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LEVEL SETS OF DERIVATIVES

BY

DAVID PREISS

Abstract. The main result of the paper is the characterization of those triples S, G

and E of subsets of the reals for which there exists an everywhere differentiable

real-valued function/ of one real variable such that E = {x; f'(x) > 0}, G = {x;

f'(x) = +00} and S is the set of those points of E at which /is discontinuous. This

description is formulated with the help of a certain density-type property of subsets

of the reals (called property (Z)) introduced in the paper. The main result leads to a

complete description of the structure of the sets [x; f'{x) > 0} and {x; f'(x) = 0}

for three most important classes of functions /: finitely differentiable functions,

continuous differentiable functions and everywhere differentiable functions. (A

complete description of the structure of these sets for the class of Lipschitz,

everywhere differentiable functions was given by Zahorski in his fundamental paper

[22].) The connection of these results with Zahorski's classes M2, A/3 and M4 is

discussed.

1. Introduction. This paper can be considered as a continuation of Zahorski's

research [22], where a characterization of the sets {x G R; f'(x) > a] for Lipschitz,

everywhere differentiable functions was given. A number of problems raised by

Zahorski's work were solved e.g. in [1, 7-11, 13, 14, 16, 17, 18]. Among other results

it was shown by Lipinski that the classes M2 and M3 of Zahorski do not characterize

the level sets of derivatives. There is also a number of papers concerning the

construction of functions with derivative +oo on a given set (see e.g. [1, 5, 11, 21]). A

general theorem of this type for differentiable, continuous functions was proved in

[22]. As for the characterization of the level sets and the construction of discontinu-

ous, differentiable functions very little appears to be known (see [1, 7, 9, 11, 17]).

Our aim is to solve the following problem: Let S, G and £ be subsets of the reals.

Find necessary and sufficient conditions for the existence of a differentiable function

/ such that £ = {x; f'(x) > 0}, G = {x; f'(x) = +00} and S = (x G £; / is

discontinuous at x}. The solution of this problem enables us to construct (even

discontinuous) differentiable functions with given properties as well as to char-

acterize the level sets (and zero sets) of derivatives.

The paper is divided into five sections. In §1 we introduce some notation, remind

the reader of the definitions of the classes M0-M5 (their properties and connections

with derivatives can be found in [22]; more recent results as well as other informa-

tion about derivatives are in the survey [3]) and prove two generally known lemmas
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(see e.g. the proofs of relations between descriptive and constructive definitions of

Denjoy integrals in [19]) in the formulation convenient for later use. The main new

notion, property (Z), is defined in §2, where also some equivalent conditions are

given.

Necessary conditions on the sets S, G and £ are found in §3. The first two lemmas

of this section are shght modifications of a part of Zahorski's proof of Theorem 5 in

[22], The third lemma is the usual extension lemma for differentiable functions (cf.

[4, 19]). The main results of this section are Theorems 3.4 and 3.5 giving necessary

conditions on 5", G and £ for the case of approximate and ordinary derivatives

respectively. The sufficiency of these conditions is proved in Theorem 4.3 of §4. We

give two applications of this result in Remarks 4.4 and 4.5. In the last section we

define classes M*, M% and M3*, and show that these classes characterize the level sets

of corresponding types of derivatives. This result implies also the characterization of

zero sets of derivatives. Remark 5.8, Examples 5.10 (which is a simple modification

of an example from [7]) and 5.12 discuss some connections among the defined

classes.

We will use the following notation. R denotes the set of all real numbers with its

usual topology; R = R U {-oo, +oo}. We will use only the Euclidean metric in R.

The distance between two sets A and B E R is denoted by d(A, B). The closure of a

set £ C R is denoted by £; its interior by Int £. A perfect set is a nonempty

compact subset of R without isolated points. A portion of a set A is an arbitrary set

of the form I n A ¥= 0 where I is an open interval in R (or the empty set if A is

empty). The interval (a, b) is denoted also by (b, a) (similarly for other types of

intervals).

Lebesgue measure, integral, etc. will be called simply measure, integral, etc. The

outer measure of a set £ C R will be denoted by | £ | .

A real-valued function of a real variable (defined on some subset of R) will be

simply called a function. A function / is called a jump function in S C R if there

exists a sequence [s¡], s¡ G S, and real numbers a¡ and b¡ such that 2 | a, | +2 | bl• | <

+00 and f(x) — 2js:xa,■ + ~2s<xb¡. The value of a derivative (or approximate

derivative) may be finite or infinite (i.e. belongs to R).

Definition 1.1. Define the following classes of Fa subsets £ c R.

E E M0 if £ n (x, x + h) ¥= 0 for every x G £ and h ¥= 0.

£ G M, if card(£ n (x, x + h)) > X0 for every x G £ and h =£ 0.

£ G M2 if | £ n (x, x + h) | > 0 for every x G £ and h ¥- 0.

£ G M3 if for every x G £ and c > 0 there exists £ > 0 such that

|£n (x + h,x + h + A:)|>0

for every h, k =£ 0, 0 < h/k < c, and \h + k\< e.

E E M4 if there are closed sets F„ and numbers tj„ > 0 such that £ = U"=1 £„

and, for every x G Fn and c > 0, there exists e > 0 with the following property: if

h, k ^ 0, 0 < h/k < c and | h + k \ < e, then

|£ n (x + h,x + h + k)\>-q„\k\ .
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£ G M5 if every x G £ is a point of density of £; i.e. if

I £ D (x, x + h)\
lim J-—-.-'-1 = 1.
A-0 |«|

Lemma 1.2. Let E be a measurable set. Then there exists a set F E M5 such that

F E E and \ E - F \ = 0.

Proof. Let £, be the set of all joints of £ which are points of density of £.

According to the Lebesgue density theorem | £ — £, | = 0. Consider any £0 subset of

£, with |£, - £1= 0.i iii

Lemma 1.3. Let *$lbe a system of open subsets of R. Suppose that

(a) 0Ê4,

(ß) if H G 91, then there is a set A EH dense in H such that (-oo, a) D H E 91

and (a, +oo) D H E 'Sifor any a E A,

(y) if H E R and if there is a locally finite cover {In} of H consisting of bounded

open intervals such that InE H and In E 91, then H G 91, and

(8) if H G 91 and H ¥= R, then H' - Hi- 0 for some H' G a.

Then R E 91.

Proof. Let G be the union of all elements of 91. Since the system 91 is an open

cover of the separable metric space G, it has a locally finite refinement {/„}.

Moreover, we may suppose that each Jn is an open, bounded interval and that, for

each n, there is an H G 91 such that JnE H. Using condition (ß) twice we find that

for every £ > 0 there is an interval Z G 91 such that I C /„ and | /„ — Z | < e. This

enables us to define (by induction) a sequence of open intervals {Zn} such that

Z„ G 91, In E Jn, and InD Jn — U/t<n Ik — Uk>n Jk. The last inclusion shows U;? In

= G, which, according to (y), implies G E 91. Now, the assumption G ¥= R con-

tradicts (8). Therefore G = R.

2. Property (Z).

Definition 2.1. A set P C R is said to have property (Z) with respect to £ C R if,

for every open set H C R — E which intersects each component of R — (P n £) in a

connected set, the set (P n £) U (R - (H U(P ñ £))) belongs to the class M4.

Remark 2.2. It might be helpful to make the following observations.

(1) A set £ has property (Z) w.r.t. £ if and only if P D £ does.

(2) If P has property (Z) w.r.t. £ and £ C £, C £ U (R - P) then P has property

(Z) w.r.t. £,.

(3) If £ C P then P has property (Z) w.r.t. £ if and only if £ belongs to the class

M4. (Consider H = R- (P n £).)

(4) If £ has property (Z) w.r.t. £ then £ D £ is an £a set.

Proposition 2.3. (1) Suppose that P has property (Z) w.r.t. E. If Q E P can be

written as Q = £ n £ n G with F closed and G open then Q has property (Z) w. r. t. E.

(2) Suppose that P and E are subsets of R and that each x E P has a neighborhood U

such that P n U has property (Z) w.r.t. E. Then P has property (Z) w.r.t. E.

(3) Suppose that P and E are subsets of R and that G D P is an open set. Then P has

property (Z) w.r.t. E n G if and only if it has property (Z) w.r.t. E.
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Proof. (1) Let H C R — E be an open set which intersects each component of

R — (Q n E) in a connected set. Then H also intersects each component of £ —

(£ n £) in a connected set. Therefore,

(£ n £) u (r - (zz u (pnE))) e m4.

Since £ - (ZZ U(g n £)) D £ - (ZZ U(£ n £)), it suffices to prove that the set

R - (HU(Q n £)) contains almost all points of (£ - Q) n £ n G. This follows

from the fact that z7cZZUSU(gn£), where S is a countable set. Hence,

£- (ZZU (gn£)) DR- (HU SU (gn £))

= (£ - zz) n (£ - s) n (£ - (Q n£)).

