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METRICALLY COMPLETE REGULAR RINGS

BY
l

K. R. GOODEARL

Abstract. This paper is concerned with the structure of those (von Neumann)

regular rings R which are complete with respect to the weakest metric derived from

the pseudo-rank functions on R, known as the A*-metric. It is proved that this class

of regular rings includes all regular rings with bounded index of nilpotence, and all

N0-continuous regular rings. The major tool of the investigation is the partially

ordered Grothendieck group K0(R), which is proved to be an archimedean norm-

complete interpolation group. Such a group has a precise representation as affine

continuous functions on a Choquet simplex, from earlier work of the author and D.

E. Handelman, and additional aspects of its structure are derived here. These results

are then translated into ring-theoretic results about the structure of R. For instance,

it is proved that the simple homomorphic images of R are right and left self-injective

rings, and R is a subdirect product of these simple self-injective rings. Also, the

isomorphism classes of the finitely generated projective Ä-modules are determined

by the isomorphism classes modulo the maximal two-sided ideals of R. As another

example of the results derived, it is proved that if all simple artinian homomorphic

images of R are « X n matrix rings (for some fixed positive integer «), then R is an

n X n matrix ring.

All rings in this paper are associative with 1, and all modules are unital right

modules. For the overall theory of regular rings, we refer the reader to [2]; for the

general development of K0 of regular rings as partially ordered abehan groups, and

the theory of partially ordered abelian groups via their state spaces, we refer the

reader to [2, 4]. In particular, these references should be consulted for more detail on

definitions and concepts which are just sketched here.

I. A*-completeness. Completeness of a regular ring with respect to a rank

function, or with respect to a family of pseudo-rank functions, imphes that the ring

is right and left self-injective [2, Theorems 19.7 and 20.8], hence a considerable

amount of structure theory is available for such rings [2, Chapters 9-12]. The

purpose of this paper is to investigate a much broader class of regular rings, namely

those which are complete with respect to the (pseudo-) metric obtained from the

supremum A* of all pseudo-rank functions on the ring. In particular, all regular

rings complete with respect to a family of pseudo-rank functions are A*-complete,

but also, as we prove later in this section, all regular rings with bounded index of

nilpotence and all S0-continuous regular rings are A*-complete.
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In addition to these results, the present section introduces the definition and a few

basic properties of A*-completeness. §11 is devoted to proving that K0 of any

A*-complete regular ring is an archimedean norm-complete interpolation group,

while the third section develops a number of structural properties of such groups. In

§IV, we apply these results to the structure theory of A*-complete regular rings.

Definition. Recall that a pseudo-rank function on a regular ring R is a map

P: R -* [0,1] such that (a) F(l) = 1; (b) P(xy) < P(x), P(y) for all x, y £ R; (c)

P(e + /) = F(e) + F(/) for all orthogonal idempotents e, f E R. We use P(R) to

denote the set of all pseudo-rank functions on R. Considered as a subset of the

linear topological space RR (which is given the product topology), P(R) is a compact

convex set [2, Proposition 16.17]. In fact, P(R) is a Choquet simplex [2, Theorem

17.5].

Definition. Let R be a regular ring. For each x E R, we define

A*(x) = sup{F(x)|F£P(Ä)},

with the proviso that A*(x) = 0 in case P(R) is empty. (This definition is formally

different from the definition of A* in [2, p. 272], but the two definitions are

equivalent, as follows from [2, Proposition 18.10].) Thus A*(x) is a real number, and

0 < A*(x) « 1. Whenever the ring R needs to be emphasized, we shall write A£(x)

in place of A*(x). In case R is unit-regular, A* may be computed as in the following

proposition. We first recall two pieces of notation.

Definition. Given modules A and B, we write A < B to mean that A is

isomorphic to a submodule of B. Given a module A and a positive integer n, we

write nA to denote the direct sum of n copies of A.

Proposition IA. If Ris a nonzero unit-regular ring, then

N*(x) = inf {k/n\k,n EN and n(xR) <kRR}

for all xER.

Proof. [2, Proposition 18.10].    D

Lemma 1.2. Let R be a regular ring, and let x, y, yx,... ,yn E R.

(a) Ift(xR) < 5,(y,Ä) © • ■ • ®s„(y„R)for some positive integers t, sx,... ,sn, then

N*(x) < (sx/t)N*(yx) + ■■■ + (sn/t)N*(yn).

(b) Ift(xR) s s(yR)for some positive integers s, t, then N*(x) — (s/t)N*(y).

(c) A*(xy) < A*(x) andN*(xy) =£ A*(y).

(d) A*(x + y) < A*(x) + A*(y).

Proof. These results are clear if P(R) is empty, so assume it is nonempty.

(a) For any ? G P(fi), we have

tP(x)<sxP(yx) + ---+snP(y„)

by [2, Proposition 16.1], whence

P(x)^(sx/t)P(yx) + --- + (s„/t)P(y„)

<(sx/t)N*(yx) + --- + (sn/t)N*(yn).

Consequently, A*(x) < (sx/t)N*(yx) + ■■■ +(s„/t)N*(y„).
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(b) This follows directly from (a).

(c) For all F E P(R), we have P(xy) < P(x) < A*(x), hence A*(xy) < A*(x).

Likewise, A*(xy) < A*(y).

(d) Since (x + y)R *£ xR + yR < xR © yR, we may apply (a).    D

Definition. Let Äbea regular ring. In view of Lemma 1.2, we see that the rule

8(x, y) = N*(x — y) defines a pseudo-metric 8 on R. By way of abbreviation, we

shall refer to 8 as the A*-metric on R, even though 8 is not always a metric. Note that

8 is a metric if and only if ker(P(/?)) = 0. For all x, y, z, w £ R, we see that

A*((x+y) - (z + w)) = N*((x- z) + (y - w)) <A*(x-z) + N*(y - w),

N*(xy - zw) = N*((x - z)y + z(y - w)) < A*(x - z) + N*(y - w).

Thus addition and multiplication in R are uniformly continuous with respect to A*.

For all x, y £ R, we also have

N*(x)<N*(x-y)+N*(y),

N*(y) « A*(y - x) + A*(x) = A*(x - y) + N*(y),

whence | A*(x) — A*(y) |=£ A*(x — y). Thus the map A*: R -* [0,1] is uniformly

continuous with respect to the A*-metric.

Definition. A regular ring R is called A* -complete provided ker(P(Ä)) = 0 (so

that the A*-metric on R is actually a metric) and R is complete in the A*-metric. For

example, if R is a simple artinian ring, then there is a unique rank function P on R,

which takes on only the values 0, l/k, 2/k,..., 1, for some k E N [2, Corollary 16.6].

As a result, A* = P, and A*(x) > l/k for all nonzero x E R, so that the A*-metric

on R is discrete. Therefore R is A*-complete. More generally, we have the following

result.

Theorem 1.3. A regular ring R has bounded index of nilpotence if and only if

ker(P(R)) = 0 and the N*-metric on R is discrete, in which case R is N*-complete.

Proof. First assume that ker(P(Ä)) = 0 and the A*-metric on R is discrete. Then

there exists n EN such that A*(x) > l/n for any nonzero x E R, and we claim that

the index of nilpotence of R is at most n. If not, R must contain a direct sum of

n + 1 nonzero pairwise isomorphic right ideals [2, Theorem 7.2]. Consequently, there

is a nonzero element y E R satisfying (n + l)(yR) < RR. But then N*(y) > 0

(because ker(P(Ä)) = 0) and A*(y) *£ l/(n + 1) (by Lemma 1.2), contradicting our

discreteness assumption. Therefore the index of nilpotence of R is at most n, as

claimed.

Conversely, assume that R has bounded index of nilpotence. We first note that

any maximal two-sided ideal Af of R is the kernel of a pseudo-rank function on R.

Namely, R/M is a simple artinian ring [2, Theorem 7.9], so there exists a unique

rank function on R/M, which pulls back to a pseudo-rank function on R with kernel

Af.

As all primitive factor rings of R are artinian [2, Corollary 7.10], the intersection

of the maximal two-sided ideals of R is zero. Since each maximal two-sided ideal is

the kernel of a pseudo-rank function, we obtain ker(P(Ä)) = 0.
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Let n be the index of nilpotence of R. We claim that A*(x) 3* l/n for any

nonzero element x E R.

Choose a maximal two-sided ideal M of R such that x £ Af. By [2, Theorem 7.9],

R/M s Mk(D) for some positive integer k < n and some division ring F>. Then

Ä/Af has a unique rank function Q, which takes on only the values 0, l/k, 2/k,..., 1,

and Q(x + M) > l/k> l/n. Pulling Q back to a pseudo-rank function P on R, we

obtain P(x) s* 1/«, and so A*(x) > l/n, as claimed.

Therefore the A*-metric on i? is discrete, and, consequently, R is A*-complete.

For a deeper class of examples, we now proceed to prove that every S 0-continuous

regular ring is A*-complete. In particular, it will follow that every regular, right and

left self-injective ring is A*-complete. Recall that a regular ring R is defined to be

N 0-continuous provided the lattice of principal right ideals of R is an S0-continuous

geometry. Equivalently, R is K0-continuous if and only if every countably generated

right (left) ideal of R is essential in a principal right (left) ideal [2, Corollary 14.4].

We begin with a lemma generalizing [2, Corollary 14.27(a)] to finitely generated

projective modules. This lemma is also implicit in [8, Proposition 2.1].

Lemma 1.4. Let R be an N 0-continuous regular ring, let A and B be finitely generated

projective right R-modules, and let Ax < A2< ... be an ascending sequence of finitely

generated submodules of A. If \JAn is essential in A, and each An < B, then A < B.

Proof. Let S be the maximal right K0-quotient ring of R [2, pp. 177, 178], so that

S is an S0-continuous, regular, right and left S0-injective overring of R [2, Theorems

14.12 and 14.17]. Now A ®R S and B ®RS are finitely generated projective right

S-modules, A ®R S has an ascending sequence of finitely generated submodules

which may be labelled Ax ®R S < A2 ®R S < ..., the submodule U (An ®R S) is

essential in A ®R S, and each An ®R S < B ®R S. Moreover, if A ®R S < B ®R S,

then [2, Proposition 14.28] shows that A < B.

Thus there is no loss of generality in assuming that R is right and left S0-injective.

Consequently, all matrix rings over R are N0-continuous [2, Proposition 14.19].

Using the standard Morita-equivalences, we may transfer our problem to the

category of right modules over any matrix ring Mk(R). By choosing k large enough

we may arrange for the new modules corresponding to A and B to be cychc, hence

isomorphic to right ideals of Mk(R).

Therefore we may now assume, without loss of generality, that A and B are

principal right ideals of R. Since UAn is essential in A, we see that A is the

supremum, in the lattice of principal right ideals of R, of the family {AJ.

Consequently, [2, Corollary 14.27] shows that A < B.    D

Lemma 1.5. Let R be an t$¡¡-continuous regular ring, and let x, xx,x2,... be

elements of R. If the right ideal 2 xnR is essential in xR, then N*(x) < 2 A*(x„).

Proof. Choose elementsy,, y2,...E R such thatynR = xxR + • • • +xnR for all

n, and note from Lemma 1.2 that A*(y„) < A*(x,) + • ■ ■ +A*(x„). Thus it suffices
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to show that A*(x) < sup{A*(y„)}. If not,

A*(x) > s/t > sup{A*(y„)}

for some s, t EN.

For each n, we have P(yn) ^ A*(y„) < s/t and so tP(yn) < sP(l), for all P E

P(R). As a result, [2, Theorem 18.28] imphes that t(ynR) < sRR. Inside the

projective module t(xR), we have finitely generated submodules t(yxR) < t(y2R) <

..., and U(t(ynR)) is an essential submodule of t(xR). Consequently, Lemma 1.4

says that t(xR)<sRR. But then A*(x) < s/t (by Lemma 1.2), which is false.

ThereforeA*(x)<sup{A*(y„)}.    D

The key to the upcoming completeness argument is the following lemma, which is

a modification of a corresponding argument of von Neumann's [10, Lemma 17.3, p.

228]. Another completeness argument using this method occurs in [2, Lemma 21.6],

and we can adapt the proof of that lemma with only minor changes.

Lemma 1.6. If R is an S ^-continuous regular ring and e is an idempotent in R, then

eR(l — e) is complete in the N*-metric.

Proof. We shall need the fact that R is unit-regular [2, Theorem 14.24].

