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HOLOMORPHIC CURVES IN LORENTZIAN CR-MANIFOLDS

BY

ROBERT L.BRYANT1

Abstract. A CR-manifold is said to be Lorentzian if its Levi form has one negative

eigenvalue and the rest positive. In this case, it is possible that the CR-manifold

contains holomorphic curves. In this paper, necessary and sufficient conditions are

derived (in terms of the "derivatives" of the CR-structure) in order that holomorphic

curves exist. A "flatness" theorem is proven characterizing the real Lorentzian

hyperquadric Q¡ Ç C/*3, and examples are given showing that nonflat Lorentzian

hyperquadrics can have a richer family of holomorphic curves than the flat ones.

0. Introduction. In the study of CR-manifolds, the presence of holomorphic

submanifolds has a fundamental effect on the behavior of solutions of the natural

PDE associated to a given CR-manifold. In fact, the holomorphic submanifolds play

a role analogous to Monge characteristics in the theory of second order partial

differential equations for one function of «-variables. The elliptic theory, i.e., no

Monge characteristics, corresponds under this analogy to the strictly pseudo-convex

CR-manifolds, where holomorphic submanifolds are forbidden by the positive

definite behavior of the Levi form. The classical wave equation corresponds to the

Lorentzian CR-manifolds (see §1 below) where the maximal isotropic subspaces of

the holomorphic tangent space are complex lines. Thus, two dimensional complex

submanifolds are forbidden by the signature of the Levi form, but the possibility of

holomorphic curves remains. In this paper, we solve the problem of determining

when holomorphic curves exist in a Lorentzian CR-manifold. Moreover, we derive

an upper bound on the dimension of the parameter space of the holomorphic curves

in a Lorentzian CR-manifold and give an example to show that this upper bound

can be achieved.

The fundamental tools to be used are the notions of differential systems and

prolongation. We will not need to assume any previous knowledge of these subjects,

though the reader may wish to acquaint himself with the motivating ideas by

consulting [Bry ant-Chern-Grif f iths].

The author would like to express his gratitude to Eric Bedford for acquainting him

with the problem and supplying him with valuable references and to James Faran

and Nancy Stanton for several illuminating discussions on CR-manifolds.
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1. CR-manifolds. The basic model of a CR-manifold is a real hypersurface Af2n+1

in C"+1. We may assume that M - p~'(0) where p: C"+1 -+ R takes on 0 G R as a

regular value, i.e., dp^ ¥= 0 for all x G Af.

We let Apq(C"+1) be the complex-valued C°°-forms on C+I of type (p, q) (see

[Chern]). If z°,...,z" are holomorphic coordinates on C+1, then ^10(C"+1) is

spanned, as a C°°(C"+ ')-module, by the forms dza (« = 0,...,«). We define

I(M)= hjUE^,0(e+')) Q&c(M),

where fiè( Af ) is the set of (smooth) complex-valued 1-forms on M. When there is no

danger of confusion, we simply write I instead of I(M). We note that I C ti]c(M) is

a complex Pfaffian system of (complex) rank n + 1. The important properties of I

are

(a) I is differentially closed, i.e. du = 0 mod I for all w in I,

(b)/ + / = SlUM),v j        _        cv     /»

(c) I D I is of (complex) rank 1.

Now we may describe I n I as follows: since p = 0 on Af, we have dp = 0.

Therefore dp = 3p + 3p = 0 on Af. The assumption that 0 is a regular value of p

implies that dp never vanishes on Af. It follows that dp generates I n /over Q°( Af ).

With the above as motivating example, we make the definition

Definition 1.1. A (smooth) CR-manifold is a pair (M, I) where M is a smooth

manifold of dimension In + 1 and / Ç fiJ^A/) is a Pfaffian system which satisfies

(a) I has complex rank n + 1 at every point of M,

(b) d<o EE 0 mod I for all u G /,

(c) 7 n /has complex rank 1 at every point of M.

Remarks. To be completely honest, we should call the above pair a maximally

complex CR-manifold (of dimension 2« + 1). Since no other kind of CR-manifold

will occur in this paper, we omit the qualifying adjective phrase "maximally

complex".

In the analytic category, it is known, cf. [Chern-Moser], that any CR-manifold is

locally equivalent to a hypersurface in C"+1. Thus, the abstract definition given

above allows for a wider class of examples only in the C°°-category. For a fuller

discussion of this point, the reader should consult [Nirenberg].

By abuse of language, we will often say that Af is a CR-manifold, the Pfaffian

system I C Sl]c( M) being understood.

If U C M is an open set, we say that a collection of forms a = (a0,... ,a") in

®c(U) is an adapted basis of I in U if

(a) a0,...,a" span I restricted to U,

(b) a0 = a0, i.e., a0 is a real basis of I D /restricted to U.

It is immediate that Af is covered by open sets U which possess adapted bases. If a

and ß are two adapted bases on U C M, then

a° = \ß0,   a, = viß° + gijßJ,       i=l,...,n,

where X is a nonzero real function on  U and v', g'j G Cq(U) are such that

det(gj) ¥= 0. From this transformation law, it follows that if we fix x G U, the
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subspace Hx — kera0. C TXM does not depend on the choice of adapted basis a (or

on U, for that matter). Moreover, the map [a'x]: Hx — C" given by

[ax](v) = {ax(v),...,ax(v))

for all v G Hx is an isomorphism which induces a complex structure Jx on Hx

independent of our choice of a or U containing x. The vector bundle

H =   U ^ Ç TM

together with its complex structure

/= U jx
ieM

is often referred to as the holomorphic tangent bundle of Af.

Definition 1.2. If Af is a CR-manifold, a holomorphic immersion into Af is an

immersion <j>: N2p -» A/ with the property that, for every v in N, <¡>*(T N) is a

(complex)/j-dimensional subspace of /f^(r). When/» = 1, a holomorphic immersion

is called a holomorphic curve in Af.

Remark. When Af is a real hypersurface in C"+1, a holomorphic immersion into

Af is just a complex submanifold of C"+1 which happens to lie in Af. This is the

motivation for the above nomenclature in the abstract setting.

