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A FAKE TOPOLOGICAL HILBERT SPACE

BY

R. D. ANDERSON, D. W. CURTIS AND J. VAN MILL

Abstract. We give an example of a topologically complete separable metric AR

space X which is not homeomorphic to the Hubert space I2, but which has the

following properties:

(i) X imbeds as a convex subset of I2;

(ii) every compact subset of X" is a Z-set;

(in) XX X^l2;

(iv) X"is homogeneous;

(v) X » X\ G for every countable subset G.

1. Introduction. Torunczyk [15] has recently obtained the following topological

characterization of the separable Hubert space I2.

1.1. Theorem. A topologically complete separable metric AR space X is homeomor-

phic to I2 if and only if every map f: © ^° ß,,-* X of the countable free union of Hilbert

cubes into X is strongly approximable by maps g: ®^° Q¡ -* X for which the collection

{#(0,)} « discrete.

This extremely useful characterization has now become the standard method for

recognizing topological Hilbert spaces, in situations ranging from hyperspaces to

infinite products to topological groups (see [7, 15, 9]). The above approximation

property, referred to as the strong discrete approximation property, can be stated in

various equivalent ways:

1.2. For each map /: ©" ß,. -» Ar and each open cover % of X, there exists a map

g: ©f Qj -» X such that/and g are ^close and (g(ß,)} is discrete.

1.3. With respect to some admissible metric d on X, for each map /: ®^° ß,,''-» X

and each map e: A"^(0, oo), there exists a map g: ©^0ß,->A' such that

d(f(y), g(y))< e(f(y)) for each v and {g(ß,)} is discrete.

1.4. With respect to every admissible metric d on X, for each map /: ©" ß(- -> A"

and each e > 0, there exists a map g: ©f ß, -* A such that d(f(y), g(y)) < e for

each v and (g(ß,)} is discrete.

The equivalence of (1.2) through (1.4) is well known and easily demonstrated (to

show that (1.4) -» (1.2) use Theorem 9.4 in [10, p. 196]).

The example we describe in §§3-6 shows that the strong discrete approximation

property cannot be relaxed by considering only positive constants e > 0 and a fixed
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metric d on X. Specifically, our example is a topologically complete separable metric

AR space ( X, d) with the following properties.

(1) For each map /: ©f ß,, -» X and e > 0, there exists a map g: ©f ß,, -* X such

that d(f(q), g(q)) < e for each q and {g(ß,)} is discrete (we call this the weak

discrete approximation property for ( X, d));

(2) every compact subset of A1 is a Z-set (which implies that X is nowhere

locally-compact) ;

(3) X imbeds as a convex subset of I2;

(4)XXX~l2;

(5) X is strongly locally homogeneous (which implies that X is homogeneous and

countable dense homogeneous);

(6) every countable subset of X is strongly negligible (in particular, X\ {countable

set} « A);

(7) no Cantor set is negligible in X.

Since in I2 every compact set is negligible [12], property (7) shows that X & I2.

Thus A" is a counterexample for the problems FC3 and ANR5 of [11]. Liem [14] has

previously shown that the condition X X X » I2 does not imply X » I2. His exam-

ple, however, is not homogeneous (there exists p EX such that [p] is not a Z-set,

while A\ {p} is an /2-manifold).

In §7 we state another criterion by which our example may be seen to be

nonhomeomorphic to I2, and which leads to the related construction of a counterex-

ample to the Capset Characterization Theorem of [13].

2. Definition and terminology. Let ß = nf[-l, 1],- and s = IIf (-1,1),. The

space s is homeomorphic to I2 [1], and is called the pseudo-interior of Q. We

sometimes write /, for [— 1,1],. On these product spaces we use the standard metric

d((xi),(yty) = 3?2-'\xi-yi\.
Let % be an open cover of a space X. Maps /, g: Y -> X are helóse if, for each

y E y, there exists U E % containing both/( v) and g(y). For a metric d on X, we

write d(f, g) < t if d(f(y), g(y)) < e for each y G y. A map h: X -> X is limited by

% if h is %-close to the identity map. We say h: X -* X is supported on V G X if h

restricts to the identity map on X \ V.