Let {x,, x2,...} be a sequence in eR(l — e) which is Cauchy in the A*-metric. By

passing to a subsequence, we may assume that A*(x, — x¡) < 1/2*"1"1 whenever

/', j s* k. Set An = (1 — e + xn)R for all n, and note that An + eR — R. For each

k — 1,2,..., there exists a principal right ideal Bk in R such that

00

V     A     <-     D

n = k

and since Ak < Bk, we see that Bk + eR — R. Note that Bx > B2 > ..., and set

00

C= (]Bk.
k=\

Inasmuch as the lattice of principal right ideals of R is K 0-continuous, we obtain

(00 \ 00

n Bk\ +eR=  D (Bk + eR) = R.
fc=i      / k=\

Consequently, there exists an idempotent/ E R such that/R = eR and (1 —/)/?<

C.

Since fR — eR, we have f=ef and e = fe, hence the element x = e — f hes in

eR(l — e). We shall show that x„ -> x in the A*-metric.

For each k — 1,2,..., there exists an element dkE R such that

00

j = k+\

and Lemma 1.5 shows that

00 00

N*{dk)<    S   A*(xy.-x,_,)<    2    1/2'=1/2*.
j=k+\ j=k+\
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For ail n > k, we have

AH=(\-e + xn)R=\\-e + xk+    2    (*/-*/-i)*
\ j=k+\ I

^(l - e + xk)R+    2    (*,-*,-1)**^* +4t*-

Consequently, 2"=* /!„ «S Ak + dkR, whence 5¿ < Ak + dkR.

Each Bk — Ak © m^ä for some m¿ £ i?. Then

Ak®ukR = Bk<Ak + dkR<Ak®dkR

and so ukR<dkR (because R is unit-regular). As a result, N*(uk) < N*(dk) < 1/2*

(Lemma 1.2).

The idempotent 1 - /lies in the right ideal

C<Bk = Ak + ukR = (I - e + xk)R + ukR,

hence 1 — /= (1 — e + xk)r + uks for some r, s £ R. Since xk E eR(l — e), we see

that 1 - e + xk is idempotent, whence

(1 - e + xk)(l -f) = (l-e + xk)r + (l - e + xk)uks

= l-f+(xk-e)uks.

In addition, since fR = eR, we have R(l — f) = R(l — e), and so 1 — e + xk lies in

R(l-f). Thus

1 - e + xk = (1 - e+ xk)(l -/) = 1 -/+ (xk - e)«ti,

and consequently

** - x = ** - <? +/= (1 - e + xk) - (1 -/) = (xk - e)uks,

henceN*(xk - x) < N*(uk) < 1/2*.

Therefore xk -» x in the A*-metric.    D

We shall apply Lemma 1.6 in a situation where R is a matrix ring and e is a corner

idempotent. For this purpose, and for later use, we need the following information

concerning A* in matrix rings.

Lemma 1.7. Let R be a regular ring, let n £ N, and set T = Mn(R). Let q>: R -» T

be the natural map, and let {ei} \i, j = 1,...,«} be the standard matrix units in T.

(a)NT<p = N*.

(b)N^((p(x)eiJ) = NZ(x)/nforallx E R and alii, j.

(c) A£(y,7) «s nN£(y)for ally E T and all i, j.

(d) NT(y) < 2?,,= , myijV" f°r f;V G T-

Proof, (a) According to [2, Corollary 16.10], the rule F i-> Ftp defines a bijection of

P(F) onto P(R), hence

Ajt(x) = sup{F9(x) | F E P(r)} - NT<p(x)

for any x E R.
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(b) For each k = l,...,n, we note that left multiplication by eki defines an

isomorphism of <p(x)e¡jT onto <p(x)ekkT. Consequently,

<p(x)T=®<p(x)ekkT^n(<p(x)e,JT),
k=\

hence NT<p(x) — nN^(cp(x)e¡j), by Lemma 1.2.

(c) Since if(yij)eij — eHyejj, it follows from (b) that

NÍ(ytJ) = nNT(<p(yu)eu) = nN^e.ye^) < nN*(y).

(d) Using (b) again, we conclude that

NT(y)=NÏ\    2   <pU>,,U   2   NT(<p(yu)eu)
\',j=l I        i,J =

=   2   N*(yiJ)/n.    a

i,j=\ I        ¡,j=l

Theorem 1.8. Every H¡¡-continuous regular ring is N*-complete.

Proof. For any N0-continuous regular ring R, [4, Proposition II. 11.4] shows that

ker(P(Ä)) = 0.

Assume for the moment that R is right and left S0-injective. Then the ring

T = M2(R) is N0-continuous, by [2, Proposition 14.19]. Setting e = (\] °), we obtain

from Lemma 1.6 that eT(l — e) is complete in the A^-metric. There is a group

isomorphismxi-»(%0)ofÄ onto eT(l — e), and Lemma 1.7 shows that

*i(*) = 2N-T((°x    J))

for all x E R. Therefore in this case R is A*-complete.

In general, let S denote the maximal right S0-quotient ring of R. Then S is an

N0-continuous, regular, right and left K0-injective overling of R, and R contains all

the idempotents of S [2, Theorems 14.12 and 14.17]. By the case above, 5 is

A*-complete.

Now R and S are unit-regular rings [2, Theorem 14.24], and we may assume they

are nonzero. Using Proposition 1.1 and [2, Proposition 14.28], we compute that for

any x E R,

AjJ(x) = inf{A;/n | k, n E N and n(xR) < kRR]

= inf{k/n | k, n E N and n(xS) < kSs) = A|(x).

Consequently, the A*-completeness of R will follow from the A*-completeness of S

provided R is closed in S in the A^-metric.

We claim that A£(x) = 1 for any x E S — R. By [2, Proposition 3.15], S has a

two-sided ideal A such that N G R and the ring S/N is abelian. Then x £ A, hence

S has a primitive ideal Af such that A G M but x £ Af. As S/N is abehan, S/M is a

division ring, hence S/M has a unique rank function Q and Q(x + M) = 1. Pulling

Q back to a pseudo-rank function F on S, we obtain P(x) — 1, so that Ng(x) > 1.

Thus Ay(x) = 1, as claimed.
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As a resuit, A£(x — y) — 1 for ail x E S — R and all y E R, whence R is closed

in S in the A*-metric, as desired. Therefore R is A*-complete.    D

Corollary 1.9. Every regular, right and left self-injective ring is N*-complete.    D

We conclude this section by proving that A*-completeness carries over to matrix

rings and certain factor rings.

Theorem 1.10. If R is an N*-complete regular ring, then any matrix ring Mn(R) is

N*-complete.

Proof. Set T = Mn(R), let <p: R -> T be the natural map, and let {eu | /', j =

1,...,«} be the standard matrix units in T. Given any y E ker(P(F)), we have

NT(y) — 0, whence Lemma 1.7 shows that A£(y,7) — 0 for all /', /. Then all y¡¡ = 0,

so that y = 0. Thus ker(P(F)) = 0.

Now consider any sequence {y(1), y(2),...} in T that is Cauchy with respect to NT.

Fixing / and /' for a while, we have

A*(y/*> - y//>) < nN*(yw - y(/>)

for all k, I (Lemma 1.7), hence the sequence {y¡X), y}2),...} in R is Cauchy with

respect to A£. Consequently, there exists yu E R such that y¡k) -* ytj in the A£-

metric. Having gotten such elements ytJ for each /', j, we obtain a matrix y E T with

entries y¡¡. Inasmuch as

N}(y^-y)<   2   N*(y^-y¡j)/n
UJ-i

for all k (Lemma 1.7 again), we conclude thaty(-k) -* y in the A^-metric.

Therefore T is A*-complete.    D

Lemma 1.11. Let J be a two-sided ideal in a regular ring R, let A and B be finitely

generated projective right R-modules, and let «EN. If n(A /AJ) < B/BJ, then there

exists a decomposition A — Ä ® A" such that nA' < B and A" = A"J.

Proof. As (nA)/(nA)J < B/BJ, we may apply [2, Proposition 2.20] to obtain a

decomposition nA — C ® D such that C < B and D = DJ. Then, by [2, Theorem

2.8], there exist decompositions C= Cx® ■■ ■ ®Cn and D = Dx © • • • ®Dn such

that C, © Di:=A for all i. Since D = DJ, each D, = DtJ, hence CJCJ =A/AJ.
Thus the modules C¡/C¡J are pairwise isomorphic, so by [2, Proposition 2.19] there

exist decompositions C, = F, © F, for each / such that the F, are pairwise isomorphic

and each F, = F¡J.

Now A s Cx © Dx = £, © F, © Dx, so there is a decomposition A = A' © A"

with A' = Ex and A" s Fx © Dx. Then

nA' s nEx - Ex © • • • ©£„ < C, © • • • ©C„ - C < B.

Since Dx = £>, / and Fx = F, J, we also have A" — A"J.    U

For the moment, we now restrict to unit-regular rings. This restriction will be

removed when we prove that all A*-complete regular rings are unit-regular (Theo-

rem 2.3).
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Lemma 1.12. Let J be a two-sided ideal in a unit-regular ring R. Then

N*j(x + J) = inf{A£(y)|y £ x + J)

for all x E R.

Proof. This is clear if / = R, so assume/ ^ R.

Given any y E x + /, we see that

Nt/Â* +J) = *Ï/Ay + J) = sup{ß(y + J)\QE P(R/J)}

= sup{F(y)|FEP(Ä)and/cker(F)}

< sup{F(y) | F E P(R)} = A*(y).

Thus Aj*/y(x + /><* inf{A*(y) \y E x + J}.

Given any real number a > A£/y(x + J), Proposition 1.1 shows that there exist

k, n E N for which k/n < a and

n((x+J)(R/J))<k(R/J),

that is, n(xR/xJ) < (kR)/(kR)J. According to Lemma 1.11, there is a decomposi-

tion xR — A' ® A" such that nA' <kRR and A" = A"J. Then x = y + z for some

y EA' and z E A". Note that z £ J, so that y E x + J. Since n(yR) < h/1' < kRR,

we conclude from Proposition 1.1 that N£(y) < fc/w < a. Therefore

inf{A*(y)|y Ex + /} ^A*7/(x + y).    D

Theorem 1.13. Let R be an N*-complete unit-regular ring, and let J be a two-sided

ideal of R. Then the following conditions'are equivalent.

(a) R/J is N*-complete.v  /     / r

(b) J is N* -closed in R.

(c) J = ker(X) for some X G P(R).

Proof, (a) =*> (c): By definition, ker(P(R/J)) = 0, hence if

X= [PEP(R)\J Gker(P)},

thenJ - ker(;f).

(c) =» (b): Given x E R — J, we must have P(x) > 0 for some F E X. Then

A*(y -x)> P(y -x)> P(x) - P(y) = P(x)

for all y E J, hence x is not in the A*-closure of J. Thus / is A*-closed.

(b) =■ (a): Given a nonzero coset x + / in R/J, we have x £ /, hence there must

exist a positive real number e such that A£(y — x) > e for ally E J. Then N£(z) > e

for all z £ x + J, whence A£/y(x + 7) > e, by Lemma 1.12. Consequently,

ker(P(Ä//)) = 0.

Now consider a sequence {ax, a2,...} in R/J that is Cauchy with respect to A^/y.

There is no loss of generality in assuming that NR/J(an+X — an) < 1/2" for all n.

Choose x,, x2,... in R such that each an — xn + J.

Sety, = x,. Then N^,j((x2 — yx) + J) < 1/2, so by Lemma 1.12 there exists z in

(x2 — yx) + J satisfying Ng(z) < 1/2. Sety2 = yx + z, so thaty2 + J = x2 + J = a2

and A£(y2 — y,) < 1/2. Continuing in this manner, we obtain elementsy,, y2,... in

R such thaty„ + J = a„ and N%(yn+X - y„) < 1/2" for all n.
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Thus {y,, y2,...} is Cauchy with respect to A/£, hence there exists y E R such that

y„-> y in the A^-metric. Setting a—y + J, we conclude from Lemma 1.12 that

an -* a in the A£^-metric.

Therefore /?// is A*-complete.    D

Corollary 1.14. Let R be an N*-complete unit-regular ring, and let M be a

maximal two-sided ideal of R. Then R/M is N*-complete.

