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SIMPLEXES OF EXTENSIONS OF STATES OF C*-ALGEBRAS

by

c j k batty

Abstract. Let B be a C*-subalgebra of a C*-algebra A, F a compact face of the

state space S(B) of B, and SF(A) the set of all states of A whose restrictions to B lie

in F. It is shown that SF(A) is a Choquet simplex if and only if (a) F is a simplex,

(b) pure states in SF(A) restrict to pure states in F, and (c) the states of A which

restrict to any given pure state in F form a simplex. The properties (b) and (c) are

also considered in isolation.

Sets of the form SF(A) have been considered by various authors in special cases

including those where B is a maximal abelian subalgebra of A, or A is a C*-crossed

product, or the Cuntz algebra G„.

1. Introduction. Let A be a C*-algebra with quasi-state space Q(A):

Q(A)= [<j>EA*:<j>>0, \\tj>\\ *s 1}.

Let B be a C*-subalgebra of A and F a nonempty (weak*) closed face of Q(B).

There are various situations in which one is interested in the structure of extensions

of functionals in F. Thus one studies the nonempty closed face

QF(A)={<j,EQ(A):<j>\BEF}

of Q(A). For example, B might be a maximal abelian C*-subalgebra (masa) in A,

and F consist of a single pure state; a problem of some complexity is to determine

whether QF(A) also contains only a single (pure) state [1, 2, 3]. Alternatively, A

might be (the multiplier algebra of) the crossed product GXaA0 of some C*-

dynamical system (A0, G, a), B the C*-subalgebra C*(G) oí A, and F consist of the

single state <j>0 of B with <¡>0(ug) — 1 (g G G), where u is the universal representation

of G in C*(G). Then QF(A) is isomorphic to the set QG(A0) of G-invariant

functionals in Q(A0) [4]. In algebraic models of statistical mechanics, a fundamental

question is therefore whether QF(A) is a Choquet simplex [7, §4.3].

Here we shall be concerned with the general question of when QF(A) is a simplex.

A general criterion has been established in [4, 5] for a closed face K of Q(A) to be a

simplex. This takes on several forms, the simplest of which is that distinct pure states

in F are (unitarily) inequivalent. From this, it will be established in Theorem 4.1 that

QF(A) is a simplex if and only if the following three conditions are all satisfied:

(a) Fis a simplex;

(b) any pure state in QF(A) restricts to a pure state of B;
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(c) for any pure state \¡/ in F, the extensions of \p in Q(A) form a simplex.

(Here and throughout the paper, the zero functional is conventionally regarded as a

"pure state", so the pure states are the extreme points of Q(A).) Each of these

conditions can be considered separately. For (a), this was done in [4, 5]; we shall see

in §2 that (b) places a strong restriction on the GNS-representation of pure states in

QF(A), and in §3 that (b) comes very close to implying (c) in the special case when

F= Q(B). (In this special case, (c) is the simplex extension property (SEP) intro-

duced in [6].) The final two sections will be concerned with applications to

C*-dynamical systems. Taking A = G XaA0 and B = GXaB0 where B0 is a G-

invariant subalgebra of A0, conditions will be obtained which ensure that the system

(AQ, G, a) is abelian when it is known that (B0, G, a) is abelian. Taking^ = G XaA0

where ^40 is commutative and G is discrete, and B = A0, it will be shown that A0 has

the (SEP) in G Xa A0 if and only if the stabiliser in G of each (nonzero) pure state of

A0 is abelian. These results include as special cases some known properties of

extensions of pure states of masas in 0„ and DC <2> 0n [9, 11].