Since R - H Z) (P - Q) n E n G, and since R - (Q n E) D (P - Q) n E n G,

the set £ - (H U (Q n £)) contains ((£ - 0) n £ D G) - S.

(2) From (1) we deduce that there is a sequence of open intervals [In] such that

£ = Un(£ n Z„) and each set £ D Z„ has property (Z) w.r.t. £. Whenever H E R -

E is an open set which intersects each component of £ — (£ n £) in a connected set,

then the set

(£ n £) u (£ - (zz u (TrYË)))

= U {inn[(p n inn e) u (r - ({JiJTTn) u(p n inn £)))]}

u{£-(zzu(£n£))}

is a countable union of M4 sets, and hence an M4 set.

(3) Because of 2.2(2) and 2.3(2) it suffices to show that, whenever £ has property

(Z) w.r.t. £ and I is an open interval, then £ D I has property (Z) w.r.t. £ D Z. If

H E R — (E n I) intersects each component of £ — (£ D I n Zs) in a connected set

then ZZ D Z intersects each component of £ — (£ Pi £) in a connected set. Hence,

the set

(£nzn£)u(£-(zzu (£nzn£)))

= (zn[(£n£) u (£- ((Hm) u (in £)))]}

u{£- (zzu(£n zn£))}

belongs to the class M4.

Theorem 2.4. A set P has property (Z) with respect to E if and only if the following

three conditions hold.

(a)Ifx G £ n £ and h =¿ 0, then E n (x, x + h) ¥= 0.

(ß) If x E P n £ is not an isolated point of P n E from the right (resp. left), then

for any c > 0 there is an e > 0 enjoying the following property:

E n (x + h, x + h + k) ¥= 0 for any h, k > 0 (resp. h,k<0)for which h/k < c

and \h + k\< e.

(y) There exist a sequence of closed sets {£„}, a sequence of positive numbers {tj„},

and q E (\, 1) such that £ n £ = Un £„ and the following assertion holds.
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( + ) If x E Fn and c > 0, then there is an e > 0 such that the inequality

\p n E n (x + h,x + h + k)\

+ \(x + h,x + h + k) - (HqU (P n E))\>i)„\k\

holds if 0 < h/k < c, \h + k\< e, x + h EP n E, and x + h + k EP n E, where

Hq is the union of all those intervals J contiguous to E for which there exists some

bounded interval I contiguous to P n £ such that J El and IJI > q 111 .

Proof. First suppose that £ has property (Z) with respect to £. Suppose that (a)

does not hold. Then there is x G £ n £ and h ^ 0 such that E n (x, x + h) = 0.

Putting H — (x, x + h) in the definition of property (Z) we obtain a contradiction.

Now suppose that (ß) does not hold. Then there are x G £ n £ not right isolated

say from £ n £ and c > 0 such that for every £ > 0 there exist h, k > 0 such that

h/k < c, | h + k | < £ and (x + h, x + h + k) n E — 0. From this we deduce the

existence of decreasing sequences {x„} and {y„} such that lim xn = lim yn = x,

yn+\<xn<yn> (x„-x)/(y„-x„)<c, (x„,yjn£= 0 and (y„+1, x„) n £ n

£ ¥= 0. Put H = U^=1(x„, y„). Then the set (£ n £) U (£ - (H U(£ n £))) is

not of the type M3 (consider the point x). Therefore, it is not an M4 set. A similar

proof gives a contradiction in the case of points not left isolated from £ n £. The

condition (y) for any ^£(1,1) follows directly from the definition of property (Z).

Let the conditions (a), (ß) and (y) hold. First prove the following statement.

(+ +) The assertion ( + ) holds if r/„ is replaced by (1 — q)r¡n and Hq is replaced

by any open set H E R — E which intersects each component of £ — (£ n £) in a

connected set.

If I is a bounded interval contiguous to £ n £, then either Hq n I i= 0 and thus

|ZZnZ|<|ZZ?nZ|orZZ9nZ= 0 and thus | ZZ n Z|<4|Z| . Therefore, for u, v G

£ n £ we have (the summation is over the intervals contiguous to £ n £)

\p n E n(u,v)\+\(u,v) - ((pnE) u zz)|

= \PC\ET\(u,v)\+     2     \I-H\
I<Z(u,v)

>\pnEn (u,v)\ +    2    \i-Hq\+    2    (i-?)l'l
IC(u,v) I<Z(u,v)

H„ni¥=0 H„m=0

>(i-q)(\pnEn(u,v)\+   2   \i-Hq\)

= (I - q)(\P n E n(u,v)\+\(u,v) -{(p~n~E) U Hq)\).

Let ZZ C £ — £ be an open set intersecting each component of £ — (£ n £) in a

connected set. Let x G Fn and C > 0. If x is an isolated point of £ n £ from the

right (resp. left), then condition (a) implies the existence of h > 0 (resp. h < 0) such

that (x, x + h) n (H U (P n £)) = 0. Thus

(x, x + h) E (P n E) U (R - (H U (PHE))).
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If x is not an isolated point of the set £ n £ from the right (resp. left), choose £ > 0

such that £ n (x + h, x + h + k) + 0 for any h,k>0 (resp. h, k < 0), h/k <

9(C + 1) and | h + k | < £ (condition (ß) for c = 9(C + 1)) and that

|£H£n (x + h,x + h + k)\

+ \(x + h,x + h + k) - (ZZU (£n£))|>(l - q)i\„\k\

for any h, k such that 0 < h/k < 3(C + I), \ h + k\< e, x + h EP n £ and x + /z

+ A: G£n £ (condition (+ +) for c = 3(C + 1)).

Let h,k>0 (resp. h,k<0), h/k < C and | /i + k |< £. First note that each

interval I E (x + h, x + h + k) with 11 \> ^ \ k | intersects £ since d(x, I)/\ I\<

9(C + 1). Thus, if there exists an open interval J = (a, b) E (x + h, x + h + k) —

(£ n £) with \J\> \ | k |, then (fa + \b, \a + |¿>) n £ # 0. Therefore, ZZ n / is

a subset of at most one of the intervals (a, \a + § b) and (fa + 3b, b). Therefore,

\(x + h,x + h + k) - (ZZU (£~ñ~£))|^|/- #f» | }7f> f|*| .

If there is no such interval 7, put L = (m, M), where

m = min £H£ n(x + h,x + h + k),

M= max £ n £ n (x + A, x + h + k).

Then | L \> £ | Â: | and ¿(x, L)/| £ | < 3(C + 1), and therefore,

|(x + /t,x + /i + fc)n£n£|+|(x + A,x + /i + A:)-(z7u ( £ n £ )) |

^|Ln£n£|+|£-(ZZU (£n£))|>(l - q)-q„\L\>^(l -q)r¡„\k\ .

Since the set £ - (H U(£ n £)) is open, the set (£ n £) U (£ - (ZZU(£ n £))) is

of the type M4.

In the following text we will often need a different property of a pair £, £ of

subsets of £, namely, that there is a portion of £ possessing property (Z) with

respect to £. The following proposition says that in proving such a property one

may restrict his attention to special perfect sets only.

Proposition 2.5. Let E and G be subsets of R. Suppose that for each x E E — G

and each c > 0 there is an e > 0 such that E n (x + h, x + h + k) ¥= 0 for every

h, k ¥= 0, 0 < h/k < c and \h + k\< e. Then the following conditions are equivalent.

(i) Every perfect subset P of R — G such that £n£ = £ — £ = £ has a portion

possessing property (Z) with respect to E.

(ii) Every subset of R — G which is at the same time of type Fa and Gs has a portion

possessing property (Z) with respect to E.

Proof. We only need to prove (i) =» (ii). Let £ C £ — G he an £„ and a Gs set.

(a) If £ = 0, then obviously £ has property (Z) w.r.t. £.

(b) If £ </. P n £, then there is a portion of £ which does not intersect £. This

portion has property (Z) w.r.t. £.

(c) If £ </. P - E, then there is a portion Q of £ such that Q E E - G. In this case

put Qn= {xEQ; E n (x + h, x + h + k) # 0 for any h,k=£0, 0 < h/k =s 1,

and | h + k |< -]. The sets Q„ are closed in Q and Un g„ = ß. Since g is of type
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Hence, the set H   from condition (y) of Theorem 2.2 is

Gs, there is an open interval Z and a natural number m such that Qm D Z n Q ¥* 0.

Moreover, we can assume that 11 \ < -^ and that the set £0 = I n Q is closed in I

(because Q is of type £„ as well as Gs). If J — (a, b) is a bounded interval

contiguous to £0, then a or b G Qm and thus, for any interval/' C J with./' n £ = 0

we have | J' \ =£ \ \J

empty. This implies that £0 has property (Z) w.r.t. £.

