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HOMOTOPY IN FUNCTOR CATEGORIES

BY

ALEX HELLER

Abstract. If C is a small category enriched over topological spaces the category 5" c

of continuous functors from C into topological spaces admits a family of homotopy

theories associated with closed subcategories of C. The categories ?T c, for various C,

are connected to one another by a functor calculus analogous to the <8>, Horn

calculus for modules over rings. The functor calculus and the several homotopy

theories may be articulated in such a way as to define an analogous functor calculus

on the homotopy categories. Among the functors so described are homotopy limits

and colimits and, more generally, homotopy Kan extensions. A by-product of the

method is a generalization to functor categories of E. H. Brown's representability

theorem.

Introduction. The subject of this investigation is the kind of homotopy theory that

can be done in categories 9"c of functors with values in the category of topological

(more properly, separated compactly generated) spaces. The index category C is

itself supposed to be enriched over 9" so that such categories as, for example, that of

G-spaces where G is a topological monoid or group, are subsumed.

There are two points which are to be taken into account. First, in such a functor

category there are always several notions of homotopy. Two of these have been

extensively considered [3, 13, 14]; a third, provided by the obvious homotopy

congruence, has perhaps been thought too trivial to warrant much interest. In fact

there are many more—one, indeed, for each closed subcategory of the index

category. Second, these functor categories are related to one another by a functor

calculus formally analogous to the " tensor product" and " hom" calculus of module

theory. In this calculus appear, in particular, the functors induced by composition as

well as their adjoints, the Kan extensions.

The objective then is to articulate these notions of homotopy and the functor

calculus into a comprehensive system. As usual this is mediated by the introduction

of notions of fibration and cofibration. The several "standard" forms in which this

may be done—most notably Quillen's "model category" structures [10, cf. also

4]—are perhaps not adequate here. It has, rather, seemed appropriate to associate to

each notion of homotopy two each of fibration and cofibration: a kind of bifurca-

tion of function not unfamiliar in such instances as this of generalization.

There are to be then weaker and stronger notions of fibration and cofibration. It is

the stronger ones which will interact well with the functor calculus. To show that
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there are enough of them is the task of a central "mapping cylinder" theorem which

will be perceived as originating in Steenrod's version of the Milgram bar construc-

tion [12]. Using this, it is possible to test the comprehensive system by proving the

existence of various adjoint functors on homotopy categories, such as homotopy

limits and homotopy Kan extensions [1, 3, 13, 14]. A test of a different sort is

provided by a generalization to functor categories of E. H. Brown's representability

theorem for half-exact functors.

Recent work [2, 6, 9] has exhibited homotopy theories as arising in a variety of

contexts not lending themselves to the standard treatments. The present discussion

may perhaps serve to reinforce the notion that it may yet be premature to decide just

what it is that constitutes the formal structure of such a theory.

1. The functor calculus for 9-categories. Let us denote by 9" the category of

separated compactly generated spaces. 9" is complete, cocomplete and cartesian-

closed; we write (-)* for the function-space functor right adjoint to -XX More-

over, 9 contains all CW complexes.

By a 9-category we mean an internal category of 9^ with a discrete object-space or,

equivalently, a small category enriched over 9, that is to say provided with a

9-topology on each hom-set such that composition is continuous. If C, D are

9-categories we mean by a functor F: C -» D a functor on the underlying categories

such that for each c, d G C0 = ob C, the map C(c, d) -» D(FC, Fd) is continuous.

Any small category C may be regarded as a 9-category by giving to each C(c, d)

the discrete topology. We call such categories ^-discrete, in contrast to discrete

categories, for which C(c, d) = 0, c ¥= d and C(c, c) = {lc}.

If C is a 9-category 9 c denotes the category of functors X: C -* 9" which are

continuous in the sense that for each c, d G C0 the map C(c, d) -» Xdc is continu-

ous, or equivalently its transpose C(c, d) X Xc -> Xd is continuous.

Ends and coends of functors into 9 are defined in the usual way (cf. Mac Lane [8]);

the following statement is easily verified.

Proposition 1.1. If X: Cop X C X D -> 9" is continuous then the functors D -* 9"

defined by

are also continuous.

Using these we may construct a calculus on the functor categories 'ö c, formally

analogous to the calculus of modules over rings. The functorial pairing  ®c:

tf BXC°p x 6J CXD ^ sj BXD is g^ by

(1.2») (^V)W = /XfX^

Similarly, Homc: (ST BXC)op X 9 CxD -» 9 B°P X D is given by

(i.2b) Homc(jr,y)w = /r*



HOMOTOPY IN FUNCTOR CATEGORIES 187

These pairings are easily seen to satisfy the familiar-looking relations

(i®cy)®Dz^®c(y®Dz),

^ ' ' HomD(A'®c}', Z) œ Homc.p(l,HomD(y, Z))

for suitable X, Y, Z.

Homc gives 9 c an enrichment over 9. In particular, denoting by * the constant

1-point functor, 9"(*, Homc(A', Y)) = <5C(X, Y). Applying this to (1.3) we get the

adjoin tness relation

(1.4) s}D(X®cY,Z)~<öc°P(X,HomD(Y,Z))

for X: C°p -» 9", Y: C X D -> 9", Z: D -• 9.

The Yoneda lemma for continuous functors C -» 9" is proved by the same

argument as the standard one. If we denote by C: Cop X C -> 9" the obvious

continuous functor then, in our notation, it asserts that Homc(C, X) « X. By the

adjointness (1.3) this implies

C®CX~ X.

In particular ( X, Y) -» Yx — Homc(C X X, Y) gives 9"c the structure of a carte-

sian closed category, since

9"c(Z,Homc(C X X, Y)) ^S)C{Z <8>CoP (C X X), Y) « 9"C(Z X X, Y).

