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ANALYSIS OF SPECTRAL VARIATION AND SOME INEQUALITIES

BY

RAJENDRA BHATIA1

Abstract. A geometric method, based on a decomposition of the space of complex

matrices, is employed to study the variation of the spectrum of a matrix. When

adapted to special cases, this leads to some classical inequalities as well as some new

ones. As an example of the latter, we show that if U, V are unitary matrices and K is

a skew-Hermitian matrix such that UV~' = exp K, then for every unitary-invariant

norm the distance between the eigenvalues of V and those of Vis bounded by \\K\\.

This generalises two earlier results which used particular unitary-invariant norms.

1. Introduction. Let M(n) be the space of all n X n (complex) matrices. An

element A of M(n) will also be thought of as a linear operator on the space C". A

norm || • || on M(n) is said to be unitary-invariant if \\A\\ — \\UAV\\ for any two

unitary matrices U and V. Two important examples of such norms are the Banach

norm \\ ■ \\B, which is the usual supremum norm of an operator acting on C", and

the Frobenius norm || • \\F, defined as ||y4||F= (trA*A)x/2, where, tr denotes the

trace of a matrix.

We denote by Eig A the unordered «-tuple consisting of the eigenvalues of A, each

counted as many times as its multiplicity. Let D(A) be a diagonal matrix whose

diagonal entries are the elements of Eig A. For any norm on M(n) define

||(Eigy4,EigB)H = min||F>(.4) - WD(B)W~X\\
w

where the minimum is taken over all permutation matrices W. We can think of

Eig A as an element of C"/S„, where S„ is the group of permutations on n symbols.

Then ||(Eig A, Eig B)\\ defines a distance between Eig A and Eig B in this space.

A natural question of considerable interest and importance is: If A and B are close

to each other in the norm 11 • ||, then how close are Eig A and Eig B in the above

distance?

If A, B are Hermitian matrices, we have for all unitary-invariant norms the

inequality

(1) ||(Eig^,EigB)||^IU-B||.
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For the Banach norm this is a consequence of the Courant-Fischer-Weyl min-max

principle. (See [17].) A generalisation of this principle due to Wielandt [18] leads to

the conclusion that (1) holds for all unitary-invariant norms. This fact is stated

explicitly, as such, by Mirsky [12].

Hoffman and Wielandt [11] proved that the inequahty (1) is also satisfied when A

and B are any two normal matrices and the norm is the Frobenius norm. It has been

conjectured (see, e.g., [12]), but not yet established, that this would be true for other

unitary-invariant norms as well.

Let U, V be unitary matrices and let K be a skew-Hermitian matrix such that

UV~ ' = exp K. Then from the theorem of Hoffman and Wielandt cited above, it

follows that

(2) ||(Eigl/,EigK)||<||tf||,

if the norm is the Frobenius norm. In [14] Parthasarathy showed that (2) also holds

for the Banach norm.

For arbitrary matrices, results on this question have been obtained by Ostrowski

[13], Henrici [10] and, recently, by Mukherjea, Friedland and this author in [3] and

[4].
This note has two objects. First, a geometric method for studying this problem is

introduced, which is substantially different in approach from the ones hitherto

employed. Then this method is used to obtain some inequalities. We show that (2)

holds not only for the Banach and the Frobenius norms as stated above, but also for

other unitary-invariant norms. We obtain a new proof of (1) for Hermitian matrices

as well. This unified approach is likely to lead to some other results. We give, at the

end, an adumbration of the possibilities as well as the attendant difficulties.

2. Unitary-invariant norms. Comprehensive surveys of the theory of unitary-in-

variant norms have been provided by Schatten [15], Mirsky [12], and Gohberg and

Krein [9]. Some facts pertinent to our needs are briefly summarised here.

Let (A*A)X/1 denote the positive square root of the positive matrix A*A. The

eigenvalues of this matrix are called the singular values of A or the S-numbers of A.

We write these numbers as

Srl(A)>s2(A)>-->sn(A)>0.

