, (a) Theorem 1.3(d) holds for an arbitrary normed space £.

(b)In 1.3(d) and 1.6, we also have CV0(X, E) = CV(X, £)and,4F0(JO = AV(X),

respectively.

Furthermore, let us assume that X is locally compact and a-compact, that £ is a

normed space, and that c\f= {u„}„eN is a decreasing sequence of weights v„ on X

such that inf{ü„(x); x G K] > 0 for each compact subset K of X, n = 1,2,_Then

a slight refinement of part (i) in the direct proof of Theorem 1.3(d) (see again [7,

2.8]) not only shows that °VC(X, E) = CV(X, E) algebraically, but also that the two

spaces CÏC(X, E) and CV(X, E) have the same bounded sets.

To verify this, let B be a bounded subset of CV(X, E) with its weighted topology

and define M(x) = sup{||/(x)||; /G B], x E X. Then, replacing/G CV(X, E) by

M in (i) of the above proof (B is uniformly bounded on compact subsets of X), we

see that there exists n EN such that sup{un(x)M(x); x G X] < oo whence B is a

bounded subset of Cv„(X, E) and hence bounded in <YC(X, £). (By the way, this

argument also shows that, in our case, CVC(X, E) is always a regular inductive limit.)

Thus, the situation can be described as follows: The two spaces <YC(X, E) and

CV(X, E) are equal algebraically, have the same bounded sets, and both induce the

inductive limit topology on t\C(X, E) (see 1.3(a) and 1.4(a)). It is then natural to

ask whether the topologies of <YC(X, E) and CV(X, E) are always identical as well.

However, a negative answer to this question follows easily from a famous counter-

example of Köthe and Grothendieck (see [23,1, §31, 7]).

1.12. Example. Let X denote the discrete space N X N, define B = (b„)neN and

^={taeNby

K(i,j) = \J;     1</<M'   íT'2'-|    and
nV 'J'      [I,     i>n,   j= 1,2,...        J

%(iJ) = ./,.   ,.v       i,j= 1,2,....
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Then 'YC(X) = CV(X) algebraically (the two spaces have even the same bounded

sets and induce the inductive limit topology on (\C(X)), but the inductive limit

topology of 'VC(X) is strictly stronger than the weighted topology of CV(X).

Proof. Put

A(B) = jx = (XlJ)tjeTi E CNXN;p„(x) =   |   \XlJ\b„(i, j) < oo for each« G n|.

Under the natural ("normal") I.e. topology given by the sequence (/?„)neN of

seminorms, A(B) is clearly a ("perfect") Fréchet space ("gestufter Raum"), and its

dual A(B)' ("Stufenraum") equals

U   {y = (yu)ueNEC"™ = C(X);   sup  |y,>„(z, j) < 00} = <VC(X).
«eN l ije.N 1

(See [23, I, §30, 8.(1)].) We claim that the strong topology ß(A(B)', A(B)) of A(B)'b

is stronger than the weighted topology of CV(X) (— CYC(X) algebraically).

An arbitrary neighborhood of 0 in CV(X) always contains a set

[y = (y,j)u e cv(x); sup \yu\v(i, j) < 1}

for some v E V, where we may assume by 1.8 that v is strictly positive on X. Since v

belongs to F, given « G N, there exists Xn > 0 such that ü =£ Xnvn. Putting

we see that A is bounded in A(B) because for each « G N and each x G A

Pn(x) = 2 \xu\bn{i, j) = 2 -^4: < 2 ^tHa„ < A„.
ij ¡j v„(i,j)     ¡j 0(1,7)

But an easy calculation shows that the polare0 of A in A(B)f is nothing but

[y = (y,j).j e AW; suP|y,,|t5(z, /) < ij,

which suffices to prove our claim.

Since the inductive limit topology of CVC(X) is still stronger than ß(A(B)', A(B)),

the identity mappings CVC(X) -> A(B)'b -» CF(A^) are continuous. However, the

space 'YC(X) is clearly bornological, while it is proved in [23,1, §31, 7] that A(B)'h is

not bornological. Thus the fact that CVC(X) and CV(X) have the same bounded sets

together with a well-known result from the theory of bornological spaces (e.g., see

[23, I, §28, 2]) imply that CV(X) must also fail to be bornological wherefore the

weighted topology is strictly weaker than the inductive limit topology.    D

This counterexample, when compared with the positive result 1.3(a) above,

provides a degree of justification for restricting our attention to the case of

%C(X, E) and CF0(A', £) (instead of CÏC(X, E) and CV(X, £)) in the present

section.
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Example 1.12 is also quite interesting from another point of view. In particular,

the Fréchet space A(Z?) is not quasi-normable, while its strong dual A(B)'b is

complete, neither separable nor infrabarreled, contains nonmetrizable bounded

subsets, and does not satisfy the strict Mackey convergence condition (cf.

Grothendieck [15]). Moreover, the inductive limit topology of 'YC(X) is that of

ind„_ A(B)'(jo, where

Vn= \x- (xij)ij E CNXN;/7„(x) =   2    k7k(''' /) *l|.       « = 1.2,...;

it is thus the bornological topology associated with ß(A(B)', A(B)), and hence we

can conclude from [23,1, §29, 4.(2)] that the topology of TC(X) is ß(A(B)', A(B)")

wherefore CVC(X) is complete.

In the case of sequence spaces, taking X = N and T= {v„]n to be a decreasing

sequence of strictly positive weights on N, 'YC(X) is always a co-echelon space

("Stufenraum") in the terminology of [23, I, §30, 8], being the dual of the ("perfect"

Fréchet) echelon space ("gestufter Raum") A(Z?) (under its "normal" topology),

where B = (bn)nfE.N and bn — l/vn, n — 1,2,_ It is again easy to see that the

identity mappings

'YC(X) - indA(B)í,o -» A(B)'b -» CV(X)

are continuous, where

r oo 1

un-\x = (xj)jenl   2  \xpn(j)^n,       «=1,2,....

Further, exactly as above, CVC(X) is the bornological space associated with A(B)'h,

hence has the topology ß(A(B)', A(B)"), and therefore is complete.

As we shall next demonstrate, it is actually possible to establish completeness of

the weighted spaces <YA( X) under rather general conditions which include the above

mentioned case for sequence spaces. Also, as the proof below demonstrates, the

associated weighted space A V( X), even though it may fail to equal 'YA(X) topologi-

cally, can still be put to good use in the topological theory of weighted inductive

limits.

1.13. Theorem. Let X denote a locally compact space, and take T= {u„}„eN to be a

decreasing sequence of weights vn on X with inf(un(x); x G K] > 0 for each compact

subset K of X, n = 1,2,_If the linear subspace A(X) is closed in (C( X), co) and if

(A(X), co) is a semi-Montel space, then <YA(X) is the barrelled space associated with

A V(X) and hence is complete.

Proof. (For the facts about the associated bornological, ultrabornological and

barrelled spaces which we need here, see the monograph by Schmets [29].)

From our remarks preceding Example 1.12, it follows that the two spaces "ÍA(X)

and AV(X) are equal algebraically and have the same bounded subsets whence,

clearly, "(A(X) is the bornological space associated with AV(X). (The additional

hypothesis requiring X to be a-compact was inserted after Remark 1.11, but we will
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show in Proposition 5.8(a) below that this hypothesis is not necessary; cf. Corollary

5.12(a) as well.) Moreover, since each Av„( X) is a Banach space under our hypothe-

ses, "(A(X) is also the ultrabornological space associated with AV(X), and hence,

letting £, denote the barrelled space associated with a I.e. space £, we have the

continuous identity mappings

^A(X) -*AV(X),^AV(X).

At this point, we would apply a result due to Dineen [10, Proposition 3], taking

£ = 'YA(X) = AV(X), t, to be the inductive limit topology oj^ °VA(X), t2 the

barrelled topology associated with the weighted topology of AV(X), and t3 the

compact-open topology co. Obviously, t, > t2 > t3, (£, t,) is a bornological (DF)-

space, and (£, t2) is barrelled. The sequence (Z?n)„eN, where

B„={fEAv„(X); supü„(x)|/(x)|<«},        «=1,2,...,
1 xex >

forms a basis for the bounded sets in <YA(X) because indn^Avn(X) is regular with

indn_ Cvn(X). But, since these sets are closed and bounded in the semi-Montel

space (A(X),co), it follows that Bn is closed in *YA(X) and x3-compact, « — 1,2,_

Now, applying [10, Proposition 3], we can conclude, as desired, that tx — t2. Since

the barrelled space £r associated with a complete I.e. space £ is complete, we thus

deduce the completeness of CVA( X) from the fact that A V( X) is complete.    □

Let us remark that we do not know whether <YC( X) is always complete when X is

a locally compact Hausdorff space and °V= {o„}„eN a decreasing sequence of

weights vn on X such that inf(ü„(x); x G K] > 0 for each compact subset K of X,

« = 1,2,_Clearly, in this situation, "(C(X) is again the (ultra-) bornological space

associated with the complete space CV(X), but we do not know whether the

(weaker) associated barrelled topology (which yields a complete (DF )-space with the

same bounded sets as *YC(X)) will also coincide with the inductive limit topology.

(Note that the sets

Bn=[fECv„(X); supi;„(x)|/(x)|<«),        «=1,2,...,
1 xex '

are closed and bounded, hence precompact, in C(X) with respect to the topology of

pointwise convergence on X.) Nonetheless, Theorem 1.13 does apply to the weighted

inductive limit "(H( X) of holomorphic functions on an open subset X of CN, as well

as to spaces of type CVC( X) when X is discrete.

2. On %C( X, E) = CV0( X, £). Assuming that A'is a locally compact (Hausdorff)

space, let CY= {u„}„eN be a decreasing sequence of weights on X such that

inf{vn(x); x G K] > 0 for each compact subset K of X, n — 1,2,_

2.1. Definition. We will say that Tis regularly decreasing if, given « G N, there

exists m > « so that, for every e > 0 and every k > m, it is possible to find

8(k, e) > 0 with

vk(x) > 8(k, e)v„(x)   whenever   t>m(x) > evn(x).

In other words, °V is regularly decreasing if, and only if, given « G N, there exists

m > « such that, on each subset of X on which the quotient vm/vn is bounded away

from zero, also all quotients vk/vn, k 5s m, are bounded away from zero.
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2.2. Proposition. The sequence CY= (o„}„eN /5 regularly decreasing if, and only if,

the following condition is satisfied:

(wV) For every « G N, there exists m> n so that, for every e > 0, there is some

v E V such that vm(x) < et>„(x) whenever v(x) < vm(x).

Proof. Assuming °V satisfies condition (wV) and given « G N, choose m > « as in

(wV) and fix £ > 0 and k s* m. By (wV), we can find v E V such that t>(x) < t>m(x)

implies vm(x) =s eu„(x)/2; thus v(x) > vm(x) holds whenever vm(x) 3= ev„(x). Now

v < akvk for some ak > 0, and we may take 8(k, e) — e/ak because then

vm(x)>evn(x)    implies   vk(x) > — v(x) > —-vm(x) > 8(k, e)v„(x).
ak ak

Conversely, let *Y he regularly decreasing. Given « G N, choose m > « as in

Definition 2.1, and fix e > 0; for each k > m, take 8(k, e) > 0 so that

Taking

v = inf\zvx,...,-vm, x«Wi. T7——^-^um+2,--^ G FC F

ü¿(x) > 8(k, e)vn(x)    whenever   vm(x) > evn(x).

l_ I 1 _I
£Ul"-" eV"" 8(m+l,e)Vm+x' 8(m + 2,e)

it um(x) > Eün(x), then clearly

tT(x) = inf{^m(x),5(wjle)lJm+1(x),á(w|2>e)üm+2(x),..}>l;„(x).

Consequently, v(x) < vm(x) < u„(x) implies um(x) < eu„(x).    D

Condition (wV) was studied in the appendix of [7] (also see 0.4(c)); it is weaker

than condition (V). Furthermore, if there exists m G N such that vmE V (which

holds, for instance, when °\f= {A„ü}„eN, where (a„)„ is a decreasing sequence of

positive numbers and v is a fixed weight on X), then Talso satisfies (WV).

The concept of being regularly decreasing is defined intrinsically (i.e., only in

terms of the original sequence T= (un}„eN), and hence is preferable to condition

(wV) where the definition involves the associated system V — Fy.

In fact, for the inductive system {Cvn(X, £)}„gN, where £, say, is a normed linear

space, given « G N, if m > « is chosen as in condition (wV), we would know from [7,

Appendix, Satz 1.6'] that Cvm(X, £), CVC(X, £), and CV(X, E) induce the same

topology on each bounded subset of Cvn(X, E); if m > n is chosen as in Definition

2.1, an analogous direct argument would only show that the topologies of all spaces

Cvk(X, £), k — m, m+\, m+ 2,..., coincide on each bounded subset of

Cvn(X, £). However, using an abstract result of Neus [25, Satz 4], we already get as

a consequence of this last property that "ÍC(X, E) induces the same topology on

each bounded set in Cvn(X, E) as does each of the spaces Cvk(X, E), k > m. Thus,

the additional information which we obtain from the equivalence of (wV) and

regularly decreasing is really just that CV(X, E) does the same.