Throughout, A will be a C*-algebra, and B will be a C*-subalgebra of A. For a

state <i> of A with restriction \p to B, (%¿, ir^, ^) will be the associated cyclic

representation of A, and ([^(B)^], m^ \B, ̂ ) will be identified with (%^, ^, £+). If

(¡> lies in a closed face K of Q(A), then p$ will denote the orthogonal projection of

%q onto the closed subspace DC* of all vectors tj for which the vector functional wj:

a — (tr^(a)ri, tj) lies in the cone generated by K, and the dimension of DC* will be

called the K-multiplicity of <>. Conventionally, the .TV-multiplicity of the zero func-

tional is taken to be 1. It was shown in [4, 5] that AT is a simplex if and only if each

pure state in K has A"-multiplicity 1, or, in other words, no two pure states in K are

equivalent. This fact will be used repeatedly without further reference.

For a pure state \p of B, let QJ(A) — QF(A), where F = {\p}, so

Q¿A)={i>EQ(A):<p\B = 4,}.

Thus B has the (SEP) in A if and only if Q^(A) is a simplex for each pure state \j/ of

B, or equivalently no two distinct equivalent pure states of A have the same pure

restriction to B.

In some respects, little would be lost in the following if it was assumed that A and

B have a common unit, and that F is a closed (hence compact) face of the state space

S(A) of A. For one may otherwise adjoin a common unit obtaining C*-algebras Ä

and B and identify Q(A) with S(A); nearly all the properties considered here are

preserved under the passage between (A, B) and (Á, B). However, at certain points

it will be necessary to consider ideals and crossed products, so no assumption about

the presence of a unit is appropriate.

2. Restriction property for faces. The first property of faces which we shall study is

described in the following definition.

Definition 2.1. A face K oí Q(A) has the restriction property (KP) to B if the

restriction to B of each pure state in K is a pure state of B.

Lemma 2.2. Let K be a face ofQ(A) with the (RP) to B, and <j> and </>' be equivalent

pure states in K. Then the restrictions of <j> and <j>' to B are equivalent pure states.



SIMPLEXES OF EXTENSIONS OF STATES OF C*-ALGEBRAS 239

Proof. Suppose that the restrictions $ and \p' of <j> and <j>' are inequivalent. By

assumption there is a unit vector tj in DC* such that </>' = wj, and the representation

77^ of B has inequivalent irreducible restrictions to DC, and DC,. (= [ir^(B)r¡]). Hence

DC^ and DC,,,, are orthogonal. If tj' = 2"1/2(^ + tj) G DC*, wj' is a pure state of A

lying in K, so its restriction to B is pure. But u$ \B = {-($ + \p'), so \f/ = \p'. This is a

contradiction.

Theorem 2.3. Let F be a closed face of Q(B), K = QF(A), <j> a (nonzero) pure state

in K, and \p = <j> \B, and suppose that K has the (RP) to B, so that \p is a pure state of

B.

(i) If the F-multiplicity of\¡> is 1, then

Pf**(b)p* = 1,(b)p*       (bEB).

(ii) If the F-multiplicity of\p is greater than 1, then DC* = DC^.

Proof, (i) Suppose that the F-multiplicity of ^ is 1, so that there are no other pure

states in F equivalent to \p. For any unit vector 17 in DC*, the restriction \p' of w$ to B

is a pure state in F, and by Lemma 2.2, \¡i' is equivalent to \j/, so \p' — \¡/. Thus

(^(b)1,,r,)=^(b)\\v\\2        [b E B, t, G DC*),

so/>X(Z>)/>* = Mb)p*.
(ii) Suppose that the F-multiplicity of ip is greater than 1, and let £' be a unit

vector in DC^ orthogonal to £,,,, and tj any unit vector in DC*. The restriction \¡/' of «J

to B is a pure state equivalent to \¡> (Lemma 2.2). Thus there is a unitary operator u

of DC^, onto DC^- (= [^(B)-q]) such that

u«¿b)t = «¿b)ut       (bEB^EX^).

