SIMPLEXES OF EXTENSIONS OF STATES OF C*-ALGEBRAS

BY

C. J. K. BATTY

ABSTRACT. Let B be a C^* -subalgebra of a C^* -algebra A, F a compact face of the state space S(B) of B, and $S_F(A)$ the set of all states of A whose restrictions to B lie in F. It is shown that $S_F(A)$ is a Choquet simplex if and only if (a) F is a simplex, (b) pure states in $S_F(A)$ restrict to pure states in F, and (c) the states of F0 which restrict to any given pure state in F1 form a simplex. The properties (b) and (c) are also considered in isolation.

Sets of the form $S_F(A)$ have been considered by various authors in special cases including those where B is a maximal abelian subalgebra of A, or A is a C^* -crossed product, or the Cuntz algebra \mathfrak{O}_n .

1. Introduction. Let A be a C^* -algebra with quasi-state space Q(A):

$$Q(A) = \{ \phi \in A^* : \phi \ge 0, \|\phi\| \le 1 \}.$$

Let B be a C^* -subalgebra of A and F a nonempty (weak*) closed face of Q(B). There are various situations in which one is interested in the structure of extensions of functionals in F. Thus one studies the nonempty closed face

$$Q_F(A) = \{ \phi \in Q(A) \colon \phi \mid_B \in F \}$$

of Q(A). For example, B might be a maximal abelian C^* -subalgebra (masa) in A, and F consist of a single pure state; a problem of some complexity is to determine whether $Q_F(A)$ also contains only a single (pure) state [1, 2, 3]. Alternatively, A might be (the multiplier algebra of) the crossed product $G \times_{\alpha} A_0$ of some C^* -dynamical system (A_0, G, α) , B the C^* -subalgebra $C^*(G)$ of A, and F consist of the single state ϕ_0 of B with $\phi_0(u_g) = 1$ ($g \in G$), where u is the universal representation of G in $C^*(G)$. Then $Q_F(A)$ is isomorphic to the set $Q^G(A_0)$ of G-invariant functionals in $Q(A_0)$ [4]. In algebraic models of statistical mechanics, a fundamental question is therefore whether $Q_F(A)$ is a Choquet simplex [7, §4.3].

Here we shall be concerned with the general question of when $Q_F(A)$ is a simplex. A general criterion has been established in [4, 5] for a closed face K of Q(A) to be a simplex. This takes on several forms, the simplest of which is that distinct pure states in F are (unitarily) inequivalent. From this, it will be established in Theorem 4.1 that $Q_F(A)$ is a simplex if and only if the following three conditions are all satisfied:

- (a) F is a simplex;
- (b) any pure state in $Q_F(A)$ restricts to a pure state of B;

Received by the editors March 31, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46L30.

Key words and phrases. Pure state, extension, restriction, simplex, face, irreducible representation, invariant state, crossed product.

(c) for any pure state ψ in F, the extensions of ψ in Q(A) form a simplex. (Here and throughout the paper, the zero functional is conventionally regarded as a "pure state", so the pure states are the extreme points of Q(A).) Each of these conditions can be considered separately. For (a), this was done in [4, 5]; we shall see in §2 that (b) places a strong restriction on the GNS-representation of pure states in $Q_F(A)$, and in §3 that (b) comes very close to implying (c) in the special case when F = Q(B). (In this special case, (c) is the simplex extension property (SEP) introduced in [6].) The final two sections will be concerned with applications to C^* -dynamical systems. Taking $A = G \times_{\alpha} A_0$ and $B = G \times_{\alpha} B_0$ where B_0 is a Ginvariant subalgebra of A_0 , conditions will be obtained which ensure that the system (A_0, G, α) is abelian when it is known that (B_0, G, α) is abelian. Taking $A = G \times_{\alpha} A_0$ where A_0 is commutative and G is discrete, and $B = A_0$, it will be shown that A_0 has the (SEP) in $G \times_{\alpha} A_0$ if and only if the stabiliser in G of each (nonzero) pure state of A_0 is abelian. These results include as special cases some known properties of extensions of pure states of massas in \mathfrak{G}_n and $\mathfrak{K} \otimes \mathfrak{G}_n$ [9, 11].

Throughout, A will be a C^* -algebra, and B will be a C^* -subalgebra of A. For a state ϕ of A with restriction ψ to B, $(\mathcal{K}_{\phi}, \pi_{\phi}, \xi_{\phi})$ will be the associated cyclic representation of A, and $([\pi_{\phi}(B)\xi_{\phi}], \pi_{\phi}|_B, \xi_{\phi})$ will be identified with $(\mathcal{K}_{\psi}, \pi_{\psi}, \xi_{\psi})$. If ϕ lies in a closed face K of Q(A), then p_{ϕ}^K will denote the orthogonal projection of \mathcal{K}_{ϕ} onto the closed subspace \mathcal{K}_{ϕ}^K of all vectors η for which the vector functional ω_{ϕ}^{η} : $a \to \langle \pi_{\phi}(a)\eta, \eta \rangle$ lies in the cone generated by K, and the dimension of \mathcal{K}_{ϕ}^K will be called the K-multiplicity of ϕ . Conventionally, the K-multiplicity of the zero functional is taken to be 1. It was shown in [4, 5] that K is a simplex if and only if each pure state in K has K-multiplicity 1, or, in other words, no two pure states in K are equivalent. This fact will be used repeatedly without further reference.