It was shown by von Neumann [16] that every unitary-invariant norm arises as a

"symmetric gauge function" of these numbers. Special examples of such functions

are the sums of the first k of these numbers. These lead to the Ky Fan k-norms,

defined as
k

\\A\\k=  2 Jy(^),       k= 1,2,...,«.
/=i

In the sequel, a /c-norm shall always mean one of these norms. These norms occupy a

distinguished position among the unitary-invariant norms. It was shown by Ky Fan

[8] that an inequality of the type \\A\\ < ||B||, where A and B are two matrices, holds

for all unitary-invariant norms if it holds for these special norms. (See [9, p. 72].) For

k = 1, the k-norm is simply the Banach norm || • || B.
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Another important class of unitary-invariant norms is the class of Schatten

p-norms defined as

{    n )l/p

WA\\p=\l{sj(A)Y\     .
0=i J

For/? = 2 this just gives the Frobenius norm || - II,.. We remark that the Frobenius

norm is the norm associated with an inner product on M(n) defined as (A, B) =

trB*A. This makes M(n) a Hilbert space. Also, note that if A is the matrix with

entries (a,7), 1 < i,j < n, then we have || A || F — (JS( . | atj \2)x/2.

Let Px, P2,... ,Pr be a complete family of mutually orthogonal orthoprojectors in

C. Define an operator Q on M(n) as

r

e(A) = 2 PiAP,.

(In [9] this is called the diagonal-cell operator. Davis calls it the pinching of A by the

F,. In [5] he studies the properties of such operators and in [6] and [7] he obtains,

among other things, lower bounds for the distance between the eigenvalues of two

Hermitian matrices A and B in terms of the pinching operator corresponding to the

spectral subspaces of A.) For any A in M(n), Q(A) is a block diagonal matrix

consisting of r diagonal blocks whose sizes are the ranks of the projections F,. It is

the matrix obtained from A by replacing the entries outside these blocks by zeroes.

In particular, this means that ||(3(^4)11 f < Mil jr. With the Banach norm, M(n)

becomes a C*-algebra and & is then a completely positive map and, hence, attains its

norm at the identity matrix. (See, e.g., [1].) Thus IISHj, = 1 and hence 116(^4)11^ <

IIA || B. More generally, we have [9, Theorem 5.1, Chapter II]

2sj(e(A))< ^Sj(A),       k =1,2,...,«.

In other words, the inequality

(3) \\e(A)\\^\\A\\

holds for all /c-norms and hence, for all unitary-invariant norms.

If F,,... ,F„ are chosen to be the one-dimensional projections corresponding to the

standard orthonormal basis for C", then the corresponding pinching operator takes

a matrix A — (a(. •) to the matrix diag A whose diagonal entries are aH and the rest of

whose entries are zero. So, the inequality (3) yields, in particular,

(4) ||diagv4||<IUII

for all unitary-invariant norms.

Let A and B be two commuting matrices, i.e., let [A, B] — AB — BA = 0. Then

there exists a unitary matrix U such that UAITX = T(A) and UBU~X = T(B),

where T(A) and T(B) are upper triangular matrices. If D(A) and D(B) are the

diagonal parts of T(A) and T(B) respectively, then the inequality (4) implies
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\\D(A) - £>(B)|| < ||T(A) - T(B)\\. Hence, we have for all unitary-invariant norms

the inequality

(5) \\(EigA,EigB)\\<\\A- B\\,   if[A,B]=0.

3. A decomposition of M(n). Some elementary notions of differential geometry

will be used in this section. The text we refer to is [2].

Let GL(«) be the multiplicative group of all « X « in verüble matrices. This is a

Lie group and has a natural adjoint action on its Lie algebra M(n). This action is

defined as A -* gAg~ ' for A E M(n), g E GL(«). The orbit of A under this action is

the set

Oa= {gAg-x:gEGL(n)).