Now

(^(¿)«É',«¿')= (uv¿b)i',ut')= (^(6)¿',f>

so uf \b - ul \b - <4' e ^> and therefore w£' G DC*. Let tj' = £,, - «|', and tj" =
II ij'iry (note that tj' ^ 0). Since tj" G DC* and K has the (RP) to B, the restriction

ip" of to$" to 2? is a pure state in F.

Since 77^ is irreducible, Kadison's Transitivity Theorem shows that there is some b0

in B with

"♦(*o)i* = «♦•        »♦ft)f = °-
Then

«♦(*o)l' = w+( &<>)£♦ - «"♦(Ä0)i' = ^

Since the restriction to B of 7^ is irreducible on %1¡I„ = [ir^(B)t¡'],

Hence w|' = ¿^ — tj' G DC^. Since the restriction to B of 77^ is irreducible on DC^,,

which contains w|',

1, G[ff+(!?)«€'] c[^(B)%¿=%r
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But wj = wj |B G F, so tj G DC^. Thus DC* G %^. The reverse inclusion is im-

mediately verified.

There are various extreme cases of Theorem 2.3. §3 will be devoted to the case

when F = Q(B). In the opposite extreme when F = {yp} for a pure state ip of B,

QF(A) automatically has the (RP) to B, and Theorem 2.3(i) is applicable. A slightly

less special case occurs when F is generated by two equivalent pure states, and this

leads to the following result.

Corollary 2.4. Let \p be apure state of B, and suppose that Q^,(A) is not a simplex.

Let yp' be a pure state of B equivalent, but not equal, to \p. Then there is a pure state <j>

of A and a real number À > 0 such that <p \B is not pure, and <j>(b) < X(\p(b) + ¡p'(b))

(bEB).

Proof. Let F be the smallest face of Q(B) containing \p and \p', so that

K= QF(A) = {<pE Q(A): <f> \B <X(<^ + <//) for some X>0}.

Suppose that the conclusion of the corollary is false, so that K has the (RP) to B.

Since \p and \p' are distinct equivalent pure states in F, the F-multiplicity of \p is

greater than 1.

Since Qj,(A) is not a simplex, there are distinct equivalent pure states <j> and <j>' in

Q^(A). Let tj be a unit vector in DC+ with wj = tj>'. Then w£ \B = \p G F, so

tj G DC* = DC^ (Theorem 2.3(h)). Now wj = ^, and tt^, is irreducible, so tj is a scalar

multiple of Zy = £4. But this contradicts the fact that <j> and <j>' are distinct.

3. The restriction property for algebras.

Definition 3.1. A C*-subalgebra B of A has the restriction property (RP) in A if

the restriction to B of each pure state of A is pure on B.

Thus B has the (RP) in A if and only if Q(A) has the (RP) to B. Any (closed

two-sided) ideal has the (RP) in A; an abelian C*-subalgebra has the (RP) in A if

and only if it is contained in the centre of A; a C*-subalgebra B has the (RP) in A if

A coincides with the C*-subalgebra (B : A) generated by operators of the form zb,

where bEB and z is a central multiplier of A.

The next two results follow from Theorem 2.3 and Corollary 2.4 on taking

F = Q(B), so that K = Q(A), %* = DC^, %^ = %+, and the F-multiplicity of ^ is 1

if and only if \p is multiplicative. The proof of Theorem 2.3 can be made very short

in this case.

Proposition 3.2. Suppose B has the (RP) in A, and let \p be apure state of B and<¡>

a pure state of A extending \p.

(i) If\p is multiplicative, then tr^b) = \p(b)l (b E B).

(ii) If \p is not multiplicative, then DC. = DC,.

Corollary 3.3. Suppose B has the (RP) in A, and \p is a nonmultiplicative pure

state of B. Then Q^,(A) is a simplex.

It is to be expected that the (RP) will be related to properties of restrictions of

irreducible representations. The precise extent of this connection will now be

discussed.
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Definition 3.4. A C*-subalgebra BoiA has the irreducible representation property

(IRP) in A if, for each irreducible representation tt of A, -n(B) is either irreducible or

zero.