Proposition 2.2 and the subsequent remarks clearly demonstrate that our next

theorem is an essential improvement over Theorem 1.3(d).
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2.3. Theorem. Let X denote a locally compact space, (£, || • II) a Banach space, and

CT= {vn}n a decreasing sequence of weights vn on X such that inf{u„(x); x G K] > 0

for each compact subset K of X and n = 1,2,_ If CV is regularly decreasing,

°V0C(X, E) is complete and hence

%C(X, E) = CV0(X, E)

algebraically and topologically whereby  CV0(X, E)  is  again  an  ultrabornological

(DF)-space.

Proof, (i) We will let t denote the weighted topology on CV0(X, E), and claim

that it suffices to establish the following condition which we shall term (*):

For each « G N, let m » n be chosen according to the definition of a regularly

decreasing system. Then the closure BnT of

(*) Bn = (fEC(v„)0(X, E); qVm(f) = sup v„(x)\\f(x)\\ < 1
v xex

in CV0(X, E) is contained in Bm = {f E C(vJ0(X, £); q^f) =£ 1}.

Indeed, in view of Theorem 1.3, an obvious application of Raikov's completeness

criterion for I.e. spaces ([28] or [13, 4.1 (also see the proof of 7.4)]) will then establish

our theorem.

(ii) To prove (*), fix « G N, and let / be an arbitrary element of BnT. Firstly, we

observe that qv(f)^ 1; indeed, the weighted topology of CV0(X, E) is obviously

stronger than the topology of pointwise convergence on X (and is even finer than

co), and the pointwise closure of (g G Cv„(X, E); qv(g) < 1} contains only func-

tions/which satisfy qv£f) < 1 (cf. [7, 1.7]).

Next, taking m > n as in Definition 2.1, we claim that /£ C(vm)0(X, £). To

prove this, let e > 0 and put F = {x G X; um(x)|| /(x)|| > e]; we would show that F

is (relatively) compact. To see this, setting

1

k < m

k > m
1,2,.

S(/c,£/8)'

we put v = inî{akvk; k E N). Then v E V E V, and so there exists g G Bn such that

q¿(f— g) < e/4; note that also G — {x G X; vm(x)\\ g(x)\\ > e/2) is compact. We

now observe that if vm(y) > v(y) + eü„(y)/8 for some y G X, then k > m implies

while k < m yields

<*k*>k(y) > aks(k, e/8)on(y) = vn(y)

akVk(y) > «pmiy) > <*kö»Ay) = vÁy);

i.e., v(y) > vn(y). However, this implies vm(y) > vn(y)(l + e/8) > vn(y) which is

clearly impossible, and so vm(x) *s u(x) + eu„(x)/8 for all x E X. Finally, taking
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x G F, we have

vm(x\\¡g(x)¡ > vm(x)\\f(x)\\ - vm(x)\\f(x) - g(x)||

>e-(ü(x)+|ü„(x))||/(x)-g(x)||

> s - v(x)U(x) - g(x)\\ - ¡v„(x)(\\f(x)\\ + ||g(x)||)

£        e        e        e

Thus FEG whereby the argument is complete.    D

Instead of using Raikov's criterion in part (i) above, we could as well argue in the

following way. If C is an arbitrary bounded subset of %C( X, £), then, by a result of

Grothendieck on countable (Hausdorff) I.e. inductive limits of (DF)-spaces (cf. [23,

I, §29, 5.(4)]), there exist « G N and a bounded subset C„ of C(vn)0(X, E) such that

C is contained in the closure of Cn in "i0C(X, E). A first application of condition (*)

now proves that "iQC(X, E) = ind„^ C(vn)0(X, £) is a regular inductive limit. At

this point, let us use another result of Grothendieck (cf. [23, I, §29, 5.(3)]) whereby

quasicompleteness and completeness are equivalent properties in (DF)-spaces. This

then reduces the proof of Theorem 2.3 to showing that the closure of Bn in

^^(X, E) is complete for each « G N. But, again, from (*) and Theorem 1.3, this

last assertion is clear.

We can also give a different proof of 2.3 which we will include at this point since it

yields additional insight. By 2.2, T being regularly decreasing means that condition

(wV) holds. Hence, from [7, Appendix, Satz 1.6' and p. 219] (see also 0.4(b) and (c)),

we can infer that cVC(Ar, £) = ind„^ Cv„(X, E) is (strongly) boundedly retractive

for each normed space £ and complete whenever £ is a Banach space. Similarly,

given « G N, if m > n is chosen as in (wV), then the topologies of C(vm)0(X, E),

"{^(X, E), and CV0(X, E) all coincide on each bounded subset of C(vn)0(X, £). If

£ is a Banach space, an easy application of Grothendieck's result on bounded

subsets in countable inductive limits of (DF)-spaces now implies the regularity of

\C(X, E) (see the remark at the end of 0.3). Hence \C(X, E) =

ind„^ C(vn)0(X, E) is (strongly) boundedly retractive and thereby also complete.

D

In fact, as we have pointed out above, condition (*), which was verified in part (ii)

of the proof of Theorem 2.3, implies that "(0C(X, E) is regular so that the

completeness of £ is actually not needed for this point; i.e., %C(A', £) is (strongly)

boundedly retractive whenever Tis regularly decreasing and £ is normed.

Here, we should remark that, using tensor product methods (essentially due to

Hollstein [20]), Theorem 2.3 can be extended to include countable compactly regular

inductive limits £ = indn^ £„ of Banach spaces, at least when X is a-compact and CV

is a regularly decreasing sequence of strictly positive continuous weights vn on X; for

further details, see Corollary 3.3 and the remark which follows it.

2.4. Example, (a) For the sequence CV= {u„}„6N of continuous weights vn on the

open unit disk which was described in 1.5, we know that the space %C(.Y) is not
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even sequentially complete. So, by Theorem 2.3, the sequence Tcannot be regularly

decreasing, a fact which is also easily checked directly,

(b) Put X = R+ \{«w; « = 0,1,2,...} and define £V= [vn]n by setting

°n(x) =

sin x it
--, X *S«77 +   ~

« 2

1 ,     7T
-, X>«77+   -

« Z

1,2,....

Then this sequence T of continuous weights also clearly fails to be regularly

decreasing.

(c) Similarly, the sequence T of weights on N X N in Köthe's example (Example

1.12) is not regularly decreasing.

2.5. Theorem. Let X denote a locally compact Hausdorff space and take CV= {vn]n

to be a decreasing sequence of strictly positive continuous weights vn on X, n = 1,2,_

If "fis not regularly decreasing, then %C(X) ¥= CV0(X).

Proof, (i) Assuming that T is not regularly decreasing, we can fix « G N so that,

for every m> n, there exist km> m and em > 0 for which, given 8 > 0, it is always

possible to find xs E X such that

»«(*a) » £mvn(xs)   while u^(xfi) < 8vn(xs);

there is clearly no loss of generality in assuming that {£m}^=„ is decreasing and

{km}™ is an increasing sequence.

For notational purposes, we define <p: N -» N inductively by <p(l) = « + 1 and

<p(') = ^(/-l) + L z = 2,3,...; we shall write ki and £, instead of k w and e (i),

respectively, z = 1,2,.... For each z G N, we will construct a sequence

{(8¡j, x¡j, U¿j)}°°=x for which the following conditions are satisfied for all/ G N:

{l)0<9IJ<l/j,

(2) ^(l)(x,7) > £;t)n(x,7) while vk(Xu) < 8¡jv„(xij),

(3) U¡j is a compact neighborhood of x,7 for which x G U¡j implies vk (x) <

8¡-vn(x). Moreover, Utj n Urs — 0 if either i ¥= r or z = r but/ ^ s, and U°°=1 UtJ is

closed, as is U [U^; j — l,2,...,j¥=j0} for arbitrary j0 G N.

To start, considering i — I, put 8,, = 1 and choose x,, G X so that

vvoÁx\i)^e\vn(x\i)    whileü/c,(*ll) <áiiu„(x„).

Since Jí is locally compact and vk /vn is continuous on X, there is a compact

neighborhood Í/,, of xu such that x G £/,, implies t?A (x) < 8xxvn(x). Assume that

{(8Xj, xXJ, UXj)]fSx have been chosen so that the applicable parts of (l)-(3) all hold.

Let

\°k(x)     r.1   1
ßlp = mi\-2~;xe U UXJ\,

[ Vn\X) j=\ J

and then choose 8Xp < min{/?1;,, l/p). Take xXp E X so that

VV0)(Xlp) *" «^«(^lp) and «Zc.i^l/,) < ôi^«(^i^)-
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Since xXp £ \JPjZ\U\p we can find a compact neighborhood UXp of xXp such that

x G UXp implies vk(x) < 8Xpvn(x) and UXp fl UXj = 0 if j < p. Inductively, there-

fore, we can obtain a sequence {(8XJ, xXJ, UXJ)}°°=X with the desired properties

because, if y G U°°=xUXj \U°°= ,{/,■, then it would follow that each neighborhood of

y contains points which belong to UXj for indices/ larger than any given integer j0.

Hence 5, ■ -» 0 for/ -» oo would imply vk(y)/vn(y) = 0 which is impossible. The

same argument works for U [UXj;j = 1,2,...,/ ¥=jQ],j0 G N arbitrary.

Assume now that sequences {(S,7, xtJ, UjJ)}°°=x have been selected for i = 1,...,

p — 1 so that (1), (2), (3) hold. To start the selection of the sequence for i = p, we

first observe that, since 8tJ < 1//, there exists an index j0 —j0(p) such that S,7 < £p

forall/>/0, z= 1,.

«„(*) '

and then choose 8pX < min {/?,,, 1}. Take xpX £lso that

VV(p)(Xp\) > EpVniXp\)      and      Vkp(Xp\) < SplVn(Xp\)-

Obviously xpX & UfJ",1 UÍL, Utj, but, since any element y G U(j, i — l,...,p — 1,

/ >j0, satisfies

«W)^) * °k,(y) < suvn(y) < epv„(y),

we must also have xpX & Uf~x U°°=xUij. Since this last set is closed, we can find a

compact neighborhood UpX of x^, such that x G UpX implies vk(x) < 8pXvn(x) and

UpXn Uu= 0ifi<pandj= 1,2,....

Continuing inductively, it follows that a sequence {(8 -, xpJ, UpJ)]JLx can be

constructed just as in the case i — 1 (taking

\vk(x) !p-x    Jo       \      /?->       \1

í^'"i^)-e(,yJy,í'")uLy,/")l
and 8pt¡< min{ßpq,l/q}) so that (1), (2), and (3) are satisfied for z= l,...,p

(because also 5 . -» 0 as/ -> co). Another application of finite induction leads to the

desired sequence of sequences.

(ii) Taking (z, /) G N X N, choose a continuous function <p,7 with 0 < (p,7 < 1,

9ij(xtj) = 1, and supp(tp,7) C UtJ. For each i G N, put g, = 2~=,<p,7; clearly, g, is a

well-defined continuous function on X, 0 < g, < 1, and g, = 0 on the complement of

U°°=1 Ujj. Now choose a decreasing sequence {i),),gN with tj, > 0 and lim^^ij, = 0,

and set «, = T),g,/2', z = 1,2,...; then {«,},eN is a sequence of nonnegative continu-

ous bounded functions on X. We observe that, given £ > 0, we can choose p G N so

that 7¡p < £ and hence, uniformly on X,

00 00 i 00 -i

2  ", =   2  *),-«, < I, 2    - < Vp < E-
/=/, f-,      ¿ i=p   I

Thus « = "2f=xhj > 0 is a well-defined bounded continuous function on X which

vanishes on the complement of U^, U°°=, Utj.
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We claim that the continuous function /= h/vn belongs to CV0(X)\"{0C(X).

Fixing i E N,

md*M*u)= ̂ frrr^j) * *Mx,j) > **,(*«) *= *?«(*</)
Vn\Xij) I

>**,      /=1,2,....
2'

But this implies that

{x,7};=1 C £,. = {x G X; vv(i)(x)f(x) >^}

whereby F¡ is not compact since vk/vn must necessarily vanish at any cluster point

of {Xij}JLx because lim ...„S,- • = 0. We can thus conclude that/ G C(vvU))0(X); i.e.,

since i G N was arbitrary and <p(i) tends to oo with z, /G ^^(X). Finally, take

v E Fand let e > 0. Then v < inî{akvk; k E N] where ak > 0, k — 1,2,...; put

F= [x G X; u(x)/(x) >£}.

Since/ vanishes on the complement of U°l, U°°=1 Un, any element of £ belongs to

some U¡j. If x G Un where t/,/2' < e/an, then

v(x)f(x) < a„ün(x)/(x) = anh(x) = «„«,(*) = a„-;g,(x) < a„-J < e.