We shall make a convention of denoting, for a space W in 9, the constant functors

with values Why the same letter. From (1.2) we see directly that for suitable X, Y

(1-5)
(XX W) ®CY~{X®CY) X W~X®c(YX W),

Homc(A-X W, y) « Hom^*, Y)w <* Homc(*, Yw).

If F: C -» D then the functor F*: 9 D -» 9"c and its adjoints, the /ey? and right Kan

extensions along F, are given by the formulae

F*Y=T>° (1 X F) ®Dy~HomD(D° (FX l), Y),

La.nFX=D°(FXl)®cX,    RanFX = Homc(D ° (\ X F), X).

In particular, if If is constant as above then (1.5) implies

F*(Y X W) ~ F*(Y) X W,     LanF(X X W) w (LanF*) X W,

F*{YW)~(F*Y)W, RanF(Yw)^(RanFY)w

with the special case (Ytv)c = (7C)^, c G C,o-

2. Homotopy in functor categories. We denote by / the unit interval [0,1] and thus

also, by our convention, a constant functor with that value. If C is a ^-category a

homotopy in 9c is a morphism F: X X I -» Y or equivalently its transpose F:

X -> Y1; it is of course a homotopy of Fi0 = ev0 F and Fix = ev, F, where ia, eva are

the injections X -> X X I and the evaluations 77 -> Y at the endpoints of /. The

existence of a homotopy defines the homotopy congruence ~ in 9^c. The quotient

category 9 c/~ is the homotopy category Ho 9^c. A morphism in 9"c is a homotopy
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equivalence if its image in Ho 9"c is an isomorphism. A standard argument shows

that 9 c -» Ho 9 c is also the category of fractions with respect to the homotopy

equivalences.

In ^ c we define cofibrations and fibrations by the usual homotopy extension and

homotopy lifting properties. The mapping cylinder and cocylinder constructions for

a morphism/: X -» Y, viz. the pushout and pullback

X[_\X       ->       XXI Mf       -* Y'

/Uli 1 i i(ev0ev,)

TIJX       -» Mf YXX     ^ YXY

give rise to factorizations of / as a cofibration followed by a homotopy equivalence

and as a homotopy equivalence followed by a fibration. Compositions of cofibra-

tions are cofibrations. A pushout of a cofibration along any morphism is again a

cofibration; we shall refer to the resulting square diagram as a c-pushout. Fibrations

behave in dual fashion, giving rise to f-pullbacks.

The following assertions are proved by the arguments familiar in the case C = 1,

i.e., in 9\

Proposition 2.1. (i) A pushout of a cofibration which is also a homotopy equivalence

is again a homotopy equivalence.

(ii) A pushout of a homotopy equivalence along a cofibration is a homotopy

equivalence.

(iii) //, in a morphism of c-pushouts, the three initial arrows are homotopy equiva-

lences then so also is the fourth.

The dual statements for fibrations hold as well.

By a 2-cofibration we mean a commutative diagram

A
A0     ->     X0

(2.2) a I ix

/.
A\      -*     x\

in which a and/0, as well as the canonical morphism P -> Xx, where P is the pushout

of a and f0, are all cofibrations. It follows of course that x and /, are cofibrations

too. 2-fibrations are defined dually.

It is sometimes convenient to think of cofibrations in 9"c as special objects in

9~cx2, where 2 = (0 -* 1). Then 2-cofibrations are (in two ways) special morphisms

between cofibrations, viz., (/0, /,): a -» x and (a, x): f0 -» /, in (2.2).

Proposition 2.3. (i) Compositions of 2-cofibrations are 2-cofibrations.

(ii) A pushout in 9 cx2 of a 2-cofibration in 9"c along a morphism of cofibrations is

again a 2-cofibration.
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The dual statements for 2-fibrations also hold.

Coproducts of cofibrations are cofibrations, products of fibrations are fibrations

and both products and coproducts of homotopy equivalences are homotopy equiva-

lences. We shall see that these classes also have closure properties with respect to

certain "infinite compositions".

Let us consider ordinal numbers ß as ordered sets and thus as categories—as for

example 2 above. Thus ß0 is the underlying set of ß, e.g. 20 = 2. A limit ordinal is

then the colimit of its predecessors.

Proposition 2.4. If ß is a limit ordinal, X: ß -* 9"c is colimit preserving and, for all

a<ß, Xa^>Xa+]  is a cofibration then so also are Xa -> colim X and, for all

« < Y < ß, all Xa -* Xy.

We refer to this condition as closure under right infinite composition. The class of

cofibrations which are also homotopy equivalences is also closed under right infinite

composition. Dually, the classes of fibrations and of fibrations which are homotopy

equivalences are closed under left infinite composition.

Proposition 2.5. The 2-cofibrations in 9"c are closed under right infinite composi-

tion in 9 cx2. 2-fibrations are closed under left infinite composition.

Suppose that X,Y: ß -> 9"c preserve colimits, /: X -» 9" and that, for all a < ß,

(/«> /„+,) is a 2-cofibration, ß being a limit ordinal. Consider the diagrams

L
->■ colim X

1

■* K

-> P.
a+l

II

'■a+l

■

'a+l

in which the squares I, II are pushouts. Then (ua, ua+l) is the pushout, in 9"cx2, of

(/«> fa+\) alonS ('«» '«+i>- Thus ("«' M«+i) is by Proposition 2.3 a 9-cofibration,

hence also (1, pa); in particular/>0 is a cofibration. By Proposition 2.4, Pa r* colim P

= colim Y, so that

X„     -*    colim X

is a cofibration. But colima<)3Fa

i

Y„

I
colim Y

is a 2-cofibration.