A fundamental observation concerning the holomorphic immersions into Af is the

following: If U C M is an open set, a is an adapted basis on U, and <¡>: N2p -> U Q M

is a holomorphic immersion, then <j>*a° = 0. This is clear because

<l>*(TyN) Q HHy) = kera°(>)).

This suggests studying the structure of a0 as a 1-form. Since

da0 = 0 mod Iv = (a0,...,«"},

it follows that there exist forms nL(k = 1,...,«) so that

da0 = Kk A ak    mod a0.

(Here and elsewhere, we use the summation convention.) The reality condition

a0 = ct° implies that we may assume

so that

-ihk/aJ    moda0

da0 = ihk-ak A aJ    mod a0

where hkj-= hjk.

Definition 1.3. The CR-manifold Af is said to be

(a) nondegenerate if at every x G Af, the matrix hjk (which is hermitian) is

nonsingular, i.e., det(hJk) ¥= 0,

(b) strictly pseudo-convex if at every x G Af, the matrix hjk is positive or negative

definite,
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(c) Lorentzian if at every x G M, the matrix hjk has (« — 1) eigenvalues of the

same sign and 1 eigenvalue of the opposite sign. (In particular, if Af is Lorentzian,

then n > 2 and Af is nondegenerate.)

Remark. It is not difficult to verify that the above definitions do not depend on

the adapted basis implicit in the statement. For example, nondegeneracy is clearly

equivalent to the condition a0 A (da0)" ¥= 0 for the adapted basis a on U. If ß were

another adapted basis on U, then ß° = Xa° where X ¥= 0 is a real smooth function

on U, but then

ß° A (dß0)" = A"+Ia° A (da0)" * 0.

Returning to the holomorphic immersion <i>: N2p -» U C M with adapted basis a,

we see that differentiating the condition <¡>*a° = 0 gives

<t>*(da°) =4>*(ihk]ak A c/) = 0.

This gives us the classical proposition

Proposition 1.4. //</>: N2p -» Af is a holomorphic immersion, then for every y in N,

<i>*(T N) is a complex isotropic (i.e., null) space of the Levi form, i.e., the (hermitian)

form £: H X H -* C given on an open set U C M with adapted basis a by the formula

tx(v,w) = hk]ak(v)af(w)

when v, w G Hxfor some x G U. In particular, if M is strictly pseudo-convex, then the

only holomorphic immersions into M satisfy p — 0 (in other words, N consists of

isolated points). If M is Lorentzian, then M has no holomorphic immersions with p > 1.

Example 1.5. On C+1 with coordinates z°,...,z", we let p: C"+1 -> R be the

function

p= 1 + |z°|2- |z'|2-\z"\2.

It is easily verified that A/2n+1 = p"'(0) is a Lorentzian^R-manifold. Moreover, if

(nk),(\k)<=C are fixed vectors such that /// = \kXk = 1, ¡ik\k = 0, then the

complex line za(t) (t G C) given by z°(t) = t, zk(t) = /»* + \kt lies in A/2n+1. This

exhibits a (4n — 4) (real) parameter family of holomorphic curves in Af. We will see

later that any connected holomorphic curve (i.e., N is connected) in Af is an open

subset of one of the lines given above.

To the author's knowledge, the first study of this type of example was made by

[Sommer] in the case N = 2 (the first nontrivial case). Sommer made a study of real

hypersurfaces in C3 of Lorentzian type and gave several interesting examples of such

hypersurfaces which possess holomorphic curves (and some which do not).

From now on, we will mainly be concerned with the Lorentzian case. Our main

goal is Theorem 3.11, which asserts that, in a certain sense, the holomorphic curves

in a Lorentzian CR-manifold depend on at most n2 real parameters. Moreover, in

the generic case, M will have no holomorphic curves at all. These results will depend

on rather high orders of "derivatives" of the CR-structure on Af. In §4, we relate

these computations to the Chern-Moser theory in the case n = 2 to show that if M

has a 22 = 4 parameter family of holomorphic curves, then Af is locally the

hyperquadric (case n = 2 in Example 1.5).
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2. The first prolongation and the canonical Pfaffian system. Throughout this

section, (Af, I) will denote a Lorentzian CR-manifold (n > 2), U Ç Af will be an

open set, and a = (a0,..., a") will be an adapted basis of I on U which satisfies

da° = i(a] A a1 - a2 A a2-a" A~¿¡")    moda0.

As we have remarked before, the only possible holomorphic submanifolds of Af

are the holomorphic curves. We will begin our study of the holomorphic curves of M

by analyzing the possible tangent spaces.

Let &x be the set of complex 1-dimensional subspaces £ C Hx which are null lines

for the Levi form tx. &x is easily seen to be a S2"~3. Set &= UxeM&x.

& is, in a natural way, a manifold and the natural projection m: &^ Af given by

tt(&x) — x makes & into a fiber bundle over Af with typical fiber S2"~3 (see below

for details). If <i>: N2 -» M is a holomorphic curve, there is a natural map <í>: YV2 -> &

given by <i>( v) = <f>„(T N). & carries an additional piece of information which allows

us to characterize these maps <i>: N2 -» & which come from holomorphic curves <i>:

N2 -> Af. If £ G &, let x = tt(£). Then £ Ç Hx C 7;Af. Let £x Ç 7;*cAf be the

subspace of complex 1 -forms which vanish on £. Set

h = *i(t±) Ç Ttc&    and   J= U /{•

/ is a (complex) subbundle of 7£ & which is closed under conjugation, J = J. We let

j- denote the set of complex valued one-forms « on & which satisfy w^ G J¿. f is a

complex Pfaffian system of (complex) rank 2n — 1. The importance of f is revealed

by the following proposition.

Proposition 2.1. Let <j>: N2 -» Af be a holomorphic curve and let <i>: Af -> & be its

canonical lift. Then

(1) </>*w = 0   for all u G j-.

Conversely, suppose that <¡>: N -» & satisfies (1) a/W í/¡aí 77 o <£: N ^ M is an

immersion. Then 77 ° <j>: N -» Af /'s a holomorphic curve in M and <j) is its canonical lift.

Proof. This is an exercise in making sure we have defined everything properly.