Proof. As R/M is a simple unit-regular ring, [2, Corollary 18.5] shows that there

is a rank function on R/M. Then there exists P EP(R) such that ker(F) = M,

hence R/M is A*-complete by Theorem 1.13.    D

II. K0. A good deal of information about a regular ring R, particularly ideal

theory and decomposition properties of the principal right ideals, is stored in the

Grothendieck group K0(R). We study this group for an A*-complete regular ring R

in this section, proving that K0(R) is an archimedean, norm-complete, partially

ordered abehan group with the interpolation property. In the following section, we

develop a structure theory for such groups, which can then be applied, via K0, to the

structure theory of A*-complete regular rings.

Definition. Recall that the Grothendieck group K0 of a ring R is an abelian

group with generators [A] corresponding to the finitely generated projective right

Ä-modules/I and with relations [A] + [B] — [C] whenever A ® B s C. All elements

of K0(R) are of the form [A] — [B], for suitable^ and B. We set

K0(R)   = {[A]\A isa finitely generated projective right F-module},

and we define a relation < on K0(R) so that x *£y if and only if y — x hes in

K0(R)+ . This relation is a translation-invariant pre-order on K0(R), so that K0(R)

becomes a pre-ordered abehan group. The element [R] is an order-unit in K0(R),

meaning that for any x E K0(R) there exists n E N such that x *£ n[R].

For a unit-regular ring R, the relations between K0(R) and the finitely generated

projective right F-modules are much cleaner than in general. Namely, for any

finitely generated projective right /Gmodulesyl, B, C, D we have

[A] - [B] = [C] - [D]   if and only if A ®D^B®C,

[A] - [B] ^[C] - [D]    if and only if A ®D<B®C

[2, Proposition 15.2]. In addition, the relation < on K0(R) is actually a partial order,

so that K0(R) is a partially ordered abehan group in this case. Thus, in order to deal

effectively with KQ of A*-complete regular rings, we first prove that such rings are

unit-regular. Two lemmas will be helpful in doing this.

Lemma 2.1. Let R be an N*-complete regular ring, and let A, B,C be finitely

generated projective right R-modules. Let {Ax, A2,...} and {Bx, B2,...) be indepen-

dent sequences of finitely generated submodules of A and B, such that Ak = Bk for all k.

For each k, let A* be a submodule of A such that

A=Ax®---®Ak®A*k,

and assume that 2ktkA*k < tkC for some tk E N. Then A < B.
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Proof. As ah matrix rings over R are A*-complete (Theorem 1.10), we may use

the standard Morita-equivalences to transfer our problem to the category of right

modules over a suitable matrix ring Mn(R), with n chosen large enough so that the

modules corresponding to A, B, C are cychc. Thus there is no loss of generality in

assuming that A, B,C are actually principal right ideals of R.

Choose idempotents e,f E R such that eR = A and fR = B. Applying [2, Proposi-

tion 2.13] to the ascending sequence

Ay < A, © A2 < Ax © A2 ® A3 < ...

of finitely generated submodules of A, we obtain orthogonal idempotents ex,e2,...

in eRe such that

exR® •■■ ®ekR = Ax® •■■ ®Ak

for all k. Similarly, there exist orthogonal idempotents/,, f2,... in/yx"/such that

fxR® ■■■ ®fkR = Bx © • ■ • ®Bk

for all k. Note that each

ekR^(exR © • ■ • ®ekR)/ (exR © ■ • • ®ek_xR)

= (Ax® ■ ■ ■ ®Ak)/ (Ax® ■ ■ ■ ®Ak_x) ^ Ak

and similarly fkR at Bk, so that ekR =fkR. Thus there exist elements xk E ekRfk

andyk E fkRek such that xkyk = ek andy^x* = fk.

For each k, we have (e — ex — ■ ■ ■ ~ek)R = A\, whence

2ktk((e -ex-ek)R) < tkC < tkRR,

and consequently N*(e — e, — • • • — ek) < 1/2*, by Lemma 1.2. Thus 2 ek -> e in

the A*-metric. As

= e = (e-ex-ek)tAk + \ ~ ck+\Ak+\        Ve        cl ck/ck+l-*-k+\

for each k, we also obtain A*(x¿+1) < 1/2*, and similarly, N*(yk+X) < 1/2*.

Now the partial sums of the series 2 xk and 2 yk are Cauchy with respect to A*,

hence there exist x, y £ R such that 2 x¿ -» x and 2 yk -» y in the A*-metric. As

each

** - ekxkfk = eekxkfkf= exkf,

we obtain x = exf, and likewise y = fye. Since x,y7 = x,/jÇy, = 0 whenever /' ¥=j,

we have

(x, + • • • +xk)(yx + ■■■ +yk) = x,y, + • • • +xkyk = ex + ■■■ +ek

for all k, and consequently xy = e. Therefore eR ~S¡fR, that is, A < B.    D

Lemma 2.2. Let A, B,C be finitely generated projective right modules over a regular

ring, such that A ® C = B ® C. Then there exist decompositions

A=A'®A";       B = B'®B";       C = C © C"

such that A' s B' and A" s C, while also A" ® C" s B" ® C".
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Proof. According to [2, Theorem 2.8], there exist decompositions A = A' © A"

and C = D® E such that A' ® D ss B and A" ® E = C. Then we obtain decom-

positions B - B' ® B" and C = C ® C" such that B' = A' and B" s D, while also

C = A" and C" = E. Finally,

A"®C" sA" ® E = C = D®E = B" ®C".    D

Theorem 2.3. Every N*-complete regular ring is unit-regular.

Proof. Given an A*-complete regular ring R, we have ker(P(Ä)) = 0 by defini-

tion, hence all matrix rings over R are directly finite [2, Proposition 16.11]. To prove

that R is unit-regular, it suffices to show that if A, B, C are any finitely generated

projective right Ä-modules satisfying A © C s B © C, then A s B.

Inducting on Lemma 2.2, we obtain submodules

A\, A'i, A'2, A'i,.. .<A;    B[, B'{, B'2, B'{,... < B;    C[, C'{, C'2,C'{,...^C

such that

A=A\®A'{;       B = B[®B[';        C = C[ © C'{

while also

A'; = A't+x®A';+x;  b;' = b;+x®b;'+x;  c;' = c;+x®c;^x;

A\ = B\;   A'; at C¡;   A'/ © C/' s B¡' ® C¡'

for all /'. Note that A" > A2 > ..., and that C[, C2,... are independent submodules

of C. Consequently, we obtain

iA'l < A'{ ® A'2' © ■ ■ ■ ®A'¡ = C[ ® C{ ® ■ ■ ■ ®C; < C

for all /.

Now set ,4, = A\ ® A'2 and Bx = B[ ® B'2, while A* = A'{. Set

2« 2*

Ak=      ©     A'f,   A*k=A'2\;    Bk=      ©     B¡
i = 2k-{ + \ <=2*-, + l

for all fe = 2,3,_Thus {^4,, ̂ 42,...} and {Bx, B2,...} are independent sequences

of finitely generated submodules of A and B, with ^ s .ß^ for all /c. Also, since

A=A\® A'[ = A\ © A'2 ®A'2'= ■■■ =A'X® A'2 © • - - ©^; © A'¡

for all /, we have A= Ax® A2® ■■■ ®Ak © A*k for all A;. Inasmuch as 2kA*k < C for

all k, we conclude from Lemma 2.1 that yl < B.

By symmetry, 2? < A. As all matrix rings over R are directly finite, it follows that

A =B[2, Proposition 5.4].    D

Definition. Let G be a partially ordered abelian group. Then G is said to be an

interpolation group if given any x,, x2, y,, y2 in G satisfying x, <y7 for all i,j, there

exists zëG such that x, *s z =£ y for all /', j. Equivalently, G is an interpolation

group if and only if either of the following forms of the Riesz decomposition property

holds.

(a) If x, y,,... ,yn £ G+ and x <y, + ■ ■ • +y„, then there exist x,,... ,x„ in G+

such that x = x, + ■ • • +x„ and each x, =s y,.
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(b) If x,,... ,xn, y,,... ,yk E G+ and xx + • ■ ■ +xn = yx + ■ ■ ■ +yk, then there

exist z¡j E G+ (for /' = l,...,n and/ = l,...,k) such that x, = ziX + ■ ■ ■ +zik for all

/ andy,. = zXj + ■■■ +znj for all/.

For any unit-regular ring R, the partially ordered abehan group K0(R) is an

interpolation group [4, Proposition II. 10.3]. In particular, this holds for any A*-com-

plete regular ring, because of Theorem 2.3; however, we postpone recording this fact

until Theorem 2.11.

Definition. Let G be a partially ordered abehan group, and let « be a positive

integer. We say that G is n-unperforated if for all x E G, we have nx > 0 only when

x > 0. If G is «-unperforated for all «EN, then G is said to be unperforated. The

group G is archimedean provided that whenever x, y E G and nx < y for all «EN,

then x < 0. It is easily checked that all archimedean directed abelian groups are

unperforated [4, Lemma 1.5.2]. Our next goal is to prove that K0 of any A*-complete

regular ring R is archimedean; however, since our proof requires K0(R) to be

2-unperforated, we show that first.

Lemma 2.4. Let A and B be finitely generated projective right modules over a

unit-regular ring R, and let «EN. If A < nB, then there exists a decomposition

A -A' ® A" such that A' < B and nA" < (« - 1)^4.

Proof. Since A < nB, there is a decomposition A = Ax ® ■ ■ ■ ®An with each

Ai < B [2, Corollary 2.9]. Each A¡ is isomorphic to a submodule B¡ < B, and we

define B' — Bx + • • • +Bn. Then B' is a finitely generated submodule of B, and

B'<BX®   ■■ ®Bn^Ax © ••• ®An=A,

hence we obtain a decomposition A — A' © A" with Ä s B' *£ B. For each j =

1,...,«, we have Aj as Bj < B' s¡A' and so

A' ® A" = A = Ax ® ■ ■ ■ ®An < A' © I 0 A,, j,

whence A" < ®i¥=JA(. Therefore

nA"<® ®A,^®(n-l)A,^(n-l)A.    D

; = 1   ;'#/ 1=1

Lemma 2.5. Let A and B be finitely generated projective right modules over a

unit-regular ring R, and let « £ N. If nA < nB, then there exist decompositions

A = A' © A" and B = B' © B" such that A' s B' and nA" < nB", while also 2tA" <

tA for some t £ N.

Proof. By Lemma 2.4, there exist decompositions A = Ax © Ä\ and B = Bx © B\*

such that ,4, s Bx and nAf < (« — 1)^4. Since

n/1, © «af snA<nB = nBx ® «5* s «a, © «fif,

we also have «ylf < «v?f. Thus we may continue by induction, obtaining submodules

AX,A*,A2,A*2,...<A;       Bx, B*, B2, B?,.. .< B
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such that

A*=Ai+x®A*+x;       B*=Bi+x®B*+x;

Al+, s Bl+,;        nA*+x<(n-l)A*;       nA*+, < «73*.,

for all /'. In addition,

n'A* < «'-'(« - i)a*_i <•■•<«(«- îy'af < (« - i)'a

for ail /'.

Choose / E N such that ((« - 1)/«)' "S 1/2, and set t = (n - 1)', so that 2t < «'.

Setting a' = Ax ® ■ ■ ■ ®At and A" = A*, we obtain A = A' ® A" and

2/^"<«'a*<(«- l)'a = £4.

Setting 75' = v?, © ..- ©y?, and B" = B*, we obtain 73 = 73' © 73", while also A' = t3'

and«yl"<«73".    D

Theorem 2.6. Let R be an N*-complete regular ring, let A and B be finitely

generated projective right R-modules, and let n EN. If nA < nB, then A < B.

Proof. Inducting on Lemma 2.5, we obtain submodules

AX,A*,A2,A*2,...<A;       Bx, B*, B2, 73*,... < 73

such that A = Ax ® A* and B = Bx ® Ff, while also

A*k = Ak+x®A*k+x;       B*k=Bk+x®B*k+x;

Ak*Bk,       nAl<nB*k;        2ktkA*k<tkA

(for some tk £ N) for all k. Applying Lemma 2.1, we conclude that A < 73.    D

As an A*-complete regular ring R is unit-regular, it follows immediately from

Theorem 2.6 that K0(R) is unperforated. This result will be subsumed by the

stronger result that K0(R) is archimedean (Theorem 2.11).

Lemma 2.7. Let R be an N*-complete regular ring, let A, B,C be finitely generated

projective right R-modules, and let «EN. If 2"A < 2"B ® C, then there exists a

decomposition A = A' ® A" such that A' < B and 2"A" < C.