If x G c/7 where S,7 < 2'«^«^, then

vk(x) rj
v(x)f(x) ^ akvk(x)f(x) = a* —^—r-A(*) < ak8iJh(x) *£ ak8,j— < e;

vn(x) JT

i.e., again x G £. Consequently, since r/,/2' -» 0 as i: -> oo and 5, -» 0 as / -> oo,

z = 1,2,..., £ is contained in a finite union of the sets Utj whereby £ is compact.

The proof is thus complete.    D

We will now show that, if the sequence °V= {«„}„ in 2.5 is not regularly

decreasing, then, in fact, lYQC(X) — ind„^ C(vn)0(X) cannot be a regular inductive

limit. To this purpose, let the functions <p,7, g,, and «,, i,j = 1,2,..., be constructed

as in the proof of Theorem 2.5 and define/ = «,/u„ for every z G N. We claim that

fiEC(vk)0(X)\C(v<f(l))0(X).

Fix £ > 0. By definition,/ vanishes on the complement of U°°=1 Ut¡. Since 5,7 -» 0

as/ -» oo, we can find/, =/i(e) such that îj,Ô;7/2' < £ for all/ >/,. Hence x G Un,

j >/,, implies

vk,(x)fÂx) = ̂ y*'W < SUjMx) < Vf < e>

and therefore {x G X; vk¡(x)f(x) > e] E UJL.,1/^ is compact. This proves / G

C( vk )0( X). An inspection of the corresponding part of the proof of Theorem 2.5

reveals that/ G C(vv(i))0(X) since
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/ = 1,2,..., whence £, = (x G X; v(f)(j)(x)f(x) > £,tj,/2'}, since it contains [xtj}p=\,

cannot be compact.

Now, B = (/; i G N} is a subset of %C(X) which, since <p(i) -» oo as z; -> oo, is

not contained in C(v,)0(X) for / = 1,2,^... But for/= 2°i,/ = (v„)~x2f=xhi, the

proof of Theorem 2.5 yields that / G CV0( X); since /. < /, i = 1,2,..., B is clearly

bounded in CV0(X). From Theorem 1.3(a), we can now conclude that B is also a

bounded subset of %fC(X), and so B provides the desired counterexample to

regularity of %C( X).

We should add that the nonregularity of <rV0C(X) for a decreasing, but not

regularly decreasing, sequence T= (u„}„eN of strictly positive continuous weights

on X is always due to the fact that there exists a bounded sequence B in ^^(X)

which is not contained in any C(vn)0(X), « = 1,2,..., as can be seen from the

preceding proof. Hence, in this case, %C(A") is not even a-regular in the terminol-

ogy of [13, 5.2]. Indeed, regularity fails here only in this way since, using the

regularity of TC(Z, £) = ind„^ Cvn(X, E) (estabhshed in [7, 1.7]), the following is

obvious:

If £ is a normed space and CV= (u„}„eN is a decreasing sequence of strictly

positive weights vn on the completely regular Hausdorff space X, \C(X, £) =

ind„^ C(vn)0(X, E) is always ß-regular; i.e., given a set B contained in some

C( vn )0( X, E ) and bounded with respect to the inductive limit topology of %C( X, E ),

there exists m — m(B)>n such that B is bounded with respect to the norm

topology of C(vm)0(X,E).

Let us sum up as follows:

2.6. Theorem. Let X denote a locally compact space and CV = {t>„}„ a decreasing

sequence of strictly positive continuous weights on X. Then

(a) T is regularly decreasing <=> %C(X, £) is (strongly) boundedly retractive

for each normed space E » ^^(X, E) is complete for each Banach space E <=>

%C(X) is complete ~ %C(X) = CV0(X);

(b) T/j not regularly decreasing <=> %C(Z) = ind„_ C(vn)0(X) is not a-regular

<=> CV0C(A') is not regular <=> %C(X) is not (sequentially) complete <=>

%C(X) C CV0(X).

If T satisfies (wV), then it was proved in [7, Appendix] that "{C(X, E) is

(strongly) boundedly retractive for each normed space £. Conversely, if CÏC(X) is

boundedly retractive, it is easy to see (along the lines of the second proof of

Theorem 2.3) that CV0C(X) must also be boundedly retractive and hence complete.

Theorem 2.6 thus allows us to likewise formulate equivalences in terms of °VC(X).

2.7. Corollary. Under the hypotheses of Theorem 2.6, T is regularly decreasing

» CVC(X) = ind„^ Cvn(X) is boundedly retractive <=» <YC(X, E) is (strongly) bound-

edly retractive for each normed space E.

Among other things, of course, Theorem 2.6 provides a ready source for examples

of (LZ?)-spaces %C( A') which fail to be complete and, in fact, are not even a-regular

inductive limits. Also, Corollary 2.7 in conjunction with Theorem 1.13 yields new

examples of complete (£ß)-spaces °VA(X) which are not boundedly retractive.
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Finally, let us note that our regularly decreasing condition also describes the

position of the subspace %C(Ar) in 'YC(X).

2.8. Corollary. Under the hypotheses of Theorem 2.6, the following statements are

equivalent:

(1) "Yzs regularly decreasing;

(2) <\C(X, E) is a closed subspace ofYC(X, E)for each Banach space E;

(3) %C( X) is a closed subspace ofVC( X);

(4) for each Banach space E, \C(X, £) n Cvn(X, E) is closed in Cvn(X, £),

« = 1,2,...;

(5) %C(X) n Cvn(X) is closed in Cvn(X) for each « G N.

Proof. If ^Vis regularly decreasing and £ is a Banach space, <Y0C(X, £) is a

complete topological linear subspace of "ÍC(X, E) by Corollary 1.4(a) and Theorem

2.3; i.e., (1) implies (2). Since (2) clearly implies (4), while (2) => (3), (4) =* (5), and

(3) => (5) are all trivial, it remains to show (5) =» (1).

If 'Y is not regularly decreasing, returning to the proof of Theorem 2.5 and the

subsequent remark on regularity of *YQC(X), we see that the functions/ = hjvn,

i = 1,2,..., belong to \C(X) n Cv„(X). Now, obviously, 2?=1/ = (oJ-'SjL, h,

converges to /= h/vn in Cvn(X) as N -» oo whereby %C(A") n Cvn(X) is not

closed in Cv„( X) since h/vn G %C( X).    D

3. Consequences for £-tensor products. The foregoing development provides a tool

for the investigation of £-products and £-tensor products of weighted inductive limit

spaces, and we now proceed to illustrate the utility of our results by resolving several

questions which remained open in [7]. For the general setting and related work, we

shall refer to that article and 4.4 below.

Let us first recall some notation. The e-product EeF of two I.e. spaces £ and £ is

defined to be the space £e(£c', £) of all continuous linear transformations from F'c

into £ under the topology of uniform convergence on the equicontinuous subsets of

£', where F'c denotes £' with the topology of uniform convergence on the absolutely

convex compact subsets of £. (There is always a canonical topological isomorphism

between £e£ and £e£.)

Now £ ® £ can be embedded in EeF by putting

f 2ej<8>/](/')=   2   (fj,r)ej,       i'^F',
\j=\ I 7=1

and we endow £ <E> £ with the topology thus induced by EeF. The resulting I.e.

space is denoted by £ ®e£, and its completion £ ®e£ is called the (completed)

e-tensor product of £ and £. Properties of the £-product and the £-tensor product can

be found in [16, 31], or [23, II].

3.1. Theorem. Let X be a locally compact Hausdorff space, E a I.e. space, and take

CV = {Vn]n to be a sequence of systems of weights on Xwith Vn+X *K Vnfor each n G N.

(a) T0C( X) ®e £ is a dense topological linear subspace of CV0( X, £).

(b) %C(X) ®e £ = CV0(X, E) if, and only if, CV0(X, E) is complete.
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(c) If% < Vn, n — 1,2,..., and E is complete, then

%C(X) ®eE = CV0(X) ®eE = CV0(X)eE= CV0(X, E).

(d) The equation

%C(X) ®eE = %C(X)eE = %C(X, E)

holds whenever CV = {»B)jEN is a regularly decreasing sequence of weights on X such

that inf{t>„(x); x G K) > 0 for each compact subset K of X, « = 1,2,..., and E is a

Banach space; in this case, "iQC(X) ®eE = *Y0C(X)eE is an ultrabornological(DF)-

space.

Proof, (a) By 1.3(a), %C(X) is a topological subspace of CV0(X). Since the

operation ®e preserves topological linear subspaces, %yC(X) ®eE is a topological

linear subspace of CV0(X) ®eE which, in turn, forms a topological subspace of

CV0(X, E) by [3, L_4.5.(l)]. Moreover, %C(X) is dense in CV0(X), while CV0(X) 8

£Js dense in CV0(X, E) by [3, I, 5.1]. Hence, %C(X)®E is also dense in

CV0(X, £).

(b) is immediate from (a).

(c) Under our assumptions, CV0(X, E) is complete, and hence we have CV0C(X)

®eE = CV0(X,E) from (b). Because F®eG = F®eG is valid for any two I.e.

spaces F, G and their respective completions £ and G, %C(X) ®eE — CV0(X) ®eE.

Finally, CV0(X) is a complete I.e. space with a.p. (proof of 1.4(a), for example), and

so CV0(X) ®e E = CV0(X)eE follows from the well-known fact (due to L. Schwartz

[31]) that F®eG= FeG holds for complete I.e. spaces £ and G if one of them has

a.p.

(d) From what we have just said, 1.4(a) clearly implies %C(X) ®e E = %C(X)eE

whenever ^f0C(X) and £ are complete. We can therefore apply (the scalar case of)

2.3 to get the first equality. But %C(X) ®eE = %C(X, E) follows from (c) and

(the vector valued case of) 2.3.    D

Since Theorem 1.6 treats only the scalar case, the information on tensor products

of weighted inductive limits of type CV0A(X) which follows from §1 is somewhat

incomplete when compared with results like 3.1(d) for Banach space valued continu-

ous functions, but something can still be said.

3.2. Corollary. Let X be a locally compact Hausdorff space, take E to be a

quasi-complete I.e. space, and let T= {ü„}„eN be a decreasing sequence of weights on

X such that inf{t>„(x); x G K] > 0 for each compact subset K of X, « = 1,2,_

Suppose, further, that condition (V) holds, (^(Z), co) is a semi-Montel subspace of

(C(X),co), and that

A(X,E) = {f E C(X, E); e' o f e A(X) for each e' E E'}.

(a) 77ze«

%A(X)eE = AV0(X)eE = AV0(X, E),

and this space equals °V0A( X) ®e E whenever E is complete and CVQA( X) or E has a.p.

(b) Moreover, if E is a Banach space, then <Y0A(X)eE = <Y0A(X, E) algebraically

and has the topology induced from CV0C(X, £).
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Proof, (a) We know from 1.6 that %A(X) = AV0(X). Also, in the terminology

of [5, II], A(X, E) is "weakly determined" by A(X), and hence we can conclude

from [5, II, Theorem 2.9] that %A(X)eE = AV0(X)eE = AV0(X, E). (Holomor-

phic vector valued functions provide one instance where this "weakly determined"

condition is satisfied; other examples can be found in [5, II].)

(b) The algebraic equality (Y0A(X)eE = °V0A(X, E) for arbitrary complete

(D£)-spaces £ was deduced in [7, 3.10 (also see the remark following 1.12)] from an

abstract theorem on the E-product. The topological result follows from 3.1(d) and the

fact that the £-product preserves topological linear subspaces.    D

At this point, we would like to add a few remarks on E-products and £-tensor

products of the spaces %C(A') (and <Y0A(X), respectively) with some (special) I.e.

inductive limit spaces £. In fact, we will use 3.1(d) to obtain an extension of [20,

Proposition 5.6]. In that article, Hollstein applied an abstract theorem which permits

commuting inductive limits and £-tensor products, together with a preliminary

version of our Theorem 3.1(d) (where Twas still assumed to satisfy condition (V)) to

generalize the tensor product representation <Y0C(X, E) = %C(X) ®eE (in a spe-

cial case) to compactly regular inductive limits £ of Banach spaces.

3.3. Corollary. %C(X, E) = %C( X) ®e £ still holds when X is a locally compact

Hausdorff space, E = ind„^ £„ a compactly regular inductive limit of Banach spaces,

and T= {u„}„eN is a regularly decreasing sequence of strictly positive continuous

weights v„ on X such that the maximal system V associated with T ¿s equivalent to a

system V of continuous weights on X; i.e., F*£ V and F< V.

The last assumption is certainly valid whenever X is additionally a-compact, as

can be seen from the proposition in §0.2.