Suppose that <¡>: N2 -» Af were a holomorphic curve and that <i>: N2 -» & were its

canonical lift. Let <¡>(y) = x and <|>(y) = £ = ^(T^A7). Suppose « G f is given. Then

for any y G A^

(♦•(«))t = #(«{) = ^*(*f(*if)) - (77 o ¿);(%) = <£(,t) = o

where we have chosen t)? G £x so that 77^(77^) = w^, and the last equation follows

from the definition of £± and the fact that <t>*(TyN) — £. This establishes our first

claim.

For the second, suppose that <f>: N -* & is such that <ji*co = 0 for all a G $. and

that 77 o <í>: N -* Af is an immersion. We must show that (77 ° <¡>)*(T N) — <$>(y) for

ally G N. Let <i>(y) = £. Since (77 ° <j>)*(TvN) is of (real) dimension 2 by hypothesis,

it suffices to show that (77 ° ¿)*(£±) = 0. But

(7r°^);(£J-) = ^(77£*(£x)) = ^(/i) = 0,

where the last equality follows by hypothesis.    Q.E.D.
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Remark. This construction and the constructions to follow in §3 are special cases

of the technique of prolongation, f is called the canonical system on & and the

condition that 77 ° <f>: N -» Af be an immersion is called the independence condition or

the admissibility condition (see below).

In order to better understand the structure of % we consider $ on tr~l(U) Ç &. We

can use a to exhibit an explicit diffeomorphism A: tt~\U) -> U X S2"~3. K x G U

and £ G &x, then £""" is spanned (over C) by the forms

flO — „0
ax        ax<

ek = ak-\k(èWx,       k>2,

where A*(£)X*(£) a 1 (sum over A: ̂  2). We define

¿(0 = (t7(£),a*(£))g[/XS2"-3.

It is immediate that A is a diffeomorphism. (Or, if the reader prefers, A is clearly a

bijection of sets and the "natural differential structure on &" referred to earlier is

the one which makes the maps A diffeomorphism as (U, aj_varies over all possible

choices. Details are left to the reader.) The forms 6°, 6k, 6k defined by the above

equations at a point (x, \k) in U X S2"-3 are smooth complex-valued forms which

pullback under A to be a basis of fy restricted to 77"'(£/)■ We could have defined f

locally this way, but then its universal character would have been somewhat

obscured.

If<í>:A2->A/isa holomorphic curve, then the above proposition shows that

(A°4>)*6k = 0   for all it = 0,2,3,...,«

moreover, since <i> is an immersion, one gets

o=(^)*(ï«.: a «')#(>.

In fact, 0 is a (real) volume form on N2. Conversely, if t/>: N2 -» U X S2"~3 satisfies

(a) xp*6k = 0 for k = 0,2,...,n and

(b) O'«1 Aa')^0,

then 77 ° rp: N2 -» U C M is a holomorphic curve for which \p = A » («r 9 1^). (That

77 o \p: N -» Í7 is an immersion follows from (b).) This indicates how we can test

maps \¡i: N2 -> & for the property of being canonical lifts of holomorphic curves. We

let ÍB C Q]c& be the set of semibasic forms for the projection 77: &-> M. \nir~x(U),

9> is generated by the forms {77*a°, ir*ak, ir*ak}. It is visible that % is a complex

Pfaffian system of (complex) rank 2/i + 1, that '$> = %, and that % Ç <$. Moreover,

Í& is differentially closed.

Definition 2.2. A smooth map \p: N2 -> & is said to be an integral of £ if

i^*<o = 0 for all 10 £ }. An integral 1//: N2 -> & of J is said to be admissible if, for

every y G N, there is a neighborhood F of v in iV and a form io£§ so that

^*(/<o A cj) is a volume form on V.

This rephrasing of the condition that 77 ° ^: AT -> A/ be an immersion is fundamen-

tal to our later work, so we restate Proposition 2.1 in this language:
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Proposition 2.1*. Ift¡>: N2 -> M is a holomorphic curve in M, then <í>: N2 -* «fe is

an admissible integral of f. If \p: N2 -> & is an admissible integral of f, then 77 ° \p:

N -> Af is a holomorphic curve and \¡> = tt ° \¡>.

The reader who is familiar with Cartan-Kahler theory will recognize this as the

classical setup for proving the existence of admissible integrals (in the analytic

category), providing that the system is involutive. For a full discussion of these

concepts, the reader should consult [Bryant-Chern-Griffiths]. Suffice it to say that

the system £ with independence condition <3> is not involutive, so the Cartan-Kähler

theorem does not apply anyway. The standard procedure in the noninvolutive case is

to "prolong" the system until it either becomes involutive or becomes "incompati-

ble", meaning that the system has no integrals because there are no admissible

tangent spaces. We will actually use a modification of the standard prolongation

procedure which terminates after at most (n — 1) steps (see §3).

3. Systems of type (m, k) and their two prolongations. In order to make progress

in the iterative prolongation scheme (to be discussed below), we must have an

abstract theorem which allows us to study Pfaffian systems which satisfy certain

(very stringent) structure conditions.

Definition 3.1. A Pfaffian system í ç tllc(X) with independence bundle %Q

Í2{.(X) is said to be of type (m, k) if, for every x E X, there exist

(a) an open neighborhood U of x with submersions

77,: U->Rd(d=m + 2(k + 1)),   772: U -» S2A^' £ C*,

(b) a (complex) coframing of R^

y\...,Vm,   ß\...,ßk,   Jx,...,~ß~k,   »,ä,   and

(c) linear coordinates A1,...,A* on C* so that S2k'] = {(\")\\a\^ = 1} which

satisfy

(1) 77, X 772: U -» Rd X S2*"1 is a diffeomorphism,

(2) the forms

tj1,...,!,"1,

0« = ß" - X°w,        a=\,...,k,

F = 7F -X5^,       ff=C:.., k,

are a C^(i/)-basis for S¡w, _       _

(3) the formsij',...,tj", ß\...,ßk, ß\...,ßk, a, a are a C^(iV)-basisof \, and

(4) df]^ = 0 modi, (n — \,...,m) and the span of the ^ is closed under

conjugation.