A collection fy of closed subsets of X is discrete if each point of X has a

neighborhood intersecting at most one member of 6D.

A closed subset A G X is a Z-ier in A" if, for each map f:Q-*X and e > 0, there

exists a map g: Q -> X with J( f,g)<s and g(ß) n ^4 = 0. In I2 every compact set

is a Z-set. A o-Z-set in Z is a countable union of Z-sets. We will use the fact, easily

shown, that for every a-Z-set B G Q, there exists a deformation a: Q X [0,1] -> ß

with a(q, 0) = q and a(^, t) E Q \B, for all q E Q and / > 0.

A space X is strongly locally homogeneous if it has an open base % such that, for

each U E % and points x, y E U, there exists a homeomorphism h: X -» A" with

A(x) = _y and Ä supported on ¿7. Clearly, every connected strongly locally homoge-

neous space is homogeneous.

A subset K G Xis negligible in Xif X <=* X\K. Kis strongly negligible if there exist

homeomorphisms h: X -> X\Klimited by arbitrary open covers of X. In I2, a subset

.K is strongly negligible if and only if K is a a-Z-set [3].
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3. Complements of a-Z-sets in Q. For each i = 1,2,..., let

Wt = II [-1+2-', l-2-'];X {l},Cß.
J+i

Wi is a "shrunken endface" in the z'th coordinate direction, and is a Z-set in Q. We

will show that the space Y = ß \ UJ° W/ has the properties specified in §1, except for

the negligibility property (6). It then follows that, for any countable dense set

D G Y, the space X= Y\D has all the required properties (Theorem 5.3). The

results of this section will be used in verifying the properties (l)-(4), and (7).

3.1. Theorem. Let B G Q be a a-Z-set. Then Q\B is an infinite-dimensional

topologically complete separable metric AR which imbeds as a convex subset of I2.

Proof. We consider the "elliptic" Hilbert cube K = {(*,) E I2: 2? i2xf < 1}.

There exists a homeomorphism/i: ß -» K such that h(B) G {(x,) E I2: 2f i2xf == 1}

[5]. It is easily seen that K\h(B) is convex. It follows by Dugundji's Extension

Theorem that Q\B « K\h(B) is an AR. (An alternate proof that ß\F is an AR

follows from the existence of a deformation a: Q X [0,1] -> Q with a(Q X (0,1]) C

Q\B.) Q\B is topologically complete since B is a-compact. The converse of this

theorem is also true [9].

3.2. Theorem. Let B G Q be a a-Z-set such that for each e > 0 there exists a map

91: ß -» B with i/(9l,id) < e. Then the metric space (Q\B, d) has the weak discrete

approximation property.

Proof. Let a map /: ©f ß,, -* ß \ B and e > 0 be given. Choose 91: ß -> B such

that d(%, id) < e. Since B is a a-Z-set, there exist maps of ß into ß \F arbitrarily

close to the identity map. Composing the map 91 with such maps, we obtain a

sequence of maps (g,: ß -» ß \ B] such that

(0 "(&! -^) < !/''>
(ii)i/(g„id)<e;

(iii) g,(ß)ng/ß)= 0if/^/.
Define g: ©»ß,. -» ß\B by g(q) = g,(f(q)), for q E ß,, Then </(/, g) < e, and

the collection {g(Qi)} = (g,(/(ß,))} is discrete in ß\F.

3.3. Theorem. Let (X, d) be a metric space with the weak discrete approximation

property. Then every compact subset of X is a Z-set.

Proof. Consider a compact subset K, and let a map f:Q->X and e > 0 be given.

Define/: ©~ ß, -* Xby f(q) = f(q). By hypothesis there exists a map g: ©f ß, -* X

with d(f, g) < e and (g(ß,)} a discrete collection. Since AT is compact, K n g(ß,) =

0 for almost all /'. Thus Ä^ is a Z-set.

A a-Z-set B G Q for which ß \ B *» s « /2 is called a boundary set. In [8], various

necessary and sufficient conditions are given for a a-Z-set to be a boundary set.

Here, we use the following result.