It is immediate from Definition 3.4 that a C*-subalgebra which is rich (in the

sense of [10, §11.1.1]) has the (IRP); any ideal has the (IRP) in A; if A = (B : A),

then B has the (IRP) in A. If Í2 is a locally compact Hausdorff space, {^u: « e ß} is

a family of C*-algebras, T, and T2 are continuous vector fields over this family with

r2 G T,, and A and B are the corresponding C*-algebras, then B has the (IRP) in A

[10, Théorème 10.4.3].

Proposition 3.5. Let J0 be the ideal in A generated by the commutators {ab — ba:

a G A,b E B). The following are equivalent:

(i) B has the (RP) in A;

(u) B H J0 has the (IRP) in J0,

(Hi) there is an ideal J in A such that (B + J)/J is contained in the centre of A/J,

andB f)J has the (IRP) in J.

Proof. (i)=>(ii) Let (DC, 77) be an irreducible representation of /0, (DC, #) its

unique extension to A, | a unit vector in DC' and <¡> the vector state: <j>(a) = (tr(a)£, £).

Since tt does not vanish on J0, it follows from Proposition 3.2 that </> is not

multiplicative on B, and hence that DC =[#(#)£]. Thus (%, 77 |B) is the GNS-

representation of the pure state <j> \B, and is therefore irreducible. Hence tr(B D /0) is

zero or irreducible.

(ii) => (in) This is immediate on taking J = J0.

(in) •* (i) Let <j> be a pure state oí A.ïî <j> vanishes on J, then </> induces a pure state

<j> of A/J, which is therefore multiplicative on (B + J)/J. Hence <i> is multiplicative

and therefore pure on B.

If </> does not vanish on /, then tt^(J) is irreducible on DC^. By assumption,

itq(B n /) is either zero or irreducible. If ^(B D /) is irreducible, then <i> \B is the

unique extension of the pure state </> \BnJ to a state of B, so <j> is pure on B.

If </> vanishes on B C\ J, then <f> induces a pure state of B/(B H J) which is

isomorphic to (B + J)/J, so by the Hahn-Banach theorem, there is a pure state <j>'

of A coinciding with <j> on B and vanishing on /. As in the first part of this proof,

<f>' \B is pure, so (j> \B is pure.

Corollary 3.6. If B has no multiplicative states, or if A is simple and B is

nontrivial, then the (RP) and the (IRP) are equivalent.

If A is type I and B has the (IRP) in A, then there is a composition series of ideals

(-'pWp-spo f°r -^ sucn tnat f°r each ordinal p < p0, either (B D I +x + Ip)/Ip is

contained in the centre of Ip+X/Ip, or ((B n Ip+X + Ip)/Ip: Ip+\/lp) = Ip+i/Ip-

However, the converse of this is not vahd. For example, let DC be the C*-algebra of

compact operators on some Hilbert space DC, B a (type I) C*-algebra of operators on

DC with B n DC = {0}, A = B + DC, I0 = (0), Ix =%il2 = A. The identity represen-

tation is irreducible on A but not on B.
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4. QF(A) as a simplex. It has already been seen in Corollaries 2.4 and 3.3. that the

(RP) is related to whether extension faces Q^(A) are simplexes. The following result

strengthens this point.

Theorem 4.1. Let F be a closed face of Q(B). Then QF(A) is a simplex if and only

if the following three conditions are all satisfied:

(a) F is a simplex;

(b)QF(A)hasthe(RP)toB;

(c) for each pure state ip of B in F, Q^(A) is a simplex.

Proof. Suppose first that QF(A) is a simplex. For any pure state \p in F, Q^(A) is

a face of QF(A) and is therefore a simplex.

Let \p and \p' be equivalent pure states in F, and <f> be any pure state in Q^,(A).