Our first remark is that for any Lorentzian CR-manifold M2n+\ the system

$ C ßJ^Ä) with independence bundle % C ßc(&) ¡s a system of type (1, n — 1). In

fact, if we pick £ G &, let V C M be an open neighborhood of 77(£) diffeomorphic to

R2"+1, let U - tr~\V), and, finally, let a = (a0,.. .,a") be an adapted basis of / on

V satisfying

da0 = i(al A a1 - a2 A a2--a"A?)    moda0,
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then the conditions of the definition are satisfied by taking

(a) 77, Xt72: U ^ VX S2"'3 tobe A: U -> V X S2n~3,

(b)m= 1,7,' =a°,k = n- \,ß° = a°+\o= \,...,n~ 1, u = a',

(c) the Xo as previously defined.

The only part we have not previously discussed is (4), but

drf = da0 = i(al A a1 - a2 A a2 - • • • -a" A Hi")    moda0

= í(a1A¡r-(A°F)a'A¡r)    mod f

= 0   mod£.   Q.E.D.

Our second remark is that the reason for allowing for m ¥= 1 will appear later in

this section.

Our third (somewhat incidental) remark is that systems of type (0, n) arise

naturally when one studies the problem of imbedding a Kahler curve (Riemann

surface with metric) into an arbitrary Kahler manifold of (complex) dimension n.

Thus systems of this type have applications outside of CR-manifold theory. More-

over, systems of these types appear naturally in the study of minimal immersions of

a Riemann surface into an Euclidean space of dimension n. In particular, one

recovers the classical fact that X2 with metric ds2 imbeds minimally (locally) into E3

if and only if the Gauss curvature K is nonpositive and the Ricci metric ds2 =

(-K)ds2 has Gauss curvature 1. An analysis of this case together with some

interesting results on minimal surfaces in E" will appear elsewhere. Suffice it to say

that the theorem on a finite parameter space of integrals (Theorem 3.11) applies to

recover results of [Calabi] and [Lawson].

Our ultimate goal is to find a procedure for locating the admissible integrals of a

Pfaffian system of type (m, k). In order to do this, we study the structure of these

integrals by means of the canonical coordinates furnished by Definition 3.1.

Therefore, let X, 5, %, U, 77,, t72, Rd, S2k~\ tj", ß", u be as in Definition 3.1. We

compute the exterior derivatives of the generators of í mod í as follows:

drf = 0   mod í (by hypothesis),       1 < (i < m,

dd" = dß° - d\° A u - Xo du   mod í

=• -d\" A u + L"u A Ü   mod S

for some functions L" on V (note that L" will generally involve the {X0} as well as

the R^ variables). Of course, we must also have

dlF =-iW Aü + L°ü Au   modi

We compute

if(Ff?°) = -(X"ifXa + FL°Z5 -X°L°"w) Aw    modi

= -t A u   mod i,

where we have set

t = X°"¿Xa + X^ZAJ -XaL?a.

Note that r satisfies t + f = 0, i.e., t is purely imaginary.
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Proposition 3.2. Any admissible integral of í in U, <#>: N2 -» U satisfies $*t — 0.

Proof. If #: N2 -» U is an admissible integral of 1 then, by definition <¡>*(iu Aü)

i= 0 and ^V = </>*0a = §*T° = 0. It follows that §*(ka6a) = 0, so

0 = <$>*(d(F#')) = -<í>*t A <j>*u.

Conjugating and using t + f = 0, we get <î>*t A <J>*<0 = 0. Since §*u A <£*« ̂ = 0, we

immediately see that <í>*t = 0.    Q.E.D.

From now on, we write i+ for the system spanned by t and 1 The previous

proposition then says that the admissible integrals of i+ are the same as the

admissible integrals of 1

Definition 3.3. A 2-dimensional subspace £ C TXX (for some x E X) will be

called an admissible integral element of§+ if

(l)a(u) = 0foralla G í+ , v G £,

(2) (da)x(v, w) = 0 for ail a G 5+ , u, w G £,

(3) (iu A û)(v, w) ¥= 0 if v, w G £ are linearly independent.

We have the easy

Proposition 3.4. A smooth map <>: N -» A" is an admissible integral of if // a/itf o«/y

if <$>*{TyN) is an admissible integral element of §+ for every y E N.

The only subtlety is the fact that 9+ is globally defined without reference to a

special U Q X, etc. This is not difficult and is left to the reader.

In order to obtain complete information about the structure of the admissible

integral elements of 3+ , we must compute dr. Using the defining formula for t and

the fact that t + f — 0, we get that there exist complex functions Aa, Ba, C on U

which satisfy

di = d\° A ~dr^ + (Aad\°) A u - (Ia ¿Xa") A Ü

+ (Ba ¿Xo") A co - {Bad\°) A ü + Cu AÜ   mod 5+.

We recall

d0a = -(d\° + L°ü) A u   modi

If £ Ç Tx X is an admissible integral element of i+ we see that £x Q T£xXis spanned

by forms

i}1*, (i=l,. ..,m,

0", 6° , a = 1,... ,K,

d\° + L°w-k°co, a = \,...,K,

¿F + L°u - TO, a=l,...,A:,

for some complex numbers (k°). In order that t G £-L, we see that we must have

(*1) Fk° = X''L".

In order that dr vanish on £ while co A ü remains nonzero, we see that we must

require

(*2)     (k° - Bjly^T.) + C + (A„L" + A~J7) + L°~L° + B„Ta = 0.
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Equation (*1) forces (k°) G Ck to lie in a complex hyperplane Hk~x Ç C*, while

equation (*2) is either insatiable or it forces (k°) G C* to lie in a real hypersphere

S2k~ ' centered at ß„. It follows that there are three cases to be considered:

Case #. Hk~[ n S2k~l = 0. In this case, there are no admissible integral

elements £ ç TXX of $+ . We set

x* = {* eziff*-1 n s^2*-1 = 0}.

A-* is clearly an open subspace of X (which may be empty). It is immediate that

there are no admissible integrals of if in X whose images intersect X*.

Case \\. HkX n S2k~] consists of a single point, say (k°) G C*. Geometrically

this means that either k — 1 and Hx is a point on Sx, or k > 1 and Hk~x is tangent

to S**-1 at«). We setx v   xi

X" = {x EX\Hk-x n S,2*-1 is a point in C*}.

X* is a closed subspace of X (it may be empty). At each x E X, there is a unique

integral element of if+ which is admissible. We denote this element by £x Q TXX.