Proof. The proof of [2, Lemma 14.31] may be used, substituting Theorem 2.6 for

[2, Theorem 14.30].    D

Theorem 2.8. Let R be an N*-complete regular ring, and let A, 73, C be finitely

generated projective right R-modules. If 2"A < 2"73 © C for all n EN, then A<B.

Proof. Since 2v4 < 273 © C, Lemma 2.7 provides us with decompositions A —

Ax © A*x and 73 = Bx ® 73f such that a, s t3i and 2af < C. For all «EN,

2"AX © 2"A* s 2"A <2"B® C = 2"BX © 2"Bf © C s 2nAx ® 2"Bf © C,

hence 2nA*x < 2"73f © C. Thus we may continue by induction, obtaining submodules

AX,A*,A2,A*2,...<A;       73,, B*, B2, 732*,... < B
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such that

A*k = Ak+x®A*k+x;       B* = Bk+x®B*k+x;

Ak¡sBk;       2kA*k < C;       2nA\ < 2"F* © C

for all k, n. Applying Lemma 2.1, we conclude that A < B.    D

It follows directly from Theorem 2.8 that KQ of any A*-complete regular ring is

archimedean. We postpone recording this result until Theorem 2.11.

Definition. Let (G, u) be a partially ordered abelian group with order-unit. For

any x E G, we define

||x||u = inf{Ä:/n | k, n £ N and -ku < nx < ku),

and we note that ||x||„ is a nonnegative real number. When there is no danger of

confusion as to the order-unit u, we just write ||x|| instead of ||x||„. The function

II • || behaves like a seminorm on G, for ||mx|| —\m\ -llxll and IIx +y|| =s ||x|| +

Il y II for all x, y E G and m E Z [4, Lemma 1.6.1]. In particular, it follows that the

rule ô(x, y) = Il x — y || defines a pseudo-metric 8 on G. If 8 is actually a metric, and

G is complete in this metric, then we say that (G, u) is norm-complete.

It is tempting to expect norm-complete partially ordered abehan groups with

order-unit, particularly those that are interpolation groups, to be archimedean, but

this is not the case in general. For instance, make the group G — R2 into a partially

ordered abehan group with positive cone

G+ = {(0,0)} U {(a,b) EG|a>0and¿>>0}.

It is clear that G is an interpolation group, and that the element « = (1,1) is an

order-unit in G. Observing that

||(a,6)||„ = max{|a|,|A|}

for all (a, b) E G, we see that (G, u) is norm-complete. However, «(-1,0) < u for

all « E N while (-1,0) 4 0, so that G is not archimedean.

Lemma 2.9. Let R be an A*-complete regular ring, let v E K0(R), and let n EN. If

||t>|| < 1/2", then there exist x, y E R such that v = [xR] — [yR], while also N*(x)

< 1/2" and A*(y) < 1/2".

Proof. Write v = [A] — [B] for some finitely generated projective right R-mod-

ules A and 73. Since ||v|| < 1/2", there exist s, t E N such that -s[R] < tv < s[R]

and s/t < 1/2". Since R is unit-regular (Theorem 2.3), it follows that

tA<sRR®tB       and       tB<sRR®tA.

Now 2"tA < 2"tB © tRR, because 2"s < t. Then 2"A < 2"73 © RR by Theorem 2.6,

and similarly 2"B < 2"A © RR.

In view of Lemma 2.7, there exist decompositions A — Ax ® A2 and B — Bx® B2

such that a, = 73, and 2",42 < RR. Then

2"F, © 2"732 s 2"73 < 2"A ®RR = 2"AX © 2"yl2 © RR s 2"73, © 2"^2 © RR,

whence 2"732 < 2nA2 ® RR. Applying Lemma 2.7 a second time, we obtain decom-

positions 732 - B3 © 734 and A2 - A3 © A4 such that B3 s A3 and 2"734 < RR.
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Now 734 < 2"t34 < RR, so t34 s yR for some y E R. Then as 2"(yR) < RR, we

obtain A*(y) < 1/2" from Lemma 1.2. Similarly, since 2"y44 < 2"a2 < RR, we have

a4 s xR for some x £ R satisfying A*(x) < 1/2". Finally,

A =AX ®A2 = AX ®A3 ®A4sAx ® A3 ® xR,

B = Bx® B2 = Bx ©733©t34s/1, © A3 ®yR,

hence we conclude that v = [A] — [73] = [xR] — [yR].    □

Lemma 2.10. Let R be an N*-complete regular ring, let xx, x2,...E R, and assume

that N*(xn) < 1/2" for all n. Then there exists x E R such that

\\[xxR] + --- + [xnR]-[xR]\\ -0

as n -» oo.

Proof. We may clearly assume that R is nonzero.

For each «, Proposition 1.1 provides us with positive integers sn and /„ such that

sjtn < 1/2" and tn(xnR) < snRR. Then since 2"sn - tn, we obtain 2"s„(x„R) <

snRR, and so 2"(x„F) < RR, using Theorem 2.6. Cor       ently,

2"(x,F © • • • ©x„F) < 2"~XRR ® 2"-2RR © • • • ®2RR © RR < 2"RR,

whence xxR® ■ ■ ■ ®x„R< RR (Theorem 2.6 again).

As this holds for all «, we obtain ®xnR < RR, by [2, Proposition 4.8]. Thus R

contains an ascending sequence Ax *z A2 < ... of principal right ideals such that

each

An^xxR®---®xnR.

By [2, Proposition 2.13], there exist orthogonal idempotents ex, e2,... in F such that

exR ® ■■• ®e„R = A„

for all «. Note that enR s AJAn_, s x„F, when A*(e„) = A*(x„) < 1/2" (Lemma

1.2).

Now the partial sums of the series 2 e„ are Cauchy with respect to A*, hence there

exists e E R such that 2 en -> e in the A*-metric. Note that e is an idempotent, and

ene = een — en for all «. For each «, we compute that

(OO \ OO 00

2    ek\<    2    N*(ek)<    2    1/2* =1/2",
k=n+\       I        k=n+\ k=n+l

whence 2"((e — ex — ■ ■ ■ — en)R) < RR, using Proposition 1.1  and Theorem 2.6

again. Inasmuch as

eR = exR ® ■ ■ ■ ®enR ®(e~ex-e„)R,

it follows that 2"(eR) < 2"(exR © • • • ®e„R) © RR. Consequently,

2"([exR] + ■■■ + [e„R]) < 2"[eR] < 2"([exR] + ■■■ + [enR]) + [R]

in K0(R). Thus

0^2"([eR]-[exR]-[*„*])<[*],
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from which we conclude that

\\[eR]- [exR]-[enR]\\ *£ 1/2".

Since each [enR] = [x„F], this proves that

\\[xxR] + ■■■ + [xnR]-[eR]\\ -0,

as desired.    D

Theorem 2.11. If R is an A*-complete regular ring, then (K0(R), [R]) is an

archimedean norm-complete interpolation group with order-unit.

Proof. Since R is unit-regular (Theorem 2.3), it follows that K0(R) is a partially

ordered (rather than just pre-ordered) abehan group [2, Proposition 15.2], and that

K0(R) is an interpolation group [4, Proposition II.10.3]. Given x, y £ K0(R) such

that «x «£ y for all «EN, choose finitely generated projective right F-modules

a, 73, C, D such that x = [A] - [B] and y = [C] - [D]. Then

[nA] - [nB] = «x*£y < [C]

and so nA < nB ® C, for all «EN. By Theorem 2.8, A < B, whence x « 0.

Therefore K0(R) is archimedean. In particular, it now follows from [4, Proposition

1.6.2] that the pseudo-metric on K0(R) induced by || ■ II is actually a metric.

Finally, consider a Cauchy sequence {vx,v2,...} in K0(R). By passing to a

subsequence, we may assume that IIü„+, — vn\\ < l/2"+1 for all «. Using Lemma

2.9, we obtain elements x„, y„ E R such that

v„+\ -% = [xnR] - [y„R],

while also A*(x„) =£ l/2"+1 and A*(y„) < l/2"+1. According to Lemma 2.10, there

exist elements x, y £ R such that

||[x,F] + ■■• + [xnR] -[xR]\\ -0,

||[y,Ä] + •• • + [y„R] - [yR]\\ -* 0.

Since vn+x - vx = [xxR] + ■ ■ ■ +[x„R] — [yxR] — • • • — [y„R] for all «, we con-

clude that

W(vn+x-vx)-([xR]-[yR])\\^0,

and consequently vn+x — vx + [xR] — [yR]. Therefore (Ä^Ä), [F]) is norm-

complete.    Dr

III. Archimedean norm-complete interpolation groups. Given an archimedean

norm-complete interpolation group (G, u) with order-unit, we study the state space

S(G, u), and the relationship between G and the space of affine continuous real-

valued functions on S(G, u). In particular, we investigate extreme points and closed

faces of S(G, u), and relate them to ideals of G. These results will be applied, via K0,

to the ideal theory of A*-complete regular rings.

Definition. Let (G, u) be a partially ordered abehan group with order-unit. A

state on(G, u)is any positive homomorphism s: G -» R such that s(u) = 1. The state

space of (G, u), denoted S(G, u), is the set of all states on (G, u). The state space is
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regarded as a subset of the linear topological space Rc (which is given the product

topology), and as such is a compact convex set [2, Proposition 17.11]. If G is an

interpolation group, then S(G, u) is a Choquet simplex [4, Theorem 1.2.5].

Definition. The extreme boundary of a convex set S, denoted deS, is the set of all

extreme points of 5, that is, points s E S such that the only convex combinations

s = as' + (1 — a)s" with 0 < a < 1 and s', s" £ S are those for which a — 0, or

a — 1, or s' = s" = s. Now suppose that S — S(G, u) for some partially ordered

abelian group (G, u) with order-unit. An extreme state s in deS is said to be discrete

if s(G) is a cyclic subgroup of R. Note that if s is discrete, then s(G) — (l/m)Z for

some m E N, because 1 = î(m) E s(G). On the other hand, if s is not discrete, then

s(G) is dense in R.

Definition. We use Aff(5) to denote the partially ordered real Banach space of

all affine continuous real-valued functions on S (with the pointwise ordering and the

supremum norm). Evaluation at elements of G provides a map <p: G -» Af^S1), so

that <p(x)(s) = s(x) for all x E G and s E S. Note that <p is a positive homomor-

phism, and that <p(u) is the constant function 1. We refer to <p as the natural map

from G to Aff(5). The map <jp is also norm-preserving; namely,

||<p(x)|| =sup{|i(x)| :s ES) = llxll

for all x E G [4, Lemma 1.6.1].

Theorem 3.1. Let (G, u) be an archimedean norm-complete interpolation group with

order-unit, and set S = S(G, u). For all discrete s E deS, set As = s(G); for all other

s E deS, set As = R. Set

A= [p EAii(S)\p(s) EAJorallsEdeS}.

Then the natural map from G to Aîî(S) provides an isomorphism of (G,u) onto (A, I)

(as partially ordered abelian groups with order-unit).

Proof. [3, Theorem 5.1].    D

Corollary 3.2. Let (G,u) be an archimedean norm-complete interpolation group

with order-unit. Then G is lattice-ordered if and only if deS(G, u) is compact.

Proof. [3, Corollary 5.4].    D

In order to apply Theorem 3.1 effectively, we must be able to identify deS easily.

Thus we develop criteria for deciding when states are extreme. For topological

considerations, we also develop similar results for compact sets of extreme states,

and for closed faces of S. We begin with a result relating the archimedean property

to norm properties.

Proposition 3.3. Let (G, u) be an interpolation group with order-unit. Then G is

archimedean if and only if G is 2-unperforated and G+ is norm-closed in G.

Proof. If G is archimedean, then G is unperforated by [4, Lemma 1.5.2]. Now

consider elements x,, x2,... in G+ and x E G such that x„ -> x in norm. We may

assume that II x„ — x|| < 1/« for all n. According to [4, Proposition 1.6.2], «(x„ — x)

< u, and consequently «(-x) < u. Since this holds for all «EN, the archimedean

property imphes that -x < 0, so that x E G+ . Thus G+ is norm-closed in G.
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Conversely, assume that G is 2-unperforated and that G+ is norm-closed in G.

Given a, b £ G such that na <■ b for all « £ N, we must show that a < 0. Write

a = x — y for some x, y £ G+ , and choose z E G+ with b < z. Then «x < ny + z

for all «EN, and we must show that x < y.