Remark. It follows from the proof of 3.3 below that we also have the following

topological isomorphisms (referring to §0.2 for the definition of ÛÙCV0C(X, £)):

%C(X, E) = %C(X)eE = %C(X) ®tE

= CV0(X) ®eE= CV0(X)eE = CV0(X, E)

= ind%C(X, £„) = ind (%C(X)eE„) = ind (%C(X) ®tEn)
n^ H-» «->

(m) = indC(O0(X, E) = ind (C(vm)Q(X)eE) = ind (c(vm)0(X) ®eE)
V   / m-, m-> m->

= ind ind I or ind ind ) C( vm )0( X, £„ )

(or C(üj0(*)e£n or C(uJ0(X) <M„)

= V)%C(X, E) = ind (C(v„)0(X)eE„) = ind (C(vn)0(X) &,EH).
n-> n->

In particular, for a a-compact locally compact Hausdorff space X and a regularly

decreasing sequence °V of strictly positive continuous weights vn on X, this extends

the algebraic and topological isomorphism %C( X, E) = CV0( X, E) from the Banach

space case (cf. Theorem 2.3) to compactly regular inductive limits £ = ind„^ £„ of

Banach spaces, and \C(X, E) — CY0C(X) ®eE is again an ultrabornological

(ZXF)-space.
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The proof of 3.3 is based upon an analysis of Hollstein's argument [20, Proposition

5.6], From [3,1, 5.3], we know that

\C(X, E) = indC(vm)0(X, E) = ind{C(vm)0(X) ®eE)

= ind(c(vm)Q(X)®e(indEn)).

Since C(vm)0(X) is a ß^-space, m= 1,2,... (Hollstein [20, Proposition 2.3 and

Corollary 2.1]), we may apply [20, Corollary 4.4] to obtain

ind(c(vw)0(X)®e(indEn)) = ind ind(c(vm)0(X) ®eEn).
m-> v ' «->        ' ' m—   n->

At this point, invoking [7, 4.5] to continue,

ind ind(C(vm)0(X) ®eEn) = ind (C(vn)0(X) ®eEn)
m-*    it-* «-»

= ind md(c(vm)0(X)®eEn)
n^*    m-*

= ind indC(vm)0(X, £„) = ind%C(X, En).
n-*    m-> «-*

Moreover, Theorem 3.1(d) imphes

ind%C(X, En) = ind(%C(X) ®cEn).
n-> n->

Now, from Theorem 2.3 and our assumption on V, we have \C(X) — CV0(X) =

CVq(X) is a complete (DF)-space with a.p. (see Corollary 1.4(a)) and an e-space in

Hollstein's terminology [20, Proposition 2.3]. Hence, from [20, Theorem 4.1],

ind(%C(X) ®eEn) = %C(X) ®E(ind£„) = %c(X) ®eE.

The remaining isomorphisms in (*) are clear from 3.1.    D

The topological isomorphism CV0A(X, E) = °ï0A(X)eE was also proved in [7,

4.8], but in a different way (using a factorization theorem for the algebraic equality

and an open mapping theorem plus the fact that the £-product of Silva spaces is a

Silva space to show that the corresponding topologies agree), under the assumption

that X is a k „-space, £ is a Silva space, CV= {«„}„ is a decreasing sequence of

weights on X (such that inf{vn(x); x E K] > 0 for each compact subset K of X and

each « = 1,2,...) which satisfies condition (V), (A(X),co) is a semi-Montel sub-

space of (C( X), co) and that

A(X,E)={fE C(X, E); e' ° f E A(X) for each e' E £'}.

Further, if CY0A(X) (or £) is nuclear, it is enough to assume that £ is a complete

bornological (Z>£)-space instead of a Silva space (cf. [7, 4.7.(4)]), and then

%A(X, E) = %A(X)eE = %A(X) ®CE = %A(X) ®„E.

We now turn to £-tensor products of two inductive limit spaces <Y0C(X) (resp.

%A(X)).
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3.4. Proposition. Let X¡ denote a locally compact Hausdorff space, and take

°\T = (V„ ■}„ to be a sequence of systems of weights on X¡ with Vn+X ,, < Vni for each

« G N, i — 1,2, and denote the system of weights {vx ® v2; vx E Fy, v2 E Fy } on

XxXX2byV%®V%.

(a) CYX)0C(XX) ®e(cV2)0C(X2) is a dense topological linear subspace of

C(V% ® V^)0(XX X X2).

(h) (\)0C(Xx)®e(%)0C(X2) = C(V% ®V%)0(XX XX2) if, and only if,

C(V% ® V%)0(XX X X2) is complete.

(c) Whenever%(X¡)< Vni,n = 1,2,..., i = 1,2,

»2'

(%)0c(xx) ®e(%)0c(x2) = c{v%)o(xx) ®ec(v%)0(x2)

= c(v%)Q(Xx)eC{v%)0(X2)

= c{v% ® v%\(x, X X2).

Proof, (a) By 1.3(a), (C\Ç)0C(AT,) is a dense topological linear subspace of

C(V%)0(X,), i = 1,2^and hence (T^cA^i) ®Á%)oc(X2) forms a dense topologi-

cal subspace of C(Fy )0(XX) ®£C(Fy )0(X2) which, in turn, is a dense topologi-

cal subspace of C(V% ® V%)Q(XX X X2) (e.g., see [4, 1.1]).

(b) and (c) are immediate from (a) because %(XX) < F„ , and %(X2) < Vn2,

«_= 1,2,..., imply %(XX) ̂  V% and %(X2) < V%, whereby %(XX X X2) < V% 8

V%.    D

For X¡ and % = (F„ ,}„, i =1,2, as in Proposition 3.4, we will denote the

system {vnA 8 oB(2; unil G V„A, v„a G Fn2) of weights on Xx X *2 by F„,, 8 F„2;

F«+i,i ® ^«+1,2 < ^,i ® ^»,2. « = 1,2,.... Letting % 8 % denote the sequence

{^,i ® ^,2Ln. we may Iorm the inductive limit space (T, ® %)0C(XX X X,), and

we would now begin to study the relation of the E-tensor product

(%)0C(XX) ®e(%)0C(X2) with this space.

3.5. Lemma, (a) The containment Fy ® Fy2 C Fyi8)cy2 always holds, and hence

(% ® %)„£(*, x x2) c c(Fy|8%) (x, x ir2) c c(v% ® *%)„(*, X X2)

with the inclusion mappings being continuous.

(h) Let % = {v„ ,}„eN denote decreasing sequences of weights vni on X¡for i = 1,2,

and let %®%= {vnX ® u„,2}„EN. TTzevz F%(8% < F% ® F% whence

C(V%0%)Q(XX X X2) = cfí^ 8 FyJo(^ X X2)

algebraically and topologically.

Proof, (a) Choose t>, = inf{anvnX; « G N} G Fy, v2 = inf{/?„,«„, 2; «1 G N} G

Fy2, where a„, y8m > 0, «„_, G F„ ,, t>m2 G Fm2, «, w = 1,2,.... Then_obviously

vx ® v2 =£ infj («„&)(!;„,, ® vn2); n E N] E V%lg)% whereby vx®v2E V%9%. But

this implies Ky( ® Fy2 C Fy^.
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(b)   Fix     v = inf{ynt)nil 8 vn2;   «£N}6^.   Then,   choosing  a„,   ßn

max(y„, 1), « = 1,2,..., for any «, m E N, we obtain

v v

V„ , » Vm , «„,„,„ „,,»»,,

< Y     /     x < a ß
vn,\ ^ vm,2 umax(n,m),\ ** vmax(n,m),2

whence o < mf{anvn ,^_ « G N} ® inf{j8McMi2; m G N} G F^ 8 Fy2 C F% 8 F%;

the fact that Fy g,cy < Fyi 8 Fey now clearly follows.    D

In the setting of Lemma 3.5(b), C(Fy 8 FY)0(Ar1 X X2) can be replaced by

(T, 8 cV2)0C(Ar1 X J2) in the statements of Theorem 3.4(a) and (b), as can be seen

by combining 3.4(a), 3.5(b) and 1.3(a).

On the other hand, the following example shows that Lemma 3.5(b) can fail to

hold for sequences T= (F„}„ of systems of weights.

Example. Consider

£={e = (e„)„Gc0=C0(N);

e is a monotonically decreasing sequence of positive numbers},

and put Xx = X2 = £ with the discrete topology. For each n G N, set v„ x(e) — e„

for all e = (en) E Xx, and note that °ïx = [v„ x]n(Els is a decreasing sequence of

(continuous) weights on Xx. Further, put Vn2 = [X/vjX; X > 0,/ G N], « = 1,2,...,

and observe that % = {F„ 2}„eN is also a decreasing sequence of systems of

(continuous) weights on X2.

Now, taking v = M{t)„A ® l/vny, n E N] E Fyi<8<y2 C Fy|l8<y2, let us suppose

that there exist w, G Fy and w2 G Fy such that t> < tï, 8 ü2. Then there are

sequences {a„}„eN and {/3„}„eN of positive numbers (without loss of generality, we

can assume (an)„ is monotonically increasing with lim„^00an = +oo)andu„2 G Vn2,

« G N, so that v < ux 8 tz2 where w, = inf(a„i;„ ,; « G N} and u2 = inf{ßnun2;

n E N). Since v(e, e) = 1 for all e G £, it follows that M,(e) > 0 for each e E E.

However, putting/, = l/a\, « = 1,2,..., we have that/= (/„)„ G £ while «,(/) =

inf{anvn,(/); « G N} = inf{l/an; « G N} = 0 which is the desired contradiction.

Let us remark at this point that, in the preceding example, C(VcVlscV)0(Xl X X2)

C C(Fy 8 Vaf)0(Xx X X2) with continuous inclusion, but that we cannot have

C(V%9<ÍMX*X X^> = C(^\ ® ^V2)o(^i X X2) topologically by [34, Theorem
3.3].

3.6. Lemma. Let ^ = [v„ ,}„6N denote decreasing sequences of weights vn , on X¡,

i = 1,2, such that inf{t?„if-(jc); x E K¡] > 0 for each compact subset K¡ of X¡, « =

1,2,..., and i = 1,2. 77ze« we have the following:

(a) °Y, 8 °V2 is regularly decreasing if, and only if, both % and % are regularly

decreasing;

(b) % 8 T2 satisfies condition (V) if, and only if, both °V, and T2 do also.

Proof, (a) Let us assume that, given « G N, there exists m > « such that, for

every e > 0 and every k > m, it is possible to find 8(k, e) > 0 with

Vi(*i)*V2(*2) >c  ^   *kA*ih>kA*i) ^ 5,k~ \
v„,Axx)v„a(x2)  ' vnA(xx)vn2(x2)
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Fixing « G N, m > n as above, e > 0, k > m, and x2 G X2, we put

x/,        \-iIl.       Vm,2(Xl) \  »„¿M
8x(k,e) - 8\k,e—'-—r- \-~—. .

\     %,i(xi) ! ^,2(^2)

Then vm ,(x,) > evn ,(x,) implies

vmA(xx)vm2(x2) >   e m'2    2     v„A(xx)vn2(x2),
\     Vn,2\X2J   I

and hence

V2U2)
«*,l(^l)^,2(^2) >S\k, E-^-T—y |U„ ,(x,)t)„ 2(x2)

vn,2\x2J

from which we obtain vkx(xx) > 8x(k, £)unl(x,). Thus T, is regularly decreasing,

and we can conclude in exactly the same way that % is regularly decreasing.

In the other direction, let T, and % be regularly decreasing; i.e., given « G N

there exist mx, m2> n such that for every e > 0 and every k > m¡, it is possible to

find 8¡(k, e) > 0 with vm¡i(x,) > evni(xt) implying vki(xi) 3* 8¡(k, £)t>„,(x/), i =

1,2. Putting «1 = max(w,, m2) and 8(k, e) = 8x(k, e)82(k, e), k~s* m, we observe

that vni>vm:J>vmi. Hence vm x(xx)vm2(x2) > evn x(xx)vn2(x2) for some £>0

yields vm ,(x,) > ev„ x(xx) and vm 2(x2) > evn2(x2) whereby, for every k > m, both

vk x(xx) > 8x(k, e)v„ x(xx) and vk2(x2) > 82(k, e)vn2(x2). The two inequalities yield

vk,\(x\)vk,2(x2) * a(/V> e)u„1(x1)i;„ 2(x2) whence T, 8 "{2 is regularly decreasing.

(b) The argument is similar, and just as easy, as the one preceding. (Also, see the

remark after 4.10 in [7].)    D

After these preparations, we proceed to the next result.

3.7. Theorem. Let X: denote a locally compact Hausdorff space and take ^ =

{t>„ ,}„6N to be a decreasing sequence of weights vnj on Xi such that inf{t>„ ,(x);

x G K¡} > 0 for each compact subset K¡ofXi,n= 1,2,..., z = 1,2. If both T, and %

are regularly decreasing, we obtain

(%)0C(Xx)e(%)0C(X2) = (%)0C(XX) ®t(%)0C(X2)

= (%®%)0C(XXXX2).

Conversely, if the weights vni, n = 1,2,..., i = 1.2, are all continuous, then the second

of these topological vector space isomorphisms implies that both T, and T2 are regularly

decreasing.