Despite its nongeneric appearance, this case is extremely important. Later we will

see that the admissible integrals of if which lie in X^ can be found via the Frobenius

test.

Case b. #*"' n S,2*-1 = S*k~3 C C*. This is the most interesting case. We set

Xb = {x E x\ Hk n s2*-1 = S2k'3}.

Every x E Xb has a (2k — 3)-sphere of admissible integral elements of 5+ . (Notice

that when k = 1, this case is impossible. In fact Hx will be a point in C and Sx will

be a circle there. The only case when Hx D Sx ¥= 0 is when Hx E Sx, which falls in

Case \\. If H° & Sx, then xEX#.)

Let &b be the space of admissible integral elements £ C TXX as x ranges over Xb.

The natural projection 77: &b -» Xb is a surjection and its fiber at every point x E Xb

is diffeomorphic to 52*~3. In fact, it is not hard to prove that &b is a fiber bundle

over Xb with the natural topology and differentiable structure. Moreover, <&b has a

canonical system 1 C ü]c&b with independence bundle %b ç íllc&b defined as

follows: If £ G &b is given, let 77(£) = x G Xb and let £x ç T*cXb be the annihilator

of£c TxXb. Define

It = 774*(£x) Ç T£c&b,   Kb = vf{TxjCX*) C 7£c&b

and Ib = U( 1%, Kb = Uf Ä'l- Ib and /i:b are smooth complex subbundles of 7^ &b.

We define

ifb = {« G S2¿-(&b) I coj G Ib)    and    9Cb = {« G ß^Ä1-) | co£ G Xb}.

Given any admissible integral <i>: A^2 -» A'1' of 1 there is the canonical lift <i>:

A^&b

4>(y) = 4>*{TyN).

We then have the following proposition analogous to Proposition 2.1 * and whose

proof is so similar as to be omitted.
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Proposition 3.5. If<$>: N2 -» Xb is an admissible integral ofi, then <¡>: N -* &b is an

admissible integral of ifb. If \p: N -» <feb is an admissible integral of ib, then it ° i//:

N ^ X is an admissible integral of if awe/, moreover \p — 77 ° i//.

The next major tool in our procedure is the completion of the "induction step".

Theorem 3.6. If 5 C ttlcX with independence bundle % C ßc(A') is a Pfaffian

system of type (m, k), and, in addition, Xb ¥= 0, then ib Q illc&b with independence

bundle %b Ç Sllc&b is a Pfaffian system of type (m + 2k + 1, k - 1).

Proof. The details are somewhat messy, but we give them because of the

importance of the technique. We keep the same notations as before, but now we

assume U C Xb. Let (hx) E Ck be the center of S2k~3 C Ck, and let rx > 0 be its

radius. Both (h"x) and rx are smooth functions on U Q X.

If £ G & is such that 77(£) = x E U, then £""" is spanned by tj'1, /x = 1,... ,m, 0",

Ta, ß" = d\° + L°co - ic"(£)co, and ~ß°, where k0(£) satisfies (*1) and (*2) above. In

other words, k°(£) = hx + /yr°(£) where tV = 1 and t'X" = 0. Defining y" = d\°

+ L°ü — h"u, we have ß" = y" — rT°(£)co. Let (g°) be a unitary matrix-valued

function on U which satisfies

gP — ^p

(we may have to shrink U to do this). Set

«° = r-lg°Pßp = r~YPr - gy(t)u-

Define t," = r^y" and i°(£) = gy(i). Then ?*(£) = 0 and i"(£)7°(£) = 1 be-

cause of the unitary nature of the matrix g. We easily compute that

To sum up, £""" has a basis given by

k k -1
a   = t/   = r   t.

£±

t/m, M = l,...,w,

0°,r, a=\,...,K,
r,

a° = T," - i°(£)co, 0= \,...,k- 1,

~c7.

We take these forms as generators of if on 77 '([/) Q &. The map A: 77 \U) -» U

X S2k~3 given by /!(£) = (t7(£), i°(£)), Ko<k-l, yields the new 77, and t72.

The complex coframing of U (which we may assume is = Rd)

tj",Ö0, W,t;   a", F   ; to, w

m + 2k+\       +     2(A—1)     +      2

and the coordinates /"(£) on C*~' clearly satisfy (l)-(3) of Definition 3.1. It

remains to verify (4).

d0° EE -ß" A u = 0    mod í
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because ßa (and ß") belong to 1 Similarly dOa = 0 mod if. It remains to verify that

í/t = 0 mod 1 But the relation (*2) was chosen just so that this would be true.

Q.E.D.
With this inductive step in mind, we make the following definition.

Definition 3.7. Let 3 C % Q ßc(JC) be a Pfaffian system (with independence

bundle) of type (m, k). We set X0 = X = X* U X* U A^, 3(0) = 3, %m = %, and

inductively define, for 0 <j' <j0,

Xj = &b( AJL,) = X* U X} U Xb,

$u>-($CM>)k.  gc^ = (gc°-1))b,

where y0 is the smallest integer for which Xj = 0. Note that j0< k because

iU) G %U) G Q]c(Xj) is a Pfaffian system (with independence bundle) of type

(mkJ, k -j) and Xb = 0 for a system 3 Ç % G tt]c( X) of type (m, 1).

Note/r?^ = m + j(2k + 2 — j).

We remark that Xj is a smooth manifold of dimension d¡~ m + (j + 2)(2& — _/')

+ 1 (if it is nonempty). Moreover X* G X- is a closed subspace. In general it will

have singularities.

Suppose we are given an admissible integral <f>: N -* X = X0. We know already

that <t>(N) n A"0* = 0. We let ä:o = <£"'(*<$) and set A, = N\K0. K0 is a closed set

since X¡¡ Ç X0 is closed. If A, ^ 0, then ^>(A,) Ç A^ and there is a canonical lift <j>:

Nx -» AT, = &b(Aob) so that <j> is an admissible integral of 30). We denote this lift by

<¡>l: A/, -* Xt. By induction, we define K, = ($jY\Xf) and set NJ+[ = Nj\Kr If

Ay+, ¥= 0, we let <f>J+ ' : Ay+, -* JTy+, = &b(Xj) be the canonical lift of <pJ: NJ+, -» A}.

We note that AT Ç A' is a closed subspace.