In other words, O^ is the set of all matrices similar to A. This set is a smooth

submanifold of the manifold M(n). The tangent space to O^ at the point A will be

denoted by TaOa. This is a linear subspace of M(n). Let Z(A) denote the com-

mutant of A in M(n), i.e., Z(A) = {X E M(n): [A, X] = 0}. The following proposi-

tion identifies TaOa and its complement in the space M(n).

Proposition 3.1. Let M(n) be the Hilbert space of nXn matrices with the inner

product (A, B)— tiB*A. Then, for every A E M(n), we have

TaOa = span{M, X]: X E M(n)},       (TaOa)±=Z(A*),

where J- denotes the orthogonal complement of a subspace.

Proof. Every differentiable curve in Oa which passes through A can be written,

locally, as X(t) = exp(tX)Aexp(-tX) for some X E M(n). Tangent vectors to O^ at

A are obtained by differentiating such curves at 0:

(d/dt) \t=0X(t) = XA -AX= [X, A].

The space TaOa is precisely the span of these tangent vectors.

To prove the second part, note that B E (TaOa)x if and only if for all X E M(n)

we have

0= ([A,X],B)=tïB*(AX- XA)

= tr(BM -AB*)X= ([B*,A],X*).

This is possible if and only if [B*, A] = 0, i.e., if and only if B E Z(A*).    D

Remark. We will be considering M(n) with other unitary-invariant norms too.

With any of these norms it is a Banach space. We will write the above decomposition

as

(6) M(n) = TaOa ® Z(A*),

with the understanding that the symbol © denotes an orthogonal direct sum when

we are thinking of M(n) as a Hilbert space with the Frobenius inner product, and it

denotes an ordinary vector space direct sum otherwise.

Recall that a matrix A is normal if and only if Z(A) — Z(A*). In this case we can

write

(7) M(n) = TaOa ® Z(A)   if A is normal.
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Since similar matrices have identical spectra, we have

(8) ||(Eig^,EigB)||=0    ifBEO,.

Relations (5), (7) and (8) suggest that the variation of the spectrum of a normal

matrix can be estimated componentwise along two complementary directions. To

make this idea precise we use the following lemma.

Lemma 3.2. Let X be a Banach space and let <p be a real-valued function of class Cx

on X. Let y: [0,1] -* X be a piecewise C1 curve. Suppose the following conditions are

satisfied:

(i)y(0) = x0, y(l) = x, and<p(x0) = 0.

(ii) For every t in [0,1], the space X (which is also the tangent space Ty^X in our

notation) splits into a direct sum X = Ty(X}x ® Ty(2)t) in such a way that

v(\ = 0   for all vm E Ty%,

ü<2V^llu(2)ll   for all v™ E T$y

(Here u(1)(p and u(2\p are thought of as the directional derivatives of tp in these two

directions.)

Let P,m, F,(2) denote the complementary projections in X onto the spaces T3X and

Tyi2^ respectively. Let y'(t) denote the derivative of y at t. Then we have,

(p(x1)</"llF/2V(/)|U/.

Proof. We have

<pU) = /V(0(<p)^=/V/V(0)(«p)^+/V/M0)(<p)^

<0+ C\\P™y'(t)\\dt
Jo

by the hypothesis (ii).    D

Remark. The statement of this lemma remains valid if tp is C1 on a dense open

subset G of X and y is a piecewise C1 curve which intersects the complement of G

only at a finite number of points. In such a case we say that q> is generically Cx and y

is a curve adapted to <p.

Let (ax,... ,an) be a fixed point in C" and let (x,,... ,x„) be any arbitrary point in

C". Let a be an element of the permutation group Sn. Arrange the numbers

I xi ~ aoti) I iQ a descending order of magnitude and let this new enumeration of

these numbers be | x,' — a'a(i) \ , i — 1,2,...,«. Let

k

fk(xx,...,x„) = min   2\x'¡
i»es,

For k = 1,2,...,«, these are well-defined functions on C". These functions are

invariant under the action of Sn on C" and hence they are well defined on the

quotient space C/Sn. These functions are differentiable except at the set F of points
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which satisfy either of the two conditions:

(1) There exists a permutation a such that the numbers | x, — a0(l) | are not all

distinct.