For all « E N, we have 2"x < 2"y + z, hence [4, Lemma 1.5.7] says that x = t>„ +

h>„ for some t?„, vv„ E G+ such that t>„ <y and 2"wn =£ z. Then ||w„|| < ||z||/2", so

that vv„ -» 0, and consequently vn -* x. Thus y — vn -» y — x. Since each y — vn is in

G+ , we conclude that y — x is in G+ , as desired. Therefore G is archimedean.    D

In particular, if (G, u) is an archimedean interpolation group with order-unit, and

we have norm-convergent sequences xn -» x and y„ -> y in G with xn «Sy„ for all «,

then x < y.

Theorem 3.4. Let (G, u) be an interpolation group with order-unit, and let s E

S(G, u). Then s is an extreme point of S(G,u) if and only if

min{j(x), s(y)) = sup{i(z) \z E G+ ; z < x; z <y}

for all x, y E G   .

Proof. [3, Theorem 3.1].    D

Corollary 3.5. Let (G, u) be an interpolation group with order-unit, and let X be a

compact subset of deS(G, u). Given x, y £ G+ and a positive real number e, there

exists z £ G+ such that z < x and z < y, while also

s(z)>min{s(x),s(y)} -e

for all s EX.

Proof. Set W = {w£G+|>v<x and w < y}, and note, because of the interpola-

tion property, that W is upward directed. For each w E W, set

V(w) = {s ES(G,u)\s(w) >min{í(x),í(y)} - e},

which is an open subset of S(G, u). In view of Theorem 3.4, we see that these V(w)'s

cover deS(G, u), and so cover X. As Xis compact, it follows that

XG V(wx)U--- UV(wn)

for some wx,..., wn E W. Since W is upward directed, there exists z £ W such that

all w, «S z, and z has the desired properties.    D

Corollary 3.6. Let (G, u) be an interpolation group with order-unit, let a, b E G+ ,

and let m E N. Let X be a compact subset of deS(G, u), and assume that s(ma) < s(b)

for all s £ X. Given any positive real number e, there exists c E G+ such that c < a

and mc < b, while also s(c) > s(a) — e for all s E X.

Proof. By Corollary 3.5, there exists x £ G+ such that x < ma and x < b, while

also s(x) > s(ma) — e for all s E X. Then, using Riesz decomposition, x —

x, + • • • +xm for some x, E G+ satisfying x, < a. For each /', note that X — x¡ <

(m — l)a, whence x — (m — l)a < x,. Since 0 < x, for each /' as well, interpolation

provides an element c E G such that

x — (m — l)a < c < x,       and       0 < c < x,
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for ail z. Thus c E G+ and c < x, < a, while

me « x, + • • • +xm = x < A.i m

As x — («/ — l)a < c, we have a — c < ma — x, whence

s(a) — s(c) *» j(wa) — î(x) < e

for aU s E X. Therefore s(c) > s(a) - e for ail s E X.    D

Theorem 3.7. Let (G, u) be an archimedean norm-complete interpolation group with

order-unit, and let X be a compact subset of deS(G, u). Given any x, y EG, there exist

z,w E G such that z < x < w and z < y < w, while also

s(z) — min{i(x), s(y))        and       s(w) = max{s(x), s(y)}

for all s E X. If x, y E G+ , then such z, w can be found in G+ .

Proof. First assume that x, y E G+ . The rule p(s) = min{s(x), s(y)} defines a

continuous map p of S(G, u) into R+ . We construct elements z, < z2 < ... in G+

such that each z„ '< x and z„ < y, while also

s(zn)>p(s)-(1/2")        and        ||zn + , - z„|| ^ 1/2"

for all « and all s E X. To begin, we obtain z, directly from Corollary 3.5.

Now assume that z,,...,z„ have been constructed, for some «. According to

Corollary 3.5, there exists a E G+ such that a < x and a < y, while also

*(*)>/>(*) -(l/2"+2)

for all s E X. Since z„ « x and zn^y as well, there is some b £ G+ satisfying

a < A < x and z„ < A < y. Note that

í(A)>í(a)>Jp(í)-(l/2"+2)

for all 5 E X

The element b — zn lies in G+, and for all 5 £ X we have

s(z„) > min{s(x), s(y)} - (1/2") > s(b) - (1/2"),

whence s(2n(b — z„)) < 1 = s(u). By Corollary 3.6, there exists c E G+ such that

c < A — z„ and 2"c < w, while also

.(c)>5(A-zJ-(l/2"+2)

for all s E X. Set z„+I — zn + c, noting that zn « z„+, < A < x and zn+x < A *£y.

For all í e I, we have

**■+!•) = '(O + H^) > 4b) - (l/2"+2) >/>(*) - (l/2"+1).

Since 0 < 2"(z„+, — z„) = 2"c < u, we also have l|z„+, — zn\¡ < 1/2", which com-

pletes the induction step.

Having constructed a Cauchy sequence {z,, z2,...} in G, we must have zn -^ z for

some z E G. Since 0 =s zn < x and 0 < zn =£ y for all «, we obtain 0 < z < x and

0 < z <y. On the other hand, zk > z„ whenever k > n, hence z > zn for all «.

Consequently, for any s E X,

min^x), í(y)} > í(z) > *(z„) > min^x), s(y)} - (1/2"),

and thus s(z) = min{i(x), s(y)}.
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Now consider arbitrary elements x, y E G, and choose a E G+ such that x + a >

0 and y + a > 0. By the above, there exists b E G+ such that A < x + a and

A < y + a, while also

j(A) = min{j(x + a), s(y + a)}

for all s E X. Setting z = A — a, we obtain z < x and z < y, while

j(z) = min{i(x),i(y)}

for all s EX.

Finally, use the result above to obtain c E G such that c < -x and c < -y, while

also

s(c) = min{j(-x), j(-y)}

for all j E X Set w = -c.    D

Corollary 3.8. If(G, u) is an archimedean norm-complete interpolation group with

order-unit, and X is a compact subset of deS(G, u),then ker(A') is an ideal of G, and

G/ker(X) is a lattice-ordered abelian group.

Proof. Set K = ker( X). Clearly K is a convex subgroup of G. Given x E K, we

have s(x) = s(0) for all s £ X. According to Theorem 3.7, there exists z E G such

that z < x and z < 0, while also s(z) = s(x) = s(0) for all s E X. Thus x — z and -z

are elements of G+ P\K satisfying (x — z) — (-z) = x, which proves that K is a

directed subgroup of G. Therefore K is an ideal of G.

Now consider any elements x + K and y + K in G/ÄT. According to Theorem 3.7,

there exists z EG such that z < x and z <y, while also s(z) — min{i(x), s(y)} for

all s E X. Then z + AT < x + K and z + K < y + K, and we claim that z + 7? is the

infimum of x + A" and y + Kin G/K.

Given a + 7( in G/7Í satisfying a + K < x + K and a + AT < y + K, we have

a < x + /c' and a <y + /c" for some /c', /c" E/v. Since K is directed, we may

choose k E K such that k' < k and /c" < A, whence a < x + A: and a < y + A:. Now

a — k < x;        a —/c<y;        z<x;        z*Ey.

Interpolating, we obtain A £ G such that a — A: < A < x and z < A < y. In particu-

lar,

s(z) < s(b) < min{j(x), s(y)} = s(z)

for all s E X, whence b — z EK. Thus

o +i:=(flf-fc..) +jt<* + *-p5# +j:,

proving that z + AT is indeed the infimum of x + K and y + 7v.

Therefore G/K is lattice-ordered.    D

We thank the referee for pointing out that the hypothesis of norm-completeness in

Theorem 3.7 and Corollary 3.8 is essential, as the following example shows. (This is

a simphfied version of the referee's example.)

Example 3.9. There exists an archimedean interpolation group (G, u) with order-

unit possessing an extreme state j such that ker(i) = {0} but G is not lattice-ordered.



296 K. R. GOODEARL

Proof. Let G be the Q-subspace of R2 spanned by the vectors u = (1,1) and

v — (w, -it). Note that since u and v are R-hnearly independent, G is dense in R2 in

the usual Euchdean topology. Give R2 the direct product ordering, and give G the

relative ordering inherited from R2, so that G+ = G n (R2)+ . Then R2 and G are

archimedean partially ordered abehan groups, and « is an order-unit in each of

them.

To check interpolation, consider elements x,, x2, y,, y2 in G satisfying x, <y¡ for

all /', /. Then each

xi = (a, + A,w, a, — A,w)        and       y, = (c; + djir, Cj — djir)

for suitable a„ A,, c}, dj E Q. First assume that a¡ = c, for some /', /, say a, = c,.

Since

a, + A,w < c, + dxir       and       a, — bxw < c, — i/,w,

it follows that A, = i/,, whence x, = y,. In this case, x, < x, <yy for all /', /. Now

assume that a¡ =£ Cj for all /', /. Then

a, + A,w ̂  cy + djir       and       a¿ — A,w ̂  cy — £f,w

for all /', /. Consequently, the set IF consisting of those (a, ß) in R2 satisfying

a¡ + A,w < a < Cj + djir       and       a, — A,w < ß < Cj — djir

for all /', / is a nonempty open subset of R2. Since G is dense in R2, there exists an

element z in G n IF, and x, < z < y7 for all /', /. Therefore G is an interpolation

group.

Define t: R2 -> R by the rule t(a, ß) — a, and note that t is an extreme point of

5(R2, u). Let s denote the restriction of t to G. As G+ = G n (R2)+, all states in

S(G, u) extend to states in 5(R2, u), by [2, Proposition 18.1]. Thus the restriction

map 5(R2, u) -» 5(G, m) is an affine homeomorphism, from which we see that s is an

extreme point of S(G, u). It is clear that ker(i) = {0}.

Consider any x £ G satisfying x < u and x < v. Then x = (a + Aw, a — Aw) for

some a, b E Q, and from the relations x < u and x « u we obtain a < a, where

a = min{l — bit, 1 + Aw, (1 — A)w, (A — l)w).

Note that a must be irrational. Thus a < a, and we may choose c £ Q such that

a < c < a. Setting y = (c + bit, c — bit), we conclude that x < y while also y *£ u

and y < v. Therefore the set {«, v) has no infimum in G, proving that G is not

lattice-ordered.    D

In case the set X in Corollary 3.8 is a singleton, we can precisely identify the

quotient partially ordered abehan group G/ker( X), as follows.

Theorem 3.10. Let (G, u) be an archimedean norm-complete interpolation group

with order-unit, and let s £ deS(G, u). Then ker(s) is an ideal of G, and s induces an

isomorphism of G/ker(s) onto s(G) as partially ordered abelian groups. Moreover,

either s(G) = R or s(G) = (l/m)Zfor some m EN.

Proof. The subgroup K — ker(s) is an ideal of G by Corollary 3.8. Obviously the

induced map s: G/K -* s(G) is a group isomorphism, and a positive map as well.

Given an element x + K in G/K with s(x + K) > 0, we have s(x) > 0 = s(0). Then
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Theorem 3.7 provides us with an element z E G such that z < x and z < 0, while

also s(z) = 0. Now z EK and x — z > 0, hence

x + is:= (x-z) + a:>o

as well. Thus for all a £ G/K, we have a > 0 if and only if s(a) > 0. Therefore i is

an isomorphism of partially ordered abehan groups.

If s is discrete, then s(G) — (l/m)Z for some m E N. Now assume that s is not

discrete, so that s(G) is dense in R.

Given a E R, we construct elements x,, x2,... in G such that

a-(l/2")<s(x„)<a       and        ||x„+1 - xjl « 1/2"

for all «. To begin, we obtain x, from the density of s(G) in R.

Now assume that x,,... ,x„ have been constructed, for some «. Choose an element

a EG such that

a- (l/2n+2)<s(a)<a.

By Theorem 3.7, there exists A £ G such that A > x„ and A ̂  a, while also j(A) =

max{j(x„), s(a)}. Note that

a- (l/2"+2)<j(A)<a.

Since s(b) < a and s(xn) > a — (1/2"), we find that

j(2"A)<2"a<j(2"x„) + 1,

whence j(2"(A — x„)) < 1 = s(u). As A — x„ £ G+ , Corollary 3.6 provides us with

an element c E G+ such that c < A — xn and 2"c < u, while also

í(c)>í(A-x„) - (l/2"+2).

Setx„+, = xn + c, so that x„ < x„+1 < A. Thusj(xn+1) < s(b) < a, and

s(xn+x) = s(xn) + s(c) > s(b) - (l/2"+2) > « - (l/2"+1).

In addition, l|x„+, — xjl = ||c|| < 1/2", which completes the induction step.