Proof. By Theorem 3.4(c) and Lemma 3.5(b), the second equality holds if, and

only if

(% ® %)0c(xx x x2) = c(v^%)o(xx X x2).

But from Theorem 2.3, this is satisfied whenever T, 8 ^ is regularly decreasing,

while Theorem 2.5 asserts that, conversely,

(% 8 %)QC(XX X X2) = C(V^%)Q(XX X X2)
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implies % 8^ is regularly decreasing whenever all the weights u„, (i = 1,2,

n = 1,2,... ) are continuous. It now only remains to apply Lemma 3.6(a).    D

A different proof of the following corollary was given in [7, 4.9],

3.8. Corollary. Let Xi and %,i= 1,2, be as in Theorem 3.7, and let ( A¡( X¡), co)

denote a semi-Montel subspace of (C(X¡), co) for i = 1,2. If we assume that both T,

and"i2 satisfy condition (V) and put

AX2(XxXX2)={fEC(XxXX2);f(-,x2)EAx(Xx)andf(xx,-)EA2(X2)

for every pair (x,, x2 ) G Xx X X2},

then the following topological isomorphism holds:

(%)oMXx)e(%)0A2(X2) = (% 8 %)0AU2(XX X X2).

Proof. From Theorem 1.6, we have

(%)0AÍ(XÍ)=A,(V%)0(XÍ)    and    (%)0A2(X2) = A2{v%)Q(X2)

whence

(%)<¿i(xM%)^iW = M?%\M^{ñiiUxi)
= AU2(V%®V%)0(X^X2)

follows from the slice product theorem [4, 3.2], Applying Lemma 3.5(b), we see that

(%)0Ax(Xx)e(%)0A2(X2) = Au2(V%v%)0(Xx X X2). On the other hand, % ® %

also satisfies condition (V) by Lemma 3.6(b), while it is not hard to prove that

(AX2(XX X Z2),co) is a semi-Montel subspace of (C(XX X A^Xco); e.g., by the slice

product theorem, (AX2(XX X X2),co) is nothing but (Ax(Xx),co)e(A2(X2),co), and

it is known from [23, II, §44, 3.] that the £-product of semi-Montel spaces is again

semi-Montel. Instead of making use of such an abstract permanence property of

the E-product, however, it is somewhat easier in our case to directly verify that

(AX2(XX X A^), co) is a semi-Montel space, using, say, the Arzelà-Ascoli theorem

along with the local compactness of Xx and X2. We may now apply Theorem 1.6

once more to conclude that AX2(V^0cy2)o(Xx X X2) = (% 8 \)0Ah2(Xx X X2),

which serves to prove our assertion.    D

Let us remark at this point that if AX(XX) and A2(X2) denote the spaces of

holomorphic functions on open subsets Xx and X2 of C^1 and C'*'2, respectively, then

AX2(XX X X2) is exactly the space of holomorphic functions on Xx X X2. For more

examples and information on other "slice properties ", we refer to [5, II, §111].

3.9. Corollary. Let X¡ and % i = 1,2, be as in Theorem 3.7, let (A(X2),co)

denote a semi-Montel subspace of(C( X2), co), and define

CA(XX X X2) = {/G C(XX X X2);f(xx, ■) E A(X2) for each x, G Xx).

We also assume that % satisfies condition (V).

(a) Then (%)0C(XX) ®e(%)0A(X2) = CA(V^%)0(XX X X2).

(b) If "ix is regularly decreasing, either space in (a) is topologically isomorphic

to (cV,)0C(A'1)e(T2)0^(A'2), which in turn equals (% ® %)0CA(XX X X2) =

ind„^ CA(vn , 8 vn2)0(Xx X X2) algebraically and has the topology induced by

(% 8 %)0C(Xy X X2),



144 K. D. BIERSTEDT, REINHOLD MEISE AND W. H. SUMMERS

Proof. Part (a) follows from Theorems 1.3(a), 1.6, the slice product theorem, and

Lemma 3.5(b) in the " usual" way; i.e.,

(%)Qc(xx) ®e(%)0A(x2) = c(?%)0(*,) ®ca(v%)o(x2)

= CA{V% 8 V%)0(X} X X2) = CA(V%*%)0(XX X X2).

For (b), if T, is regularly decreasing, we have (cV,)0C(Ar1) = C(Fy )0(A",) by

Theorem 2.3; since this space is complete and has the a.p., we have that the

E-product and the £-tensor product agree. The algebraic identity

(%)0C(Xx)e(%)0A(X2) = (%®%)0CA(XX X X2)

follows from [7, 4.6], noting that CY2)0A(X2) is a Silva space because of condition

(V). Finally, (%)0A(X2) is a topological linear subspace of (CT2)0C(A'2) in view of

0.4(d),   and   hence   (cïx)QC(Xx)e(cï2)QA(X2)   is   a   topological   subspace   of

(%)0C(Xx)e(%)0C(X2) = (% 8 %)0C(XX X X2) (see 3.7).    D

In [7, 4.10], it was remarked that, under the conditions of 3.9(b),

TOoCW <M%)ry4(*2) = (% ® %)0CA(Xl X X2)

holds algebraically and topologically whenever (CV2)0A(X) is a nuclear space. Simi-

larly, in the setting of 3.8,

(%)0Ax(Xx)e(%)0A(X2) = (% ®%)0AU2(XX X X2)

holds whenever CYX)0AX(XX) and CY2)0A2(X2) are complete spaces with one of

them being nuclear. (In this case, it is not necessary to assume that both T, and %

satisfy (V) nor that both (Ax(Xx),co) and (^(A^co) are semi-Montel.)

Using induction, there is an additional remark which can be made as an im-

mediate consequence of Theorem 3.7 (and well-known properties of the E-product):

Let Xj denote locally compact Hausdorff spaces, and take % = {vn ,}„eN to be

decreasing sequences of weights vn¡ on X¡ such that inf{t)„ ,(x); x G K¡) > 0 for

each compact subset K,, of X¡, « = 1,2,..., z = 1,..., A''. If all the sequences % are

regularly decreasing, then the following topological isomorphisms hold:

(%)0C(Xx)e ■ ■ ■ e(%)0C(XN) = (%)0C(XX) ®e ■ ■ ■ ®e(%)0C(XN)

= (%®-..®%)0C(XxX---XXN).

To conclude this section, let us point out that, in [24], one of the authors studied

nuclear inductive limits of weighted spaces of holomorphic functions and topological

tensor products of such limits with regard to applications in the theory of represen-

tation of distributions in several variables as boundary values of holomorphic

functions. One aim in [7] was to remove, as far as possible, the nuclearity assump-

tions in the topological tensor product results of [24] by considering E-products

instead of vr-tensor products. The "best" results in this direction were 4.8 and the

second part of 4.9 in [7], where only a compactness condition remained; i.e., the

decreasing sequence CV= {«„}„ of weights had to satisfy (V). Now, to sum up, our

present Theorems 3.1, 3.3, and 3.7 contain much more information, while we are

able to recover and improve most of the former tensor product representations for
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spaces of holomorphic functions in 3.2 and 3.8. However, as mentioned above, the

latter results are still somewhat incomplete due to the fact (see the Problem in 0.4)

that it is not known whether the last assertion of 0.4(d) remains true for, say,

holomorphic functions with values in a Banach space.

4. Examples. Discussion of related work.

4.1. In the theory of Ehrenpreis [11], a I.e. space W of functions, or more general

objects such as distributions or ultradistributions, on RN is called analytically uniform

(A U) if the following three requirements are satisfied:

(a) There exists a I.e. space IF' such that IF is the dual of IF' and the topology of

IF is the strong topology ß( W, W').

(h) For each z E CN, we have exp(z'( • , z)) G IF, and the map z -» exp(z'( • , z» is

complex analytic from C^ into IF. Moreover, the span of the exponentials is dense

in W. Thus, for any S E W', the abstract Fourier transform S, where

5(z) = 5(exp(z'(-,z»)    for all z G CN,

is an entire function; the space W' of Fourier transforms of elements of IF' is

topologized so as to make the Fourier transform S -* S a topological isomorphism.

(c) There exists a system F of nonnegative continuous functions p on C, which is

termed an A U-structure for IF, such that (in our terminology) IF' is a topological

linear subspace of HV0(CN).

There may exist many different A ¿/-structures for a given A {/-space. In fact, to

prove his main result in Part A of [11], the so-called "Fundamental Principle"

(Quotient Structure Theorem, Integral Representation Theorem) for partial differen-

tial equations, Ehrenpreis put further conditions on IF which imply, for example,

that

IF' = HV0(CN) = HV(CN)    algebraically (and topologically),

and involve being able to choose an A ¿/-structure F for IF with " localizability"

properties which are too technical to be explicitly noted here. An A ¿/-space IF which

satisfies these additional conditions is called product localizable(PLA U).

In their Lecture Notes [2] (which are dedicated to applications of A ¿/-spaces to

convolution equations), Berenstein and Dostal changed the definition of A ¿/-space

somewhat. Instead of (c) above, they required that

IF' = HV(CN)   algebraically and topologically,

where the functions v E F are assumed to be strictly positive, as well as adding some

other conditions which Ehrenpreis had noted for PLA ¿/-spaces.

An analysis of the existing situation led Berenstein and Dostal [2, p. 5] to the

general problem of finding (what they call) "complex representations" for spaces of

entire functions. In our terminology, the problem is as follows: Given a I.e. space

<3='3:(CN) of entire functions on C* under a topology which is stronger than

uniform convergence on compact subsets, when is it possible to find a system F of

strictly positive continuous weights üonCJV such that, as topological vector spaces,

*$ = HV(CN)1 If this occurs, HV(CN) is termed a complex representation of W, and it

is pointed out in [2] that the methods of Ehrenpreis demonstrate the importance of
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concrete complex representations for solving linear equations (or systems of equa-

tions) of convolution type in various spaces of functions, distributions and ultradis-

tributions. They further note that it may be important in applications to be able to

replace a large system V of weights (such that HV(CN) is a complex representation

for a given space ?7) by some smaller subsystem which yields the same topological

vector space of entire functions and in which the weights all share additional " nice"

properties.

In the course of the present development, we have, of course, solved the complex

representation problem in one important general case; namely, if T= [vn]n is a

decreasing sequence of strictly positive continuous weights on C^ which satisfies

condition (V), then the space Sr= <YH(CN) = %ZZ(CA') has the complex representa-

tion HV(CN) = HV0(CN) as a consequence of 1.6, 1.8, 1.9, and 1.11. In fact, some

of our work in the latter part of §1 can be seen as an effort to reduce the maximal

system F= Fy associated with the sequence CV= [vn}„ to the more "manageable"

form F = Fy in which the given "data" vn occur in a more direct way and "nice"

properties become easier to derive.

We should also add at this point that our result 1.3(a), (b) on CV0C(X) clearly

seems to open up the possibihty of obtaining at least a " weak" complex representa-

tion HV0(CN) for each space %H(CN), where °Y= {F„}„eN is allowed to be a

sequence of systems of weights on CN such that % < V„ for « = 1,2,_However,

as we have pointed out before (in the Problem of §0.4), we do not know whether

°V0H(CN) is still a topological subspace of %C(CN) in this more general setting.

In both [11] and [2], complex representations have been found for many important

nuclear function spaces and (ultra-) distribution spaces by ad hoc methods; it was

then proved that the corresponding dual spaces were AU or even PLAU. Let us

demonstrate, by way of a special and well-known example, how the question of

projective characterizations of weighted inductive limits of entire functions may

enter into the proof that a given function space is analytically uniform. Taking

W= $ = &(RN) to be the space of all infinitely differentiable functions on R^

under its usual (£)-space topology, an appropriate version of the Paley-Wiener-

Schwartz theorem asserts that the Fourier transform is a topological isomorphism of

W' = &, the space of distributions with compact support endowed with the strong

topology ß(&, &), onto IF' = TZZIC") where T= {v„]„^N with

"   exp(-«|Im(zj)|)

»„(*)=   II    -;-—■\\n-> Z=(ZX,...,ZN)ECN.
y=i      (1 + lz>l)

Since Tis a decreasing sequence of continuous weights on C^ which satisfies (V),

our general results from §1 apply to yield that V (or V) is an ^¿/-structure for S,

and so we have a proof of the well-known fact that & is an A ¿/-space in the sense of

Ehrenpreis; indeed, S is PLAU [11]. Similarly, if one tries to prove that certain

related spaces of ultradifferentiable functions are AU, known Paley-Wiener-

Schwartz-Komatsu theorems reduce the problem to verifying an equality like

%H(CN) = HV0(CN) for a corresponding system CV= {v„}„ to which 1.6 and 1.9

again apply.
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The situation for <$', which is known to be LA U in the terminology of Ehrenpreis

(cf. [11]), and the related spaces of ultradistributions, where another Paley-Wiener

type theorem may be used to obtain a topological isomorphism between the dual

and a weighted inductive limit of entire functions, is more complicated and not yet

covered by our results because the above-mentioned topological subspace problem

remains open in the (LF)-case.