For a pure state
$$\psi$$
 of B , let $Q_{\psi}(A) = Q_F(A)$, where $F = \{\psi\}$, so $Q_{\psi}(A) = \{\phi \in Q(A): \phi|_B = \psi\}$.

Thus B has the (SEP) in A if and only if $Q_{\psi}(A)$ is a simplex for each pure state ψ of B, or equivalently no two distinct equivalent pure states of A have the same pure restriction to B.

In some respects, little would be lost in the following if it was assumed that A and B have a common unit, and that F is a closed (hence compact) face of the state space S(A) of A. For one may otherwise adjoin a common unit obtaining C^* -algebras \tilde{A} and \tilde{B} and identify Q(A) with $S(\tilde{A})$; nearly all the properties considered here are preserved under the passage between (A, B) and (\tilde{A}, \tilde{B}) . However, at certain points it will be necessary to consider ideals and crossed products, so no assumption about the presence of a unit is appropriate.

2. Restriction property for faces. The first property of faces which we shall study is described in the following definition.

DEFINITION 2.1. A face K of Q(A) has the restriction property (RP) to B if the restriction to B of each pure state in K is a pure state of B.

LEMMA 2.2. Let K be a face of Q(A) with the (RP) to B, and ϕ and ϕ' be equivalent pure states in K. Then the restrictions of ϕ and ϕ' to B are equivalent pure states.

PROOF. Suppose that the restrictions ψ and ψ' of ϕ and ϕ' are inequivalent. By assumption there is a unit vector η in \mathcal{K}_{ϕ}^K such that $\phi' = \omega_{\phi}^{\eta}$, and the representation π_{ϕ} of B has inequivalent irreducible restrictions to \mathcal{K}_{ψ} and $\mathcal{K}_{\psi'}$ (= $[\pi_{\phi}(B)\eta]$). Hence \mathcal{K}_{ψ} and $\mathcal{K}_{\psi'}$ are orthogonal. If $\eta' = 2^{-1/2}(\xi_{\phi} + \eta) \in \mathcal{K}_{\phi}^K$, $\omega_{\phi}^{\eta'}$ is a pure state of A lying in K, so its restriction to B is pure. But $\omega_{\phi}^{\eta'}|_{B} = \frac{1}{2}(\psi + \psi')$, so $\psi = \psi'$. This is a contradiction.

THEOREM 2.3. Let F be a closed face of Q(B), $K = Q_F(A)$, ϕ a (nonzero) pure state in K, and $\psi = \phi|_B$, and suppose that K has the (RP) to B, so that ψ is a pure state of B.

(i) If the F-multiplicity of ψ is 1, then

$$p_{\phi}^{K}\pi_{\phi}(b)p_{\phi}^{K}=\psi(b)p_{\phi}^{K} \qquad (b\in B).$$

(ii) If the F-multiplicity of ψ is greater than 1, then $\mathfrak{K}_{\phi}^{K} = \mathfrak{K}_{\psi}^{F}$.

PROOF. (i) Suppose that the F-multiplicity of ψ is 1, so that there are no other pure states in F equivalent to ψ . For any unit vector η in \mathcal{K}_{ϕ}^{K} , the restriction ψ' of ω_{ϕ}^{η} to B is a pure state in F, and by Lemma 2.2, ψ' is equivalent to ψ , so $\psi' = \psi$. Thus

$$\langle \pi_{\phi}(b)\eta, \eta \rangle = \psi(b) \|\eta\|^2 \qquad (b \in B, \eta \in \mathcal{K}_{\phi}^K),$$

so $p_{\phi}^K \pi_{\phi}(b) p_{\phi}^K = \psi(b) p_{\phi}^K$.