(d) In the last case when (£ n £) n (£ - £) D £ ^ 0, we have £ n £ = £ - £

and we choose an open interval I such that Z n £ ^ 0 and the set I n £ is closed in

Z. Next we find a bounded open interval J E I such that /c/ and J n P ¥= 0.

Then the set 7 n £ has the properties required in (i). Thus there exists irtion Q

of J n P having property (Z) w.r.t. £. The set J n Q is the required p  .tion of £.

Corollary 2.6. Let E be an M3 set and let P E E be a set of type Fa as well as Gs.

Then P has a portion having property (Z) with respect to E.

Proof. Put G — R — E in the preceding proposition.

Remark 2.7. Incidentally, under the assumptions of Proposition 2.5 one can add

also the following condition equivalent to (i) and (ii).

(hi) Every £„ subset of £ — G can be written as a countable union of closed sets,

each of which has property (Z) with respect to £.

Since (iii) => (i) is obvious, let us sketch the proof of (ii) => (iii). Let £ C £ — G he

a closed set. Let 91 be the system of all open subsets HER such that £ n H can be

written as a countable union of closed sets with property (Z) w.r.t. £. Since 91 has all

the properties required in Lemma 1.3, we obtain £ G 91. (Let us note that this is a

usual method of finding connections among the notions defined with the help of

portions and countable unions of closed sets (cf. [19]). E.g. with this method one can

easily prove an equivalent definition of M4 in terms of portions.)

3. Necessary conditions.

Lemma 3.1. Let f be a measurable function defined on a neighborhood of a point

x G £. Suppose that fL(x) — A G (0, +oo). Then for every c > 0 there exists e > 0

such that for any h, k ¥= 0, 0 < h/k < c and \h + k\< e there are h' and k' with

h' E(h,h+ \k),W + k' E (h + \k,h + k), and ( f(x + h' + k') - f(x + h'))/k'
> \A.

Proof. Let c > 0.

£ > 0 such that

Put T)(i) = (f(x + t) - f(x))/t -A for / =£ 0 and choose

t E (x, x + u); | T)(i)
6(2c + 1)

< i        i
3(c+ 1)

forO <|w|<£.

Then

« G (x + h,x + h + k); |tj(í)
6(2c + 1)

<
1

3(c+ 1)
k\<
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for any h, k ¥= 0, 0 < h/k < c and \h + k\< e. Thus, there are h' and k' such that

x + h' E (x + h, x + h + \-k), x + h' + k' G (x + h + f k, x + h + k), \ -q(h')\<

A/6(2c + 1) and | tj(/V 4- k') | < A/6(2c + 1). Since | h'/k' | < 3c + 1, we obtain

\ f(x + h' + k') - f(x + h')
k'

h' + k' h'
,(A' + k') - £,(*')£'     ,v.'      A' <j,

Lemma 3.2. Let f be a function defined on a neighborhood of x E R. Suppose that

f'+ (x) = A G (0, +oo). Then for every c > 0 there exists e > 0 such that

(f(x + h + k)-f(x + h))/k>{A

for any h, k > 0, 0 < h/k < c and \h + k \ < e. (A similar inequality holds in the case

of the derivative from the left.)

Proof. Similar to that of the preceding lemma.

Lemma 3.3. Let f be a measurable function defined on a neighborhood of a perfect set

P and let f possess a bounded, approximate derivative on P. Suppose that K E R such

that |/a'p(x) |< K for all x E P. Let us define the following function,

g(x)=f(x)   forxEP,

g is linear on the closure of each bounded interval contiguous to P.

Then there is an open interval I such that

(a)Zn£^ 0,

(b) the functions f and g are both defined on I and

\{tE(x,x + h);\f(t)-f(x)\>K\t-x\)\^i\h\

for every x E P n I and x + h E I,

(c)|g(x) - g(y)\^K\x -y\forallxandy El,

(d) g'+ and gL exist on I, and

(e) if x E I n P is not an isolated point of P from the right (resp. left), then

g'+ (x) = /a'pW (resp. g'_ (x) = f;p(x)).

Proof. Let £„ be the set of those x G £ for which the function / is defined on

(x - i, x + ¿) and

\{t E (x, x + h); \f(t) - f(x)\> K\t - x\}\ < i\h\

for every h with 0 < | h \ < j¡. Let us prove that the sets £„ are closed. Suppose, to the

contrary, that there exists x G Pn such that

|{tG(x,x + /I);|/(0-/(x)|>£|í-x|}|>¿|/!|

for some h with 0 < | h \ < j¡. Since/is measurable, there is a compact set Q such that

f/Q is continuous, | Q \ > ¿ | h \ and

QE{tE(x,x + h); | (f(t) -f(x))/ (t-x)\>K)

(see [15]). Thus, there is an 17 > 0, tj < 2K, such that

(l)\Q\>i\h\+v,and
(2) I (f(t) ~f(x))/(t - x) |> K + t, for every t G Q.
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Choosey G £„ such that

(3) | {t G (x, y); |/(0 -f(x)\>K\t-x\}\<¡\y-x\,
(4) | x - y | < ij 11 - x \/2K for every t E Q,

(5) |x — y |< 6tj, and

(6)|x-y|<i-|A|.

The inequalities (3), (6) and y G Pn imply the existence of t E (x, y) such that

1/(0 ~f(x)\<K\t-x\, and \f(t) - f(y)\<K\t -y\ . Hence, |/(x)-/(y)|<
£|x -y| .

Using (2) and (4) one obtains, for any t G Q, the following inequalities.

1/(0 -/GO !>!/(/)- /(*) I -!/(*)-ZOO I
>(K + 7))\t-x\-K\x-y\

>K(\t-y\-\x-y\) + T)\t- x\-K\x-y\

= K\t-y\+ti\t- x\ -2K\x-y\> K\t-y\ .

Further from (4) it follows that Q E (y, x + h) (since t]/2K < 1 and Q E (x, x +

h)) and (5) implies that \Q\> z\h\+t¡ > i\x + h - y\ . Then (6) implies y G £„

contrary to the choice of y.

Thus, the sets £„ are closed. Since £ is their union, there is an open interval I with

endpoints in £ and a natural number m such that 0 ¥= I n P, ï n P E Pm,\I\< ~

and the functions / and g are both defined on Z. Now (a) is obvious and (b) holds

even f or x G £ n Z, x + h E Ï.

If x and y G Z n £, then there is a t G (x, y) such that |/(x) - /(0 | < K | í - x |

and |/(0 - f(y) \< K\ t - y \. Hence, |/(x) - f(y) | < £ | x - y | . Now (c) follows
from the definition of the function g.

Let x G £ n Z, 0 < e < \. Choose 8 > 0 such that

|{<G(x,x + ri);|/(0-/(x)-/a'p(x)(/-x)|>£|i-x|}|<£|/z|

forevery/i,0<|/i|<f5. If y E/fl £ with 0 <|y - x |< 5, put

/ = (2£x + (1 - 2fi)y, y).

Then|7|= 2e|y - x| ,

|{rG/;|/(0-/(x)-/a'p(x)(f-x)|>£|r-x|}|<£|y-x|,

and

|{IG7;|/(0-/(y)|>£|i-y|}|<ie|x-y|.

(The last inequality we obtain using (b) at the point y.) Hence, there is t E J such

that |/(0 ~f(x) -/a'p(x)(i - x) |< £ 11 - x | and |/(0 - f(y) |< K\ t -y \ . Since
I /a'p(x) I< X and | y — r | ** | -J |= 2fi|y — x| ,we have

\f(y)-f(x)-&(x)(y-x)\

<\Ay) -f(t) I +1/(0 ~f(x)-f:p(x)(t - x) | +|/a'p(x) \\y-t\

<2K\y- t\+e\t- x\<(4K+ l)e\y- x\ .

This inequality and the definition of the function g imply (d) and (e).
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Theorem 3.4. Let f be a function defined on an open interval I which possesses an

approximate derivative on I. Let a E R, £ = (x G Z; /a'p(x) > a], G = {x G Z;

/ap(x) = +00} and let S be the set of all those x E I for which limA^0+ f(x — h) exists

and is < f(x), or limA_0+ f(x + h) exists and is > f(x). Then

(i) S is a countable set, G is a G$ set of measure zero, E is an £„ set and S E G E E,

(ii) ifxEE-Sandh¥-0 then | £ n (x, x + h) | > 0 or S n (x, x + h) ¥= 0,

(iii) if x E E — G and c > 0, then there is a number e > 0 such that

\E n (x + h,x + h + k)\>0   or   S n (x + h, x + h + k) # 0,

for any h, k i= 0 with 0 < h/k < c and \h + k\< e, and

(iv) any perfect subset of R — G has a portion having property (Z) with respect to E.