Proposition 2.6. If ß is a limit ordinal, X, Y: ß -> 'S preserve colimits, Xa^> Xa+X

and Ya -+ Ya+X are cofibrations for all a < ß, /: X -> Y and all fa are homotopy

equivalences then colim / is also a homotopy equivalence.
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By taking the mapping cylinder of / we may put ourselves into the situation of

Proposition 2.5. The proof then proceeds by transfinite induction.

If J: C -» C is the inclusion of a closed subcategory, i.e., a subcategory with each

C(c, d) closed in C(c, d), then a morphism / in 9^c is a homotopy equivalence

(fibration, cofibration) rel C if/*/is a homotopy equivalence (fibration, cofibration)
in 9"c.

These notions are "relative" to a subcategory of the index category rather than to

a subobject of the domain, as is more usual in homotopy theory. However, since we

shall not need the latter sense of the word "relative" here this should lead to no

confusion. The condition that the subcategory be closed, we may remark, is no real

restriction; no generality would be gained by relaxing it. Absolute homotopy is

subsumed under relative homotopy as the case C = C.

Homotopy equivalences rel C form a class which is saturated in the sense that it

contains all isomorphisms and that if it contains any two of the morphisms /, g, fg

then it also contains the third.

We have described above the behavior of absolute homotopy equivalences,

fibrations and cofibrations with respect to limits and colimits in 9^c: let us describe

these collectively as the limit-properties of these notions.

Proposition 2.7. IfC is a closed subcategory of C then the homotopy equivalences,

cofibrations and fibrations relC in 9"c share the limit properties of the absolute ones.

This results immediately from the fact that if /: C C C is the inclusion then J*

preserves and reflects all limits and colimits as well as the functors Xh>XX I,

Jh X .

3. Free prolongations; C'-cofibrations. The constructions we make here, as well as

the proof of the "mapping-cylinder" theorem below, stem from the version of the

Milgram bar construction developed by Steenrod in [12] (cf. also [5]).

If J: C -* C is the inclusion of a closed subcategory and X: C -* 9" we may think

of X as giving an "action" of C on its restriction J*X: C -» 9". If J*X -* A is a

cofibration in 9"D we define the free prolongation along A, rel C, of this action by the

pushout

L&rijJ*X    ->     LmjA

exl 16

X -* X
in 9"c, where e is the counit of the adjunction Lany -* /*, whose unit we denote by

Lemma 3.1. // X -» X is a free prolongation as above then X -* X is a cofibration in

c and {J*B)i]A: A -> J*X is a cofibration in 9"c'.

The first statement follows from Proposition 2.1. For the second, observe that

J* LaxijJ*X    -»    J* LarijA

I

A -»      J* - X

is a pushout.
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Lemma 3.2. // C" CC'CC are closed subcategories and X -» X in 9"c is a free

prolongation relC" then it is also a free prolongation relC.

Suppose it is a free prolongation along (JJ')*X -* A, where J, /' are the inclu-

sions. Let J*X — Y be the free prolongation (in 9"c ) along A rel C". Then X -> X is

the free prolongation along y rel C.

Dually if B -» J*X is a fibration in 9"c we define the free elevation over B, relC

by the pullback

i —       x
I I

Ran, B     ->     Ran,/* A'

The reader may supply the duals of Lemmas 3.1, 3.2.

In order to define the notion of contraction we introduce a monoid structure in /,

viz. the multiplication (s, t) -* min(j, t). The unit is 1 and 0 is an absorbing element.

(The choice is somewhat arbitrary: The multiplication of R, for example, could also

serve. The one we have chosen is better suited to a simplicial interpretation which we

shall not pursue here.) A contraction on an X: C -» 9" is an action of this monoid on

X, i.e., a morphism I X X -> X subject to the usual unit and associativity conditions.

It is of course a contraction onto the subobject X0 = 0 • X. A retraction is an action

of the submonoid / = {0,1} C /; this is evidently equivalent to the usual notion.

The restriction of a contraction is its associated retraction.

Of course a contraction is a homotopy and both the inclusion X0 -> X and the

retracting map 0: X -* X0 are homotopy equivalences. If /: X -> Y then the mapping

cylinder Mf oí f has a contraction onto Y given by s • 8(x, t) = 0(x, min(s, /)).

Suppose now that X C Y C Z in 'ö c, that Y is provided with a contraction onto X

and that Z has a retraction onto X which extends the retraction associated to the

contraction of Y. We construct the free prolongation of the contraction along the

retraction by taking the pushout

IXYUÎXZ     -*    IX Z

Z -»       W

where <p is defined by the contraction and the retraction. A contraction of W onto X,

extending both, is defined by s ■ ̂ (t, z) = i//(min(i, t), z).

Lemma 3.3. If X -* Y -» Z, as above, are cofibrations in 'ö c then so also is Z -» W.

For each closed subcategory C'CC we shall distinguish, in addition to the

cofibrations rel C in 9^c, the class of C-cofibrations as the smallest class containing

the free prolongations relC which is closed under right infinite composition.

Equivalently, this may be described as the class of all right-infinite compositions of

free prolongations.

The class of C-fibrations is defined dually: it contains the free elevations relC

and is closed under left-infinite composition.

From Lemma 3.2 and its dual we may easily deduce the following statement.
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Proposition 3.4. IfC" CC'CC are closed subcategories then

{C"-cofibrations} C {C-cofibrations} C {C-cofibrations} = {cofibrations}

— {cofibrations rel C} C {cofibrations rel C} C {cofibrations rel C"}.

The corresponding statement for fibrations holds as well.

Our principal technical tool is the following relative mapping-cylinder construc-

tion, which generalizes the "absolute" mapping cylinder of §2.