(2) The minimum in the definition of fk is attained at two different permutations.

It is clear that the set Fis a nowhere dense closed subset of C. So the functions/^

are generically C1.

Now let A0 be a fixed matrix with eigenvalues ax,... ,an and let

<pk(A) = ||(Eig¿0, Eig A)\\k.

By the definition of the fc-norms and by the above comments these functions are

generically C1. (Matrices whose eigenvalues constitute «-tuples which belong to the

set F mentioned above form a closed nowhere dense subset of M(n). Outside this set

the (pk are C1 functions.) With this knowledge, we can prove

Theorem 3.3. Let M(n) be the space of matrices with any of the k-norms || • ||. Let

A: [0,1] -» M(n) be a piecewise Cx curve with the following properties:

(i) A(t) is normal for all0<t^ 1,

(iiM(O) =A0,A(l)=Ax,
(hi) A(t) is adapted to the generically Cx function (p(A) = ||(Eig A0, Eig A)\\.

Let P,m and F,(2) denote the complementary projection operators in M(n) correspond-

ing to the direct sum decomposition M(n) — Ta^Oa^ ® Z{A(t)). Then

(9) iKEig^o.Egil,)» < C\\P^A'(t)\\ dt<C\\A'{t)\\ dt,

where A'(t) denotes the derivative ofA(t).

Proof. We apply Lemma 3.2 to the Banach space M(n), the function <p(A) and

the curve A(t). Let 7^ = TAityOA,t), T}2]x — Z(A(t)). Choose and fix a point í in

[0,1]. For every B E O^) we have <p(B) — <p(A(s)). Hence, the derivative of <p in

the direction of Oaw is zero, i.e.,

ü(1)<p = 0    îorallvm ETJlly

For A E M(n), define ¡P(A) = ||(Eig A(s), Eig ,4)11, and put

A(,4) = <p(A(s)) + ¡p(A) = \\(EigA0, Eig^(i))|| + ||(Eig^(i), Eig^)||.

Note that <p(A(s)) = h(A(s)) and <p(A) < h(A) for all A in M(n). Hence,

ü^V^ü^A    forallü^EFi2]).

(In fact, this last inequality holds for the derivative in any direction and so, in

particular, for the direction T}2)s).) But since, for a fixed s, q>(A(s)) is constant, we

have ü<2)A = u(2)t// for all t>(2) E T}2)s). Now recall that T}fs) = Z(A(s)) and hence we

have, from the inequahty (5), that

ü(2V<IIü(2)II    forallü^EFi2],.

So we have v{2)tp *£ || t>(2) || for all t>(2) E T}2)s). Since s was any arbitrary point in [0,1],

we obtain, from Lemma 3.2, the inequahty

<p(Ax)<r\\pVA'(t)\\dt.
Jo
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This proves the first inequahty in (9). To prove the second one we claim that

II F/2)B|| < IIBH, for all B E M(n). Indeed, F,(2) is the projection on Z(A(t)) along

the complementary space TA(l)0AU). Since A(t) is normal and UZ(A(t))U~x =

Z(UA(t)U~x) for every unitary U, we can assume, without loss of generality, that

A(t) is diagonal. Then Z(A(t)) consists of block-diagonal matrices and Pt(2)B is just

the pinching of B by the spectral projections of A(t). Our claim, therefore, follows

from the inequality (3). This proves the theorem completely.    D

We deduce some explicit estimates as corollaries. First note that inequalities of the

type (1) and (2) would be valid for all matrices if they hold on a dense subset. By

perturbing the matrix A by a small amount, if necessary, we may assume that A lies

in the set on which rp is C1. In the next few paragraphs we will make this assumption

without mentioning it. In the same way, for the sake of brevity, a curve passing

through A0 will mean a curve adapted to the function (p(A) = ||(Eig A0, Eig A)\\.