Definition 3.8. The osculation degree of $: JV -» A1 is the smallest integer S^ such

that Ns = 0, (we always have 1 < 8^ <_/0 + 1).

Remark. The terminology is chosen so as to suggest the degree of osculation of a

curve in C". In fact, for the differential system governing the metric embedding of a

holomorphic curve into C", the two degrees are the same.

If we let Uj G Kj be the interior of K} as a subspace of N, the map </>y:

Uj -» Xf G Xj is an admissible integral of 3(7) when Uj ¥= 0. Since the union of the

Uj (0 'S,/ *£ tSj,) is dense and open in N, we see that we may find the "essential

pieces" of any holomorphic curve <j>: N -> X by finding the admissible integrals of

3(;) which lie in X) for ally (0 <j <j0).

Let us say that <i>: N -* A" has constant osculation if #■ = 0 for y < 5^ — 1. Thus

t/s _, = Ks _, = A7. Our assertion then can be expressed as

Observation. For any <j>: N -> X which is an admissible integral of 3, N contains

a dense open set U with a decomposition U = U0 U Í7, U • • • U £/8 _, into disjoint

open sets such that <i>: U■ -» A" is of constant osculation.

From now on, we concentrate on curves of constant osculation. If <f>: N -* A" is

such a curve of osculation degree / + 1, then <j>: N -» A" has a canonical lift <i>:

A -» X so that #(#) Ç A^ and <j>: A -> A} is an admissible integral of 3(y). Our next

theorem shows that these integrals are characterized by a system of corank 2 (the

largest possible).
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Theorem 3.9. Suppose that 3 G % G ße(A') is a (complex) Pfaffian system (with

independence condition) of type (m, k) and suppose that Ay ¥= 0 for some j <y0. Then

there is a (canonical) Pfaffian system £ Ç Qq(Xj) of corank 2 (i.e., tj (x) G TXX¡

has dimension 2 for all x G Xj) whose two-dimensional integrals are the admissible

integrals of 30) (</>: N -» XJ) which satisfy 4>(N) G Xf.

Proof. By induction, it suffices to prove the claim for j = 0. We retain the

notations and conventions of the discussion between Propositions 3.4 and 3.5. For

each x E X = X0, we let (k°(x)) be the unique point on Hk~ ' which is closest to the

center of the sphere S2k~\ i.e., (Ba) E Ck. Explicitly,

k° = Ba + I 2 Xa Ls - Xs Bs I Xa.

s

The formula shows that k" is smooth (analytic) if Ba, L", and X" are smooth

(analytic). We let £0 restricted to U be generated by the forms

_
r,0a,0a        (ju. = l,...,m,o= l,...,k),

77° = d\° + L"u - k"u        (&=l;...-k),

and

"P        (a=\,...,k).

£0 = £0 is of rank m + 4k — 1 while X = X0 is of dimension m + 4k + 1. Thus £0

has corank 2. We define £2 ç TXX to be the annihilator of t0(x) G T*CX. The

condition that (k°) lie on Hk~x (condition (*1)) insures that t G £0 so that, in fact

3+ G £0. We infer that any integral of £0 of dimension 2 must also be an integral of

3. Moreover, because (w, to} completes £0 to span Q]C(X), it follows that any

2-dimensional integral of £0 is an admissible integral of 3. Now £JC is an integral

element of dr only if k°(x) satisfies condition (*2) and this occurs only if k°(x) E

S2k~] which is equivalent to x E X$ by the definition of k°. Since t G £0, this

implies that every two-dimensional integral of £0 actually lies in A¿.

To finish the proof, we must verify that any admissible integral of 3 in X¡¡ is an

integral of the larger system £0. Our definitions are rigged just so that £x is the

unique admissible integral element of 3 when x E AjJ, so this is clear.    Q.E.D.

Definition 3.10. If 3 G % G ßc(A") is a Pfaffian system (with independence

condition) of type (m, k), we say that Xj with the Pfaffian system £7 G U]c(Xj) is the

^j-prolongation of 0,%). We say that Xj with the system 30) G %{J) G ße(A}) is

the bj-prolongation o/(3, %).

Since the b^-prolongation is always empty for a system of type (m, k), the

problem of finding the integrals of 3 ç ßc(A") "reduces" to the problem of finding

the integrals of the corank 2 systems £ C ß^A^) for j — 0,... ,j0. This is a

collection of Frobenius problems and is, in principle, always solvable by ODE. For

example, the simplest possible case is that £y be differentially closed. The Frobenius

theorem then asserts that X, is foliated by the two-dimensional integrals of £ . We

then say that the integrals of £   depend on (dim A"  — 2) (real) parameters.
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More generally, we have the important

Observation. If 3 G % G iïlc( X) is a Pfaffian system (with independence condi-

tion) of type (m, k), the admissible integrals of 3 depend on at most

dim XJa - 2 = m + (Jo + 2)(2* - j0) - 1

< m - 1 + (k + 1)     (since;0 < k)

(real) parameters.

Which in turn gives

Theorem 3.11. If M2n+l is a Lorentzian CR-manifold then its holomorphic curves

depend on at most n2 parameters.

Proof. The system $ G S G ß<.(&) is a system of type (1, n — 1). The above

observation shows that the holomorphic curves depend on at most

// ^2 1
I- 1 + ((«- 1)+ 1)   =n2VV II

parameters.   Q.E.D.

We will give an example in §5 to show that this upper bound can actually be

attained. Moreover, in §4, we show that if Af5 has an2 = 4 parameter family of

holomorphic curves (one tangent to every null vector of the Levi form), then Af5 is

locally equivalent to the hypersurface

M = {(X0, A",, X2) G C3 | 1 + | X0 |2 - | A", |2 - | X212 = 0}.

4. The case n = 2 and the Chern-Moser theory. In this section, we relate our

previous calculations for the general case to the Chern-Moser theory in the simplest

possible case: n = 2. We will maintain all of the notations of [Chern-Moser] in

§§4-5 and its Appendix. We simplify matters by assuming (as we may, since Af5 is

Lorentzian) that g„ñis of the diagonal formI baß e

(8a»)-[l       uj-
Let U G M5 be such that there is a local section a: U -* Y of the canonical bundle

Y -» Af. We denote the pullbacks of the canonical forms on Y by the same letters as

represented the forms on Y, i.e., we write to for a*to, etc. This can cause no confusion

because we will never work on Y. The forms co, to", co^, <¡>, <í>f, <£", 4>ß, \p on M5 satisfy

all the equations A.1-A.6, and the tensors S, V, Q, P, R have become collections of

functions on M.