Theorem 3.5. IfC C Cis a closed subcategory then any morphism f: X -» Y in 9"c

has a factorization X -* Y -» Y where X -* Y is a C-cofibration and Y -» y is a

homotopy equivalence relC, as well as a factorization X -» X -» y wAere X -> X is a

homotopy equivalence relC and X -* Y a C-fibration.

We shall confine ourselves to proving the first assertion, the proof of the second

being a straightforward dualization.

Without loss of generality we may suppose that / is a cofibration in 9"c. Let us

construct sequences of cofibrations

x= y0-»y,-» •••  in?rc,

J*Y = AX ->J*YX ^A2^J*Y2^ ■■■    in9"c'

together with maps r¡: Y¡ -» Y and contractions of the A¡ onto J*Y according to the

following prescriptions.

(0) r0 = /; Ax has the trivial contraction;

(i) each Yj,j > 1, is the free prolongation relC of J^_j along J*Yj_x -* A, and r is

determined by the retraction associated to the contraction of Ay,

(ii) each Aj+X is the free prolongation of the contraction of Aj onto J*Y, along

J*r¡, which is a retraction of Z*/^ onto J*Y.

We set y = colim(y0 -» Yj -»•••) so that A'-» ? is a C'-cofibration. But 7*y =

colim(y4, -» ^42 -> •••) so that, if r: y -» Y is the cohmit of the r,, then /*r is the

retraction associated with the cohmit of the contractions of the Ajf which of course

contracts J*Y onto J*Y.

4. Homotopy and the functor calculus. If we place ourselves in the situation of

(1.2a) we may observe that, because of the adjointness asserted by (1.4), the functors

X®c- preserve colimits. From (1.5) it follows that they preserve products with

constants and in particular with I. These statements, together with their duals, imply

the following assertions about abolute homotopy.

Proposition 4.1. (a) The functors X ®c-, -®c Y preserve cofibrations,

(b') Homc( X, -) preserves fibrations,

(b") Homc(-, T) takes cofibrations to fibrations.

Furthermore all of these functors preserve homotopy equivalences.

Corollary 4.2. If X, Y are in 9C then Ho9"c(A', y) is canonically isomorphic to

tr0Homc(X,Y).
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Included among the functors mentioned in Proposition 4.1 are in particular the

functors F*, LanF and Ranf associated with an F: C -» D in §1.

Proposition 4.1(a) may be amplified by making use of a criterion for cofibrations

introduced by Puppe in the classical case C = 1. If <p: Y -> / in 9"c the 0-space of <p

and its halo are the pullbacks:

X      -»      y U       ->      Y

{0}     -      / [0,1)     -      I

The proof of the following lemma proceeds exactly as in the classical case, as does

its indicated consequence.

Lemma 4.3. A morphism X -> Y in 9"c is a cofibration if and only if there is a <p:

y -» / whose 0-space is X -* y, anJ a homotopy, stationary on X, of the identity of Y

with a morphism taking the halo into X.

Proposition 4.4. In the situation of (1.2a) suppose that X' -» X and Y' -* Y are

cofibrations. Then

X'®CY'     -»     X®CY'

4, 4.

X'®CY     -*     X®CY

is a 2-cofibration.

The behavior of relative homotopy with respect to the functor calculus is governed

by the following lemma.

Lemma 4.5. Let B' CB,C'CC,D'CD be closed subcategories.

(a) ///: X -^ X' is aBX C°v-cofibration in g"BXC°p) g ¡s a homotopy equivalence

relC XD'inîCXD and X ®cg is a homotopy equivalence relB X D' then so also is

X'®cg.
(b') ///: X -» X' is a B X C-cofibration in 9"BXC, g is a homotopy equivalence

relC X D' in <yCXD an<¿Homc(A', g) is a homotopy equivalence relBop X D' then so

also is Homc(Ar', g).

(b") /// is a homotopy equivalence relB' X C in 9"BXC, g: Y' -+ Y is a C X D-

fibration in g"CXD and Homc(/, Y) is a homotopy equivalence relB'°v X D then so

also is Homc(/, Y').

These statements—and their proofs—are related to one another by dualization; it

will be sufficient to verify the first one. Moreover, restriction to D' C D commutes

with the tensor product over C, so that we may assume without loss of generality

that D' = D.

Let us suppose to begin with, that /: X -» X' is a free prolongation rel B X C'op

along, say, (B X J*)X -* A where J: C C C is the inclusion. If g: Y -» Y' we may
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then consider the diagram:

LanBx/(B x J*)X ®c Y - LanBX7^ ®c Y

(4.6)

LanB X/(B x J*)X ®c Y'

X®CY'

l™bxja®cy'

■* X' ®c Y'

X®c Y ■* X' ®c Y'

The inner and outer squares are pushouts and the horizontal arrows are cofibra-

tions. Furthermore v = LanBX/v4 ®cg = A ®C'(J* X D)g. Thus v, and similarly

u, are homotopy equivalences. The conclusion now follows from Proposition 2.1(iii).

The general case, with/any B X C'op-cofibration follows, using Proposition 2.6.

If 0 -» Zis a C'-cofibration in 9"c (Y -» * is a C-fibration) then A'is cofibrant (Y

is fibrant). The functors, X®c-, Homc(Z,-), Homc(-, Y) in these cases preserve

suitable relative homotopy equivalence. With the help of Lemma 4.5 and Proposition

2.3 we get the following result.

Proposition 4.7. // X is C-cofibrant (Y is C-fibrant) in 9"c then Ho^c(A',-)

(Ho9^c(-, Y)) takes homotopy equivalences relC to bijections.

This will allow us to conclude the existence of categories of fractions with respect

to relative homotopy equivalences. We shall extend our terminology by defining, for

a closed subcategory C C C, the class of homotopy equivalences rel C in Ho 9"c as

the smallest saturated class containing the images of the ones in 9"c.