3.4. Lemma. Let B G Q be a a-Z-set for which there exists a deformation of Q

through B (i.e., a deformation a: Q X [0,1] -» ß with a(q,0) = q anda(q, t) E B,for

all q E ß and t > 0). Then B is a boundary set.
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3.5. Theorem. Let B G Q be a a-Z-set such that for each e > 0 there exists a map

91: ß -> B with ¿(91,id) < e. Then (Q\B)X(Q\B)~ I2.

Proof. We construct a deformation {a,} of ß X ß through the a-Z-set Ê = (B X

Q) U (Q X B). For each i > 1, choose a map tj,: ß -> B with ¿(Tj,,id) < 1//'. Set

a0 = id X id, otXA2l_X) = tj, X tj„ a1/2;. = tj,.+ 1 X tj,., and «1/(2, + 1) = tj,+ 1 X tj,.+ 1.

Define a, for 1/(2/ + 1) < t < 1/2/ or 1/2/ < t < 1/(2/ - 1) by using the straight-

line homotopy in ß between ■qj and tj,+ ]. It follows from 3.4 that (Q\B) X (Q\B)

= (Q X Q)\B^l2.

3.6. Lemma. Let Bx and B2 be a-Z-sets in Q such that Q \BX ** Q\B2. Then there

exist a compact space M and monotone surjections TL¡: M -> ß, /' = 1,2, such that

nr1(B,) = n21(B2).

Proof. Let h: Q \BX -> Q \B2 be a homeomorphism, and let T G Q X ß be the

graph of h. Take M = T, and n,: M -> Q the projection maps, /' = 1,2. Clearly,

Ilx~x(Bx) = T\T = H2X(B2), and since ß\B, is dense in ß, each n, is onto. By

symmetry, it suffices to verify that n, is monotone. For x E Q\BX, n¡~'(x) is a

point in T. Suppose that for some x E B,, n^'(x) is not connected. Let l\xx(x) =

F U G be a separation, and choose disjoint open sets U and V in M containing F

and G, respectively. Since n, is a closed map, there exists an open neighborhood W

of x in ß such that n^'(W) C U U V, and we may assume W is connected. Then

W\BX is also connected (in fact, path-connected: any path in Wbetween points of

W\BX may be deformed to a path in W\BX via a deformation «: ß X [0,1] -> Q

such that a(Q X (0,1 ]) C ß \ B, ). But

W\BX = (wnux(un Y)) u (wn ux(vn r))

is a separation. Thus n, and n2 are monotone.

4. Strong local homogeneity. Given points/?, q in Y = ß \ UJ° W¡ we will construct

a homeomorphism h: Q -> ß such that h(p) = q and A(I^) = W¡ for each /'. Then h

restricts to a homeomorphism of Y. Moreover, our constructions will show that Y is

strongly locally homogeneous.

4.1. Theorem. Let p and q be points in s. Then there exists a homeomorphism h:

Q -> Q such that h(p) = q and h(W¡) = Wffor each i.

Proof. We may assume/?, < q¡ for each /'. Choose a, and b¡ such that

-Kaf<^<^<è,<l.

Let H¡: I¡ X [0,1] -> /, be an isotopy such that

(i) each level H¡, is supported on [a¡, b¡];

(ii)¿/„0 = id;

(iii)H¡x(pl) = q,.

For each /', let B, = IIj Ij and D, = IIj [a,, 6-]. There exists a map a¡: B, -> [0,1]

such that

(a) «,.(/>,■) = 1;

(b)a,(8B,) = 0;
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(c) if (Sj), (tj) E B, such that for each/' either Sj = i, or {sj, tj) G [aJt bj], then

«,((*,)) = «/(O,;))-
(Collapse each interval [a -, bj] to a point, then apply a Urysohn map.)

For each /', choose an integer /' > i such that [a¡, b¡] G [— 1 + 2~', 1 — 2~']. Let

IT.,: ß -» /, be the projection map, with n,(x) = x,. Define a homeomorphism A,:

ß -h. ß by the formulas

(1) Ujh,= II,if;<¥= i;

(2)U,hi(x) = Hi(xi,a1(xx,...,xr)).

The verification that A, is 1-1 uses conditions (i) and (c).