(ii) Suppose that the F-multiplicity of ψ is greater than 1, and let ξ' be a unit vector in \mathcal{K}_{ψ}^{F} orthogonal to ξ_{ϕ} , and η any unit vector in \mathcal{K}_{ϕ}^{K} . The restriction ψ' of ω_{ϕ}^{η} to B is a pure state equivalent to ψ (Lemma 2.2). Thus there is a unitary operator u of \mathcal{K}_{ψ} onto $\mathcal{K}_{\psi'}$ (= $[\pi_{\phi}(B)\eta]$) such that

$$u\pi_{\phi}(b)\xi = \pi_{\phi}(b)u\xi \qquad (b \in B, \xi \in \mathcal{K}_{\psi}).$$

Now

$$\langle \pi_{\phi}(b)u\xi', u\xi' \rangle = \langle u\pi_{\phi}(b)\xi', u\xi' \rangle = \langle \pi_{\phi}(b)\xi', \xi' \rangle$$

so $\omega_{\phi}^{u\xi'}|_{B} = \omega_{\phi}^{\xi'}|_{B} = \omega_{\psi}^{\xi'} \in F$, and therefore $u\xi' \in \mathcal{K}_{\phi}^{K}$. Let $\eta' = \xi_{\phi} - u\xi'$, and $\eta'' = \|\eta'\|^{-1}\eta'$ (note that $\eta' \neq 0$). Since $\eta'' \in \mathcal{K}_{\phi}^{K}$ and K has the (RP) to B, the restriction ψ'' of $\omega_{\phi}^{\eta''}$ to B is a pure state in F.

Since π_{ψ} is irreducible, Kadison's Transitivity Theorem shows that there is some b_0 in B with

$$\pi_{\phi}(b_0)\xi_{\phi}=\xi_{\phi}, \qquad \pi_{\phi}(b_0)\xi'=0.$$

Then

$$\pi_{\phi}(b_0)\eta' = \pi_{\phi}(b_0)\xi_{\phi} - u\pi_{\phi}(b_0)\xi' = \xi_{\phi}.$$

Since the restriction to B of π_{ϕ} is irreducible on $\mathcal{K}_{\psi''} = [\pi_{\phi}(B)\eta']$,

$$\eta' \in \left[\pi_{\phi}(B)\xi_{\phi}\right] = \mathcal{K}_{\psi}.$$

Hence $u\xi' = \xi_{\phi} - \eta' \in \mathcal{K}_{\psi}$. Since the restriction to B of π_{ϕ} is irreducible on $\mathcal{K}_{\psi'}$, which contains $u\xi'$,

$$\eta \in [\pi_{\phi}(B)u\xi'] \subseteq [\pi_{\phi}(B)\mathfrak{R}_{\psi}] = \mathfrak{R}_{\psi}.$$

But $\omega_{\psi}^{\eta} = \omega_{\phi}^{\eta}|_{B} \in F$, so $\eta \in \mathcal{K}_{\psi}^{F}$. Thus $\mathcal{K}_{\phi}^{K} \subseteq \mathcal{K}_{\psi}^{F}$. The reverse inclusion is immediately verified.

There are various extreme cases of Theorem 2.3. §3 will be devoted to the case when F = Q(B). In the opposite extreme when $F = \{\psi\}$ for a pure state ψ of B, $Q_F(A)$ automatically has the (RP) to B, and Theorem 2.3(i) is applicable. A slightly less special case occurs when F is generated by two equivalent pure states, and this leads to the following result.

COROLLARY 2.4. Let ψ be a pure state of B, and suppose that $Q_{\psi}(A)$ is not a simplex. Let ψ' be a pure state of B equivalent, but not equal, to ψ . Then there is a pure state ϕ of A and a real number $\lambda > 0$ such that $\phi|_B$ is not pure, and $\phi(b) \leq \lambda(\psi(b) + \psi'(b))$ $(b \in B)$.

PROOF. Let F be the smallest face of Q(B) containing ψ and ψ' , so that

$$K = Q_F(A) = \{ \phi \in Q(A) : \phi |_B \le \lambda(\psi + \psi') \text{ for some } \lambda > 0 \}.$$

Suppose that the conclusion of the corollary is false, so that K has the (RP) to B. Since ψ and ψ' are distinct equivalent pure states in F, the F-multiplicity of ψ is greater than 1.

Since $Q_{\psi}(A)$ is not a simplex, there are distinct equivalent pure states ϕ and ϕ' in $Q_{\psi}(A)$. Let η be a unit vector in \mathcal{K}_{ϕ} with $\omega_{\phi}^{\eta} = \phi'$. Then $\omega_{\phi}^{\eta}|_{B} = \psi \in F$, so $\eta \in \mathcal{K}_{\phi}^{K} = \mathcal{K}_{\psi}^{F}$ (Theorem 2.3(ii)). Now $\omega_{\psi}^{\eta} = \psi$, and π_{ψ} is irreducible, so η is a scalar multiple of $\xi_{\psi} = \xi_{\phi}$. But this contradicts the fact that ϕ and ϕ' are distinct.

3. The restriction property for algebras.

DEFINITION 3.1. A C^* -subalgebra B of A has the restriction property (RP) in A if the restriction to B of each pure state of A is pure on B.

Thus B has the (RP) in A if and only if Q(A) has the (RP) to B. Any (closed two-sided) ideal has the (RP) in A; an abelian C^* -subalgebra has the (RP) in A if and only if it is contained in the centre of A; a C^* -subalgebra B has the (RP) in A if A coincides with the C^* -subalgebra (B:A) generated by operators of the form zb, where $b \in B$ and z is a central multiplier of A.