Theorem 4.8. The class of homotopy equivalences relC in Ho9^c admits both a

calculus of left fractions and a calculus of right fractions. The corresponding category of

fractions Hoc, 9"c is also a category of fractions with respect to the homotopy

equivalences rel C in 9"c.

This follows at once from Propositions 2.1 and 2.7, Theorem 3.5 and Proposition

4.7. We may note in particular that if X is C'-cofibrant or Y is C'-fibrant then

(4.9) Hoc,^c(X, y)~Ho9"c(A-, Y).

If C = C then of course Hoc. 9"c = Ho 9'c. We may abbreviate Hoc 9"c to

Ho0^c.

5. Some adjoint functors between homotopy categories. Let us begin by recording a

familiar fact about categories of fractions.

Proposition 5.1. Let a: & -» &[S~l] and b: @ -> <$>[T~l] be categories of fractions.

If F: &-> % takes S into T then there is a unique F: â[S'1] ^ 9>[T']] such that

Fa = bF. If also G: % -» & takes T into S and F H G then F -\ G.
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For the latter statement it is only necessary to observe that the unit and counit of

the adjunction F -\G provide those for F-\G.

We may apply this as follows.

Proposition 5.2. Suppose that C'CC and D'CD are closed subcategories and

that X: Cop X D -» 9. Then

(i) // HomD(Ar,-): 9~D ->9"c takes homotopy equivalences relXY to homotopy

equivalences relC then the induced functor R: HoD- 9"D -* Hoc- 9 c has a left adjoint.

(ii) If X®c-\ 9"c -> 9"D takes homotopy equivalences relC to homotopy equiva-

lences rellY then the induced functor L: Hoc- 9"c -» HoD- ?T D has a right adjoint.

It will be sufficient to prove (i). Let X -» X be a homotopy equivalence rel C'op X D

such that X is Cop X D-cofibrant. Then, by Proposition 4.1, HomD(A', Y)-»

Hom^X, Y) is for all Y a homotopy equivalence relC and, up to isomorphism,

HomD(î,-) induces the same functor on the homotopy categories as does

HomD(X, -). But A^ ®c- is left adjoint to HomD(X, -1) and, by Lemma 4.5, takes

homotopy equivalences rel C to homotopy equivalences in 9"D, a fortiori to homo-

topy equivalences relD'. The conclusion now follows from Proposition 5.1.

A special case is worthy of particular note. If C C C and D'CD are closed

subcategories and F: C -» D takes C into D'—we shall write F: (C, C) -* (D, D')—

then F* : 9"D -» 9"c clearly takes homotopy equivalences rel D' to homotopy equiva-

lences relC and thus induces on the homotopy categories HoeD,F*: HoD-9^D -»

Hoc-9^c. Thus (1.6) and Proposition 5.2 imply the following statement.

Theorem 5.3. If F: (C,C) -* (D,D') then HoeD,F* has adjoints on both sides.

We denote these by

Hoc- D- lanFH Hoc- D- F* h Hoc,D-ranF.

They are the left and right homotopy Kan extensions along F, relative to C, D'.

In the special case C = C, D' = D we may omit the subscripts. If C = C0,

D' = D0 we abbreviate to Ho0lanf, Ho0F*-, Ho0ranF.

A still more special case has its own notation. If F: C X D -> D is the projection

then the left and right homotopy Kan extensions along F are the homotopy colimit

and the homotopy limit. If C C C, D' C D we write Hoc,D, colimc = Hoc<xd,,d' ianF

and so forth. The case D = 1 is still nontrivial: it gives the "classical" homotopy

limit and colimit.

These homotopy Kan extensions may be expressed by formulae. Let D -» D °

(F X 1) be a homotopy equivalence relC'op X D such that D is C'op X D-cofibrant.

Then HoeD.lan/rA'«i D ®CX. U D -*D ° (I X F) has the corresponding proper-

ties, then

HoCïyTanFX œ Homc(¿5, X).

An easy extension of the argument of Proposition 5.2 leads also to the following

conclusion.

Proposition 5.4. // X is C-cofibrant then HoCDlan/rA'^ La.nFX; if X is

C-fibrant then HoCD, ranFAr<=» Ran^X
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Analogous statements for homotopy limits and colimits constitute a special case.

We may recall here the observation of R. Vogt [13] that if C is a monoid in ïthen

Ho0limc(*) is (up to homotopy) the Milgram bar-construction BC Indeed the same

statement is true for any ^-category C, if BC is taken to be the Segal classifying

space of C (cf. [11]). The argument, which depends on a careful examination of these

constructions, is not germane to our present interests and will be omitted.

It is a familiar observation that if F: C -» D is a morphism of topological monoids

which is a homotopy equivalence on the underlying spaces then BF: BC -* BD is a

homotopy equivalence as well. We may generalize this result in the following way.

Let us say that a functor F: C -* D is an H-equivalence of ^-categories if F0:

C0 w D0 and, for each c0, cx, C(c0, cx) -> D(c0, cx) is a homotopy equivalence.

Theorem 5.5. If F: C -» D is an H-equivalence then Ho0 F*\ Ho0 9"D -» Ho0 9"c is

an equivalence of categories.

It will follow that Ho0lanF, Ho0ranf are both, up to isomorphism, inverses of

Ho0F*.

Without loss of generality we may assume that C0 = D0 and that F0 is the identity.