Finally, define h: ß -» ß by h = lim^^A,- o ... o /j^. Clearly, A is continuous

and onto, and h(p) = q. Consider distinct points x, y E Q. Suppose x, ^y¡, and

suppose h(x) and h(y) agree in the first / — 1 coordinates. Let

(u,,...,«,-_,, x,,...,x7)    and    (©„-...,«,-_,, y,-,... ,yr)

be the first / coordinates of (h¡_x ° ■ ■ ■ ° A,)(x) and (A,_, o ... o A,)(y), respec-

tively. If aj(vx,...,xf) — a~(vx,...,yf), then n,A(x) ¥= U.¡h(y). And otherwise, by

condition (c), we must have x¡ ¥= y, and [x¡, y-} cj: [ay, Z>.] for some /' Kj < /'. Then

by condition (i), Yljh(x) ¥= Ujh(y). Thus h is 1-1.

For / < /', hi restricts to the identity on W¡. For / > /', h¡(W¡)— W}, since

[a„ 6,.] C [- 1 + 2~J, 1 - 2^]. Thus h(Wj) = W} for eachy.

4.2. Remark. The above proof shows that if for some n, U is a neighborhood of

the product set II"[a,, b/] X U™+lIj, then the homeomorphism h may be constructed

so as to be supported on U.

To construct a homeomorphism of Y sending a point p E Y \s into s, we employ

an inductive convergence procedure stated in [2]. For each homeomorphism g of ß

and e > 0, let 9l(g, s) = inf{d(g(x), g(y)): d(x, y) > e}. If {//,} is a sequence of

homeomorphisms of ß such that d(h¡, id) < 3-' • 91 (A ■ ° • • • ° hi_x,2~J) for each

y < /', it is easily verified that h = lim,^^ (A, ° • • ■ ° A,) is a homeomorphism of Q.

4.3. Theorem. For every p E Y there exists a homeomorphism A: ß -> ß st/cA ?Aí//

A(/>) Ei a«¿ A(IF,) = Wifor each i.

Note. The construction via the inductive convergence criterion of a homeomor-

phism of ß sending an arbitrary point into the pseudo-interior s is well known. We

need only to carry out this standard construction with a little extra control to insure

that each W¡ remains invariant.

Proof. Assume that homeomorphisms A,,...,A,._, of ß have been defined such

that

(a) n, o ht_x o ••• o hx(p) E (— 1,1) for eachy' < /';

(b) A,._, ° -.. o A,(H/.) = H/. for eachy.

For some sufficiently small 8 > 0, we construct a homeomorphism A, such that

(l)J(A„id)<0;

(2) Uj o h, = ny for each/ < /';

(3)Uiohio ... o/!l(/?)E(-l,l);

(4) ht(Wj) = Wj for each/.

Then A = lim,-00(A, ° • ■ ■ ° A,) is the desired homeomorphism.
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Lety = A,_, o ... o hx(p). If y, E (—1,1), take A, = id. Otherwise, assume y, = 1

(the case y, = -1 is simpler). Since y g W¡, there exists an integer k ¥= i such that

yk E [— 1 + 2~', 1 — 2~'] = Hk(Wj). Suppose the inductive convergence procedure

requires that ¿(A,, id) < 8; choose n> i, n ¥= k, such that 2~" < 8/3. The homeo-

morphism A, is constructed as the product of a homeomorphism A, on the 3-cube

/, X InX Ik and the identity homeomorphism on the product of the remaining

factors of Q. The homeomorphism A, will actually move only the z'th and the nth

coordinates.

projection of Wn

projection of A,(y)

projection of W¡

projection of y

projection of W¡, j =£ /', n,

on I, x /i        n

Let D = [1 - 2_(n+1), 1] X [-1,1] C /, X /„, and for each 0 < r < 1 let Br =

[-1 + r, 1 - r] X [-1 + r, 1 - r] C I, X /„. There exists an isotopy //,: /, X/,X

[0,1] -> /¡ X /„ with the following properties:

(i) //,0 = id;

(ii) Hit is supported on D for all t;

ÇÙÏ) H,t(Br) = Br for all r,t;

(iv)//,,,({1} X /„) C (1 - 2-<"+», 1) X {1}.