Proof. Without loss of generality we can assume a = 0.

(i) The set S is countable (see e.g. [15]), G is of type Gs and £ is of type Fa since f'

is a function of the first Baire class on I (see [18]) and | G\= 0 according to the

Denjoy-Young-Saks theorem for approximate derivatives (see [19]).

(ü) Suppose, to the contrary, that there are x G £ — S and h ¥= 0 such that

I £ n (x, x + h) I = 0 and S n (x, x + h) = 0. According to [18] the function / is

nonincreasing on (x, x + h). Since x £ S, we have /ap(x) < 0 which contradicts

x G£.

(iii) Let x G £ — G and c > 0. Choose e > 0 such that for any h, k ¥= 0, 0 < h/k

< c and \ h + k \< e there are h' and k' such that h' E (h, h + \k),

W + k' E (h + \k, h + k) and (f(x + h' + k') - f(x + h'))/k' > 0 (see Lemma

3.1). If \E n (x + h, x + h + k)\= 0 and S n (x + h, x + h + k) = 0 for some

such h and k, then / is nonincreasing on (x + h, x + h + k) (see [18]). Hence,

(f(x + h' + k') — f(x + h'))/k' < 0, which is a contradiction.

(iv) Let £ C £ — G be a perfect set. We may assume that each portion of £ meets

£. If x is a point of continuity of/ap |P then it follows that 0 </ap(x) < +00 and

hence there is an open interval / and K > 0 such that x G / and |/ap(y) \< K for

y G J n P. We apply Lemma 3.3 to the function / and the set J n P. Let g he the

function defined in 3.3 and I an interval with the properties (a)—(e). Using

Theorem 2.4 we prove that the set Q = I n / n £ has property (Z) w.r.t. £. The

conditions (a) and (ß) follow directly from (iii). Let us prove (y) with q= {■ (We

denote Hq by H.)

Let (a, b) (where a < b) be a bounded interval contiguous to Q. If 0 ¥= H n

(a, b) — (c, d) (c < d), then d — c > 5(6 — a) and the function/ is nonincreasing

on (c, d) (see [18]). If c = a, then / is nonincreasing on (c, d) and put c' = c. If

c > a, then 3.3(b) implies

|{, G (a,2c - a); |/(0 "/(a) |> *| ' - * |}| < He - «)•

Hence, there is c' E (c, 2c — a) such that/is nonincreasing on (c',d) and/(c') —

f(a) < K(c' — a). Thus, in both cases we have found c' E (c,2c — a) such that /

is nonincreasing on (c', d) and f(c') — f(a) < K(c' — a). Similarly, we find d' E

{2d — b,d) such that / is nonincreasing on ( c, d') and f(b) — f(d') < K(b — d').

Moreover, we have c' < 2c — a < 2d — b *£ d' and / is nonincreasing on (c', d').
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Hence,

f(b) - f(a) =s K(b - d') + K(c' - a) = K((b -a)- (d' - c'))

< K((b - a) - ((2d - b) - (2c - a)))

= 2K((b- a) - (d-c)) = 2K\(a,b) - H\ .

The inequality f(b) — f(a) *z 2K \ (a, b) — H | holds for any bounded interval (a, b)

contiguous to Q. (For (a, b) n H = 0 it follows directly from 3.3(c).)

Since g is a Lipschitz function, it is an indefinite integral of its derivative. Thus,

for y, z G Q, y < z, we have (the summation is over intervals (a, b), a < b, contigu-

ous to Q)

f(z)-f(y) = g(z)-g(y) = f       g'+     2     (g(b)-g(a))
JQr>(y,z) (a,b)C(y,z)

= ( /a'p+        1       (f(b)-f(a))
JQD(y,z) (a,b)C(y,z)

< 2£(| ß n £ n (y, z) | +| (y, z) - (ZZ U ß) I).

If x G Q n £ and c > 0, then, according to 3.2 and 3.3(e), there is an e > 0 such

that for every h, k ¥= 0, 0 < h/k < c, \ h + k \ < e for which x + h, x + h + kEQ

we have

f(x + h + k)-f(x + h) __ g(x + h + k)-g(x + h)       1
k k 2hv\x)-

Thus,

|gn£n (x + h,x + h + k)\

+ \ (x + h, x + h + k) - (H U Q) | > ¿/a'p(x) \k\.

From this inequahty we see that to prove 2.4(y) it suffices to choose closed sets Fnm

such that {x G Q n £; /a'p(x) > ¿} = U^=1£„m and to put n„m = l/4£«.

Theorem 3.5. Let f be a function defined on an open interval I which possesses a

derivative on I. Let a E R, E = (x G Z; f'(x) > a], G = (x G Z; f'(x) — +00} and

let S be the set of all those x G £ at which f is discontinuous. Then the sets S, G and E

fulfill the conditions (i)-(iv) of Theorem 3.4.

Proof. The countability of S is well known (see e.g. [15]). Now the statement

follows from 3.4 since any triple 5, G, E fulfills the conditions (i)-(iv) of 3.4 if S, G,

E does, S C S C G and S is a countable set.

Remark 3.6. The condition 3.4(iii) can be formulated a bit simpler. Instead of (iii)

one need only conclude E n (x + h, x + h + k) ¥= 0. Condition (iii) then follows

from (ii). Note also that for x G £ — G (ii) follows from (iii). On the other hand (iv)

does not follow from (i)-(iii) as may be easily seen from 4.3 and 5.12. Let us also

remark that (i), (ii) and (iv) do not imply (iii)—consider

00

S=G=0,       £={0}U   \J (-2~2n,-2-2n+x)U (2-2n,2~2n+t).

n=\
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4. Sufficient conditions.

Lemma 4.1. Let P ¥= 0 be a compact subset of R and let A E R be a bounded set.

Then there is a compact set T E R containing P such that T — P E A,

(i) T — P is an isolated set in R — P, and

(ii) // J is any interval contiguous to T, then there exists an open, connected set

H EJ, H n A = 0 such that \K\^d2(K, P) for each component K of the set

J - H.

Proof. Put Ux= {t ER; \t - x\< i min(d(x, £), d2(x, £))} for x G £ - P.

We can find a locally finite covering (1^} of £ — £ consisting of bounded open

intervals such that, for any i, there is an x G £ — £ with Uvnv¥s0Vj E Ux. For

each i with A n V¡ ¥= 0 choose xt £ A n Vt. We prove that the set T — P U (x,} is

the required set. Since (i) is obvious we need only verify (ii). First note that

\UX\< i d2(x, P) and that, for any t G Ux, d(t, P) s= d(x, P) - \x - t\> 0. Thus

d2(t, P)>d2(x, P)-2d(x, £)|x- t\> \ d\x,P). Hence, | Ux \< d\t, P) for

any t E Ux.

For u ER — P let Ku be the union of all V¡ containing u. Since there is

x G£ - £ such that Ku E Ux, we have | Ku\< d2(Ku, £). For u G £ U (+00,-00}

put Ku = 0. Let J = (u, v) be an interval contiguous to T. If Kun Kv¥= 0, then

there are V and F such that V, C\ V, # 0 and F U F D £ Since F U F C t/r for1 J ' J * J ' J -*■

some x, we have \J\< d2(J, P) and it is sufficient to put H — 0 .If Ku n Kv— 0,

put H = J - (Ku U Kv). The assumption ZZ n ^ ^ 0 would imply that V¡ n H n

A =£ 0 for some i. Hence, F. n T ¥= 0 and consequently, u E V¡ or v E V¡. This

would imply Vt E Ku U Kv, which is a contradiction.

Lemma 4.2. Let S, G and E be sets fulfilling the conditions (i)-(iv) of Theorem 3.4

and let P be a compact subset of R. Suppose that

(A) P E E,or

(B) £ n G = 0 ízrt¿ £ /jüä property (Z) with respect to E.

Then there exists a nondecreasing function f defined and differentiable everywhere on

R such that

(a)£n£={xG£;/'(x)>0},

(b) G n £ = {x G £;/'(x) = +00},

(c) / is continuous at every point of R — S and at every point of S n £ it is

discontinuous from the right as well as from the left,

(d) {x G £;/'(x) > 0} C £, {x G £;/'(x) = +00} C G, and

(e) f can be written as a sum of a nondecreasing absolutely continuous function and a

nondecreasing jump function in S.