By Proposition 5.4 if A' is C0-cofibrant in 9"c then Ho0lanFAr«; LanFAr«s D ° (F

X1)®CI and (Ho0F*)(Ho0\dxiF)X<*>D°(FXF)®CX. Now the morphism C

-> D ° (F X F) in g"c°PXC defined by F is by our hypothesis a homotopy equiva-

lence relC0XC0. The unit -qx: X -» (Ho0F*)(Ho0lan/-)A' of the adjunction is

represented byAr«sC®cA'->D°(FX F)®CX which by Lemma 4.5 is a homo-

topy equivalence relC0. Since any X in 9"c is homotopy-equivalent relC0 to a

C0-cofibrant object this implies that all i\x are isomorphisms.

On the other hand F* reflects homotopy equivalences relC0; it follows at once

that for all Y in 9"D the counit eY: (Ho0 lanf)(Ho0 F*)Y -* Y is also an isomorphism.

6. Some special cases. In some cases homotopy limits and colimits can be

described more simply than by the constructions of §5. The categories Hoc 9"c have

of course products and coproducts, coming from those of 'ÏÏ c, and these are easily

seen to be homotopy products and coproducts as well. We shall consider here some

homotopy colimits over ordered sets, specifically, homotopy pushouts and ordinal

homotopy colimits. For brevity we shall, here, denote a functor A -» 9"c and its

transpose A X C -» 9^ by the same letter.

Lemma 6.1. Suppose that X -» X is a free prolongation relC X A0 in 9" CXA, where

A is an ordered set. If X has the property that Xx -» Xß is a cofibration for all X < n

then also

I I

is a 2-cofibration.
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Let J: C X A0 -> C X A be the inclusion. For any A: C X A0 -> 9", (Lany^L. =

11^^. If A" A" is a free prolongation along A we may construct the diagram

II x.
7<\

'U^-!->UAy

I

II
7<X

-»•x,

The inside and outside squares are pushouts, while the pushout in the starred

square is IIY<X /ly |J Hy<(t<y^x Xy. Thus the starred square is a 2-cofibration and the

conclusion follows from Proposition 2.3. Using Proposition 2.5 we may deduce the

following statement.

Corollary 6.2. IfXis C X A0-cofibrant in <3"CXA then Xx -* X^ is a cofibration for

any A < ¡i in A.

Pushouts are colimits over the category W

may be identified in the following way.

Proposition 6.3. If X: C X W -» 5 and X0 -i

9"c then Hor, n colim«, X m colim«, X.

(1 «- 0 -» 2). Homotopy pushouts

A",, Aq -* A'j are cofibrations relC in

^e,o w 1W.

In other words for such X the pushout in 9" represents the homotopy pushout in

Hoc. 9 c. To see that this is so, choose (using Theorem 3.5) a homotopy equivalence

X -» A" rel C X W0 such that XisC X W0-cofibrant. Now X is also C X W0-cofibrant

and, by Corollary 6.2, XQ-> X¡, X0 -> X2 are cofibrations in 9~c. It follows from

Propositions 2.1 and 2.7 that colimw X -> cohmw X is a homotopy equivalence

relC. But, in consequence of Proposition 5.4, Hoc.colimwX« cohmwX

An analogous argument proves the following assertion.

Proposition 6.4. // ß is a limit ordinal, X: ß -» 9"c preserves colimits and, for all

a < ß, Xa -> Xa+ ! is a cofibration relC then Hoc- cohm^ X « colim» X.

Although the categories Hoc, 9"c in general lack colimits, they have weak colimits,

about which we can adduce some additional information.

Let us begin by observing that a diagram T: W -» Hoc- 9"c can always be lifted to

an A-: W ^ 9"c with/iA" ̂ T, where h: 9ere
Hoc. 9

ere is the canonical functor. Thus

T has a cohmit cone, provided by Hoc, 0 colimw X. We shall refer to such colimit

cones as pseudopushouts.

Indeed we may even suppose that the lifting X is C X W0-cofibrant in 9"cxw. By

(4.9) this implies that, for any Y: C X W -» 9", 9" cxw( X, Y) -» (Hoc, 9" C)W(ÄA", h Y)



198 ALEX HELLER

is surjective. Thus if T -» S in (Hoe?Tc)w and T, S are pseudopushouts these

constructions give rise to morphisms T -» S of colimit cones. Let us distinguish these

as the admissible morphisms associated with T -* S.

Proposition 6.5. (i) Any pseudopushout in Hoc. 'S c is a weak pushout.

(ii) Any admissible morphism associated with an isomorphism is again an isomor-

phism.

In particular, weak pushouts always exist in Hoc. 9^c, and thus, by a standard

argument, all diagrams have weak colimits. The pseudopushouts which provide these

are, moreover, unique up to a noncanonical isomorphism.

We have also an analogous treatment of functors T: ß -* Hoe 9^c, where ß is a

limit ordinal, if we agree to mean by a lifting a functor X: ß -» 9"c such that

hXs ft) T, when s is the successor function on ß, sa = a + 1. One proves by

induction on ß that any T has a lifting X which is cohmit preserving and has the

property that each Xa -» Xa+X is a cofibration. Pseudocolimits of functors T: ß ->

Hoc- 9"c are defined as the homotopy colimits of such liftings, as are the morphisms

of pseudocolimits associated to morphisms T -* S of such functors. These pseudo-

colimits are, once again, weak colimits and all morphisms associated with isomor-

phisms are themselves isomorphisms, so that pseudocolimits are unique up to

noncanonical isomorphism.

They enjoy also the following remarkable property.

Proposition 6.6. For any X /'n 9"c there is a cardinal number ßx with the following

property: if ß is any regular cardinal larger than ßx, T is any functor ß -* Hoc> 9"c and

T is a pseudocolimit of T then the canonical map

colima<(8 Hoc, 9" c( X, Ta) -> Hoc, 9" c( X, f )

is bijective.