Let a: 7¿ -» [0,1] be a map such that a(n.¿(W9) = 0 and a(yk) — 1. The homeo-

morphism   A",   on   /,  X In X Ik   is   then   defined   by   A~,(x,, x„, xt) =

(//,(x,, x„, a(xji.)), xfc). The homeomorphism A, * A, X id on ß has the specified

properties (l)-(4). (In particular, A, restricts to the identity on Wi and Wn, and takes

each Wj onto itself.)

4.4. Remark. The above proof shows that the homeomorphism A taking p into s

may be constructed so as to be supported on a given neighborhood of p (the role

played by the map a: Ik -» [0,1] is taken over by a map ß: Ik¡ X ■ ■ ■ XIk -* [0,1]).

Combining 4.2 and 4.4, we conclude that Y is strongly locally homogeneous.

5. Countable dense homogeneity. In this section we show that the strong local

homogeneity of Y implies that Y is countable dense homogeneous, and therefore the

space A= Y\ {countable dense subset} has the property that A"« X\ (countable

subset}. In fact, X is also strongly locally homogeneous, and countable subsets of X

ate strongly negligible.

A separable space X is countably dense homogeneous if, for every pair A, B of

countable dense sets in X, there exists a homeomorphism of X taking A onto B.

Bennett [4] showed that every countable dense homogeneous connected metric space
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is homogeneous, and that every strongly locally homogeneous locally compact

separable metric space is countable dense homogeneous. The latter result is true

more generally for topologically complete spaces. For its proof, we need a formula-

tion of the inductive convergence procedure in a complete metric space.

5.1. Lemma. Let X be a complete metric space, and let {%„} be a sequence of open

covers and {hn} a sequence of homeomorphisms of X satisfying the following conditions.

(1) %„ is a barycentric refinement of6lln_x;

(2) 6lin has mesh less than 2~n;

(3)(A„_,o ... o hx)~x(%n) has mesh less than 2~n;

(4) h „is limited by %.

Then A = lim,,^,*, (A„ o ... o hx) is a homeomorphism of X.

Note. A cover °V of X is a barycentric refinement of a cover % if (St(x, T):

x E A"} refines %. Every open cover of a paracompact space has an open bary-

centric refinement.

Proof. Conditions (2) and (4) show that A is a map with a dense image. We show

that A is 1-1 and closed. Suppose that, for some e > 0, there exist sequences {x^} and

{yk} in X such that d(xk, yk) > e for each/< and lim^M h(xk) = z = lim^M h(yk).

Choose n such that 2~" < e/5, and choose (/£%„ such that z EU. Then for some

k > n, {hk o ••• o A^x^, hk° ■ ■ ■ ° A^y^)} C U. By conditions (1) and (4), there

exist V,W EGlin such that

{A„o ••• ohx(xk),hko ... °A,(xJ} GV

and

{A„o ... °A,(y,),A,° •■■ ohx(yk))GW.

There also exist V, W E %-„ such that

{A„„, o ... o hx(xk), hn° •■• ° hx(xk)} G V

and

{A„_,° •■• °hx(yk),h„o ••• ohx(yk)}GW'.

Thus'(F', V, U, W, W') is a chain in % with h„_x ° ••• ° A^x*) g V and

hn_x o ... o A^y^.) E W'. Applying (A„^, o ... o hxyx, we obtain a 5-chain in

(h„_x ° •■■ 0A,)_1(%n) between the points xk and yk. By condition (3), d(xk, yk)

< 5 ■ 2~" < e, a contradiction. It follows that A is 1-1 and closed, and therefore a

homeomorphism of X.

5.2. Theorem. Every topologically complete separable metric space which is strongly

locally homogeneous is countable dense homogeneous.

Proof. Let countable dense subsets A = {ax,a2,...} and B — {bx,b2,...} of

such a space X be given (assume A and B are faithfully indexed). The hypothesis of

strong local homogeneity implies that for each neighborhood U of a point x, and for

any dense set G in A, there exists a homeomorphism of x which is supported on U

and takes x into G. Using the inductive convergence procedure (with respect to some

complete metric on A"), we construct a sequence {A„} of homeomorphisms of X such
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that A = limn^ao(hn o ... o hx) is a homeomorphism and such that the following

conditions (which insure that A (A) — B) are satisfied.