Quite recently, S. Hansen ([18], [19]) has given a new treatment of (the more

functional analytic aspects of) the Fundamental Principle of Ehrenpreis in which,

roughly speaking, solutions of (systems of) homogeneous linear partial differential

equations with constant coefficients have natural integral representations as "su-

perpositions" of exponential-polynomial solutions. As we have already noted, the

proof of the Fundamental Principle depends in an essential way on having a

complex representation (of the dual) in the sense of Berenstein-Dostal and an

A ¿/-structure V with certain localizability conditions. Hansen [19], using a new

definition of LA ¿/-spaces, clarifies the role of these conditions on F and explains

how Hörmander's results on cohomology with bounds come into play at this point.

In [19, §4], also noting that many spaces of entire functions occurring in Fourier

analysis a priori arise as weighted inductive limits, Hansen utilizes results and

techniques from a preliminary version of the present paper in showing that a large

and important class of ( LZ? )-spaces of entire functions, or rather their strong duals,

can be given LAU-structures (in his sense) which define these spaces algebraically

and topologically. Combining this with known Paley-Wiener type theorems, he then

establishes that S(£2) and the spaces Sw(í2) and $(Q,(M )) of ultradifferentiable

functions (as introduced by Beurling and Roumieu, respectively) are LA ¿/-spaces for

any convex open set fi in RN. We refer the reader to Hansen's interesting and

readable articles [18] and [19] which go far beyond the partial results in this direction

obtained independently by the present authors.

Let us further note that, also quite recently, O. v. Grudzinski [17] has applied our

Theorem 1.6 (together with its refinement 1.9) to conclude that ^(w, M), %(«, M)

and %(w, M) (in his terminology), spaces which play an important role in his study

of convolution equations, have A ¿/-structures.

4.2. The first unifying general result for weighted spaces of entire functions in the

direction of our Theorem 1.6, and with applications to analytically uniform spaces,

is due to B. A. Taylor [37] (also see [36]); it can be phrased as follows:

Let ($„}„eN denote an increasing sequence of plurisubharmonic (p.s.h.) functions

on C^, and suppose that

(i) for every « > 1, On+, — <ï>n is bounded above on every bounded set;

(ii) <Dn+1(z)>log(l + ||z||2) + sup{1>n(z + £); ||£|| < 1} on C* « = 1,2,...,

where || • || denotes the Euclidean norm.

Next, consider the weights vn = exp( — <&„), n = 1,2,... ¡ and construct the induc-

tive limit space CYH(CN) = ind„^Hvn(CN) as in 0.1 and 0.2; as an associated

system of "weights" on C*, Taylor takes

V = {v; l/v is u.s.c. and l/v > en exp(<J>„) for some constants e„ > 0 and all «}.
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The assertion (Theorem 1 of [37]) is then that the space HV(CN), defined as in 0.1,

induces the inductive limit topology on °VH(CN). In Taylor's argument, by the way,

it is implicit that "V/ZiC") = HV(CN) algebraically.

Indeed his proof is interesting from several points of view, and is essentially direct.

Roughly speaking, the crux of his argument lies in replacing supremum norms by

(weighted) £2-norms and the use of Hörmander's existence theorems for solutions of

the 3-equation with certain growth conditions (from the theory of several complex

variables). Subsequently, Servien [32] asserted a more general theorem than Taylor's,

claiming to have avoided Hörmander's techniques through a different approach.

Unfortunately, Servien's argument has a gap at exactly this point, and it seems

unlikely that the result can be obtained along these lines (cf., for example, the

reviews of [32]).

For a comparison with our Theorem 1.6 as applied to entire functions, let us

remark that, clearly, our setting is different from Taylor's insofar as conditions on

"weights" are concerned. Our weights vn are u.s.c, or even continuous, and we

impose the same continuity conditions on the elements of the associated systems F

or F, respectively. In contrast, Taylor's weights vn have the special form exp( —$„)

with í>„ p.s.h., which is needed in order to apply Hörmander's theory, and he

requires the functions l/v to be u.s.c, where v denotes the elements of his system V.

Apart from this, however, F corresponds exactly with our maximal system V.

Concerning the special form of Taylor's weights, while we do not need plurisub-

harmonicity in our arguments, whereby this hypothesis is not needed to obtain

A ¿/-structures in general, it has been pointed out by Hansen [19] that plurisubhar-

monicity has a significant part in deducing the additional localizability conditions

required for the proof of the Fundamental Principle. Since each p.s.h. function is

u.s.c. by definition, and hence bounded above on each compact set, Taylor's weights

vn = exp( —$n) satisfy our assumption

(*)   inf{u„(x); x G K) > 0 for each compact subset Kof C",       « = 1,2,...,

while his condition (i) above guarantees that vn+x/vn = exp( — [<!>„+, — $„]) is

bounded away from 0 on each compact set, which is also satisfied in our setting.

Next, we remark that condition (ii) obviously implies

4»„+1(z)>log(l + l|z||2) + $„(z),

and hence

vñ±^L=exp(-*,+ ,(0)     _1 „        „ = 1,2,;..,

V    ;        vn(z) exp(-<I>„(z))        l + ||z||2

whereby, in particular, the sequence CV= {u„}„ in Taylor's theorem satisfies our

condition (V). However, while (V) only yields compactness of the embedding maps

Hvn(CN) — Hvm(CN) when m = m(n) > « is large enough so that it is not possible

to infer more than that °{H(CN) = %H(CN) is a Silva space, the full force of (ii), at

least for continuous weights vn, implies nuclearity of the embeddings Hvn(CN) -*

Hvk(CN), for large enough k = k(n) > n, and so, in Taylor's theorem, "(H(CN) =

\H(CN) will be a (DFN)-space. (This can be deduced, for example, from [24, §2,
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Satz 2] in a standard way, using (**) and the estimate

vn+x(z) = exp(-$„+1(z)) < exp(-sup{On(z + f); |||fl < 1})

= inf{vn(z + è);H\\<\},

z G CN, « = 1,2,..., which readily follows from (ii).) Note that, in some sense,

nuclearity was needed in Taylor's proof so as to replace weighted sup-norms by

L2-norms, but no such hypothesis is necessary for our arguments. Moreover,

condition (V) is much easier to check than condition (ii) above.

As we have already noted, Taylor's argument uses deep results from complex

analysis in several variables, while our method is purely functional analytic. Of

course, dealing directly with entire functions tends to rule out partition of unity

arguments, and it is here, at least from the point of view of applications to weighted

inductive limits of holomorphic functions, that we have made a "detour" by first

considering the case for continuous functions (Theorem 1.3) where we could make

use of the space CC(X) and continuous partitions of unity, and then deducing the

result for holomorphic functions (Theorem 1.6) via Baernstein's open mapping

lemma [1],

It might be possible, by the way, to extend Taylor's method of proof to include

holomorphic functions on (strictly) pseudoconvex domains in C^ (where

Hörmander's techniques are still available). But, as one advantage of our method,

such restrictions are altogether avoided through an immediate extension to arbitrary

open subsets of C^. Part of this paper arose from an effort to find such a

generalization of Taylor's result, and Theorem 1.6 accomplishes this task, but we

should again mention that many questions still remain with import for the theory of

A ¿/-spaces, as well as from a more structure theoretic point of view.

4.3. Weighted inductive limits of spaces of holomorphic functions also occur in a

very natural way in many applications in complex analysis and spectral theory. Since

it is virtually impossible to note all important papers from this area, we shall refer

instead to Ferrier's book [12] in which much pertinent material, including some

interesting relationships between the work of Waelbroeck, Cnop, and Ferrier in

spectral theory along with results in complex analysis due to L. Hörmander, N.

Sibony, and B. A. Taylor, among others, can be found.

More specifically, let 8 denote a " weight function" in the terminology of [12]; i.e.,

a nonnegative continuous function on C^ such that

(Wl) supzeC/v ||z||5(z) < oo and

(W2)|fi(z)-8(z')|< \\z- z'\\ for all z, z' 6C",

where 11 • || is the Euclidean norm. Although (S")„6N is not necessarily decreasing,

since 8 is bounded by a constant C > 0 on C^, (8"/C")neN is an "equivalent"

decreasing sequence; for the open subset X = {z E CN; 8(z) > 0} let v„ = 8"/C \x,

« = 1,2,..., and take °V= {vn}„sN. Ferrier [12] uses 6(8) to denote our YH(X),

and a large part of his book is centered around these spaces and their applications in

spectral theory and complex analysis; for an instance of concrete examples, see [12,

1.2]. Also note that 8 clearly vanishes at infinity on X, and hence T satisfies our

condition (V).
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Early in his book [12, p. 13], Ferrier says (essentially) that, while it would be

possible to consider the inductive limit topology of °VZZ( A') on 0(5), such a topology

is not easy to handle, and therefore, roughly speaking, he prefers to work with the

system (Hvn(X))neN of generating spaces itself (rather than going to the limit

space). So, instead of standard locally convex theory, the notions of boundedness

structures, polynormed vector spaces, and filtrated ¿-spaces are used throughout

[12]. But now note that our Theorem 1.6 applies to give a good, explicit description

of the inductive limit topology on 0(5) in terms of weighted seminorms.

4.4. There is an interesting connection between Theorem 1.3(d) and a "classical"

result due to L. Schwartz. To illustrate this, let us drop the convention that our

weights are upper semicontinuous and real valued. Then, taking X to be locally

compact and a-compact, let (Ä„)nEN denote a sequence of compact sets such that

X= UneXSK„andKn C Kn+X,n = 1,2,...; for each« G N, put

i \   f ''    xGKA
VÁX)=\+O0,    x*Kn[

Adopting the usual convention 0(+ oo) = 0, we have that C(v„)0(X) = CK(X), the

Banach space of all continuous functions on X with support contained in Kn under

the supremum norm, « = 1,2,..., while

%C(X) = ind C¿X) = CC( X)
n->

is the space of all continuous functions with compact support under the canonical

inductive limit topology. Moreover, °T= {t>„}„ satisfies condition (V) in a well-de-

fined way, the system V = Fy (associated with T exactly as in 0.2) consists of all

nonnegative continuous functions on X, and it is not too hard to show that

Cc( X) = CV0(X) algebraically and topologically.

This result is essentially due to L. Schwartz [30]; a discussion of its possible

extensions to more general spaces X and to vector valued functions can also be

found in [30, 33, 3, I], and [20, 5.4], At this point, however, let us note that, for an

uncountable discrete space X, CC(X) and CV0(X) are equal algebraically, but have

different duals [33],

4.5. We shall conclude this section with two additional remarks. Firstly, throughout

the paper, we have concentrated on the inductive limits CVC(X) and *\C(X), but

some interesting consequences for the weighted spaces CV(X) and CV0(X) have

also been obtained; e.g., see 1.3(d), 1.4(c), and 2.3. In fact, if a system F of weights

on a locally compact space X arises as the maximal system Fy associated with a

decreasing sequence T = {u„}„eN of weights vn on X such that inf{u„(x); x 6i}>0

for each compact subset KofX,n= 1,2,... (that is, if F is the set of weights conl

such that v/vn is bounded for each « G N), then CV0(X) is (at least) a barrelled

(DF)-space, while if <Y= {vn}„ is also regularly decreasing, then we know that

CV0(X) is ultrabornological as well. Furthermore, the remarks preceding 1.12 show,

at least when X is a-compact, that the space CV(X) always has a fundamental

sequence of bounded sets (since this is true for CVC(X) and the two spaces have thé
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same bounded sets). As for obtaining information about the weighted spaces CV( X)

and CV0(X), a study of uncountable weighted inductive limits (as considered at the

very beginning of [7]) could well be worthwhile. Also, we refer to [7, 2.10] for an

interesting construction which, in a certain sense, reverses the approach we have

taken here and associates an "internal" weighted inductive limit with weighted

spaces like CV(X); a remark by B. A. Taylor [36] prompted the work in this

direction.

Secondly, the sequence spaces *YC(X) and \C(X), taking X = N (or N X N),

which have occurred at various points in the present article (see 1.5, 1.12-13, 2.4(c))

have been studied in other contexts. In fact, the spaces CYC(N) are inductive limits of

weighted /^-spaces, called "co-echelon spaces" in Köthe's terminology, while the

inductive limits %C(N) of weighted c0-spaces have been considered by Köthe,

Dubinsky, and many others; in this setting, condition (V) corresponds to the

well-known Silva space criterion for co-echelon spaces. Our Theorem 2.6 gives a

complete classification of inductive limits of type %C(Ar) with regard to regularity,

bounded retractivity, and completeness in terms of T being regularly decreasing;

even in the case of sequence spaces, these results were apparently not previously

known.

Moreover, from our work in §§1 and 2, it is not too hard to add some new

conclusions to the classical theory of echelon and co-echelon spaces. Fixing a

decreasing sequence CV= [v„]n of strictly positive weights on N, we let B = (bn)n =

{l/u„}„6N denote the corresponding increasing sequence of sequences and take

A(B) to be the associated echelon space (see the remarks before Theorem 1.13).