Now (to, to1, to2) is an adapted basis of I on U and satisfies

tfto EE /'(to1 A to1 — to2 A to2 )    mod to.

If 77: &->Af is the bundle defined in §2, then A: tr~l(U) -> U X S] gives a

coordinate system on -n~l(U) where we use 0 as a coordinate on SK The canonical

system f on U X S1 is then generated by

to

k = to2 - e'V
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we clearly have du = 0 mod $-. The relations

¿KEEWAtO1]
—   ]>    modi

die = e'er A to1   j '

where t = idf? + e~'e</>2 + (<|>2 — <¡>\) — e'e<j>2 follow by computation. Using the iden-

tities which the <j>£ satisfy we easily get that t + t = 0, so % U {t} generates j-+ . To

find the admissible integral elements of f+ , we must differentiate t mod f+ . After a

brief computation, the answer comes out

dr EE e-"®2 + (*2 -•',)- e,e<i>2   mod £+

EE -[a2e2ie + 4a,e" + 6a0 + 4a,e-'9 + ä2<T2'9] to1 A ~J    mod £+

where a0 = Su\] — a~0, a, = S2]]\, a2 = S22\\ are the five (real) components of the

S tensor (a, and a2 are complex).

Since we are in the case n = 2, there is no b-prolongation. The t]-prolongation is

just the system f+ on & (note that f+ has corank 2 and is closed under conjugation).

This leads us to

Theorem 4.1. A Lorentzian CR-manifold M5 has a holomorphic curve tangent to

every element of & ( = the space of null complex lines of the Levi form ) if and only if

A/5 is CR equivalent locally to the hyperquadric (n = 2 in Example 1.5).

Proof. If Af5 is locally equivalent to the hyperquadric then Af5 clearly has a

holomorphic curve tangent to each element of & (just look at Example 1.5). The

other direction is more subtle.

Af5 has a holomorphic curve tangent to every element of & if and only if

f+ G Qlc & is differentially closed. Since f+ is generated in -n~x(U) ̂  U X S by to, k,

k, t, we compute

du = 0   mod %+ ,       dK = 0   mod J+ ,

dr = -[a2e2W + 4axei6 + 6a0 + 4ä,e-e + ä2e-2,e] ul A to1     mod J+ .

The system is closed iff

K(9) = a2e2,e + 4axeie + 6a0 + 4axe~i6 + a2e-2i9 ee 0.

Since the ai do not depend on 6, this can only happen when a0 = a, ee a2 = 0. In

other words (using the symmetry of the 5-tensor), M5 satisfies the hypothesis if and

only if the 5-tensor vanishes identically.

Using the Bianchi identities in the Chern-Moser Appendix, we compute that the

vanishing of the 5-tensor implies V = P = Q = 0. Finally by differentiating A. 1 -A.6,

we conclude that R ee 0. Thus all of the CR-curvature on Y is identically zero and

the standard theorem in §5 of Chern-Moser shows that Af5 is locally equivalent to

the hyperquadric.   Q.E.D.

It would be interesting to have a direct proof of this theorem, i.e., which used the

existence of the holomorphic curves to construct a CR-map from Af5 to the

hyperquadric without the intervention of the Chern-Moser theory. This appears to

be difficult but it might furnish some insight into the structure of the space of

holomorphic curves in Af2n+1 when n > 2.
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In the general case, of course, the function K(0) will not vanish identically for all

values of 6 at a point x E U. In the classical literature the points where K(0) = 0 for

all 6 are called umbilic points of Af (see [Chern-Moser]). If x is not umbilic then

Kx(6) = 0 has at most 4 solutions (in 0) and we get

Proposition 4.2. Through a nonumbilic point x G Af5 there pass at most 4 distinct

holomorphic curves.

Proof. We already know that there are at most 4 null lines of the Levi form in Hx

which can be tangent to a holomorphic curve. Any holomorphic curve in Af5 is the

projection under 77: &-> Af of an integral of the t]0-prolongation £ = (to, k, ic, t} D f.

Since £ is of corank 2, there is at most one leaf (integral) of £ passing through each

£ G <&. Since <fex D &1" consists of at most four points, we are done.

In the case where the four roots of Kx(0) are distinct, there will generally be no

holomorphic curves in Af5 anyway because further compatibility conditions must be

satisfied. An interesting special case is when Kx(0) has a double root (for every

x E M) which varies smoothly with x. In this case, it is not hard to see that the

integral elements £A. G &x which correspond to the double root form an integrable

distribution on M5 and M5 is foliated by a 3 parameter family of holomorphic

curves. The CR-manifolds Af5 whose 5-tensor satisfies this "double root" condition

form an interesting special class of Lorentzian CR-manifolds. The CR-manifolds A/5

of [Penrose] are Lorentzian and seem to satisfy the "double root condition".

The "algebraically special" cases where Kx(0) satisfies some multiple root hy-

pothesis uniformly for all x E M will be discussed in a later paper.

5. Some examples. We have already remarked how the general discussion of

systems of type (m,k) may be applied to the problem of finding the holomorphic

curves in a Lorentzian CR-manifold Af2"+1. Explicitly, we let X0 — & and let Sf = %

and %= % (see §2). Then the holomorphic curves of A/2,!+1 are represented by the

integrals of £,. G Ù^Xj) for j = 0,... ,n - 2 because 3 G % G iïlc(&) is of type

(1,«-1).
In this section we give an example for each j between 0 and n — 2 of a

CR-manifold M2n+l such that t¡ G üxc(Xj) is completely integrable and thus, for

j = n — 2, the holomorphic curves depend on «2-parameters. Moreover, we will give

an explicit construction of the curves in terms of Lie groups SU(k).

First, we recall some standard facts about hermitian geometry and Kahler

geometry.

We let Pm be projective w-space. The elements of Pm are complex lines in C"'+'.