(1) A„ o ••■ ° A[(a,) = A2, o ■•• ° A,(a,) E B for each /' and each n > 2/;

(2) (A„° •-. ° hx)~\b,) = (h2i+xo ... ohx)~\b¡)EA for each i and each

n 3» 2i + 1.

Assume A,,..., A 2,_, have been defined. If A 2, _, ° ••■ ° A,(a,) E B, takeA2, = id.

Otherwise, choose a neighborhood l/2/ of A2,_, o ... o hx(a¡) disjoint from the

finite set {bx,...,b¡_x} U h2j_x ° ■•• ° hx({ax,...,a¡_x}), and take A2, to be a

homeomorphism of X supported on U2i and such that A2, ° • • • ° hx(a¡) E B.

If (A2, o ... o A,)-1^,-) E A, take A2/+1 = id. Otherwise, choose a neighborhood

U2i+X of A, disjoint from the finite set {bx,...,b¡_x} U A2, ° • • • ° hx({ax,...,a¡}),

and take A2l+1 to be a homeomorphism of X supported on U2i+X and such that

A2/+1(A,) E (A2, o ... o hxyx(A). If the neighborhoods U2i and U2i+X are chosen

small enough, the conditions of the inductive convergence procedure are satisfied.

5.3. Theorem. Let Y be a topologically complete separable metric space which is

strongly locally homogeneous, and let D be a countable dense subset. Then Y\D is also

strongly locally homogeneous, and every countable set in Y\D is strongly negligible.

Proof. Let U be a neighborhood of a point x in Y \ D. Then there exists an open

neighborhood V of x in Y with V\D G U and such that, for every y £ V\D, there

exists a homeomorphism hy of Y supported on V and taking x to y. Then a

homeomorphism A = lim^^A,, ° • • • ° A,) of Y may be constructed as in the

preceding lemma such that h(hy(D)) — D, and each A„ is supported on V and leaves

y fixed. The restriction of A ° hy to Y\D takes x to y and is supported on V\D.

Thus y \ D is strongly locally homogeneous.

Let G G Y\D be countable, and % an open cover of Y\D. Then there is a

countable collection Tof pairwise disjoint open sets in Y covering G, such that for

each V E T, V\D lies in a member of %. The proof of 5.2 shows that there exists a

homeomorphism A of y limited by the cover Tu {{x}: x E Y) and taking D onto

DUG. Then the restriction of A to TxD is a homeomorphism onto (y\Z))\G

which is limited by Gli.

Applying 5.3, we conclude that if D is any countable dense subset of the space

y = ß \ UJ° W¡, then the space X = Y\ D has the homogeneity property (5) and the

negligibility property (6) of §1. And by the theorems of §3, A" retains the properties

(1) through (4). We show in the next section that X has the nonnegligibility property

(7).

6. Nonnegligibility of Cantor sets.

6.1. Theorem. No Cantor set is negligible in the space X = Q\( UJ° Wi U D).

Proof. Suppose X » X \ K for some Cantor set K in X. Then by Lemma 3.6 there

exist a compact space M and monotone surjections n,: M -> ß and n2: M -> Q

such that nr'(Uf J*; UC)= Yi2x(VJ\xWi U D U K). For each x G K, consider

the continuum n^^x). Since H.x '(U W¡ U D) is a countable disjoint union of

compacta, and since no continuum is the countable infinite union of disjoint
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nonempty compacta (Sierpinski's Theorem), we must have n^x) C n¡"'(C) for

some CE {W¡: i = 1,2,...} U D. Since K is uncountable, there exist distinct points

x, y E K such that ^'(x) U Tl2l(y) G n¡~'(C) for some continuum C as above.

Since UXX(C) is a continuum, n2(n¡"'(C)) C ß is a continuum, and another

application of Sierpinski's Theorem shows that n2(n¡~ '(C)) C K. Thus n2(n¡~ '(C))

is a point, but (x, y} C Yl2(ILx~x(C)), a contradiction.

Of course, the same argument applies as well to the space Y — Q\U\xWj. A

similar argument shows that in Y, no countable infinite subset is negligible. In

particular, X = Y\D& Y.