While it is well-known that %C(N)' = A(B) and A(B)' = CÏC(N) (= CV(N)) alge-

braically, we can note the following additional facts:

(1) The echelon space A(B) under its canonical Fréchet topology is the strong

dual of %C(N) or CF0(N).

(2) The strong dual of A(B) is equal to the weighted space CF(N) (but may differ

from "VQN) topologically).

(3) (%C(N);); = (CV0(N)'b)'b = CV(N) algebraically and topologically.

Proof. (1) Clearly (by polarity), ß(A(B), %C(N)) is stronger than the Fréchet

topology of A(B), which therefore coincides with both ß(A(B), "(CCN)) and

ß(A(B), %C(N)). But since %C(N) is a (ZJF)-space and CV0(N) = %C(N) by

1.3(b), an observation in [23,1, §29, 5. (3), proof of a)] yields %C(N); = CV0(N)'b.

(2) As the completion of the barrelled space ^QN), CF0(N) is barrelled, and

hence a simple polarity argument shows that each bounded subset A of A(B) =

CV0(N)'h is contained in a bounded set in A(B) of the form

\x = (xk)kGA(B);   2   %Ulj'       ^V.
{ t6N v(k)       J

At this point, another look at the proof that A(B)'b -> CV(N) continuously (see

Example 1.12 and the subsequent remarks) reveals that, in fact, CV(N) -» A(B)'b

continuously, as well.    D
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(4) Tis regularly decreasing if, and only if, A(B) is quasi-normable (and this is

equivalent to A(B)'b satisfying the strict Mackey convergence condition).

Proof. From Corollary 2.7, we know that Tis regularly decreasing if, and only if,

TC(N) is boundedly retractive; i.e., if, and only if, "VCfN) satisfies the strict Mackey

convergence condition. Next, note that T being regularly decreasing implies A(B)'b

= <YC(N) topologically. In fact, if T satisfies condition (wV), the full force of [7,

Appendix] shows that each bounded subset of CF(N) = A(B)'b is metrizable whereby

A(B)'b is bornological (e.g., see Köthe [23,1, §29, 4. (3) and the subsequent remark]).

Hence, we can conclude that CYC(N) = A(B)'b since °VC(N) is the bornological space

associated with A(B)'b. At this point, it remains to note that an infrabarrelled I.e.

space £ is quasi-normable if, and only if, its strong dual E'b satisfies the strict

Mackey convergence condition (Grothendieck [15, p. 106]) and that a metrizable

quasi-normable space is distinguished [15, Proposition 14],    D

As a corollary to (4), we obtain:

(5) If Tis regularly decreasing, A(B) is distinguished, CV(N) = A(B)'b = CÏC(N)

topologically, and C{iC(N) is the strong bidual of both %C(N) and CF0(N).

However, none of the implications in (5) can be reversed. Indeed, if A(B) is an

(FM)-space, which is not a Schwartz space (e.g., see Köthe [23, I, §31, 5.]), then

A(B) is distinguished, but not quasi-normable. Hence, in this case, Tis not regularly

decreasing, ^CíN) is not complete, not semireflexive, and not closed in "{C(N)—in

fact, %C(N) = CF0(N) = CV(N) = TC(N), but A(B)'b = TC(N) and (%C(N)'b)'b =

(CF0(N);); = TC(N) topologically.

5. Concluding remarks. The local compactness hypothesis on X was used in an

essential way to prove the general results in the first part of §1. However, it is

possible to derive an analogue of Theorem 1.6 when A' is a completely regular

hemicompact Hausdorff space, and we sketch the proof of such a result in the first

part of this section. In particular, this allows for the case A(X) = H(X) where X is

an open subset of an infinite dimensional (DFM)-space F. In the second part of this

section, we turn to regularity properties of 6DcVC(Ar, £) = ind„^ CVn(X, £„), where

£ = ind„^ £„ is an inductive limit of certain type, and are thereby able to note a

more general result than the one established prior to 1.12 (also see part (i) of the

direct proof of Theorem 1.3(d)).

Let X denote an arbitrary nonempty set. Endowed with the discrete topology, X is

a locally compact Hausdorff space, and any nonnegative real valued function on X is

a weight. For a system F of weights on X as in 0.1 (which, by definition, will always

satisfy % *s V when X has the discrete topology) and a locally convex (Hausdorff)

space £, we define

FV(X, E) = {/: X-* E; qvp(f) = sup{v(x)p(f(x)); x E X] < oo

for all v G Fand all/? G cs(E)}.

Of course, assuming that X has the discrete topology, FV(X, £) coincides with

CV(X, E) as defined in 0.1 and is complete (under its natural I.e. topology)

whenever £ is complete. Correspondingly, for a decreasing sequence CV= {Fn}„eN of
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systems of weights on X, put "ÍF(X, £} = ind„^ FVn(X, E), the space which we

called "ÍC(X, E) in 0.2. Finally, we let F denote the maximal system Fy associated

with T. All other notation, like <VA(X, E) for some specified linear subspace

A(X, E) of the space £(X, E) of all functions from X into £, remains unchanged.

5.1. Proposition. Let X be a nonempty set, E a normed space, a«í/T= {t¡„}„6N be

a decreasing sequence of weights on X. Further, we let S = (S^I^n denote an

increasing sequence of nonempty subsets of X with X = U {Sk; A: G N}, and assume

that, for any pair («, k) E N X N, there exist constants cnk,  Cnk > 0 such that

Cnk^Vnis^Cnk-V

(Vg) given « G N, there exists m> « such that for every e > 0 it is possible to find

k = k(e) E N   with vm(x)/v„(x) < e for all x E X\Sk,

then CVF(X, E) = FV(X, £) algebraically and topologically.

An obvious modification of the direct proof of Theorem 1.3(d) can be used to

establish Proposition 5.1. The assumption that X is a-compact in part (i) of that

argument corresponds to § = [Sn]n being countable, while condition (V) is replaced

by (Fs), which again is only used to show that the two topologies agree. Note also

that the role of the partitions of unity here gives way to a simple cut-off procedure

so that, in fact, the argument becomes much simpler; we omit the details.

By the way, condition (V§), like (V), also implies (wV) (see 2.2(c)), and hence

CY= {t>„}„ in 5.1 is regularly decreasing. However, 5.1 does not follow from Theorem

2.3.

5.2. Corollary. Let X be a locally compact Hasudorff space, E be a normed space,

and take T= {t>„}„eN to be a decreasing sequence of (u.s.c.) weights on X such that

inf{u„(x); x G K) > 0 for each compact subset K of X, « = 1,2,_If "(satisfies

condition (V), then "{C(X, E) is a topological subspace ofYF(X, £).

Proof. From 1.3(d) and its refinement in 1.11, we know that "{C(X, £) =

%C(X, E) coincides with CV0(X, E) = CV(X, £) (algebraically and) topologically.

On the other hand, since X is a-compact by 0.3, and letting S = (SJ^,, denote a

countable increasing basis for the compact subsets of X, condition (Vs) is just (V).

Hence we may apply 5.1_to obtain "{F(X, E) = FV(X, E) (algebraically and)

topologically. _Now, V C V, while V < V since every vn is u.s.c. (Of course, all

functions in F need not be u.s.c. on X.) Thus, CV(X, £) is a topological linear

subspace of FV( X, E) which finishes the proof.    D

Quite obviously, Proposition 5.1 may be applied to situations other than the one

in 5.2. There are, for instance, interesting consequences for sequence spaces on

N X N, say, or when X is a normed linear space and S is a countable increasing

basis for the bounded subsets of X. Finally, there is the application alluded to earlier

where A" is a completely regular hemicompact Hausdorff space and S is a countable

increasing basis for the compact sets in X, in which case condition (Vs ) again turns

into (V). In this last situation, an analogue of 1.6 is available.
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5.3. Proposition. Let X denote a completely regular hemicompact Hausdorff space,

take T= [vn] tobe a decreasing sequence of nonnegative functions vn on X such that vn

is both bounded and bounded away from 0 on each compact subset of X, « = 1,2,...,

and let A(X) denote a linear space of (complex valued) functions on X which are

bounded on all compact sets in X. If we assume that "{satisfies condition (V) and that

A(X) is a semi-Montel space under the compact-open topology co, then °VA(X) =

<Y0A(X) is a Silva space which equals AV(X) — AV0(X) algebraically and topologi-

cally. Moreover, if each vn is u.s.c, then V can be replaced by V.

Sketch of proof. By our preceding remarks, if S denotes a countable increasing

basis for the compact subsets of X, then 5.1 yields <YF(X) = FV(X) algebraically

and topologically. To show that CÏA(X) is a Silva space, given n G N, let m > n he

chosen as in condition (V). Then compactness of the canonical injection Avn( X) ->

Avm(X) follows since (A(X),co) is a semi-Montel space and from the easily

established fact [7, 1.6] that, because of (V), Avm(X) induces the compact-open

topology on each bounded subset of Avn(X). Next, the inductive limit CVF(X) —

md„_Fv„(X) is regular. (See, e.g., [7, 1.7.]. Or,_a slight refinement of the argument

leading to the algebraic equality CVF(X) — FV(X) can be used to show that, for

each bounded subset B of FV(X), there exists « G N such that B is bounded in

Fvn(X).) At this point, an application of Baernstein's open mapping lemma [1]

yields that 'YA(X) is a topological linear subspace of <YF(X) whereby "fA(X) =

y4F(A)_algebraically and topologically. Finally, the equations *YA(X) = t\A( X)

and AV(X) = AV0(X) are easily derived from (V) (the functions in F are also

bounded on compact sets in A'), while the last assertion follows as in the proof of

5.2.    D

5.4. Corollary. Let X be an open subset of a (DFM)-space F, and ferT= {v„}„els

be a decreasing sequence of weights on X such that inf(u„(x); x G K] > 0 for each

compact subset K of X, n = 1,2,_If "(satisfies condition (V), then

"(H(X) = %H(X) = ZZFo(A-) = HV(X)

algebraically and topologically and "(H(X) is a Silva space.

Proof. Open subsets of (DFM)-spaces are hemicompact /V-spaces, and the space

( H( X ), co) of all holomorphic functions on X, endowed with the compact-open

topology, is a Fréchet-Montel space (e.g., see [9]). So 5.4 follows readily from 5.3.

D

5.5. Example. Let X be an open subset of a (DFM)-space F, and let (K„)neN

denote a countable increasing basis for the compact sets in X. If (a„)n<=N denotes a

sequence of positive numbers with S^= ,íz„« 1, then v = 2*= xanlKisa weight on X

which is bounded (by 1), bounded away from 0 on each compact subset of A, and

which vanishes at infinity. Hence, putting v„ = v", « = 1,2,..., CY = {f„}„eN is a

system of weights on A which satisfies all the hypotheses of 5.4. Note that, if/is any

holomorphic function on A", we may take an = [2"max(l, sup{|/(x) | ; x G Kn])]~x,

« = 1,2,..., in the above construction so that/ G Hvx( X) E "(H(X).
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The second part of this section is devoted to a sharpened vector valued form of a

result originally due to B. A. Taylor [37] (see [7, 2.8]), and we will assume the

following general setting. We will let X denote a locally compact Hausdorff space,

take CY= {u„}nEN to be a decreasing sequence of weights vn on X such that

inf{ü„(x); x G K] > 0 for each compact subset K of X, « = 1,2,..., and let £

denote the I.e. inductive limit ind„^, £„ of an injective inductive sequence of I.e.

(Hausdorff) spaces. Since the proofs of the following results are not too difficult,

only sketches will be provided.

5.6. Lemma. If E — ind„^£n is regular, then, for each bounded subset B of

CV(X, £), there exists « G N such that B(X) = {/(x); f E B, x E X] is contained

in £„. Moreover, if all the weights vn are continuous, CV(X, E) may be replaced by

CV(X,E).

5.7. Lemma. If E = ind„^ £„ is a regular inductive limit of normed spaces £„, then,

for each bounded subset B of CV( X, £), there exists m EN such that (vmB)(X) —

{vm(x)f(x); f E B, x E X] is bounded in Em. Again, if all weights v„ are continuous,

CV(X, E) can be used instead of CV(X, E).

The proof of 5.6 being similar (and even easier), we sketch only the proof of 5.7.

Now, for arbitrary v G F, the set (vB)(X) = (u(x)/(x); / G B, x E X] is bounded

in £, and so, by regularity of £ = ind„^£„, is a bounded subset of £„ for some

« = «(«) G N. Since % < V holds because of our assumption on the weights vn, we

can conclude that, for each compact set K in X, there exists « = n(K) such that

B(K) = {f(x);fEB,x EK] is a bounded subset of £„.