Proof. It suffices to assume £ = £n£^0.(lf£n£=0we may take/ = 0;

if £ ¥= £ n £ then (B) holds, £ n £ n G = 0, the set £ n £ has the property (Z)

with respect to £ according to Proposition 2.3 and any function / fulfilling (a)-(e)

with £ replaced by £ n £ has the required properties.) Let £ C £ be an M5 set for

which j £ — £ I = 0 and let £ be a bounded, open interval containing £. Let T he the

compact set constructed in the preceding lemma with A = (F U S) n L.
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First define an auxiliary number a and function g, by alteration of which we

obtain the function /. If (A) holds, put a — \ and, since G n £ is a Gs set of

measure zero, choose a nondecreasing absolutely continuous function g differentia-

ble on £ such that G n £ = (x G £; g'(x) = +00} and g'(x) > 0 for all x G £ (see

[21 or 22, Theorem 7]). If (A) fails and (B) holds, put a — 0 and first choose, for

every interval I contiguous to T for which there is a bounded interval (a, b)

contiguous to £ with \(a + b) E I, an open connected set H¡ E I such that

H,nA= 0 and | K\< d2(K, P) for any component K of the set I - H,.

If {(a + b)&I, let H, = 0. Let H he the union of all H,. The set (£ n £) U

(£ — (ZZU(£n £))) is of the type M4. (This follows from condition (B), since by

4.1(h) HER — £.) Thus there exists a function g possessing a bounded, nonnega-

tive derivative on £ such that

{x G £; g'(x) > 0} = (£ n £) U (£ - (ZZ U (P n E)))

(see [22, Theorem 8]).

The next step will be done for both cases (A) and (B) together. Let t E T. If there

is t' G T, t' > t such that the interval I = (t, t') is contiguous to T, find that interval

(a, b) contiguous to £ which contains Z, and put

A+(t) = a(g(t') - g(t))    \it'<i(a+j),

A+(t) = Hg(*')-g(t))    if i(a + b) E I and (A) holds or H, = 0,

A+(t) = g(u) - g(t)   if {(a + b) E I, (A) fails, and H, = (u, v) ¥= 0 ,

A+(t) = (l- a)(g(t') - g(t))    if {(a + b)^t.

If there is no such r', put A + (t) — 0.

Similarly we define A~ (t). If there is t' E T, t' < t such that the interval (t', t) is

contiguous to T, find that interval (a, b) contiguous to £ which contains I = (t',t)

and put

A-(t) = a(g(t) - g(t'))    ift'^{(a + b),

A~(t) = {(g(t) - g(t'))    if{(a + b) E I and (A) holds or H, = 0,

^"(0 = g(') -g(v)   if 2(0+ b) G Z, (A) fails, and ZZ, = (u,v) ¥= 0,

A   (0 = (1 - a)(g(t) - g(t'))    if t < K« + b).

If there is no such t', put A ~ (t) = 0.

Let us prove that A+ (t) = A~(t) = 0 for any t E P - S. If / = (t, t') where

t E P, t' E T, and J C\ T = 0, then choose an open connected set H' E J such that

H' n A = 0 and I £|< i/2(£, £) for any component K of J - H'. Since r G £, it

follows that H' = (t, u) where u E (t, t'). If (A) holds, then 3.4(h) implies that

1 G 5. If (A) fails, choose v E R such that (t,v) is the interval contiguous to £

containing /. If {(t + v) G J, then arguing as with H' above Hj = (r, u') where

m' G (r, í'). Hence A +(t) = 0. If {(t + v)£J, then ¿l + (0 = 0 because a = 0.

That .4 ~ (0 = 0 is proved in a similar fashion.

If / G T n S, put w+(t) =A+(t) andw~(0 = A~(t). If t E T- S, put w+(t)

= w~ (t) = 0. If t E T n 5, put <p,+ (x) = <p," (x) = 0 for x G £. If A+ (t) = 0
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(resp. A~ (t) = 0), put <p,+ (x) = 0 (resp. <p~ (x) = 0) for x G £. If A + (t) > 0 (resp.

A~(t)> 0) and t E T - S let I = (t, t'), where t < t' (resp. t > t'), be an interval

contiguous to T. Since / G £ U S, we have t E F. Hence t is a point of accumulation

of £ n Z. Choose u E (t, {(t + t')) (resp. (\(t + t'), t)) such that | u - t\<d(t, P)

and (t,u) n H, = 0. Since £ n (r, w) is a nonempty set of type M5, we can find a

bounded, nonnegative function <p,+ (resp. <p~ ) approximately continuous on £ such

that (x; <p,+ (x) > 0} C £ n (t, u) and /í"<p,+ (x)d(x) = A+(t) (resp. {x; q>~ (x)

>0} C£n (i, w)and/Í£>~(x)¿x = A~ (t)) (see [22, Lemma 11]).

Put m = inf T and M = sup T. Then

(,.+ 00 ,. + 00 \

W+ (t) + W" (0 +   / <P,+ (*) «& +   / <P,~ (■*) <&

m =   2(A+(t) + A-(t))

2     (g(i')-g(0)<iW-g(w)-
t,t'<ET,t<t'
(t,t')nT=0

Further put u(x) = 2is:X),e7-w>~(0 + 2i<JC,e7-H'+(0, <p(x) = g'(*) ror x E P,

and <p(x) = 2,e7-(<p,+ (x) + rf~ (x)) for x £ £. The function (p is nonnegative and

/Í ™ <p < +00 according to (1). Choose x0 G £ and choose the indefinite integral g,

of <p such that gi(x0) + u(x0) = g(x0). Let fx—gx+ t>. For x, y G £, x <y, we

have

/,W-/,W = /        gf»"*

+   2   (/V («) + «p,- («)) ¿i* + w+ (o + w- (n)
(t,t')C(x,y)      '

= / *'(«J(ij)np
)j«+     2    WO-*W) = ?W-«(4

(t,t')C(x,y)

(The summation is over all intervals (t, t') contiguous to T, t < t'.) Hence,/, = g on

T.
Since the family of supports of the functions rn,+ and <p~ is locally finite in £ — £

and since <p+ and <p,~ are bounded and approximately continuous, we have g'x = <p

on £ - £. Using the fact that the set (T n 5) - £ is isolated in £ - £ we find that

/; = <pon£ -(£u (m S)).

Let x G £ n (£ - G) and let c> 1. According to 3.4(iii) there is an e G (0,1)

such that En(x + h,x + h + k)¥=0 for every h, k # 0, 0 < A/ft < c and | /i +

ft | < e. Moreover, 3.4(h) implies that x is a bilateral limit point of A and hence of T.

So there is a 8 E (0, e) such that each interval contiguous to T which intersects

(x — 8, x + 8) is a subset of (x — e, x + e) n £. Let | A |< 8, x + h E (t, t'), where

(t, t') is an interval contiguous to T. Choose the notation so that t E (x, x + h). Let

H' E (t, t') he the set from 4.1(h) and note that the measures of the components

considered there equal d(t, H') and d(t', H') (these we put equal to \t — t' \ , if
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H' = 0). Further, d(x, H')>c\H'\ since H' n £ = 0 by 4.1(h). Hence,

|ZZ'|<c~'d(x, ZZ') = c_1(|i-x| +d(i,ZZ')) <c-1(|'f-x| + (t - xf).

Using that /, is nondecreasing and agrees with g on £ it can be shown that

/ - x g(0 - g(x) ^ fx(x + h) -/,(x)       g(t') - g(x)  t' - x

t' - X

Since

and since

t — x ^t — x   ._ , _ t' ~ x

h     " t' - x ~ t' — x

^<i~* = i + (iliiUi

to prove that f[(x) — g'(x) it suffices to show that (t' — t)/(t' — x) can be made

arbitrarily small by taking c large enough. This holds since

11' - t\< d(t', H') + \H'\ +d(t, H')

<|/£| +2(r'-x)2

«S c_,(| t - x | + (t - xf) + 2(t' - xf.

Hence/,'(x) = g'(x) = <p(x).

Let us consider a point x E P n (G — S). Such a point exists only when condi-

tion (A) holds. Thus, a = {- and g'(x) = +oo. Let h =f= 0, x + h G (t, t'), where

(t, t') is a bounded interval contiguous to T. Choose the notation so that t E

(x, x + h). If | x + h - 11 < 11 - x | , then

|Af<,jc + *-r|-+lf-.x|<21f-*| .

Hence,

/,(x + h) -/,(x) > g(t) - g(x) ^ 1 g(t) - g(x)

If \x + h- i|>|f-^| , then |/,(x + h) - fx(x) \> \ |g(f')-g(0| - This is clear

if t E S, if t ^ S it follows from the fact that the support of the corresponding

function <pr+ (or <p/ ) is a subset of (f, u) where \u — t\< d(t, P) <\t — x\ . Hence,

|/,(x + h) -/,(x) | = |/,(x + h) -/,(/) I +|g(0 - g(x) I

> g(O-g(0l+|g(0-gW
>l|g(0-gWl-

Thus

/,(x + /Q-/,(x) ^  lg(Q-g(x) ^ lg(Q-g(x)
>

Ä 2 /i 2       í'-x       '

Hence, f[(x) = +oo = <p(x).