Now there exists x £ G such that x„ -> x in norm. Since

\s(xn) -s(x)\ = \s(xn- x)\< ||x„-x||

for all « [4, Lemma 1.6.1], it follows that s(xn) -* s(x), and thus s(x) — a. Therefore

s(G) = R, as desired.    D

Definition. A face of a convex set S is a convex subset F G S (possibly empty)

such that whenever s = as' + (I — a)s" is a positive convex combination with

s E F and s', s" £ S, then s', s" E F.

Lemma 3.11. Let (G, u) be an interpolation group with order-unit, and let X be either

a compact subset ofdeS(G, u) or a closed face of S(G, u). Let t E deS(G, u) such that

t £ X. Then there exists x £ G+ such that t(x) > 1 but s(x) < 1 for all s £ X.

Proof. Set A = {a E G+ | t(a) > 1 ), and note that 2u E A. Also, A is downward

directed, by Theorem 3.4. For all a £ A, set

W(a)={sES(G,u)\s(a)<l},

which is an open subset of S(G, u). We claim that these W(a)'s cover X.
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Thus consider any îë! Since {/} is a face of S(G, u), and either {s} or A' is a

face of S(G, u), we see that s and t lie in disjoint faces of S(G, u). By [3, Lemma 2.8],

2w = a + A for some a, b E G+ such that s(a) + t(b) < 1. Then t(a) = 2 — t(b) >

1, whence a E A and í E W(a). Therefore the W(a)'s do cover X, as claimed.

By compactness, X G W(ax) U • • • U W(an) for some elements a¡ G A. As A is

downward directed, there exists x £ A such that each a, > x, and x has the desired

properties.    D

Theorem 3.12. Let (G,u) be an archimedean norm-complete interpolation group

with order-unit, and let X be a compact subset of deS(G, u). Then

X= {sEdeS(G,u)\G+ nker(A-) Cker(i)}.

Proof. Consider / E deS(G, u) such that / £ X. By Lemma 3.11, there exists

x £ G+ such that t(x) > 1 but s(x) < 1 for all s E X. Applying Theorem 3.7 to the

elements x,u E G+ and the compact subset X U {/} of deS(G, u), we obtain

y £ G+ such that y s= x and y > u, while t(y) > 1 and s(y) = 1 for all s £ X.

Consequently, y — u is an element of G+ nker( A') which does not he in ker(/).    D

We now turn to closed faces of state spaces. The results above, concerning

compact sets of extreme states, carry over fairly directly, with similar proofs.

Theorem 3.13. Let (G, u) be an interpolation group with order-unit, let x, y E G+ ,

and let F be a closed face of S(G, u). Assume that s(x) < s(y)for all s E F. Given any

positive real number e, there exists z E G+ such that z «£ x and z < y, vvAz'/e also

s(z) > s(x) — efor all s E F.

Proof. [3, Theorem 3.4].    D

Corollary 3.14. Let (G, u) be an interpolation group with order-unit, and let F be

a closed face of S(G, u). Let a, b E G+ and m EN, and assume that s(ma) < s(b)for

all s E F. Given any positive real number e, there exists c £ G+ such that c =£ a and

mc *£ A, while also s(c) > s(a) — e for all s E F.

Proof. As Corollary 3.6, using Theorem 3.13 in place of Corollary 3.5.    Q

Theorem 3.15. Let (G, u) be an archimedean norm-complete interpolation group

with order-unit, let x, y E G, and let F be a closed face of S(G, u). If s(x) < s(y) for

all s E F, then there exist z,w E G such that z < x =£ w and z *s y =£ w, while also

s(z) — s(x) and s(w) = s(y)for all s E F. If x, y E G+ , then such z, w can be found

in G+.

Proof. As Theorem 3.7, using Theorem 3.13 and Corollary 3.14 in place of

Corollaries 3.5 and 3.6.    D

Corollary 3.16. If (G, u) is an archimedean norm-complete interpolation group

with order-unit, and F is a closed face of S(G, u), then ker(F) is an ideal of G.

Proof. As Corollary 3.8, using Theorem 3.15 in place of Theorem 3.7.    D
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Theorem 3.17. Let (G, u) be an archimedean norm-complete interpolation group

with order-unit, and let F be a closed face of S(G, u). Then

F= {s ES(G,u)\G+ nker(F) Çker(s)}.

Proof. Set F' = {s E S(G, u)\G+ nker(F) G ker(s)}. Clearly F' is a closed

convex subset of S(G, u), and we claim that F' is a face of S(G, u) as well. Thus

consider any positive convex combination s = as' + (1 — a)s" in S(G, u) with

s E F'. For any x £ G+ nker(F), we have

as'(x) + (1 - a)s"(x) = 0;        s'(x) > 0;        s"(x) > 0

and so s'(x) — s"(x) = 0. Therefore s', s" E F', proving that F' is indeed a face of

S(G, u).

Being a compact convex set, F' equals the closure of the convex hull of its extreme

boundary deF', by the Krein-Milman Theorem. Thus if F' (£ F, there must be some

t £ deF' which does not he in F. As F' is a face of S(G, u), we see that actually / is

an extreme point of S(G, u).

By Lemma 3.11, there exists x £ G+ such that i(x) > 1 but s(x) < 1 for all

s E F. According to Theorem 3.15, there exists w £ G+ such that x «s w and u < w,

while also s(w) — 1 for all s E F. Thus w — u is an element of G+ nker(F). On the

other hand, t(w) > t(x) > 1 and so w — u is not in ker(/), which contradicts the fact

that t E F'.

Therefore F' G F. The reverse inclusion is automatic, hence F = F', as desired.

□

rV. A*-complete regular rings. We apply the results of §111, via K0, to the

structure of A*-complete regular rings R. The thrust of most of these results is that

R behaves much like a ring of sections of a sheaf of simple self-injective rings.

Namely, for every maximal two-sided ideal M of R, the factor ring R/M is right and

left self-injective, and many properties of R and its projective modules are de-

termined by what happens modulo these maximal two-sided ideals. For instance, R

is an « X « matrix ring (for some fixed « £ N) if and only if each R/M is an « X «

matrix ring. For another example, given finitely generated projective right jR-mod-

ules A and 73, we have A = B if and only if A/A M = B/BM for all Af. Many of our

results generalize parallel results for X „-continuous regular rings in [4, 7, 8]. At the

end of the section, we indicate how our results relate to these papers.

All the results of this section depend on Theorems 2.3 and 2.11: That any

A*-complete regular ring R is unit-regular, and that for such rings (K0(R), [R]) is an

archimedean norm-complete interpolation group with order-unit. We shall use these

results repeatedly without further reference to them. One other basic result is

needed, to identify the state space of (KQ(R), [R]).

Proposition 4.1. For any regular ring R, there is a natural affine homeomorphism

0: S(K0(R),[R]) -> P(R) such that 0(s)(x) = s([xR]) for all s in S(K0(R),[R]) and

all x ER.

Proof. [2, Proposition 17.12].    D
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Theorem 4.2. Let R be an N*-complete regular ring.

(a) If X is a compact subset of deP(R), then

À-= {PEdeP(R)\ker(X) çker(P)}.

(b) If F is a closed face ofP(R), then

F= (F£P(7v)|ker(F) çker(P)}.
*

Proof. Set 5 = S(K0(R),[R]), and let 6: S -» P(R) be the affine homeomor-

phism given in Proposition 4.1.

(a) Set Y = 0-x(X), which is a compact subset of deS. Let Q E deP(R) such that

keríZ) G ker(ß), and set t = 0~X(Q). We shall show that K0(R)+ nker(T) is

contained in ker(i)-

Given a E K0(R)+ nker(T), we have a = [A] for some finitely generated projec-

tive right Ä-module A. Then

A ^xxR® ■ ■■ ®x„R       and       [A] = [xxR] + ■ ■ ■ + [xnR]

for some elements x, E R. For each z, we have 0 < [x¡R] < [A], whence j([x,J?]) = 0

for all s E Y, and so F(x,) = 0 for all F £ X. Then each x, hes in ker(X), hence

x, £ ker(g), and so t([XjR]) = 0. Consequently,

t(a) = t([xxR]) + ■ ■ ■ +t([x„R]) = Q-

Therefore K0(R)+ nker(T) G ker(í), as claimed.

Now Theorem 3.12 shows that t £ Y, and therefore Q £ X.

(b) As (a), using Theorem 3.17 in place of Theorem 3.12.    D

Corollary 4.3. If M is a maximal two-sided ideal in an N*-complete regular ring

R, then R/M is a simple, unit-regular, right and left self-injective ring. There is a

unique rank function on R/M, and R/M is complete in the rank-metric.

Proof. According to Corollary 1.14, R/M is A*-complete, hence there is no loss

of generahty in assuming that Af = 0.

Since R is a nonzero unit-regular ring, [2, Corollary 18.5] shows that P(R) is

nonempty. By the Krein-Milman Theorem, there exists at least one F in deP(R).

Note that ker(F) = 0, because R is simple. Inasmuch as {F} is a closed face of

P(R), we now conclude from Theorem 4.2(b) that P(R) - {F}. Thus F is the

unique rank function on R.

Now A* = F, hence the A*-metric on R coincides with the P-metric. Therefore R

is complete in the P-metric. According to [2, Theorem 19.7], R is thus right and left

self-injective.    D

Corollary 4.4. Let R be an A*-complete regular ring, and let P E P(R). Then the

following conditions are equivalent.

(a) F is an extreme point ofP(R).

(b) ker(F) is a maximal two-sided ideal of R.

(c) There is a unique pseudo-rank function on R/kei(P).
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Proof. Let F denote the rank function on F/ker(F) induced by F.

(a) =■» (c): Since {F} is a closed face of P(R), Theorem 4.2(b) says that F is the

only pseudo-rank function on R whose kernel contains ker(F). Thus F is the only

pseudo-rank function on F/ker(F).

(c) =» (b): Since F/ker(F) is a unit-regular ring possessing a unique rank function,

[2, Corollary 18.6] shows that F/ker(F) is a simple ring.

(b) => (a): By Corollary 4.3, F is the only rank function on F/ker(F), hence P is

the only pseudo-rank function on R whose kernel contains ker(F). Given a positive

convex combination F = aPx + (1 — a)P2 in P(R), we see that ker(F) Ç ker(F,)

because a > 0, whence F, = F, and similarly P2 = P. Therefore F is an extreme

point of P(R).    □

With the help of Corollaries 4.3 and 4.4, we can show that in any A*-complete

regular ring R, there is a natural bijection between 3eP(F) and the set of maximal

two-sided ideals of R. In fact, this bijection is continuous with respect to the usual

topology on the maximal ideal space, as follows.

Definition. For any ring R, we use MaxSpec(F) to denote the family of all

maximal two-sided ideals of R, equipped with the usual hull-kernel topology.

Theorem 4.5. Let R be an A* -complete regular ring.

(a) There is a continuous bijection 0: deP(R) -* MaxSpec(i?) given by the rule

B(P) = ker(F).

(b) 0 maps compact subsets ofdeP(R) onto closed subsets o/MaxSpec(7<).

(c) 0 is a homeomorphism if and only if deP(R) is compact, if and only if

MaxSpec(Ä) is Hausdorff.

Proof, (a) It is clear from Corollaries 4.3 and 4.4 that 0 defines a bijection of

deP(R) onto MaxSpec(Ä). If X is a closed subset of MaxSpec{Ä), then

X= {ME MaxSpec(Ä) | Y G M]

for some Y G R. Consequently,

0-x(X) = {FE3eP(F)|F(y) = 0 for ally E Y},

which is closed in deP(R). Therefore 0 is continuous.

(b) If X is a compact subset of 3eP(F), then

A-={PE3eP(/O|ker(X)c:0(P)},

by Theorem 4.2(a). As a result,

0(X) = {M EMaxSpec(R)\kei(X) CM),

which is closed in MaxSpec(F).

(c) Note that 3eP(i?) is Hausdorff while MaxSpec(F) is compact. Thus if 0 is a

homeomorphism, then deP(R) must be compact and MaxSpec(F) must be Haus-

dorff. On the other hand, if deP(R) is compact, then we see from (b) that 0 is a

closed map, whence 0 is a homeomorphism.