The next two results follow from Theorem 2.3 and Corollary 2.4 on taking F = Q(B), so that K = Q(A), $\mathcal{K}_{\psi}^F = \mathcal{K}_{\psi}$, $\mathcal{K}_{\phi}^K = \mathcal{K}_{\phi}$, and the F-multiplicity of ψ is 1 if and only if ψ is multiplicative. The proof of Theorem 2.3 can be made very short in this case.

PROPOSITION 3.2. Suppose B has the (RP) in A, and let ψ be a pure state of B and ϕ a pure state of A extending ψ .

- (i) If ψ is multiplicative, then $\pi_{\phi}(b) = \psi(b) \mathbf{1}$ $(b \in B)$.
- (ii) If ψ is not multiplicative, then $\mathfrak{K}_{\phi} = \mathfrak{K}_{\psi}$.

COROLLARY 3.3. Suppose B has the (RP) in A, and ψ is a nonmultiplicative pure state of B. Then $Q_{\psi}(A)$ is a simplex.

It is to be expected that the (RP) will be related to properties of restrictions of irreducible representations. The precise extent of this connection will now be discussed.

DEFINITION 3.4. A C^* -subalgebra B of A has the *irreducible representation property* (IRP) in A if, for each irreducible representation π of A, $\pi(B)$ is either irreducible or zero.

It is immediate from Definition 3.4 that a C^* -subalgebra which is rich (in the sense of [10, §11.1.1]) has the (IRP); any ideal has the (IRP) in A; if A = (B:A), then B has the (IRP) in A. If Ω is a locally compact Hausdorff space, $\{A_{\omega}: \omega \in \Omega\}$ is a family of C^* -algebras, Γ_1 and Γ_2 are continuous vector fields over this family with $\Gamma_2 \subseteq \Gamma_1$, and A and B are the corresponding C^* -algebras, then B has the (IRP) in A [10, Théorème 10.4.3].

PROPOSITION 3.5. Let J_0 be the ideal in A generated by the commutators $\{ab - ba: a \in A, b \in B\}$. The following are equivalent:

- (i) B has the (RP) in A;
- (ii) $B \cap J_0$ has the (IRP) in J_0 ;
- (iii) there is an ideal J in A such that (B+J)/J is contained in the centre of A/J, and $B \cap J$ has the (IRP) in J.
- PROOF. (i) \Rightarrow (ii) Let (\mathcal{K}, π) be an irreducible representation of J_0 , $(\mathcal{K}, \tilde{\pi})$ its unique extension to A, ξ a unit vector in \mathcal{K}' and ϕ the vector state: $\phi(a) = \langle \pi(a)\xi, \xi \rangle$. Since π does not vanish on J_0 , it follows from Proposition 3.2 that ϕ is not multiplicative on B, and hence that $\mathcal{K} = [\tilde{\pi}(B)\xi]$. Thus $(\mathcal{K}, \tilde{\pi}|_B)$ is the GNS-representation of the pure state $\phi|_B$, and is therefore irreducible. Hence $\pi(B \cap J_0)$ is zero or irreducible.
 - (ii) \Rightarrow (iii) This is immediate on taking $J = J_0$.
- (iii) \Rightarrow (i) Let ϕ be a pure state of A. If ϕ vanishes on J, then ϕ induces a pure state $\tilde{\phi}$ of A/J, which is therefore multiplicative on (B+J)/J. Hence ϕ is multiplicative and therefore pure on B.
- If ϕ does not vanish on J, then $\pi_{\phi}(J)$ is irreducible on \mathcal{K}_{ϕ} . By assumption, $\pi_{\phi}(B \cap J)$ is either zero or irreducible. If $\pi_{\phi}(B \cap J)$ is irreducible, then $\phi|_{B}$ is the unique extension of the pure state $\phi|_{B \cap J}$ to a state of B, so ϕ is pure on B.
- If ϕ vanishes on $B \cap J$, then ϕ induces a pure state of $B/(B \cap J)$ which is isomorphic to (B+J)/J, so by the Hahn-Banach theorem, there is a pure state ϕ' of A coinciding with ϕ on B and vanishing on J. As in the first part of this proof, $\phi'|_B$ is pure, so $\phi|_B$ is pure.

COROLLARY 3.6. If B has no multiplicative states, or if A is simple and B is nontrivial, then the (RP) and the (IRP) are equivalent.