SU(m + 1) acts naturally on C"+1 and therefore, by passage to the quotient it acts

on Pm. If we fix a line X G Pm, we can represent Pm as the quotient of SU(m + 1)

by the isotropy group of X. We denote this projection by 77™: SU(m + 1) -» Pm.

SU(m + 1) preserves a Kahler form Hm on Pm where we choose the multiple of Hm

which makes it a positively oriented generator of H2(P",Z). A linear inclusion L:

pk _^ pm then satisfies L*fim - fjk

Consider now the problem of finding (even locally) a map <¡>: P1 -» P"' which is a

complex map and which satisfies <$>*H   = a//, for some given constant a. It is an
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easy consequence of the Second Main Theorem (see [Griffiths]) that such a mapping

exists if and only if a is an integer between 0 and m. In fact, it is easy to see that if

0 < a < m and a is an integer then <i>(P') G P" for some unique P" G Pm.

We can construct the solutions to this problem explicitly via representation

theory. Let \pa: SU(2) -* SU(a + 1) be the unique irreducible representation of

SU(2) of degree (a + 1). We can specify ^a uniquely by describing the image of the

maximal torus U(\) G SU(2).

In fact, we require

\ 0 e-'aB !

Choosing arbitrary tj E SU(a + 1), X, = (1,0) in C2 and X„ = (1,0,...,0) in

Ca+X, the map y«: S 1/(2) -> SU(a + 1) given by y°(g) = -q^a(g) descends via the

maps 77^: SU(2) -» P1 and 9r£: SU(a + 1) -» P°+ ' to a map ya: P1 - Pa which can

be shown to satisfy y"*Ha = a//,. For each [tj] G SU(a + 1)/Za+,, we get a

different curve so it follows that there is an (a + l)2 — 1 = a2 + 2a (real) parame-

ter family of solutions to the problem in Pa. Since there is a 2(m — a)(a + 1) (real)

parameter family of P" G Pm, it follows that the original problem of finding the

complex maps (#>: P1 -> Pm with <t>*H„, — aHx has a grand total of

a2 + 2a + 2(w - a)(a + 1) = 2w(a + 1) - a2

(real) parameter family of solutions.

With this in mind, we let n > 2 be fixed. For each p, q positive integers, we let

ß^ = qHn_x — pHx be defined as a (pseudo) Kähler-form on P1 X P"_1. Because

ß^, is integral and of type (1,1), there exists a holomorphic line bundle Lp q -> P' X

P"^1 whose Chern class is exactly ß . Let an hermitian structure be fixed on L

and let M2"q+X G Lp be the circle bundle of unit vectors in Lp q. Finally, let a G

ß'(Af2"+1) be the admissible connection form of L . By definition, a is a real

1-form which restricts to d9/2m on the fibers of the map 77^: M/^+I - P1 X P""1

which satisfies da = i&p_q-

Let / be the complex Pfaffian system on Mp"q+X generated by a and the

pullback under 77 of the (1,0) forms on P1 X P""1. It is clear from the above

formula that (M2"q+X, I ) is a CR-manifold of Lorentzian type. Moreover, we can

describe the holomorphic curves in Af^+ ' explicitly. Suppose that 4>: N -* Af is a

holomorphic curve in M2"q+X. Then it is a consequence of our definitions that

77 o tj,-. N -» P' X P"_1 is a complex curve which is an integral of ß^. Now

§* ° m*q(H\) ^ 0 because otherwise m q ° <¡> would necessarily have rank 0, which is

a contradiction. It follows that we may locally regard ir ° <¡>(N) ÇP'X p«-' as

the graph of a holomorphic map 4>: Px ~* P"~x. The condition that (77 ° </>)*(ß )

= 0 translates into the condition \p*(Hn_x) = (p/q)Hv

This immediately gives

Proposition 5.1. M2"q+X has no holomorphic curves at all unless p/q is an integer

between 1 and n — 1.
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Conversely, let us now assume that p/q = k where k is an integer between 1 and

«—1. Then the complex integrals of Qp q in P1 X pn_1 are just the graphs of maps

\p: P1 X pn_1 which satisfy \ji*Hn_x = kHx. We know from earlier discussions that

these maps depend on 2(« — \)(k + 1) — k2 real parameters. Given an integral <i>:

N -» P1 X P"~' of the form 8_4, there is a one parameter family of lifts <j>(6):

N -» M2"q+X which satisfy (<j>(6))*(a) = 0. The reason is that the connection a is flat

over 4>(N) CP'X p«-> by hypothesis. Therefore

Proposition 5.2. If p/q = k is an integer between 1 and n — 1, then M2nq+X has a

2(n — \)(k + \) + 1 — k2 parameter family of holomorphic curves.

Remarks. The parameter space for the holomorphic curves is connected, and, in

fact, is easily seen to be a quotient space of SU(n).

If k — n — \, then the number of parameters is exactly n2, the maximum

predicted by our theory in §3.

If p/q = k (an integer between 1 and n — 1), it is not difficult to show that the

system tk_, in Qxc( Xk_,) is completely integrable.

Returning to the general case, it is not difficult to show, using Chern-Moser

theory, that if £0 is completely integrable on X0 = &(Af ), then Af must be locally

equivalent to the hyperquadric (Example 1.5) in C+1. This raises the interesting

question of whether the complete integrability of £. G £lxc(XJo) (we assume Xj ¥= 0)

where X0 = &(Af) implies that Af is locally equivalent to A/?"+1. More generally,

one might ask if the complete integrability of £ Ç Qlc(Xj ) implies some standard

normal form for an arbitrary system of type (m, k) (not just for those systems

arising from CR-manifolds). These questions appear to be very subtle. Wheny0 = 1,

our proof for CR-manifolds requires the Chern-Moser theory. In the case j0 — 2,

even the Chern-Moser theory does not seem to be helpful; when one expresses the

integrability of £2 in terms of Chern-Moser invariants, one arrives at equations

which are quadratic and cubic in the S-tensor and its first two covariant derivatives.

Straightforward analysis of these equations leads to enormous algebraic problems.

A more reasonable approach seems to be to use the integrals of £ to define a

path geometry in Af in the sense of Engel and [Cartan]. One then uses these paths to

define a mapping from Af to Mj2nx+X by a higher order cross-ratio formula. This

method seems to be more manageable, but the picture is far from complete.
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