Now assume that MaxSpec(7<) is Hausdorff. We shall show that 3eP(7<) is

compact, by showing that deP(R) is closed in P(R).
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If not, then some F E P(R) lies in the closure of deP(R) but not in deP(R). Set

K — ker(F), and note from Corollary 4.4 that there exist more than one pseudo-rank

functions on R/K. Because of the Krein-Milman Theorem, there must exist at least

two extreme points in P(R/K). As R/K is A*-complete (Theorem 1.13), it follows

from (a) that R/K has at least two maximal two-sided ideals. Thus there exist

distinct Af, and AT2 in MaxSpec(F) which contain K.

Since MaxSpec(Ä) is Hausdorff, there exist disjoint open sets F, and V2 in

MaxSpec(i?) such that each Af, £ Vt. There are subsets X¡ C R such that each

V¡ = {Af E MaxSpec(F) | Xt $ Af}.

For each i, choose x, £ Xf such that x, £ Af,. Note that if Af is in MaxSpec(F) and

x, £ Af, then M EV{. Thus for any Af in MaxSpec(F), we must have either x, E Af

or x2 E Af.

Inasmuch as x, £ Af,, we have x, £ K. Set

W= {ßEP(Ä)|0(^,)>0ando(x2)>0},

which is an open subset of P(R). Note that PEW, because each x, £ ker(F). Since

F hes in the closure of deP(R), there exists Q in W n 3eP(Ä). But then ker(g) is a

maximal two-sided ideal of R which contains neither x,, a contradiction.

Thus 3eP(F) is indeed closed in P(R), and so is compact. Therefore 0 is a

homeomorphism in this case also.    G

Corollary 4.6. // R is an N*-complete regular ring, then the intersection of the

maximal two-sided ideals of R is zero. Consequently, R is a subdirect product of simple,

unit-regular, right and left self-injective rings.

Proof. If an element x E R hes in all maximal two-sided ideals, then by Theorem

4.5, F(x) = 0 for all F in deP(R). As the convex hull of 3eP(Ä) is dense in P(R)

(the Krein-Milman Theorem), it follows that F(x) = 0 for all F in P(R). Then

A*(x) = 0, whence x = 0.

The subdirect product statement now follows from Corollary 4.3.    □

Corollary 4.7. Let R be an N*-complete regular ring, and let J be a two-sided

ideal of R. Then the following conditions are equivalent.

(a) R/J is N*-complete.

(b) J is A*-closed in R.

(c) J = ker( X)for some XcP(R).

(d) J = D Y for some Y G MaxSpec(F).

Proof. As R is unit-regular, properties (a), (b), and (c) are equivalent by Theorem

1.13. We obtain (a) => (d) from Corollary 4.6, while it follows from Theorem 4.5(a)

that (d) =» (c).    D

Corollary 4.8. Let R be an N*-complete regular ring. Then K0(R) is a

lattice-ordered abelian group if and only ifdeP(R) is compact, if and only z/MaxSpec(F)

is Hausdorff.
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Proof. By Corollary 3.2 and Proposition 4.1, K0(R) is lattice-ordered if and only

if 3^(7^) is compact. Theorem 4.5 shows that 3eP(F) is compact if and only if

MaxSpec( R ) is Hausdorff.    D

An alternate view of Theorem 4.5(a) is that for any A*-complete regular ring R,

there is another topology on deP(R), coarser than the usual topology, with respect

to which the bijection Pi->ker(P) provides a homeomorphism of deP(R) onto

MaxSpec(F). This topology coincides with a known topology defined on extreme

boundaries of compact convex sets, as follows.

Definition. Let K be any compact convex set, and let *% denote the family of

subsets of deK of the form F D deK, where F is a closed spht-face of K. (See [1, p.

133] for the definition of a split-face.) According to [1, Proposition II.6.20], ^ is

closed under finite unions and arbitrary intersections. Thus íFis the family of closed

sets for a topology on deK, known as the facial topology [1, p. 143]. When K is a

Choquet simplex, every closed face of TV is a spht-face [1, Theorem II.6.22], hence in

this case f consists of all sets of the form F (1 deK where F is any closed face of K.

This simplification will apply in our considerations because P(R), for any regular

ring R, is a Choquet simplex [2, Theorem 17.5].

Theorem 4.9. Let R be an N*-complete regular ring. If deP(R) is given the facial

topology, then the rule Pi->ker(P) defines a homeomorphism of deP(R) onto

MaxSpec(Ä).

Proof. By Theorem 4.5(a), the rule 0(P) = ker(F) defines a bijection 0 of deP(R)

onto MaxSpec(i\). If X is a closed subset of MaxSpec(7\), then

X= {Af E MaxSpec(F) | Yc Af},

for some Y G R. Set F = {F £ P(R) | Y G ker(F)}, and recall that F is a closed

face ofP(R) [2, Lemma 16.18]. Observing that

0'x(X) = FndeP(R),

we see that 0~X(X) is closed in deP(R) in the facial topology. Thus 0 is continuous

with respect to the facial topology.

If Fis any closed face of P(R), then Theorem 4.2(b) says that

F= {FEP(Ä)|ker(F) çker(P)}.

As a result,

0(FD deP(R)) = {Af EMaxSpec(F)|ker(F) CM),

which is closed in MaxSpec(iv). Thus 0 is a closed map with respect to the facial

topology.    D

Part of Theorem 4.5(c) may be proved using Theorem 4.9, because of the general

result that in a Choquet simplex K, the facial topology on deK is Hausdorff if and

only if the usual topology on deK is compact [1, Theorem II.7.8].

We now turn to the study of finitely generated projective modules over an

A*-complete regular ring R. In particular, we show that their isomorphism classes

are determined both by the values of pseudo-rank functions on R, and by their

isomorphism classes modulo maximal two-sided ideals of R.
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Theorem 4.10. Let R be an N*-complete regular ring, let A and B be finitely

generated projective right R-modules, and get

A ^xxR® ••• ®xnR;       B ^yxR® ■■■ ®ykR

for some elements xx,... ,x„,y,,... ,yk £ R.

(a)A<B if and only if A/AM < B/BMfor all M £ MaxSpec(F), if and only if

P(xx) + ■ ■ ■ +P(xn) < P(yx) + ■ ■ ■ +P(yk)

for all P E deP(R).

(b) a s 73 if and only if A/AM = B/BMfor all M £ MaxSpec(Ä), if and only if

P(xx) + ■■■ +P(x„) = P(yx) + ■■■ +P(yk)

for all PEdeP(R).

Proof, (a) If A < 73, then obviously A/AM < 73/73AÍ for all Af in MaxSpec(Ä).

Now assume that A/AM < B/BM for all Af £ MaxSpec(F). Consider any F in

3eP(F), and set Af = ker(F), which is in MaxSpec(F) by Corollary 4.4. Let F

denote the rank function induced on R/M by F. Using x i-> x for the natural map

R -* R/M, we have

x,(F/Af) © -.. ©x„(Ä/Af) ^ A/AM < B/BM =yx(R/M) ® ••• ®yk(R/M).

Applying [2, Proposition 16.1], we obtain

P(x,) + ■ • ■ +P(x„) < P(yx) + ■■■ +P(yk),

and consequently 2 F(x,) «£ 2F(y7).

Finally, assume that 2 F(x,) < 2 P(yj) for all F £ 3eP(F). In view of Proposition

4.1, it follows that

s([A]) = s([xxR] + ■■■ + [x„R]) ^ s([yxR] + ■■■ + [ykR]) = s([B])

for all extreme states s on (K0(R),[R]). Since K0(R) is archimedean, we conclude

from [4, Proposition 1.5.3] that [A] < [B]. Thereforea < B.

(b) This follows directly from (a) and the unit-regularity of R. □

Definition. Let R be any regular ring, and set S = S(K0(R), [R]). By Proposi-

tion 4.1, there is a natural affine homeomorphism 0: S -» P(R) such that 0(s)(x) =

s([xR]) for all s E S and allxEfi. Then 0 induces an isomorphism 0* of Aff(P(7<))

onto Aff(5), as partially ordered Banach spaces. We also have the natural evaluation

map <p from K0(R) to Aff(S). Composing tp with (0*)~x, we obtain a positive

homomorphism

4,= (0*yi<p:KQ(R)^Aif(P(R))

such that \p(x)(P) = 0-\P)(x) for all x E K0(R) and all F £ P(R). In particular,

4r([xR])(P) = P(x) for ah x £ R and all F E P(R). We refer to \p as the natural map

from K0(R) to Aff(P(Ä)). Note that 4>([R]) is the constant function 1.
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Theorem 4.11. Let R be an A* -complete regular ring. Whenever P £ deP(R) and

R/ker(P) is isomorphic to an m X m matrix ring over a division ring, set AP =

(l/m)Z; for all other P E deP(R), set AP = R. Set

A = [qEAfî(P(R))\q(P) E APfor all P E deP(R)}.

Then the natural map \p: K0(R) -» Aff(P(R))provides an isomorphism of(K0(R), [R])

onto (a, 1) (ay partially ordered abelian groups with order-unit).

Proof. Define S, 0, <p as in the definition above, so that tp = (0*)~xq). For all

discrete 5 £ deS, set Bs = s(K0(R)); for all other * E deS, set Bs = R. Set

73= {pE Aff(S)\p(S) EBJoiallsEdeS).

According to Theorem 3.1, <p provides an isomorphism of (K0(R), [R]) onto (7?, 1).

Thus we need only show that (0*)~x restricts to an isomorphism of (73,1) onto (A, I).

To prove this, it suffices to show that Aff(s) — Bs for all s E deS.

Thus let s E deS, and set F = 0(s) and Af = ker(F), so that F E deP(R) and Af is

a maximal two-sided ideal of R. Let F be the rank function induced by F on R/M.

If s is discrete, then s induces an isomorphism of K0(R)/ker(s) onto (l/«z)Z for

some m E N (Theorem 3.10), whence

P(R/M) = P(R) = {0, l/m,2/m,...,l).

Choosing x E R/M such that F(x) = l/m, we infer that x(R/M) is a minimal

right ideal of R/M, whence R/M is a simple artinian ring. Thus R/M s Mk(D) for

some k EN and some division ring D. There is a unique rank function on Mk(D),

and its range of values is {0, l/k, 2/k,..., 1} [2, Corollary 16.6]. Consequently, we

must have k = m, and so

Ae(s) =AP= (l/m)Z = s(K0(R)) = Bs.

If s is not discrete, then s induces an isomorphism of K0(R)/ker(s) onto R, by

Theorem 3.10, whence

P(R/M) = P(R) = [0,1].

In,this case, R/M cannot be a simple artinian ring, hence

Ae(s) = AP = R = 73,,

as desired.    D

Corollary 4.12. Let R be an N*-complete regular ring. If R has no simple artinian

homomorphic images, then the natural map from K0(R) to Aff(P(F)) is an isomor-

phism of partially ordered abelian groups.    D

Theorem 4.13. Let R be an N*-complete regular ring, let B be a finitely generated

projective right R-module, and let « £ N. Assume, for each maximal two-sided ideal M

of R such that R/M is artinian, that B/BM is a direct sum of « pairwise isomorphic

submodules. Then B is a direct sum of « pairwise isomorphic submodules. In particular,

if R has no simple artinian homomorphic images, then this holds for all n EN.
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Proof. In the notation of Theorem 4.11, we wish to show that the function

tK[73])/« lies in A. Thus consider any F £ deP(R) such that F/ker(F) = Afm(F>) for

some «z £ N and some division ring D. The ideal Af = ker(F) is a maximal

two-sided ideal of R, and R/M has a unique simple right module S. Then

B/BM s kS for some k £ Z+ , and \¡¿([B])(P) = k/m. Since B/BM is assumed to

be a direct sum of « pairwise isomorphic submodules, « must divide k, hence

>P([B])(P)/n = (k/n)/m E (l/m)Z = AP.

As this holds for all P E deP(R) such that F/ker(F) is simple artinian, we find that

\p([B])/n does he in a, as desired.

In fact, \p([B])/n must lie in A+ . Because of the isomorphism given in Theorem

4.11, it follows that there exists x E K0(R)+ such that nx = [B]. Then x = [C] for

some finitely generated projective right F-module C, and [nC] = [73]. Therefore

B s nC.    D

Corollary 4.14. Let R be an A*-complete regular ring, and let n EN. If every

simple artinian homomorphic image of R is an n X n matrix ring, then R is an n X n

matrix ring. In particular, if R has no simple artinian homomorphic images, then R is

an « X « matrix ring for every «EN.    Ü

As another application of the affine representation of K0 of an A*-complete

regular ring (Theorem 4.11 and Corollary 4.12), we derive criteria for the following

properties.