If A is type I and B has the (IRP) in A, then there is a composition series of ideals $(I_{\rho})_{0 < \rho < \rho_0}$ for A such that for each ordinal $\rho < \rho_0$, either $(B \cap I_{\rho+1} + I_{\rho})/I_{\rho}$ is contained in the centre of $I_{\rho+1}/I_{\rho}$, or $((B \cap I_{\rho+1} + I_{\rho})/I_{\rho}: I_{\rho+1}/I_{\rho}) = I_{\rho+1}/I_{\rho}$. However, the converse of this is not valid. For example, let \mathcal{K} be the C*-algebra of compact operators on some Hilbert space \mathcal{K} , B a (type I) C*-algebra of operators on \mathcal{K} with $B \cap \mathcal{K} = \{0\}$, $A = B + \mathcal{K}$, $I_0 = (0)$, $I_1 = \mathcal{K}$, $I_2 = A$. The identity representation is irreducible on A but not on B.

4. $Q_F(A)$ as a simplex. It has already been seen in Corollaries 2.4 and 3.3. that the (RP) is related to whether extension faces $Q_{\psi}(A)$ are simplexes. The following result strengthens this point.

THEOREM 4.1. Let F be a closed face of Q(B). Then $Q_F(A)$ is a simplex if and only if the following three conditions are all satisfied:

- (a) F is a simplex;
- (b) $Q_E(A)$ has the (RP) to B;
- (c) for each pure state ψ of B in F, $Q_{\psi}(A)$ is a simplex.

PROOF. Suppose first that $Q_F(A)$ is a simplex. For any pure state ψ in F, $Q_{\psi}(A)$ is a face of $Q_F(A)$ and is therefore a simplex.

Let ψ and ψ' be equivalent pure states in F, and ϕ be any pure state in $Q_{\psi}(A)$. There is a vector η in \mathcal{K}_{ψ} ($\subseteq \mathcal{K}_{\phi}$) such that $\psi' = \omega_{\psi}^{\eta} = \omega_{\phi}^{\eta}|_{B}$. Thus ω_{ϕ}^{η} belongs to the simplex $Q_{F}(A)$, so $\phi = \omega_{\phi}^{\eta}$ and $\psi = \psi'$. Hence F is a simplex.

Let ϕ be a pure state in $Q_F(A)$, $\psi = \phi|_B$, and suppose that $\psi = \frac{1}{2}(\psi_1 + \psi_2)$ for some ψ_1 and ψ_2 in F. Since $\psi_j \leq 2\psi$ (j = 1, 2), there are vectors η_j in \mathcal{K}_{ψ} ($\subseteq \mathcal{K}_{\phi}$) such that $\psi_j = \omega_{\psi}^{\eta_j}$. Let $\phi_j = \omega_{\phi}^{\eta_j}$, so that $\phi_j|_B = \psi_j$. Then ϕ_1 and ϕ_2 are equivalent pure states of A belonging to the simplex $Q_F(A)$. Hence $\phi_1 = \phi_2$, so $\psi_1 = \psi_2$. Thus ψ is pure.

Conversely, suppose that conditions (a)–(c) are satisfied. Let ϕ and ϕ' be equivalent pure states in $Q_F(A)$. It follows from (b) and Lemma 2.2 that $\phi|_B$ and $\phi'|_B$ are equivalent pure states of B. It now follows from (a) that $\phi|_B = \phi'|_B$, so ϕ and ϕ' are equivalent pure states in $Q_{\psi}(A)$ for some pure state ψ in F. Finally, condition (c) shows that $\phi = \phi'$, so $Q_F(A)$ is a simplex.

COROLLARY 4.2. Suppose B has the (RP) in A, and F is a closed face of Q(B) containing no multiplicative functionals (in particular, $0 \notin F$). Then $Q_F(A)$ is a simplex if and only if F is a simplex.

PROOF. This is immediate from Theorem 4.1 and Corollary 3.3.

5. C^* -dynamical systems. Let $G \times_{\alpha} A$ be the C^* -crossed product of a C^* -dynamical system (A, G, α) ; let $u: G \to M(G \times_{\alpha} A)$ be the universal representation of G in the multiplier algebra of $G \times_{\alpha} A$, and regard A as embedded as a C^* -subalgebra of $M(G \times_{\alpha} A)$. Let

$$F_G(A) = \{ \phi \in Q(G \times_{\alpha} A) : \phi(u_g) = \|\phi\|(g \in G) \}.$$

Then $F_G(A)$ is a closed face of $Q(G \times_{\alpha} A)$, and the restriction map is an affine homeomorphism of $F_G(A)$ onto the set $Q^G(A)$ of G-invariant functionals in Q(A) [4, Theorem 4.2]. It will be convenient to refer to the extreme points of $Q^G(A)$ (including 0) as "G-ergodic states". The system (A, G, α) is said to be abelian if $Q^G(A)$ is a simplex. (See [4, 5] for equivalent definitions.)

THEOREM 5.1. Let B be a G-invariant C*-subalgebra of A, and suppose that the following three conditions are all satisfied:

- (a) (B, G, α) is abelian;
- (b) every G-ergodic state of A restricts to a G-ergodic state of B,
- (c) For any G-ergodic state ψ of B, the set ψ of B, the set $Q_{\psi}^{G}(A) = \{ \phi \in Q^{G}(A) : \phi \mid_{B} = \psi \}$ is a simplex (possibly empty).