Further let us consider a point x G £ — £. Such a point exists only when (A) fails.

Thus a = 0 and, since £ = £ n £, g'(x) = 0. Let /i ^ 0, x + /i G I, where Z = (t, t')
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is an interval contiguous to  T with t G (x, x + h). Choose an interval (a, b)

contiguous to £ such that Z C (a, b), a G (x, x + h).

Ifx + hE ({(t + t'), t'),then\h\> {\f - x\ .Hence,

fx(x + h)-fx(x) < g(t')-g(x) ¿ 2g(t')-g(x)

h h •t': — x      '

Ifx + hE ({(a + b), b), then|/i|> \\b - x\. Hence,

/,(x + M-/,(x) <g(ft)-g(x) ^2g(b)-g(x)

h h "~ b — x

If x + h G (i, K' + f'))» *' G (a, ^(a + ¿>)>, then since a = 0,

/.(x + ft)-/,(x) =g(Q-g(x) <g(Q-g(x)
/¡ h t - x

If ^(a + 6) G(i,/') and H,= 0, then | r' - x | = | ? - /' | +| t - x |< (? - x)2 +

\t -x|<|A|(l + \h\). Hence,

fx(x + h)-fx(x)^g(t')-g(x)^ g(t>)-g(x)
h - h ^M^lHi      t'-x      ■

If H] ¥= 0, let Hj = (u, v) with |w — x|<|t> — x|. First suppose x + h G (t, v).

Then | w - x |<| w - t\ +\ t - x |< (t - x)2 + \ t - x |<| h | (1 + | h |). Since /,, g

are both constant on (u,v), we have

fx(x + h) - fx(x) < g(»)-g(x)      , ,g(«)-g(x)

/j /i *•-'■".;»— x

Finally suppose that x + h E (v, t'). Then | r' — x |*£| f' — v\ +\v — x\<

(v - x)2 + | v - x |<| h | (1 + | h |). Hence,

/,(x + A)-/,(x) ^g(Q-g(x) ^ g(,')-g(x)

Therefore, f[(x) = 0 = <p(x).

It follows that/, is almost the required function. Only one more change is needed.

The set B = (G n P) U ((S n T) - P) is of type Gs (since the set T - P is isolated

in R — £). Let (£,} be a nondecreasing sequence of closed sets such that

R — B = U^, F¡ and let {s¡} he a sequence of all points of S n T. Put a, =

min(2~', 2~'d2(s¡, £,)) and vx(x) = 2JlSxa, + 2s<xa,. Then vx is a nondecreasing

jump function in S which is discontinuous at each point of S n T from the right as

well as from the left. (Thus, v\(x) = +oo for x G S n £.) Let x E R — B. Then

x G £¿ for some ft. Let 5 > 0 be such that (x — 8, x + 8) n [sx,... ,sk) — 0 and

let | h \< 8. From the definition of vx we have | vx(x + h) — vx(x) |<

2^i>k,s,e(x,x+h) "t < 21%k+x2~ih2 *£ h2. Hence, v\(x) = 0. Thus, it is sufficient to

put/ = /, +vx.

Theorem 4.3. Let S, G and E be subsets of R such that the conditions 3.4(1)—(iv)

hold. Then there exists a nondecreasing function f possessing a derivative on R such

that

(a) / is continuous at x G £ if and only if x & S; at any point x E S it is

discontinuous from the right as well as from the left,
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(b)G={xG£;/'(x)=+oo},

(c) £ = {x G £; f'(x) > 0}, and

(d)f can be written as a sum of an absolutely continuous nondecreasing function and

a nondecreasing jump function in S.

Proof. Let 91 be the system of all open sets HER (called regular) for which the

statement of the theorem holds with S, G and £ replaced by S n H, G n H and

£ n ZZ. We will verify the assumptions of Lemma 1.3.

Obviously 0 G 91. (Consider/= 0.)

Let H E 91. Put A = (H - E) U lnt(H n £). Then the set A is dense in H. If

a E A, choose a function / from the definition of the regularity of H such that

f(a) — 0. If a E H — E, then f (a) — 0 and to prove the regularity of (-oo, a) n H

(resp. (a, +oo) n H) we put/,(x) = f(x) for x < a (resp. for x > a), and/,(x) = 0

for x > a (resp. for x < a). If a G Int(H n £), choose 6 > 0 such that (a — 8, a +

8) E Int(H n E) and find a continuously differentiable function 9 on £ such that

<p(a) = 0 and <p' is positive on (a, a + 8), negative on (a — 8, a) and equals 0 on

(-00, a - 8) U (a + 8, +00). Put /,(x) = <p(x)/(x). Then f[(x) = <p'(x)/(x) +

<p(x)/'(x)forx ^aand

/i(°) = hm 7^/(x) = °

since <p(a) = 0, q>'(a) — 0, and / is bounded on a neighborhood of a. Hence, /, is

nondecreasing and the conditions 4.3(a)—(c) hold with S, G and £ replaced by

(SnH)- {a}, (G n H) - {a} and (£ n H) - {a}. Further let / = g + v he the

decomposition of/according to (d) where t; is a jump function in S = {s,}. Hence,

v(x) = 2^xa,- + 2„<**'- Put»,(x) = 2,(<;e<MK*/) + 2î,<xè,(P(i,), and

h(x) = <p(x)u(x) - t>,(x) =   2 a,(<P(*) - <p(*/))
g|<Jt

+ 2 è,(<p(x)-<p(i,)).

The function /i is zero on (-00, a — 6) and constant on (a + 8, +00), and for x <y

we have

h(y)-h(x)=    2    a^y) - y(s,)) +    2    ^MjO " *(*,))

+  2 a,(v(y) - <P(X)) +  2 b,(<p(y) - cp(x)).

Since there is a £ G £ such that | <p' | < K, we obtain

|A(y)-A(x)|<Ä- 2  (a, + ft,.)|x-y|.

Thus, A is absolutely continuous. Moreover,/(x) = (g(x) — g(a)) + (v(x) — v(a)).

Hence, fx(x) = <p(x)(g(x) — g(a)) + A(x) — rf(x)t;(a) + vx(x) and the function

(¡p(x)(g(x) — g(a)) + h(x) — cp(x)t>(a) is absolutely continuous. To finish the proof

of the regularity of (-00, a) n H (resp. (a, +00) n ZZ) it suffices to put/2(x) = /,(x)

for x < a (resp. for x > a), and/2(x) = fx(a) for x > a (resp. for x < a).
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Let us prove the condition 1.3(y). If H — U"=) I„, where Z„ G 91 are bounded

regular intervals, Z„ C H, choose functions f„ — g„ + v„ from the definition of the

regularity of In (where each gn is absolutely continuous and each vn is a nondecreas-

ing jump function). Since/,, gn and vn are constant on each component of £ — In,

we can suppose that their absolute values are not greater than

min(2",2-"i/2(Zn,£-ZZ)).

Put / = 2^=, /„, g = 2*=, g„, and v = 2£=, v„. Then / = g + v, g is nondecreasing

and absolutely continuous, and v is a nondecreasing jump function in S n H. Since

the covering {Z„} of H is locally finite, the only statement we have to prove is that

f'(a) = 0 for a G H. For such an a we have

00 00

\f{x)-f(a)\< 2 \f„(x)-f„(a)\< ^2-"(x-a)2 = (x-af.
n=\ n=\

Let us prove 1.3(8). Let H G 91, H i- R and £ = £ - H. Let / be the function

from the definition of the regularity of H. There is a bounded open interval I

intersecting £ such that I n P E E or I n P n G = 0. Let {/„} and {Z„} be locally

finite coverings of I by open intervals such that 0 ¥= J„ E In E Z„ C I. According to

Lemma 4.2 (with S, G, E and £ replaced by S n Z„, G n In, E n Z„ and £ n/„) we

construct functions /, = g„ + vn. Moreover, we can suppose that \fn\ , \g„\ , and

| vn |< 2~"d2(R — I, In). The function/+ 2^L, /„ has all the properties required in

the definition of the regularity of ZZ U Z.

Hence, £ G 91 according to 1.3.

Remark 4.4. If £ is an £0, as well as a Gs, set of measure zero and if S is a

countable set dense in £ containing all points of £ which are not points of bilateral

accumulation of £ (such a set always exists), then the triple S, E, E fulfills the

conditions of the preceding theorem. Thus, there is a function / defined on £ such

that /' = +00 on £ and /' = 0 on £ — £. The case £ countable was posed as a

problem in [22] and solved in [1] and in [17].