There is a vector tj in DC^, (G %<j>) such that \p' = u^ = u% \B. Thus coj belongs to the

simplex QF(A), so <i> = wj and \p — ip'. Hence Fis a simplex.

Let </> be a pure state in QF(A), \p = <j> \B, and suppose that \p = ^(\px + \p2) for

some \px and \p2 in F. Since ip¡<2ip (j = 1,2), there are vectors Tjy in DC, (G %.)

such that ypj — aty. Let <J>- = u%, so that <j>- |B = fy. Then <j>t and <i>2 are equivalent

pure states of A belonging to the simplex QF(A). Hence <j>x = <j>2, so \px = \p2. Thus \p

is pure.

Conversely, suppose that conditions (a)-(c) are satisfied. Let <i> and <j>' be equiva-

lent pure states in QF(A). It follows from (b) and Lemma 2.2 that <p \b and 4>' \b are

equivalent pure states of B. It now follows from (a) that <j>\B = <j>' \B, so <j> and <f>' are

equivalent pure states in QJA) for some pure state \p in F. Finally, condition (c)

shows that <j> — <j>', so QF(A) is a simplex.

Corollary 4.2. Suppose B has the (RP) in A, and F is a closed face of Q(B)

containing no multiplicative functionals (in particular, Oí F). Then QF(A) is a

simplex if and only if F is a simplex.

Proof. This is immediate from Theorem 4.1 and Corollary 3.3.

5. C*-dynamical systems. Let G XaA be the C*-crossed product of a C*-dynami-

cal system (A, G, a); let u: G -» M(G XaA) be the universal representation of G in

the multiplier algebra of G XaA, and regard A as embedded as a C*-subalgebra of

M(GXa A). Let

FG(A) ={tj,E Q(G XaA): <p(ug) = ||*||(g G G)}.

Then FG(A) is a closed face of Q(G XaA), and the restriction map is an affine

homeomorphism of Fc(^l) onto the set QG(A) of G-invariant functionals in Q(A) [4,

Theorem 4.2]. It will be convenient to refer to the extreme points of QG(A)

(including 0) as "G-ergodic states". The system (A,G, a) is said to be abelian if

QG(A) is a simplex. (See [4, 5] for equivalent definitions.)
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Theorem 5.1. Let B be a G-invariant C*-subalgebra of A, and suppose that the

following three conditions are all satisfied:

(a) (B, G, a) is abelian;

(b) every G-ergodic state of A restricts to a G-ergodic state of B,

(c) For any G-ergodic state yp of B, the set \p of B, the set QG(A) = {<(, G QG(A):

<j>\B — \p} is a simplex (possibly empty).

Then (A, G, a) is abelian.

Conversely, if (A, G, a) is abelian, then (b) and (c) hold. If G is amenable and

(A,G,a) is abelian, then (a) also holds.

Proof. Let Ax = G XaA, $: G XaB -» Ax be the canonical *-homomorphism

acting as the identity on B and on uc, Bx = 0(G XaB), and

F= (<i>|ßi:<i>GFc(,4)},       f={^*:^GFc(yl)}.

Then F and F' are affinely homeomorphic closed faces of S(BX) and FG(B),

respectively, so (a) implies that F is a simplex. Since QF(AX) — FG(A), (b) and (c)

reduce to the corresponding conditions of Theorem 4.1 for the C*-algebra Ax and

subalgebra Bx. If G is amenable, then $ is isometric, and F' = FG(B), so (a) is

equivalent to F being a simplex. Thus the results follow from Theorem 4.1.

Corollary 5.2. Let B be a G-invariant C*-subalgebra of A, and suppose that a(G)

includes all the inner automorphisms of A implemented by unitaries in B. Then

(A,G,a) is abelian if and only if, for any G-ergodic state \p of B, the set QG(A) is a

simplex.

Proof. Any C*-dynamical system containing all the inner automorphisms is

abelian, so Theorem 5.1(a) is satisfied. It has been shown in [12, Lemma 3] that (b) is

satisfied.