Without loss of generality we may assume that X is C-cofibrant in 9"c; we take ßx

larger than the number of points in any Xc X I, c G C0. We may further assume that

F«* colim^ Y where Y: ß -» 9"c is colimit preserving and each Ya-> Ya+X is a

cofibration. But then any X -> T, A" X / -> F both factor through some Ya, a < ß.

7. CW spaces; weak homotopy. Let us denote by Q the full subcategory of 9"

containing the spaces of the homotopy type of a CW complex. 6 is neither complete

nor cocomplete. It is however closed under finite products, all coproducts, c-pushouts

and certain ordinal colimits: if ß is a limit ordinal, X: ß '-* 6 is colimit preserving,

and Xa -» Xa+ x is a cofibration for all a < ß then colim^ X is in 6.

A map/in Fis a weak homotopy equivalence if Ho^}(X, f) is bijective for all A'in

6. The class of weak homotopy equivalences has closure properties analogous to

those of the class of homotopy equivalences (cf. §2). In a category 9"c we shall say

that a morphism/is a weak homotopy equivalence if fc is one, for all c G C0. These

form, evidently, a class still larger than that of the homotopy equivalences relC0;

within the category Qc C 9"c, on the other hand, they coincide.

The images in Ho?Tc of the weak homotopy equivalences in 9"c generate a

saturated class of morphisms whose elements we again refer to as weak homotopy
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equivalences. We shall see that Ho0 9"c admits a calculus of left fractions with

respect to this class, leading to a category of fractions How 9" c, which is of course

also the category of fractions of 9"c with respect to its weak homotopy equivalences.

If/: C0 -> C is the inclusion and ,4: C0 -* 9" then (Lan jA)c = Uc<C(c', c) X Ac,. If

also X: Cop -» T then

X ®cLanjA ~ (J*X) ®CoA =UCXCXAC.

From this we may, along the lines of Proposition 4.1(a), deduce the following result.

Proposition 7.1. (i) If X: C -» 9" is C0-cofibrant then - ®c X preserves weak

homotopy equivalences.

(ii) If F: C -» D then Ho0F* and Ho0lan F preserve weak homotopy equivalences.

We may also extend Theorem 5.5. We say that F: C -» D is a weak H-equivalence

if F0: C0 a» D0 and each C(c, c') -» D(FC, Fc,) is a weak homotopy equivalence.

Lemma 7.2. If F: C -» D is a weaA: H-equivalence then for any X in 9"c, Y inSD

the unit i)x and thecounit eY of the adjunction Ho0lanF -* Ho0 F* are weak homotopy

equivalences.

We may without loss of generality assume that C0 = D0 with F0 the identity and

that X is C0-cofibrant. Then, by Proposition 5.4, Ho0lanF A"~ D ° (F X 1)®CX

and (Ho0 F*)(Ho0 lanF)A" **D ° (F X F) ®cX.The unit i\x is thus given by

P®cx
X~C®CX    -»    D°(FXF)®CA"

where F: C ->D»(FX F) in 9^ c°Pxc is defined by F and is thus a weak homotopy

equivalence. On the other hand, Ho0 F* evidently reflects weak homotopy equiva-

lences. Since (Ho0F*ey)(î}F.y) = 1 it follows that eY is also a weak homotopy

equivalence.

Let us say that a 9-category C is a (¿-category if all C(c, c') are in 6. For any such

C a free prolongation relC0 of an X: C -» 6 along an ^4: C0 -» 6 is again in ßc; the

same is evidently true of free prolongations of contractions.

If by C0-cofibration in 6C we mean a right infinite composition of free prolonga-

tions rel C0 we may thus draw the following conclusion.

Proposition 7.3. Any X -» Y in 6C may be factored as X -» Y -» Y w/íA X^fa

C0-cofibration in G   and Y -» Y a homotopy equivalence relC0.

Corollary 7.4. // C, D are (¿-categories and F: C -> D iAe«, «/> io isomorphism,

Hoglan^. ía/:eí Ho0 6 e mío Ho0 ßD.

If A" is a space in 9^ we write SX for the geometrical realization of the singular

complex of X. Then 5 is a functor I^Scí and is provided with a natural

transformation sx: SX -* X which is, for all X, a weak homotopy equivalence.

Moreover S preserves finite products. Thus if C is a ^-category we may define a

6-category SC by (5C)0 = C0; (SC)(c, c') = S(C(c, c')), composition being given by

SC(c, c") X SC(c, c') ~ S(C(c' ■ c") X C(c, c')) •* S(C(c, c")).

From s we may construct a weak //-equivalence sc: SC -* C.
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If A": C -» 9" define SA": SC -» 9" by (SJf)c = SXC, with 5C(c, c') 4 X?,< de-
termined by adjunction from the commutative diagram

SC(c,c') X SXC

i«

S(C(c, c')) X^...   -     Mfc
i j Is

C(c, c') X A"c -*     A>

which also constructs for us a morphism î^: SA" -» i* A", natural in A', which is for

each A" a weak homotopy equivalence in 9"   .

Proposition 7.5. // C is a (¿-category then Ho0(Gc) -> Ho0(9^c) has a right

adjoint.

This is of course given by the composition

Ho0(fcHHo0(ec)-*Ho0(ec),

the second functor being the inverse whose existence is guaranteed by Corollary 7.4.

This right adjoint makes Ho0(6c) a weak category of fractions of Ho0(9"c) with

respect to weak homotopy equivalences and, proceeding as in Theorem 4.8, leads to

the following theorem.

Theorem 7.6. (i) For any C, Ho0 9" c admits a calculus of left fractions How 9"c with

respect to its weak homotopy equivalences.

(ii) // F: C -» D then F* defines a functor HowF*: Ho„,9"D -» Ho,^0 with

adjoints

How Ian F h How F* H How ranf

where How 9"c is the category of fractions whose existence is guaranteed by (i).