From 5.6, we infer that B(X) E £„ for some «0 G N, and hence (vmB)(X) E En

for all m E N and all n > «0. Now suppose that (vmB)(X) is unbounded in En for

each m E N and each « s* «0. By induction, it follows that there exist a strictly

increasing sequence (km)m of positive integers, (fm)mEB, (xm)mEX, and a

sequence (Um)m of open and relatively compact neighborhoods Um of xm such that

Um E X\(Ukn:ixÜk) and vm(xm)\\ fm(xj\\km > m\ At this point, we choose <p„ G

C( A"), 0 < <p„ < 1, with <p„(x„) = 1, but so that <p„ = 0 on A"\ U„, « = 1,2,.... The

function v = 2™=x<p„vn/n2 belongs to F (resp., V whenever all weights v„ are

continuous) and satisfies v(xm)~s* vm(xm)/m2, m— 1,2,_Hence

»(OII/mi-OlL ̂ —2Cm(*m)ll/m(*m)lk.>w»      fof m =  U2,„.,
m

which implies that (vB)(X) is unbounded in £„, « = 1,2,_This, however, is a

contradiction to the remark at the beginning of the proof, and so the desired

conclusion follows.    □

For the moment, let us suppose that A is a nonempty set and endow X with the

discrete topology. In the notation introduced at the beginning of this section,

Lemma 5.7, when applied to this situation, yields the following observation.

Let °\T= {t;„}„eN be a decreasing sequence of positive functions on A, and let £

denote the I.e. inductive limit of a_regular injective inductive sequence of normed

spaces £„. Then a subset B of £F(A\ £) is bounded if, and only if, there exists
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« = «(5)GN such that (v„B)(X)_is bounded in £„, which clearly gives us that

ind„^ Fv„(X, En) = CVF(X, E) = FV(X, E) algebraically, that these three spaces

have the same bounded subsets, and that indn^Fvn(X, £„) is a regular inductive

limit.

To get the same result for continuous functions on arbitrary locally compact

spaces, however, we need a stronger hypothesis on £.

5.8. Proposition. Let X denote a locally compact Hausdorff space, and let °V=

{vn)neN oe a decreasing sequence of weights vn on X such that inf{ü„(x); x G K] > 0

for each compact subset K of X, n = 1,2,_If E = ind„^ En is a boundedly retractive

(or, equivalently, compactly regular; see the result of Neus [25] recalled in §0.3)

injective inductive limit of normed spaces, then

(a) 6Ù'YC(X, E) = TC( A, £) = CF(A", £) algebraically, the three spaces have the

same bounded sets, and both indn- Ct>„(A, £„) a«iZind„^ Cvn(X, E) are regular;

(b) 6ÙCVC(X, E) is the bornological space associated with CV(X, E) (or with

"(C(X, £)), and also the ultrabornological space associated with CV(X, E) if E is

complete ( which would follow if En is complete for each « = 1,2,...).

Further, if all the weights vn are continuous, V may be replaced by V in (a) and (b).

Sketch of proof, (a) In view of 5.7, for a given bounded set B E CV(X, E)

(resp. CF(A", £)), there exists «GN such that (vnB)(X) is bounded in £„.

£ = indk_Ek, being a boundedly retractive inductive limit of normed spaces, is

clearly strongly boundedly retractive; let m > « be chosen so that the topologies of £

and Em coincide on each bounded subset of £„. For B to be bounded in Cvn(X, Em),

and hence in Cvm(X, Em), it suffices to show that each fEB is a continuous

mapping from X into Em. However, since X is locally compact, it is enough to prove

f\K: K -» Em is continuous for each compact subset K of X. But this is now

straightforward, as is the rest of the argument.

(b) 6ÙCVC(X, £), being an inductive limit of normed spaces, is bornological; the

first assertion therefore follows from (a) and a well-known property of associated

bornological topologies (e.g., see Horváth [21, 3, §7, Exercise 8]). If £ is complete,

then CV(X, E) and CF(A", £) are also complete so that the associated bornological

and ultrabornological spaces coincide.    D

Even if we take £ = C in 5.8, the topologies of "fC(X) and CV(X) can be

different, as Example 1.12 shows. Also note that, in addition to the properties listed

in 1.12, we have that %C(X) ¥° CV0(X) algebraically by applying 2.4(c) and 2.5,

and 'VC(X) = indn- Cv„( X) is not boundedly retractive by 2.4(c) and 2.7.

If, however, we add the hypothesis that °Vis regularly decreasing (or, equivalently,

satisfies condition (wV); see 2.2(a)) in 5.8(a), we can establish a stronger regularity

property for ^)CÏC( X, E) and CVC( X, £).

5.9. Proposition. In addition to the hypotheses of 5.8, assume that the sequence

<Y= {t>„}„SN of weights is regularly decreasing.

(a) For any « G N, there exists k > « such that Cvk(X, Ek) and CF(A", £) induce

the same topology on each bounded subset of Cvn( X, £„ ).
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(b) ind„^ Cvn(X, £„) and ind„^ Cu„(A, £) are boundedly retractive, whence, in

particular, 6Î)'YC(X, E) is complete (and "íC(X, E) is quasi-complete) whenever En is

complete, « = 1,2,_

Proof, (sketch), (a) Without loss of generality, we may assume || • || m¡£ < II • II „

for each «z s* «. Fix « G N and choose k 3= « with the following two properties:

(i) the topologies of £ and Ek coincide on each bounded subset of £„;

(ii) for every £ > 0, there is some v E V such that t5(x) < vk(x) implies vk(x) <

evn(x). (This is possible since £ = ind„^ £„ is strongly boundedly retractive and T

satisfies (wV).) Now, fix a bounded subset B E Cvn(X, £„) and take M = M(B) >

sup(ü„(x)||/(x)||n; /G B, x E X]. For e > 0 and /0 G B, choose îJ = v(B) E V

according to (ii) with e/2 M used instead of e. We note that, because of (i), there

exists p E cs(E) such that e E £„, ||e||„ =£ 2M, and p(e) <• 1 imply ||e||A < e. At

this point, one easily verifies that

[fEB; supô(xM/(x)-/0(x)Hl)

r -,

E\fEB; suPü,(x)||/(x)-/0(x)||,<£  ,
*■ xex >

from which the desired conclusion follows.

Combining (a) with 5.8(a) now yields (b).    D

We remark that 5.8 and 5.9 are still of interest even when £ is a normed space, or

if we take T= [vn]n with vn = v for n = 1,2,_Also, we note that these results

cannot be obtained by tensor product methods since, in general, Cvn(X)eEn is a

proper subspace of Cvn( X, £„) (see, e.g., [5, II, Theorem 11]).

The following, however, is an abstract result in the £-product setting which, in

part, is parallel to 5.8 and 5.9.

5.10. Proposition. Let both E = ind„^£„ and F= ind„_£„ denote boundedly

retractive (or, equivalently, compactly regular) inductive limits of sequences of Banach

spaces.

(a) TTze« ind„_ (£„e£„) = ind„_ (EneF) = EeF algebraically, and the three spaces

have the same bounded subsets. Hence ind„_ (EneFn) is the (ultra-) bornological space

associated with EeF (or with ind„^ (EneF)).

(b) For a given «eN, there exists k> n such that EkeFk and EeF induce the same

topology on each bounded subset of EneFn. Similarly, for any neN, there exists m > «

such that EmeF and EeF induce the same topology on each bounded subset of EneF.

Hence ind„^ (EneFn) and ind„_ (£„e£) are strongly boundedly retractive which, in

particular, yields that ind„^ (EneFn) is complete and ind„^ (EneF) is quasi-complete.

Sketch of proof, (a) has already been noted in [7, 4.6]; the algebraic isomor-

phism follows from certain factorization theorems for continuous linear mappings

with values in an inductive limit (also see [6]), and the rest of the assertion is then an

easy consequence of Grothendieck's open mapping theorem (cf. [16, Théorème B]).

For (b), it is convenient to prove the second assertion first; it holds for an arbitrary

I.e. space £. So, let £„' denote the closed unit ball of £„, « = 1,2,..., and note that,
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for any « G N, there exists m > n such that £m and £ induce the same topology on

each bounded subset of £„. Next, fix a bounded set B E EneFn, u0 E B, and £ > 0,

and let Fdenote an arbitrary neighborhood of 0 in £. Then B(V°) — {«(/'); u E B,

/' G Vo] is bounded in £„; let

M = M(B) > sup{||w(/')||„; u E B,f E Vo).

The topologies of £ and Em coincide on 2MEX, and hence there exists a neighbor-

hood U = U(B) of 0 in £ such that U n (2M£,¡) C eExm. Now, clearly

[u EB;(u- u0)(V°) E U) E [u E B; (u - u0)(V°) E eExm),

from which we deduce that the topologies of EmeF and £e£ coincide on each

bounded subset of £„e£.

The first part of 5.10(b) now follows by applying the second assertion twice, first

to (EneF)n and a given «eN, obtaining m > n, and then to (FneEm)n and the natural

number m, and by observing that £e£ s £e£ for arbitrary I.e. spaces £ and £. The

rest of the argument is obvious.    D

Proposition 5.10 applies, for example, to ind„^ (Cu„(A")££n) =

indn^ C(v„Y(X, E„), indn^(Cv„(X)eE) = ind^C(v„y(X,E) and "(C(X)eE

whenever CV= (u„}„ is regularly decreasing and £ = ind„^£n is a boundedly

retractive inductive limit of Banach spaces; we refer to [3] or [5] for the definition of

CVP(X, £), and for the E-product representation CV(X)eE = CV(X, E). Another

application of 5.10 is formally noted below.

5.11. Corollary. Let X denote a locally compact Hausdorff space, let CV = {v„]n be

a decreasing sequence of weights vn on X such that inf{u„(x); x E K] > Q for each

compact subset K of X, « = 1,2,..., and let E be an injective inductive limit of a

sequence (£„)„ of Banach spaces.

If "(is regularly decreasing and ind„^ £„ is compactly regular, then

ty%C(X, E) = %C(X, E) = %C(A")e£ = CV0(X, E)

algebraically, while 6i)%C(X, E) = ind„^ C(vn)0(X, £„) and %C(X, E) =

ind„^ C(vn)0(X, E) are strongly boundedly retractive.

Proof. Since ind„^ C(v„)0(X) is boundedly retractive for regularly decreasing V

as noted in the second proof of Theorem 2.3, we can apply 5.10, noting that

C(v„)Q(X, E) = C(v„)0(X)eE, « = 1,2,..., and CV0(X, E) = CV0(X)eE for each

complete I.e. space £.    D

Concerning the first conclusion of 5.11, note that, under a slightly stronger

hypothesis on °\T= (u„}„, Corollary 3.3. already gives ^^(X, E) = %C(X, E) =

\C(X)eE = CV0(X, E) topologically. For the corresponding spaces of functions

belonging to a subspace A(X, E) of C(A", £), however, such a result is known to

hold only under additional assumptions, but the techniques of this section can be

put to good use in this direction.

5.12. Corollary. Let X denote a locally compact Hausdorff space, and take

"f— [vn}n to be a decreasing sequence of weights vn on X such that inf{t>„(x);

x E K] > 0 for each compact subset K C X,  n = 1,2,_  Further,  let E be a
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boundedly retractive injective inductive limit of a sequence (£„)„ of normed spaces, and

let A(X, E) denote an arbitrary linear subspace of C(X, £).

(a) 6i)cÏA(X, E) = "(A(X, E) = ^F(A, £) holds algebraically, &!)"ÍA(X, E) is the

bornological space associated with AV(X, E) (or with "(A(X, £)), and both

ind„_ Avn(X, £„) and ind„^ Av„(X, E) are regular.

For the remaining conclusions, we also assume that Tzs regularly decreasing and that

A(X,E) is closed in (C(X, £),co).

(b) For any n E N, there exists k > « such that Avk(X, Ek) and AV(X, E) induce

the same topology on each bounded subset of Avn(X, En), both indn^Avn(X, En) and

indn^Av„(X, E) are boundedly retractive, and SÍ)"(A(X, E) is complete (and

"iA( X, E) is quasi-complete) whenever En is complete, « = 1,2,_

(c) Suppose that En is a Banach space, n = 1,2,..., and that A(X) is a closed linear

subspace of(C( X), co) with

A(X,E) = (/G C(X, E); e' ° f E A(X) for all e' E £'}.

77ze« we have

<%\A(X, £) = \A(X,E) = %A(X)eE = AV0(X, E)

algebraically, 6Ù"f0A( X, E) is the (ultra-) bornological space associated with "i0A(X)eE

(or with tY0A(X, £)), both ind„^ A(vn)0(X, E„) and ind„^ A(vn)0(X, E) are strongly

boundedly retractive, and hence 6í)"í0A(X, £) is complete ("í0A(X, E) is quasi-com-

plete).

Sketch of proof. Assertions (a) and (b) follow readily from 5.8 and 5.9, while (c)

can be derived from 5.10 together with 5.11. (A(vn)0(X, E) — A(vn)0(X)eE, « =

1,2,..., is again a consequence of [5, II, Theorem 29].)    D
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