Definition. Let Ä be a unit-regular ring. We say that R satisfies countable

interpolation provided that given any elements x,, x2,... and y,, y2,... in F satisfy-

ing x¡R ^yjR for all /', j, there exists z E R such that x¡R < zR 5Sy,F for all z", j.

According to [4, Proposition II. 12.1], this property is left-right symmetric, and is

equivalent to the countable interpolation property in K0(R). The ring R is said to

satisfy general comparability provided that given any x, y £ R, there exists a central

idempotent e E R such that exR < eyR and (1 — e)yR < (1 — e)xR.

Definition. Let A' be a compact Hausdorff space. The space X is said to be an

F-space if disjoint open F0 subsets of X always have disjoint closures. The space X is

said to be basically disconnected if the closure of every open F0 subset of X is open.

Theorem 4.15. Let R be an A*-complete regular ring with no simple artinian

homomorphic images, and assume that deP(R) is compact. Then R has countable

interpolation if and only if deP(R) is an F-space, if and only if MaxSpec(F) is an

F-space.

Proof. Set X — deP(R), and note from Theorem 4.5 that X is homeomorphic to

MaxSpec(F). Combining Corollary 4.12 with [1, Proposition II.3.13], we see that

K0(R) ^ Afî(P(R)) ^ C(X,R)

as partially ordered abehan groups. Thus R has countable interpolation if and only

if C( X, R) satisfies the countable interpolation property (as a partially ordered set).

According to [9, Theorem 1.1], this happens if and only if A" is an F-space.    D
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Theorem 4.15 may fail if R is allowed to have simple artinian homomorphic

images, as the following example shows.

Example 4.16. There exists an A*-complete regular ring R such that deP(R) is a

compact F-space, but R does not have countable interpolation.

Proof. Choose a field K, set Rn = M2(K) for all «EN, and set

R= [x £ [] R„ I x„ E K for all but finitely many « E N}.

Clearly F is a regular ring whose index of nilpotence is 2. By Theorem 1.3, R is

A*-complete.

The Boolean algebra B(R) of central idempotents in F is a direct product of

copies of {0,1} and so is complete. Consequently, its maximal ideal space BS(R) is

compact, Hausdorff, and extremally disconnected. In particular, BS(R) is a compact

F-space. Observing that R satisfies general comparabihty, we see by [2, Theorem

16.28] that deP(R) is homeomorphic to BS(R). Thus deP(R) is a compact F-space.

Choose x,, x2,... and y,, y2,... in F so that rankix^,,) = rank^,,) = 1 for all

« = l,...,k, whereas xk„ = 0 and ykn — 1 for all n > k. Clearly x¡R ^y,F for all

/', j. If there exists z ER such that x¡R < zR < yyF for all », /, then xnnR<znR<

y„„R for all « £ N, whence rank(z„) = 1 for all «. But then zn<£K for all «, which

is impossible for an element z ER. Therefore R does not satisfy countable interpo-

lation.    D

Theorem 4.17. Let R be an N*-complete regular ring. IfdeP(R) is a compact totally

disconnected F-space, then R satisfies general comparability.

Proof. Set A = deP(R). Given x, y E R, set

X- {FE A|F(x)<F(y)};        Y- {F £ A | F(x) > F(y)}.

Inasmuch as the rule Fi->P(x) — P(y) defines a continuous real-valued map on A,

we see that X and Y are disjoint open Fa subsets of A. Since A is assumed to be an

F-space, the closures of X and Y must be disjoint. Consequently, it follows from the

total disconnectedness of A that there is a clopen set V G A such that X C V and

Y G A - V.

Now let 0: A -» MaxSpec(F) be the homeomorphism given by Theorem 4.5, so

that 0(V) is a clopen subset of MaxSpec(F). As the intersection of the maximal

two-sided ideals of R is zero (Corollary 4.6), there must exist a central idempotent

e £ R such that

0(V) = {MEMaxSpec(R)\e £ Af}.

Given any F E V, we have ker(F) E 0(V) and so e £ ker(F). Then 1 — e lies in

ker(F), hence P(x) = P(ex) and P(y) = P(ey), by [2, Lemma 16.2]. Consequently,

P(ex) < P(ey) for all P E X, and P(ex) = P(ey) for all F E V - X. On the other

hand, for F E A — V, we have ker(F) £ 0(V) and so e E ker(F), whence P(ex) =

0 = F(ey). Thus P(ex) < P(<?y) for all F £ A, hence <?xF < eyR, by Theorem 4.10.

Similarly, (1 — e)yR % (1 — e)xF. Therefore F satisfies general comparability.    D
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The proof of Theorem 4.17 can be considerably shortened if R has no simple

artinian homomorphic images. For in this case R has countable interpolation by

Theorem 4.15, and then [4, Theorem II.14.7] shows that R satisfies general compara-

bility.

Corollary 4.18. Let R be an A*-complete regular ring with no simple artinian

homomorphic images. Then R satisfies general comparability if and only ifdeP(R) is a

compact totally disconnected F-space, if and only z/MaxSpec(F) is a Hausdorff totally

disconnected F-space.

Proof. It is clear from Theorem 4.5 that deP(R) is a compact totally disconnected

F-space if and only if MaxSpec(F) is a Hausdorff totally disconnected F-space.

These conditions imply general comparability in R by Theorem 4.17.

Conversely, assume that R has general comparability. It follows from [2, Theorem

16.28] that 3eP(F) is compact and totally disconnected.

Now consider any disjoint open F„ subsets X and Y in deP(R). Then there exists a

continuous real-valued function /on 3eP(F) such that /> OonI and /< 0 on Y.

(This is an exercise in applying Urysohn's Lemma, which we leave to the reader.) As

deP(R) is compact, we can modify /to obtain a continuous function

g:deP(R)^[0,l]

such that g > 1/2 on X and g < 1/2 on Y. By [1, Proposition II.3.13], g extends to

an affine continuous function g*: P(F) -» [0,1], to which we apply Corollary 4.12.

Since 0 < g* < 1, we obtain an element b E K0(R) such that 0 < A < [R] and the

map induced by A in Aff(P(F)) coincides with g*. Thus A = [xF] for some x £ R,

and g*(P) = P(x) for all F E P(F).

We use general comparability to compare the projective modules 2(xF) and RR,

via [2, Proposition 8.8]. Thus we obtain a central idempotent e £ R such that

2(exR)<eR       and        (1 - e)R < 2((1 - e)xR).

Consider any Pel, so that F(x) = g(P) > 1/2. If e £ ker(F), then 1 - e is in

ker(F), because ker(F) is a maximal two-sided ideal of R (Corollary 4.4). But then

2F(x) = 2P(ex) ^ P(e) = 1

(since 2(exR) < eR), which contradicts the fact that F(x) > 1/2. Thus e £ ker(F)

and so P(e) = 0. Similarly, for any F E Y we have 1-eE ker(F) and so P(e) — 1.

As the map F h> P(e) is a continuous map from P(F) to R, we conclude that X and

y must have disjoint closures.

Therefore 3eP( R ) is an F-space.    □

Corollary 4.18 may fail if R is allowed to have simple artinian homomorphic

images, as the following example shows.

Example 4.19. There exists an A*-complete regular ring R such that R satisfies

general comparability, but 3eP(F) is not an F-space.

Proof. Choose a field K, and let R be the ring of all eventually constant

sequences

(ax,a2,...,an,a,a,a,...)
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of elements of K. Clearly F is a regular ring whose index of nilpotence is 1. By

Theorem 1.3, R is A*-complete. It is also clear that R satisfies general comparability.

The maximal ideals of R are easily identified, from which one sees that

MaxSpec(F) is homeomorphic to the one-point compactification of N. In particular,

MaxSpec(7v) is Hausdorff but is not an F-space. By Theorem 4.5, 3eP(R) is

homeomorphic to MaxSpec(F), hence deP(R) is not an F-space.    D

As we mentioned in the introduction to this section, many of our results—particu-

larly Corollaries 4.3 and 4.6, Theorems 4.10 and 4.13, and Corollary 4.14—show

that an A*-complete regular ring R behaves much like a ring of sections of a sheaf of

simple self-injective rings. The obvious candidate for a topological space on which

such a sheaf should hve is MaxSpec(F). However, MaxSpec(F) is usually not

Hausdorff, and even when it is Hausdorff it need not be disconnected, which would

seem to be required for sheaf-theoretic proofs of results such as Corollary 4.14. The

lack of Hausdorffness, at least, of MaxSpec(F) may be remedied by using the space

deP(R) instead; the fact that we have to pay attention to how 3eP(F) sits inside

P(F) is in some sense the price for overcoming the lack of compactness of deP(R).

This feeling may be made more precise at the level of K0(R): if R were to resemble

the sections of a sheaf based on deP(R), then K0(R) should resemble the sections of

a sheaf of functions based on 3eP(F). When deP(R) is compact, this does happen:

Combining Theorem 4.11 with [1, Proposition II.3.13] yields

K0(R) ={qE C(deP(R), R) | q(P) E AP for all F E 3eP(F)}.

On the other hand, when deP(R) is not compact, continuous real-valued functions

on 3eP(F) do not correspond to elements of K0(R) unless they can be made to

respect the affine relations present in P(F).

There is one situation in which R is isomorphic to the ring of sections of a

sheaf-like object, namely when F is a continuous regular ring. This idea is developed

by Handelman in [5] under the additional assumption that R is A*-complete;

however, we now know that A*-completeness holds for all continuous regular rings,

by Theorem 1.8. Handelman's construction is based on the space deP(R), which in

this case is a compact Hausdorff extremally disconnected space. (Of course, we

could equally well use MaxSpec(F), in view of Theorem 4.5.) The stalk at a point

F E deP(R) is the simple self-injective ring F/ker(F). What prevents Handelman's

object from being an actual sheaf is that the rank-metric topologies on the rings

F/ker(F) must be respected, and these topologies are not discrete unless the rings

F/ker(F) are artinian.

Another aspect of Handelman's development of this construction provides a

general means for constructing A*-complete regular rings. Namely, given any

regular ring R, one can complete R with respect to the A*-metric. Since the ring

operations on R are uniformly continuous with respect to A* (as we observed in §1),

the A*-completion R is again a ring; moreover, R is actually a regular ring [6,

Proposition 1.4]. In addition, the restriction map P(F) -» P(F) is an affine homeo-

morphism, as stated in [5, Proposition 15]. (The proof of this proposition is

incomplete, but Handelman has informed me that he and Walter Burgess have

developed a complete proof.) In particular, this result provides a convenient means



310 K. R. GOODEARL

for constructing examples. Combining it with [2, Theorem 17.23], we find that any

metrizable Choquet simplex S is af finely homeomorphic to P(F) for a suitable

A*-complete regular ring R. For instance, there exists an A*-complete regular ring R

such that P(F) is af finely homeomorphic to the Choquet simplex of all probabihty

measures on the unit interval [0,1], whence 3eP(F) is homeomorphic to [0,1].

A number of the results proved here for A*-complete regular rings were first

proved for N0-continuous regular rings [7, 8], or, somewhat more generally, for

unit-regular rings satisfying countable interpolation [4]. (All N0-continuous regular

rings, and their factor rings, satisfy countable interpolation by [4, Theorem II.12.3].)

In the first case, our results are generalizations, since all S0-continuous regular rings

are A*-complete (Theorem 1.8). However, in the second case our results are not

strict generahzations except at the level of K0: Namely, a unit-regular ring R

satisfying countable interpolation need not be A*-complete, but as long as

ker(P(F)) = 0, then K0(R) is an archimedean norm-complete interpolation group

[4, Theorems II. 12.7 and 1.6.6]. Thus the appropriate results for unit-regular rings

with countable interpolation follow from the K0 results in §111, in the same manner

as the derivations in §IV for A*-complete regular rings. The relationship between

our results and these earlier results is as follows.

Theorem 4.2 corresponds to [4, Corollary II. 13.6 and Theorem II. 13.7], while

Corollary 4.3 corresponds to [7, Corollary 3.2]. Theorems 4.5 and 4.9 correspond to

[4, Proposition II. 14.5 and Theorem II. 14.6], while Corollary 4.6 and Theorem 4.10

correspond to [8, Theorem 2.3]. Theorems 4.11 and 4.13, along with Corollaries 4.12

and 4.14, correspond to [4, Theorems II.15.1, II. 15.3, and II.15.4, and Corollary

II. 15.2].

Note added in proof. The A*-completion results mentioned above are included

in a paper by Burgess and Handelman, The N*-metric completion of regular rings,

submitted for pubhcation.
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