6.2. Theorem. No countable infinite subset is negligible in the space Y.

Proof. Suppose Y « Y \ E, where E is countable infinite. There exist a compact

space M and monotone surjections n,: M -» ß and n2: M -* ß with Ux~x(U\xWi)

= n2l(U?Wi\J E). For each xEE, ilj\x) C Ilf \Wt) for some i. Since

U2(UZ\W,)) is a continuum, n2(n¡-'(»9) = {x}. Thus U2\x) = Ilf'TO- Con-
sider the infinite subcollection % = {W¡: Ilx~x(Wi) — H2l(x) for some x E E).

Then U % is connected,

nr'(U<¥) = U {nr'(^): ^ E <¥} = U {n2'(x): x E E) = U2X(E)

is connected, and E = n^n^F)) is connected, a contradiction.

7. A fake capset. As previously remarked, various characterizations of boundary

sets (dense a-Z-sets in ß whose complements are homeomorphic to j) are given in

[8]. One of these takes the following form.

7.1. Theorem. A dense a-Z-set B G Q is a boundary set if and only if

for every e > 0 there exists 8 > 0 such that, for every compact set

KGB with diam K < 8, there exists a compact set KGB with

diam K < e such that K contracts to a point in every neighborhood of

K in Q.

Without loss of generality we may assume that K is a continuum containing K.

Thus, every boundary set is continuum-connected and locally continuum-connected.

This property of boundary sets provides another way of seeing that the spaces

y = ß\ UXXW¡ and X= Q\(U™WiU D) are not homeomorphic to l2, since by

Sierpinski's Theorem the a-Z-sets UfW¡ and U^W¡L)D are not continuum-

connected.

However, starting with the set UJ° W¡, we may add a null sequence of arcs {aj in

ß to obtain a a-Z-set UJ°W^ U (UJ°a,) which is continuum-connected, but not

locally continuum-connected. Taking products with copies of Q, we obtain the

following.

7.2. Example. There exists a tower of compacta B, C B2 C ... in ß such that

(l)eachB„~ß;

(2) each Bn is a Z-set in Q;
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(3) each Bn is a Z-set in B„+, ;

(4) for every e > 0 there exists for some n a map tj: ß -* B„ with í/(tj, id) < e;

(5) B = UJ°B„ is not locally continuum-connected, and therefore Q\B & s.

Note. The set B is a counterexample to the Capset Characterization Lemma 1.1 of

[13], which claimed that conditions (1) through (4) imply that B is a capset (i.e., there

exists a homeomorphism of ß taking B onto the pseudo-boundary Q\s). The

argument given there breaks down at the attempted application of the Anderson-Barit

estimated homeomorphism extension theorem (every homeomorphism A between

Z-sets in ß with d(h, id) < e can be extended to a homeomorphism H of ß with

d(H, id) < e). Stated in this form, the extension theorem is valid only with respect to

one of the standard convex metrics on Q. However, the application is attempted for

the copies B„ of Q, using the restrictions of a metric on Q, and these restrictions may

be highly nonconvex.

The capset characterization theorem has been widely used by the authors, and

others. Fortunately, in all applications of which we are aware, the mapping condi-

tion (4) can be replaced by the stronger condition

(4*) there exists a deformation a: Q X [0,1] -» ß with a(q,0) — q and such that,

for every t > 0, a(Q X [t, 1]) C B„ for some n.

It is shown in [8] that if conditions (1) through (4*) are met, then B = U*fi„ is a

capset.

Construction of example. We first construct a tower Ax G A2G ... of compact

AR's in ß satisfying the conditions (4) and (5), and then take Bn — AnX QX I" X

{(1,1,...)} C ß X ß X ß. By Edward's product theorem (see [6]), each B„ m Q.

For each i = 1,2,..., let

«,. = ({1}, X [1 - 2-, 1],+ 1 U [1 - 2-('+1>, 1],. X {1},+ 1) X     TJ      {0}7 C ß-
j¥-i,i+\

Then (aj is a null sequence of disjoint arcs converging to the point (0,0,...); each

a, connects W¡ and Wi+X; and a, n ( UJ° Wf) contains only the endpoints of a,. Take

An = U"(H/ U a,). Clearly, U™ An is not locally continuum-connected.
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