Then (A, G, α) is abelian.

Conversely, if (A, G, α) is abelian, then (b) and (c) hold. If G is amenable and (A, G, α) is abelian, then (a) also holds.

PROOF. Let $A_1 = G \times_{\alpha} A$, $\Phi: G \times_{\alpha} B \to A_1$ be the canonical *-homomorphism acting as the identity on B and on u_G , $B_1 = \Phi(G \times_{\alpha} B)$, and

$$F = \{\phi \mid_{B_1} : \phi \in F_G(A)\}, \qquad F' = \{\phi \circ \Phi : \phi \in F_G(A)\}.$$

Then F and F' are affinely homeomorphic closed faces of $S(B_1)$ and $F_G(B)$, respectively, so (a) implies that F is a simplex. Since $Q_F(A_1) = F_G(A)$, (b) and (c) reduce to the corresponding conditions of Theorem 4.1 for the C^* -algebra A_1 and subalgebra B_1 . If G is amenable, then Φ is isometric, and $F' = F_G(B)$, so (a) is equivalent to F being a simplex. Thus the results follow from Theorem 4.1.

COROLLARY 5.2. Let B be a G-invariant C*-subalgebra of A, and suppose that $\alpha(G)$ includes all the inner automorphisms of A implemented by unitaries in \tilde{B} . Then (A,G,α) is abelian if and only if, for any G-ergodic state ψ of B, the set $Q_{\psi}^G(A)$ is a simplex.

PROOF. Any C*-dynamical system containing all the inner automorphisms is abelian, so Theorem 5.1(a) is satisfied. It has been shown in [12, Lemma 3] that (b) is satisfied.

Recall that a C^* -subalgebra B has the simplex extension property (SEP) in A if $Q_{\psi}(A)$ is a simplex for each pure state of B [6]; a functional ϕ in A^* is B-central if $\phi(ab) = \phi(ba)$ ($a \in A$, $b \in B$). The relationship between B-central states and extensions has been studied in [3] in the case when B is a masa in A. It was shown there that an abelian C^* -subalgebra B has the (SEP) in a type I C^* -algebra A if $\pi(B)$ is a masa of $\pi(A)$ for each irreducible representation π of A, and that under these circumstances the B-central functionals form a simplex. This latter fact is a special case of the following result.

COROLLARY 5.3. Let B be an abelian C^* -subalgebra of A. Then B has the (SEP) in A if and only if the B-central functionals in Q(A) form a simplex.

PROOF. Let G be the unitary group of \tilde{B} acting as inner automorphisms of A. Then $Q^G(A)$ is the set of B-central functionals in Q(A), and the G-ergodic states are precisely those pure states of A which are multiplicative on B [3, 12]. The result now follows immediately from Corollary 5.2.

COROLLARY 5.4. Let (A, G, α) be an abelian C*-dynamical system, where G is abelian, and let $(G \times_{\alpha} A, G, \tilde{\alpha})$ be the system defined by

$$\tilde{\alpha}_{g}(x) = u_{g}xu_{g}^{*} \qquad (x \in G \times_{\alpha} A, g \in G).$$

Then $(G \times_{\alpha} A, G, \tilde{\alpha})$ is abelian.

PROOF. Let B be the C^* -subalgebra of $G \times_{\alpha} A$ generated by u_G , so B is (isomorphic to) the group C^* -algebra of G, whose pure state space is the dual group \hat{G} . The G-invariant functionals on $G \times_{\alpha} A$ are precisely those which are B-central, so (a slight extension of) Corollary 5.3 shows that it is sufficient to prove that $Q_{\gamma}(G \times_{\alpha} A)$ is a simplex for each γ in \hat{G} . Let $(G \times_{\alpha} A, \hat{G}, \hat{\alpha})$ be the dual system of (A, G, α) [13, §7.9]. Then $\phi \to \phi \circ \hat{\alpha}_{\gamma}$ is an affine homeomorphism of $Q_{\gamma}(G \times_{\alpha} A)$ onto $F_{G}(A)$, which, by assumption, is a simplex.

Corollary 5.4 may fail if G is not abelian. For example, one may take G to be the alternating group on 7 letters, A to be the group C^* -algebra of G, and α to be the action by conjugation.