Recall that a C*-subalgebra B has the simplex extension property (SEP) in A if

QJA) is a simplex for each pure state of B [6]; a functional <i> in A* is B-central if

<j>(ab) - <p(ba) (a E A, bEB). The relationship between 5-central states and

extensions has been studied in [3] in the case when B is a masa in A. It was shown

there that an abelian C*-subalgebra B has the (SEP) in a type I C*-algebra A if it(B)

is a masa of tr(A) for each irreducible representation it of A, and that under these

circumstances the 5-central functionals form a simplex. This latter fact is a special

case of the following result.

Corollary 5.3. Let B be an abelian C*-subalgebra of A. Then B has the (SEP) in

A if and only if the B-central functionals in Q(A) form a simplex.

Proof. Let G be the unitary group of B acting as inner automorphisms of A. Then

QG(A) is the set of 5-central functionals in Q(A), and the G-ergodic states are

precisely those pure states of A which are multiplicative on B [3, 12]. The result now

follows immediately from Corollary 5.2.
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Corollary 5.4. Let (A, G, a) be an abelian C*-dynamical system, where G is

abelian, and let (G XaA, G, à) be the system defined by

ä(x) = uxu*        (xEGXaA,gEG).g\"'       g    g

Then (G XaA, G, á) is abelian.

Proof. Let B be the C*-subalgebra of GXaA generated by uG, so B is

(isomorphic to) the group C*-algebra of G, whose pure state space is the dual group

G. The G-invariant functionals on G X a A are precisely those which are 5-central, so

(a slight extension of) Corollary 5.3 shows that it is sufficient to prove that

Qy(G XaA) is a simplex for each y in G. Let (G XaA, G, a) be the dual system of

(A, G, a) [13, §7.9]. Then </> -» <J> ° ây is an affine homeomorphism of Qy(G XaA)

onto FG(A), which, by assumption, is a simplex.

Corollary 5.4 may fail if G is not abelian. For example, one may take G to be the

alternating group on 7 letters, A to be the group C*-algebra of G, and a to be the

action by conjugation.

6. Topological dynamical systems. In this final section, let (C, G, a) be a C*-

dynamical system, where C is abelian and G is discrete. (Some of the discussion can

be modified for locally compact groups.) Let ß be the pure state space of C, so that

C s C0(ß), and there is an action of G on ß such that u(ag(x)) = (g_1 ■ u)(x)

(x E C, u G ß, g G G). The alternative notation C*(ß, G) will be used for the

C*-crossed product G XaC. Now C is a subalgebra of C*(ß, G), and Proposition

6.1 will identify the faces Qa(C*(Q, G)). Let P: C*(Q,G) -» C be the canonical

projection, so that

P(xug) = 0       (xEC,gEG,g^e),

P(x)=x       (xEC).

States <j> of C*(ß, G) will be identified with normalised positive-definite functions 4>

G ^ C* given by

In particular, there are no states of C*(ß, G) which vanish on C.

Proposition 6.1. Let u be a point o/fi. Then ßu(C*(ß, G)) is affinely homeomor-

phic to the state space of the group C*-algebra C*(GU) of the stabilizer Gm of u in G.

Furthermore u ° P is pure if and only if Gu is trivial.

Proof. Let ¥: G -> C be a normalised positive-definite function, and define 3>:

G -> C* by

Hg) = *(g)u     (gEGj,

= 0 (gEG\Ga).
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For g, in G and x, in C (i = 1,... ,n),

n

2 *(gr%)(«gAxrxj)) =    2    (g,-«)U)(g,-w)(xy)^(g,-1g.)

„
= 22 A/(w')^(to')*(gr'c?y) >o,

w'efi i,7= l

where A,(g, • u) = (g, • «X*,), X¡(u') = 0 (w' ^ g, • w). Thus 4> is positive-definite.