(in) If Fis a weak H-equivalence then HowF* is an equivalence of categories.

(iv) // C is a ¿-category, X <E ¿c, Y <E<5C, then How 9" c( X, Y) « Ho0 9" c( X, Y).

In particular, Ho0 Qc = How 6C -» How 9 c ii a« equivalence of categories.

8. Basepoints. Starting with the category 9\ of pointed spaces, i.e., the comma-

category (* 19 ), we may develop a functor calculus and homotopy theory in analogy

with those just presented for 9". It is not necessary to do this in extenso; rather it will

suffice to indicate the several differences between these theories.

To begin with, 9". is complete and cocomplete. The forgetful functor 9". -» 9" has

the left adjoint A'h» X+ = (* -» X\J *) and preserves pushouts and directed colimits;

coproducts in 9. are of course given by " V". Moreover 9". is monoidal closed with

respect to the smash product "A"; we denote the corresponding function spaces by
Y'x.

Continuous functors C -» 9. defined in the obvious way are the objects of the

category 9".c. For suitable X, Y we define (cf. (1.2))

{X®cY)bd = fxbc A Ycd,       Homc(A-, Y)bd= (yJ*.
J J r
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If F: C -> D we have, replacing (1.6),

Py*D+ ° (1 X F) ®DY~HomD(D+ ° (FX 1), Y),

LanFZ=D+ ° (FX 1) ®c X,       RanFA"= Homc(D+ ° (1 X F), A").

Homotopies in 9".c are morphisms X A /+ -« Y or A" -» Y'/+. Homotopy equiva-

lences, fibrations and cofibrations are defined accordingly and the remaining argu-

ments and conclusions of §§1-6, modified to fit the pointed case, may be left for the

reader to supply.

This does not quite exhaust the subject of basepoints; we are bound to consider

their "quality" as well. Let us observe that 9".c = (* J, 9" )c » (* 19"c). Thus for any

closed C'CC there is a full subcategory of 9\c containing those functors for which

the basepoint * -» A" is a cofibration rel C in 9\c. The standard argument (i.e., in the

case C — 1) proves also the following assertion.

Proposition 8.1. Suppose that X, Y in 9\c have basepoints cofibered relC and that

/: X -» Y in 9.c is a homotopy equivalence relC in 9~c. Then f is also a homotopy

equivalence relC in 9~.c.

In the absolute case C = C we shall say that an A" in 9\c is well pointed if * -> X is

a cofibration in 9"c and shall write 9^ C 9\c for the full subcategory of well-pointed

functors. For any X in 9~.c we may write X* for the mapping cylinder in 9"c of

* -» X. This mapping cylinder lies in 9"¿\ For any C C C it follows from Proposi-

tion 8.1 that if A" has basepoint cofibered relC then the canonical morphism

X* -* X is a homotopy equivalence rel C in 9\c.

Proposition 8.2. X -» X* gives a right adjoint to the functors HoeFf -+ Hoc, 9".c

induced by inclusion.

We might, at this point, have introduced the subcategories of functors with

basepoints cofibered relC; Proposition 8.1 shows that the corresponding homotopy

categories would be equivalent to Hoc- 9"¿\

The categories 9", lack most of the completeness properties of 9~.c. Nevertheless

the results on the existence of adjoint functors in homotopy may be recovered

because of §2 and the following lemma.

Lemma 8.3. If X, in 9.BXC°P, has basepoint cofibered relB! X C'op and Y, in 9\CXD,

is C X D'-cofibrant then X ®c Y has basepoint cofibered relB' X D'.

This is an immediate consequence of Proposition 4.1 and the fact that

*®CY    -»     X®CY

I i

* ->     X®CY

is a pushout in 9 BXD.

For brevity we confine ourselves to the statement of the existence of homotopy

Kan extensions in the well-pointed case.

Theorem 8.4. // F: (C, C) -* (D, D') then Hoc, D, F* takes HoD. 9^ to Hoc, 9"£,

with adjoints on both sides.
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By Lemma 8.3 the left adjoint is, up to isomorphism, just the restriction of

HoCD. lanf. The right adjoint is HoCD. ranF composed with the functor X\^X*.

9. Half-exact functors. Let us denote by % the full subcategory of 9". containing

the pathwise connected spaces. The full subcategory How %c C How 9" .c is closed

under coproducts and weak pushouts. A functor (How 9oC)op -* Sets is half-exact if it

takes coproducts in How 9oC to products and weak pushouts to weak pullbacks.

Theorem 9.1. A functor (How90c)op -* Sets is representable if and only if it is

half-exact.

The case C = 1 is of course Brown's theorem. Representable functors are clearly

half-exact. The converse depends on a theorem of category theory (cf. [7]).

Categorical Theorem. Suppose that â is a category supplied with coproducts and

weak pushouts and possessing a set S of objects such that

(i) S is left adequate.

(ii) There is a cardinal number ß0 such that if ß is a regular cardinal greater than ß0

and X: ß -» & then X has a weak colimit X such that, for any S G S,

colima<l8 &(S, xa) -» 6B(S, A") is bijective.

Then every half-exact functor &op -> Sets is representable.

Thus to prove Theorem 9.1 we need only find a suitable set S in How %c. By

Theorem 7.6 we may without loss of generality suppose that C is a 6-category. We

set S = {Ho0lanc5"; c G C0, n — 1,2,...}. Note that each of these is a functor

C -» 6. Thus How g"0c(Ho0lancS", X) = Ho0 9oC(Ho0lanc5", X) » Ho(%(Sn, X))

= nn X and it is clear that S is left adequate.

The boundedness condition, of course, follows immediately from Proposition 6.6.
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