6. Topological dynamical systems. In this final section, let (C, G, α) be a C^* -dynamical system, where C is abelian and G is discrete. (Some of the discussion can be modified for locally compact groups.) Let Ω be the pure state space of C, so that $C \cong C_0(\Omega)$, and there is an action of G on Ω such that $\omega(\alpha_g(x)) = (g^{-1} \cdot \omega)(x)$ $(x \in C, \omega \in \Omega, g \in G)$. The alternative notation $C^*(\Omega, G)$ will be used for the C^* -crossed product $G \times_{\alpha} C$. Now C is a subalgebra of $C^*(\Omega, G)$, and Proposition 6.1 will identify the faces $Q_{\omega}(C^*(\Omega, G))$. Let $P: C^*(\Omega, G) \to C$ be the canonical projection, so that

$$P(xu_g) = 0$$
 $(x \in C, g \in G, g \neq e),$
 $P(x) = x$ $(x \in C).$

States ϕ of $C^*(\Omega, G)$ will be identified with normalised positive-definite functions $\Phi: G \to C^*$ given by

$$\Phi(g)(x) = \phi(xu_g).$$

In particular, there are no states of $C^*(\Omega, G)$ which vanish on C.

PROPOSITION 6.1. Let ω be a point of Ω . Then $Q_{\omega}(C^*(\Omega, G))$ is affinely homeomorphic to the state space of the group C^* -algebra $C^*(G_{\omega})$ of the stabilizer G_{ω} of ω in G. Furthermore $\omega \circ P$ is pure if and only if G_{ω} is trivial.

PROOF. Let Ψ : $G \to \mathbb{C}$ be a normalised positive-definite function, and define Φ : $G \to C^*$ by

$$\Phi(g) = \Psi(g)\omega \quad (g \in G_{\omega}),$$

= 0 \quad (g \in G\cdot G_\omega).

For g_i in G and x_i in C (i = 1, ..., n),

$$\begin{split} \sum_{i, j=1}^n \Phi\Big(g_i^{-1}g_j\Big)\Big(\alpha_{g_i^{-1}}\big(x_i^*x_j\big)\Big) &= \sum_{g_i^{-1}g_j \in G_\omega} \overline{(g_i \cdot \omega)(x_i)} (g_i \cdot \omega)(x_j) \Psi\Big(g_i^{-1}g_j\Big) \\ &= \sum_{\omega' \in \Omega} \sum_{i, j=1}^n \overline{\lambda_i(\omega')} \lambda_j(\omega') \Psi\Big(g_i^{-1}g_j\Big) \geqslant 0, \end{split}$$

where $\lambda_i(g_i \cdot \omega) = (g_i \cdot \omega)(x_i)$, $\lambda_i(\omega') = 0$ ($\omega' \neq g_i \cdot \omega$). Thus Φ is positive-definite. Furthermore the corresponding state ϕ of $C^*(\Omega, G)$ satisfies

$$\phi(x) = \Phi(e)(x) = \omega(x) \qquad (x \in C)$$

so ϕ belongs to $Q_{\omega}(C^*(\Omega, G))$.

Conversely, for ϕ in $Q_{\omega}(C^*(\Omega, G))$, x in C and g in G,

$$\omega(x)\phi(u_g) = \phi(xu_g) = \overline{\phi(u_g^*x^*)} = \overline{\phi(\alpha_{g^{-1}}(x^*)u_g^*)} = (g \cdot \omega)(x)\phi(u_g).$$

Thus $\phi(u_g) = 0 = \phi(xu_g)$ ($g \in G \setminus G_\omega$) and $\phi(xu_g) = \omega(x)\phi(u_g)$ ($g \in G_\omega$), so ϕ is of the above form. It is clear that $\Psi \to \Phi$ is an affine homeomorphism.

If G_{ω} is trivial, then $\omega \circ P$ is the unique state extension of the pure state ω to $C^*(\Omega, G)$, and is therefore pure.

In general, the GNS-representation of $\omega \circ P$ may be identified with the induced representation $\pi \times \lambda$ of $C^*(\Omega, G)$ on $l^2(G)$, where λ is the left regular representation of G, and

$$(\pi(x)\xi)(h) = (h \cdot \omega)(x)\xi(h) \qquad (x \in C, \xi \in l^2(G), h \in G).$$

Let ρ be the right regular representation of G on $l^2(G)$, so that $\rho_G \subseteq \lambda'_G$. For g in G_ω ,

$$(\pi(x)\rho_{g}\xi)(h) = (h \cdot \omega)(x)\xi(hg) = (hg \cdot \omega)(x)\xi(hg) = (\rho_{g}\pi(x)\xi)(h)$$

so $\rho_g \in (\pi \times \lambda)(C^*(\Omega, G))'$. Thus, if $\omega \circ P$ is pure, ρ_g is a scalar, so g = e.

A C^* -subalgebra B of a C^* -algebra A is said to have the extension property (EP) in A if $Q_{\psi}(A)$ contains a unique functional for each pure state ψ of B.

COROLLARY 6.2. Let G be a discrete group acting on a locally compact Hausdorff space Ω , and let $C = C_0(\Omega)$. The abelian C*-subalgebra C has the (EP) in C*(Ω , G) if and only if G acts freely on Ω ; C has the (SEP) in C*(Ω , G) if and only if the stabiliser of each point in Ω is abelian.