Furthermore the corresponding state <j> of C*(ß, G) satisfies

<t>(x) = $(<?)(*) = u(x)        (xEC)

so <i> belongs to t?u(C*(ß, G)).

Conversely, for <#> in ßu(C*(ß, G)), x in C and g in G,

«(*)*(«,) = <¡>(xug) = <p(u*x*) = *(ar.(x*)«;) = (g • w)(xH(«g).

Thus <j>(ug) = 0 = <i»(xug) (g 6G\6J and </>(*«g) = u(x)<p(ug) (g E GJ, so <p is

of the above form. It is clear that ^ -* O is an affine homeomorphism.

If Gu is trivial, then u ° P is the unique state extension of the pure state u to

C*(ß, G), and is therefore pure.

In general, the GNS-representation of u ° P may be identified with the induced

representation it X X of C*(ß, G) on l2(G), where X is the left regular representation

of G, and

(*(*)£)(") = (/i • <»)(xMh)        {xEC,£E l2(G), h G G).

Let p be the right regular representation of G on l2(G), so that pc C a'g. For g in Gu,

(irtop^X*) = (h ■ <*)(x)S{hg) = (hg ■ u)(x)£(hg) = (pgff(x)i)(A)

so pg G (77 X X)(C*(ß, G))'. Thus, if w o F is pure, pg is a scalar, so g = e.

A C*-subalgebra B of a C*-algebra A is said to have the extension property (EP) in

A if Ô^M) contains a unique functional for each pure state \p of 5.

Corollary 6.2. Let G be a discrete group acting on a locally compact Hausdorff

space fi, and let C = C0(ß). The abelian C*-subalgebra C has the (EP) in C*(ß, G) //

and only if G acts freely on ß; C has the (SEP) in C*(ß, G) if and only if the stabiliser

of each point in ß is abelian.

Let n > 2 be a fixed integer, Z„ be the group of integers mod n, ß_ = ©^'.^ Z„

(in the discrete topology), ß+ = Il°i0Zn (in the product topology), ß = ß_ Xß+

and C = C0(ß). Let G0 = ©" _„ Z„, and G be the semidirect product G0 XXZ of

G0 by the shift X to the right. The discrete group G acts on ß by

((r,), m) ■ (s,) = (n + s,_m)       ((/•,) G G0, m G Z, (*f) G 0).

For u = (w_ , <o+ ) G ß, G„ is either trivial or isomorphic to Z, so by Proposition

61, Qa(C*(Sl, G)) either contains u ° P only, or is isomorphic to the space of Radon

probability measures on the unit circle, the latter case occurring when the sequence
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u+ — (r¡)í>0 eventually becomes periodic. If u_ = 0, then u ° P is the state <j>[e j

considered in [11, Theorem 3.4], which result is therefore a special case of Proposi-

tion 6.1.

It was shown in [11, Proposition 3.3] (see also [5, §2.1]) that C*(ii,G) is

isomorphic to the unique C*-tensor product DC ® 0n of the algebra DC of compact

operators on a separable Hubert space and the Cuntz algebra (9„ generated by

isometries Sx,...,Sn satisfying

n

s*s¡ = 1= 2 SjSf.
j— i

Let ty be the masa of all operators in DC which are diagonal with respect to some

basis of DC, q a minimal projection in 6D, p in C the characteristic function of the

subset {0} X ß+ of ß, and 6¡ln the masa in 0„ generated by words of the form

S¡ ■ ■ • S, S* • • • S*. The isomorphism may be chosen so that C corresponds to

fy ® 6i)n, and/) to q ® 1. Thus there is an induced isomorphism betweenpC*(ü, G)p

and 6„ taking pC = C(ß+ ) onto %. If u_ = 0, the description of ßu(C*(ß, G)) =

Qa+(pC*(ü, G)p) obtained above reduces to the result of [9, Proposition 3.1].
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