Remark 4.5. If S is a countable set and G E R is a Gs set of measure zero

containing S, then there is a function/possessing a derivative on £ such that 5 is the

set of the points of discontinuity of/ and G=(xG£;/'(x)= +oo}. This solves

the problem posed in [11].

5. Level sets of derivatives.

Definition 5.1. Let us define the following classes of subsets of the reals.

£ G M* if £ is an £0 set and for each closed set £ C £

(i) Q E E for some portion Q of £ or

(ü) there is a portion Q of £ such that

(a) Q has property (Z) with respect to £, and

(b) if x G Q n £ and c > 0, then there exists £ > 0 such that £ n (x + A, x +

A + ft) ¥= 0 for every A, ft ^ 0, 0 < A/ft < c and | A + ft |< e.

M2* = M* n M2.

M* = M* n M3.
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Theorem 5.2. 1. If f possesses an approximate derivative on an open interval I, then

{x G Z; /¿(x) > a) G M* and {x G Z; /a'p(x) < a) E M* for every a E R.

2. If E E M*, then there is a nondecreasing function f (which can be written as a

sum of a nondecreasing, absolutely continuous function and a nondecreasing jump

function) possessing a derivative on R such that £ = {x G £; f'(x) > 0}.

3. If Ex, E2 G M* are disjoint, then there is a function f possessing a derivative on R

such that £, = {x G £; f'(x) > 0} and £2 = (x G £; f'(x) < 0}.

Proof. 1. If £ is a closed set, then one of its portions is a subset of (x G £;

f'(x)> a} or there is a portion Q of £ which does not intersect {x G £; f'(x) =

+00}. In the latter case Q has a portion having property (Z) with respect to {x G £;

f'(x) > a] according to 3.4(iv) and 2.5. The condition 5.1(b) follows directly from

3.4(iii).

2. An open set ZZ C £ will be called regular ( H G 91 ) if there are sets SH and GH

such that the assumptions of Theorem 4.3 hold with S, G and £ replaced by SH, GH

and £ n ZZ.

Obviously 0 G 91, an open subset of a regular set is again regular (for £ C ZZ it

suffices to put SL = SH n L and GL = GH n £), and condition (y) of Lemma 1.3

also holds. (Consider SH = Un Sr and GH = Un G,.) We have to prove 1.3(8). Let

ZZ G 91, ZZ ̂  £ and £ = £ - ZZ. If there is an open interval I such that 0 ¥- Q = Z

n £ C £, we choose a countable set Z C Q dense in Q containing all those points

of Q which are not points of bilateral accumulation of Q. Let £ C Q — Z he a set of

type M5 such that | Q - F\ = 0. Put S, = (SH n I) U Z and G, = (GH n/)U

(Q — F). The verification of conditions 3.4(i) - (iii) is straightforward. We prove

3.4(iv). If D E R — G, is a perfect set, then either D — Q ^ 0 and one obtains the

required portion from the definition of the regularity of H and 2.3(3) or D E Q. In

the latter case 0 ¥" I n D E F and one can use 2.6. Hence, I E 91 and I — H = I

n £ # 0. If there is an open interval I such that the set Q = I n £ # 0 has

property (ii) from Definition 5.1, we put S, = SH n I and G7 = GH n £ Conditions

3.4(i) and (ii) for x G G, — Sr follow directly from the definition of the regularity of

H. To prove 3.4(iii) (which implies 3.4(h) for x G (£ n I) — G,) one needs also

5.1(ii)(b) and the following observation. If J C I is an open interval such that

J n E¥= 0 then / n S, ¥= 0 or | / n £ | > 0. If (J n £) - Q ¥> 0 this is obvious

from the definition of the regularity of H and 3.4(h). If J n E E Q, then we infer

from 2.3(1), (3) and 2.2(3) first that J n Q has property (Z) w.r.t. J n £ and then,

since/ n E EJ n Q,thatJ n £ G M4. Since/ n £ # 0, this implies |/ n £|>0.

Finally, let us prove 3.4(iv). If D E R — G, is a perfect set, then either Z) — Q ¥= 0

and one can use the definition of the regularity of H or D E Q. In the latter case

0 ¥^ I n D and the set I n D has property (Z) w.r.t. E C\ I according to 5.1(ii)(a)

and 2.3.

Hence, £ G 91 (Lemma 1.3) and we can use Theorem 4.3.

3. It suffices to construct functions /, and f2 for the sets £, and £2 according to

statement 2 of the theorem and to put / = /, — f2.
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Theorem 5.3. 1. Iff is a Darboux function possessing an approximate derivative on

an open interval I, then {x G I; /,'p(x) > a) E M* and (x G Z; /ap(x) < a) E M* for

every a E R.

2. If E E M*, then there exists an absolutely continuous nondecreasing function f

possessing a derivative on R such that E — {x E R; f'(x) > 0}.

3. If £,, £2 G M* are disjoint, then there is an absolutely continuous function f

possessing a derivative on R such that £, = {x G £; f'(x) > 0} and £2 = {x G £;

f'(x)<0}.

Proof. 1. Use 5.2 and 3.4(h).

2. An open set H E R will be called regular (ZZ G 91 ) if there is a set GH such that

the assumptions of Theorem 4.3 hold with S, G and £ replaced by 0, GH and

£ n ZZ. The proof of conditions 1.3(a)-(y) is similar to that in 5.2(2). We prove

1.3(8). Let ZZ G 91, H ¥= R and £ = £ - H. If Q = I n P ¥= 0 is a portion of

R- H such that Q E E, find a set £ C g of type M5 such that | g - £ | = 0 and

put G, = (GH n Z) U (Q - F). If a portion Q = Z n £ ¥° 0 of the set £ has

property (ii) from Definition 5.1, it suffices to put G¡ = GH n I. In view of Lemma

1.3 we can use Theorem 4.3.

3. It follows from 2 above just as in the proof of 5.2(3).

Theorem 5.4. 1. If f is a function possessing a finite approximate derivative on an

open interval I, then (x G £; /ap(x) > a) E M3* and {x E R; /ap(x) < a} E Af3* for

every a E R.

2. If E E M*, then there exists a nondecreasing (absolutely continuous) function f

possessing a finite derivative on R such that £= {xG£;/'(x)>0}.

3. If £,, £2 G M* are disjoint, then there exists an absolutely continuous function f

possessing a finite derivative such that £, = (x G £; f'(x) > 0} and £2 = (x G £;

f'(x) < 0}.

Proof. 1. Use 5.2 and 3.4(iii).

2. We prove that the assumptions of Theorem 4.3 hold with S, G and £ replaced

by 0, 0 and £. Conditions 3.4(i)-(iii) are easy. We prove 3.4(iv). If £ is a perfect

set, then one of its portions is a subset of £ and we can use 2.6, or there is a portion

satisfying 5.1(h), which clearly is the required portion.

3. This part follows directly from 2.

Remark 5.5. Using the previous results one readily sees that the classes M*, M%,

M* are closed under finite unions. On the other hand, countable unions of sets of

type M* (resp. M%, A/3*) are exactly the sets of type Fa (resp. M2, M3). This we easily

prove considering, for a closed set A E E, the set A U £ where £ C £ is a set of type

M5 such that | £ - £|=0.

Remark 5.6. Since the classes M*, M% and M3* are closed under finite unions we

have also a characterization of sets where derivatives equal zero as complements of

sets of type M*, M% or M3* (depending on the type of the function).

Remark 5.7. Any set which is at the same time of type £0 and Gs is of type M*.

Thus, if £ is a closed set, there is a function / possessing a derivative on £ which is
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constant on any interval disjoint from £ and nonconstant on any interval intersect-

ing £. A necessary and sufficient condition for the existence of such a continuous

function/is that | Z n £ | > 0 for every open interval I intersecting P.

Remark 5.8. Let us study the inclusions among the different classes. First define

the following class: £ G L if £ C £ is an Fa set and for every x G £ there is an

7j > 0 such that, given c > 0, we can find e > 0 possessing the following property:

|£n(x + A,x + A + ft)|>T/|ft|for every A, ft ^ 0, 0 < A/ft < c and | A + ft | < e.

The following inclusions are obvious.

M*    D   M2*    D   M3*    D   M4   D   M5

n n n n

£„    D    M2    D   M3    D    L

We have no equalities among these inclusions which is easy to establish except for

£ ¥= M4 (see [8] and also 5.10) and M3 ¥= M3* (see [7] and also 5.12).

From the definitions one obtains: If £ G M2 (resp. E E M3), then £ G M¿* (resp.

£ G Af3*) if and only if £ G M*. In other words: If £ G AZ2 (resp. £ G M3), then

either there exists a continuous differentiable (resp. finitely differentiable) function /

with £ = (x; f'(x) > 0}, or there exists no differentiable function / with £ = {x;

f'(x) > 0}. Hence, the following questions arise: Is £ n M* = M4? Is £ C M*?