Let $n \ge 2$ be a fixed integer, \mathbf{Z}_n be the group of integers mod n, $\Omega_- = \bigoplus_{i=-\infty}^{-1} \mathbf{Z}_n$ (in the discrete topology), $\Omega_+ = \prod_{i=0}^{\infty} \mathbf{Z}_n$ (in the product topology), $\Omega = \Omega_- \times \Omega_+$ and $C = C_0(\Omega)$. Let $G_0 = \bigoplus_{i=-\infty}^{\infty} \mathbf{Z}_n$, and G be the semidirect product $G_0 \times_{\lambda} \mathbf{Z}$ of G_0 by the shift λ to the right. The discrete group G acts on Ω by

$$((r_i), m) \cdot (s_i) = (r_i + s_{i-m}) \qquad ((r_i) \in G_0, m \in \mathbb{Z}, (s_i) \in \Omega).$$

For $\omega = (\omega_-, \omega_+) \in \Omega$, G_ω is either trivial or isomorphic to **Z**, so by Proposition 6.1, $Q_\omega(C^*(\Omega, G))$ either contains $\omega \circ P$ only, or is isomorphic to the space of Radon probability measures on the unit circle, the latter case occurring when the sequence

 $\omega_+ = (r_i)_{i \ge 0}$ eventually becomes periodic. If $\omega_- = 0$, then $\omega \circ P$ is the state $\phi_{[e_{r_i}]}$ considered in [11, Theorem 3.4], which result is therefore a special case of Proposition 6.1.

It was shown in [11, Proposition 3.3] (see also [5, §2.1]) that $C^*(\Omega, G)$ is isomorphic to the unique C^* -tensor product $\mathcal{K} \otimes \mathcal{O}_n$ of the algebra \mathcal{K} of compact operators on a separable Hilbert space and the Cuntz algebra \mathcal{O}_n generated by isometries S_1, \ldots, S_n satisfying

$$S_i^*S_i = 1 = \sum_{j=1}^n S_j S_j^*.$$

Let \mathfrak{D} be the masa of all operators in \mathfrak{R} which are diagonal with respect to some basis of \mathfrak{R} , q a minimal projection in \mathfrak{D} , p in C the characteristic function of the subset $\{0\} \times \Omega_+$ of Ω , and \mathfrak{D}_n the masa in \mathfrak{D}_n generated by words of the form $S_{i_1} \cdots S_{i_k} S_{i_k}^* \cdots S_{i_1}^*$. The isomorphism may be chosen so that C corresponds to $\mathfrak{D} \otimes \mathfrak{D}_n$, and p to $q \otimes 1$. Thus there is an induced isomorphism between $pC^*(\Omega, G)p$ and \mathfrak{D}_n taking $pC = C(\Omega_+)$ onto \mathfrak{D}_n . If $\omega_- = 0$, the description of $Q_{\omega}(C^*(\Omega, G)) = Q_{\omega_+}(pC^*(\Omega, G)p)$ obtained above reduces to the result of [9, Proposition 3.1].

ACKNOWLEDGEMENTS. The author is grateful to J. Cuntz, D. E. Evans, and especially R. J. Archbold for helpful discussions and providing preprints.

REFERENCES

- 1. J. Anderson, Extensions, restrictions and representations of states in C*-algebras, Trans. Amer. Math. Soc. 249 (1979), 303-329.
 - 2. R. J. Archbold, Extensions of states of C*-algebras, J. London Math. Soc. (2) 21 (1980), 351-354.
 - 3. R. J. Archbold, J. W. Bunce and K. Gregson, Proc. Roy. Soc. Edinburgh (to appear).
 - 4. C. J. K. Batty, Simplexes of states of C*-algebras, J. Operator Theory 4 (1980), 3-23.
 - 5. _____, Abelian faces of state spaces of C*-algebras, Comm. Math. Phys. 75 (1980), 43-50.
 - 6. _____, Nuclear faces of state spaces of C*-algebras, preprint.
- 7. O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics, Springer-Verlag, Berlin-Heidelberg-New York, 1979.
 - 8. J. Cuntz, Simple C*-algebras generated by isometries, Comm. Math. Phys. 57 (1977), 173-185.
- 9. _____, Automorphisms of certain simple C*-algebras, Quantum Fields-Algebras Processes, (Ed., L. Streit), Springer-Verlag, New York, 1980, pp. 187-196.
 - 10. J. Dixmier, Les C*-algèbres et leurs représentations, 2nd ed., Gauthier-Villars, Paris, 1979.
 - 11. D. E. Evans, On O_n, Publ. Res. Inst. Math. Sci. 16 (1980), 915-927.
- 12. R. W. Henrichs, Maximale Integralzerlegungen invarianter positiv definiter Funktionen auf diskreten Gruppen, Math. Ann. 208 (1974), 15-31.
- 13. G. K. Pedersen, C*-algebras and their automorphism groups, Academic Press, London and New York, 1979.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF EDINBURGH, EDINBURGH EH9 3JZ, SCOTLAND