Corollary 3.4. Let A0, Ax be Hermitian matrices. Then for all unitary-invariant

norms, we have

(10) iKEg^o.Eig^JIKMo-^H.

Proof. The curve A(t) = Ax + t(Ax — A0) satisfies the conditions of the theorem.

Note that A'(t) = Ax — A0. So, the inequality (10) holds for all the /c-norms and

hence, it holds for all unitary-invariant norms.    D

Corollary 3.5. Let U0, Ux be unitary matrices and let K be a skew-Hermitian

matrix such that UxUq ' = exp K. Then for all unitary-invariant norms, we have

(11) \\(EigU0,Ei%Ux)\\*z\\K\\.

Proof. The curve U(t) — (exp tK)U0 joins UQ and Ux and satisfies the conditions

of the theorem. We have U'(t) = K(exptK)U0 and hence ||C/'(r)H = \\K\\ for every

unitary-invariant norm. As before, the conclusion follows.    D

Remark. The last inequality in (9) is strict whenever the Lebesgue measure of the

set {/: ||F/2l4'(OH < \\A'(t)\\} is positive. When the Frobenius norm is being used

this condition is equivalent to saying that Fr(ll4'(0 ^Oona set of positive Lebesgue

measure. Thus, for the Frobenius norm, the inequality (10) is strict whenever

[A0, Ax] J= 0 and the inequahty (11) is strict whenever [U0, Ux] t= 0.

Corollary 3.6. Let A0 and Ax be normal matrices such that [Aq, Ax] is skew-

Hermitian, i.e. Ax — A0 is also normal. Then for all unitary-invariant norms, we have

\\(EièA0,EigAx)\\^\\A0~Ax\\.

Proof. Under the hypothesis, it is easy to see that the path A0 + t(Ax — A0) lies

entirely within the set of normal matrices. The proof is then the same as that of

Corollary 3.4.    D

Remarks. The above corollaries give some old and some new inequalities.

However, an answer to whether the inequahty of Corollary 3.6 is true for all normal

matrices still eludes us. The problem is that of finding a "good" path linking two
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normal matrices. The "obvious" path does not quite work. Nevertheless, the follow-

ing calculation is instructive. Let A0 and Ax be normal matrices. Then we can write

A¡ = UjDjU~x, where Ui are unitary and Di are diagonal matrices for /' = 0,1. Again,

let K be a skew-Hermitian matrix such that UXU^X — expK, and let U(t) =

exp(tK)U0. Let D(t) = Dx + t(Dx - D0). Then the path A(t) = U(t)D(t)U(t)~l

connects A0 and Ax. Differentiation leads to the equation A'(t) = [K, A(t)] +

U(t)(Dx — D0)U(t)~x. It is interesting to note that the first component lies in the

subspace TA(t)0AW. Hence,

IIP/MÓII < WU(t)(Dx - D0)U(t)~x\\ = \\DX - DJ.

This, however, merely leads to the tautological inequality 11 (Eig A, Eig^0)|| < \\DX
-DJ.

Finally, we remark that it is conceivable, though not yet clear, that this method

could be applied to nonnormal matrices as well. Of course, in this case, the

decomposition (7) is no longer valid. But we could go back to (6) and spht Z(A*)

into two further components, Z(A) n Z(A*) and its complement. In the first of

these components the estimate (5) is still applicable; in the second, one has weaker

but explicit estimates derived in [3] and [4]. How to combine these is a problem that

needs further investigation.
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Note added in proof. Consider the following example. Let

H? i). H-°> !)■
Then ll(Eig,4, Eig B)|| >\\A- B\\, in all Schatten/»-norms for 1 <p < 2. Thus in

these norms the inequality (1) breaks down as one steps beyond Hermitian to

normal, or even to unitary, matrices. In view of this, Corollaries 3.5 and 3.6 of this

paper assume added significance. They might be the best results to expect if all

unitary invariant norms are simultaneously involved.
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