Examples 5.10 and 5.12 show that the answers are negative. Note that this means

that the connection between L and M4 differs from that between M2 and M% (resp.

M3 and M3*). In this connection the following question arises.

Is there any "natural" class of functions for which the analogs of Theorems 5.2,

5.3 and 5.4 hold with the class £ n M*?

Lemma 5.9. Let I E R be a bounded open interval and let ft > 1. Then there exists

an open set H C I such that

(i) H —H is a countable set,

(h) ifj E I is an interval with d(J, R - I) < k\J\ , then \ J n H \ > {- \ J \ ,

(iii) for every c > 0 there is e> 0 such that for every intervalJ E I with

d(J,R- I)<c\J\   and   d(J,R-I)<e

we have \JnH\>k~x\J\, and

(iv) for every e > 0 there is an interval J E I such that d(J, R — I) < 3k\J\ ,

\J n H\<2k~]\J\ and d(J, R - I) < e.

Proof. Let s0 be the center of the interval I = (a, ß), a < ß, and define by

induction points snEl («=1,2,...) such that ß — sn = k(sn — sn_,). Then

K.«,i„ = ß- Put s_„ = 2s0 - s„. Let

+ 00

ZZ, =    U   [{sp,lsp+3sp+x)u^sp+^sp+x,sp+x)\.
p = -oo

UJEl,d(J,R — I)<k\J\,J = (u,v) (where u < v), then choose the greatest

p and the smallest q such that j < u and sq > v. Since d((sp, sp+x), R — I) =

k\ (sp> sp+\) I > ̂ +1 < sq and therefore, í +1 G /. Hence, \J n Hx \> \ \J\ .
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Let 9) be the family of all open intervals which we obtain by partitioning

(sp,sp+x) into 3(\p\ +1) equal intervals (p is an arbitrary integer). If D E 9),

DE(sp,sp+x) then

| D\~xd(D, R-I)> |3(|p|+1) | (sp, sp+x) |J    d((sp, sp+x), R-l)

= 3(|/7|+l)ft.

Hence, if J E I, d(J, R - I) < c\J\ and d(J, R - I) is sufficiently small, then 7 is

not a subset of any interval belonging to 90. If

H2=     U
(a,£>)£<$

«. TTI* + jhb) u (ïTft* + TTkb> b)

then 17 n ZZ21 > ft   ' 17 | . Moreover, for 7 = (f^ + \sp+x, \sp + \sp+, ) we have

\J\-xd(J, Ä -/)<(* | (sp, sp+x) \)~]d((sp, sp+x), R-l) = 3ft,

7 n ZZ, = 0 and 17 n ZZ2 | =s 2ft" ' 17 | . It follows that the set H = ZZ, U H2 has the

required properties.

Example 5.10. Let £ be a perfect set of measure zero contained in a bounded,

open interval £ Then there exists a set £ G £ such that

(a) £ C £ C I,

(b) £ — £ is an open set,

(c) E & M4, and

(d) £ G M*.

Proof. Let (Z„) be the sequence of all intervals contiguous to £ U (£ — I). For

each ln choose a set Hn according to the preceding lemma (where ft = n) and put

£ = £ U U™=1 H„. If x G £ is not an isolated point of £ from the right, choose

£ > 0 such that (x, x + e) E I and (x, x + e) n Z„ = 0 for « =s 3(c + 1). Let

7 C (x, x + e), d(x, J) < c 17 | . If there is an interval 7' C 7 with endpoints in £

such that |7'|> 3 |7| , then |7 n £|>|/' n £|> | |/'j> i |7| (use 5.9(h)). If

there is no such interval, choose 7' C 7 such that 7' n £ = 0 and 17' | > \ 171 .

Then 7' C Z„ for some n > 3(c + 1) and

\J'rxd(J', P) ^ (±\J\)-\d(J, x) + |7|) < 3(c + 1).

Now 5.9(h) implies |7n£|>|7'n£|^^|7'|>^|7|. We can proceed similarly

for those points of £ that are not isolated from the left. This and 5.9(iii) imply

£G£.

Let us prove (c). From the assumption £ G M4 we deduce the existence of a

portion Q of £ and of a number tj > 0 such that for every x G Q and c > 0 there is

an e > 0 with the following property: |£n(x + A, x + A + ft)|>T)|ft| for every

A, ft =f= 0, 0 < A/ft < c and | A + ft |< e. We can find an interval In with n > 2t)_1

whose endpoints belong to Q. Using 5.9(iv) we obtain a contradiction.

To prove (d) it suffices to note that £ is both an Fa and a G$ set.
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Lemma 5.11. Let I E R be a bounded, open interval. Then there exists a nowhere

dense set F E I such that £ G £ and F G M4.

Proof. Choose a perfect subset £ C I of measure zero and construct a set £

according to 5.10. Find a compact set £D £ according to Lemma 4.1 (where

A — I). If 7 is a bounded interval contiguous to T, choose a nowhere dense set

Fj EJ n £of type M5 withies* \ |7 n £| . Let £ be the union of £ and of all £,.

Then £ is a nowhere dense set and F El. We have £ G M4 since £ G Aí4, the set

£ — £ is open and £ C £ C £.

We prove that F EL. Let x G £. (For x G £ — £ we have nothing to prove since

£ — £ G M5.) There is tj > 0 such that for every c > 0 we can find e > 0 such that

|£n(x + A,x + A + ft)|>Tj|ft| whenever A, ft ^ 0, 0 < A/ft < c and | A + ft | < e.

Moreover, we can assume that e < ^ïj(1 + 2c + 2c2)"1 and (x — e, x + e) C (inf T,

sup £). Let 0 < A/ft < c and | A + ft | < e. If x + A G £, put u = x + A. If x + A G

(t, t'), where (r, r') is an interval contiguous to T with / G (x, x + A), put u = t'. If

x + A + ft G £, put v - x + A + ft. If x + A + ft G (t, t'), where (r, i') is an inter-

val contiguous to T with t G (x, x + A + ft), put v = /. Then | « — (x + A) |< A2

and |x + A + ft — u|<(A + ft)2(as follows from 4.1). Therefore,

\u- (x + h)\ + \x + h + k- v\<h2 + (h + kf = 2h2 + 2hk + k2

<(2c2 + 2c+ l)ft2< 2-T)|ft| .

This inequality implies that the intervals (x + A, u) and (v, x + h + k) are disjoint

and that | (u, v) n £ |> 4-t) | ft | . Hence,

|£n (x + A,x + A + ft)|>|(«,u) n £|s= { \(u,v) n £|> ¿T)|ft| .

Example 5.12. There is a set £ G £ which is not of the type M*.

Proof. Let (Z„) be the sequence of all open intervals with rational endpoints.

According to 5.11 we can construct a nowhere dense set £, E Ix, £, G £ and

£, G AZ4. By induction we define sets £„ as follows: Since Uien_, £, is a nowhere

dense set, there is an open interval Z C In which does not intersect this set. We can

assume that \I\< 2~"d2(I, U;<„ £,) and /fl U,.<n £, = 0. Let £„ be a nowhere

dense set such that £„ C Z, £„ G £ and En & M4.

Put £ = U°l, £,. Then £ is a set of the type £. We prove that £ G AZ*. Suppose

to the contrary, that £ G M*. Then there is an open interval Z having property (Z)

w.r.t. £. Since £ is dense in £, £ n Z G Af4. Choose n such that Z„ C I. Let x G £„.

Choose S > 0 such that (x - 8, x + 8) n U"~xx Ei = 0. If Aft > 0 and | A + ft | < 8,

then, for / i= n, we have either (x + A,x + A + ft)n£(= 0 and therefore,

|(x +A,x +A + ft) n £,|<2"'(A + kf

or (x + A, x + A + ft) n £, ^ 0 and therefore, i > n and | £, |< 2"'<Z2(x, £,) <

2"'(A + ft)2. Hence, | (x + A, x + A + ft) n U,.^B £,,|< (A + ft)2. Let £HZ =

U^=, FA and r\k > 0 according to the definition of M4. If x G £¿ n £„ and c > 0,
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then find e < \t\k(c + l)~2, 0 < e < 8,  such that  | (x + A, x + A + A,) n £ |>

■qk | A, | for all A, A, ¥= 0, 0 < A/A, < c and | A + A, |< e. For such A and A, we have

|(x + A,x + A + A,)n£„|^|(x + A,x + A + A,)n£|

-|(x + A,x + A + A,) n   U £,|

-^        iii        /      i    i\21 2 ^   l       iii
>Vk\hx\-(c+ I) Af >h*|A,|

since |A,|< \i)k(c + I)2. Hence, £„ G M4, which is a contradiction.
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