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THE RESTRICTION OF ADMISSIBLE MODULES

TO PARABOLIC SUBALGEBRAS

BY

J. T. STAFFORD AND N. R. WALLACH1

Abstract. This paper studies algebraic versions of Casselman's subrepresentation

theorem. Let g be a semisimple Lie algebra over an algebraically closed field F of

characteristic zero and g = f®a©nbean Iwasawa decomposition for g. Then

(g, f) is said to satisfy property (n) if x\M ¥= M for every admissible (g, f )-module

M. We prove that, if (g, f ) satisfies property (n), then nN ¥= N whenever N is a

(g, f )-module with dim N < card F. This is then used to show (purely algebraically)

that (êl(n, F), êo(n, F)) satisfies property (n). The subrepresentation theorem for

§/(«) is an easy consequence of this.

1. Introduction. Let F be a field of characteristic 0. If a is a Lie algebra over F and

if b G a is a subalgebra then an (a, f>)-module is an a-module that splits into a

direct sum of irreducible, finite-dimensional b-submodules. An (a,b)-module M is

said to be admissible if dim Hornb(W, M) < oo for each finite dimensional b-mod-

ule W. M is said to be finitely generated if it is finitely generated as an a-module.

Let g0 be a semisimple Lie algebra over R. Let g0 = f0©a0©n0bean Iwasawa

decomposition of g0. Let g, f, a and n denote the respective complexifications of g0,

ï0, a0andn0.

Let G be a connected Lie group with Lie algebra g 0 and finite center. Let K G G

be the connected subgroup of G corresponding to f0. Then a (g, A")-module is a

( g, ï )-module M such that each of the irreducible f-submodules of M integrates to a

representation of K. A (g, ¿V)-module is said to be admissible if it is admissible as a

(g, f)-module.

A fundamental result of Casselman is

Theorem I. If M is a nonzero admissible, finitely generated (g, K)-module then

nM^M.

Theorem 1 is equivalent to Casselman's strengthening of Harish-Chandra's sub-

quotient theorem (cf. [5, 9]). Let us sketch the proof of this assertion. Let M = {m E

K\ Ad(»i) |a = I}, A = exp a0, N = exp n0. Let m be the complexified Lie algebra

of M; let V be an admissible finitely generated (g, K)-n\odnle such that V ¥= nV.

Received by the editors April 3, 1981.

1980 Mathematics Subject Classification. Primary 17B10, 17B20, 22E47.
Key words and phrases. Semisimple Lie algebra, parabolic subalgebra, admissible (Harish-Chandra)-

module, subrepresentation theorem, Artin-Rees property.

'While this research was conducted, both authors were visiting Brandeis University. The first author

was supported by a NATO Research Fellowship. The second was partially supported by an NSF grant.

©1982 American Mathematical Society

0002-9947/81 /0000- 1075/S06.00



334 J. T. STAFFORD AND N. R. WALLACH

Then Theorem 5.2 implies that

dimF/nF< oo.

Clearly, F/nFis an (m ® a ® n, M)-module. Since AN is simply connected V/nV

integrates to a B = MAN representation. Let (a, H) be an irreducible quotient of

F/nFand let q: V -» H be the (m ® a ® n, M)-module projection. Define X^ to be

the space of all C00 maps/mapping G to H such that f(6g) = a(¿>)f(g) for b E B

and g E G. If x E G define (w0(x)/)(g) =/(gx). Let Ar° denote the space of all

/ £ X^ such that w0( K )f spans a finite dimensional space.

If/E A^'andx E g0 define

(x-f)(g) = ¿j/(sexpfjc)|,=0.

Then Xa is a ( g, K )-module under this action.

Define C(v)(nak) = a(na)q(k ■ v), n E N, a £ A and k E K. Then C(v) £ Xa

and C: K-> X" is a (g, À^-module homomorphism (this is Frobenius reciprocity).

The (g, 7V)-modules Xa are elements of the so-called principal series. If V is

irreducible then C is injective since it is nonzero. Thus an irreducible, admissible

( g, K )-module is isomorphic with a subrepresentation of a principal series represen-

tation. This is the subrepresentation theorem. Thus Theorem 1 imphes the subrepre-

sentation theorem. The converse is also easily shown. Indeed, if (a, H) is an

irreducible representation of B and if C: V -» Xa is a (g, K)-homomorphism, define

8c(v) = C(v)(l). Then 8c(nV) = C(nF)(l) = (nC(F))(l) = 0 since f(n) =/(l) if

n EN and fE Xo. This imphes that if nV = V then C(u)(l) = 0 for all v E V. But

then 0 = C(k ■ v)(\) = C(v)(k) for v E V, k £ K. If / E Xo then clearly / = 0 if

and only if f\K — 0. This proves the converse.

Casselman's proof of Theorem 1 involves a study of the asymptotic expansion of

matrix entries of admissible representations of Lie groups. Thus, although the

statement of Theorem 1 is quite algebraic its proof dips fairly heavily into analysis.

It is therefore natural to ask for an algebraic proof of Theorem 1. In order to do this

we first express the content of Theorem 1 in a purely algebraic form (that is, over

arbitrary fields and without reference to the Lie groups G D K).

Let g be a semisimple Lie algebra over an algebraically closed field F, of

characteristic 0. Let 0: g -» g be an involutive automorphism and let ï = {X £ g | OX

= X). Let g = f©a©nbean Iwasawa decomposition of g (that is o = {X E g |

OX = -X) and [a,a] = 0, [a, n] C n, n nilpotent and ad a acts semisimply on g).

We say that (g, f) has property (n) if, for each M, a nonzero, admissible, finitely

generated (g, f )-module n M ¥= M (i.e., H0(n, M) J= (0)).

If F = C and if it is shown that (g, f ) has property rt for the pairs associated with

semisimple Lie groups then Theorem 1 follows.

The purpose of this article is to give algebraic proofs of the property (n) for

certain classes of pairs ( g, f ) (we will describe them later in this introduction).

If n is abehan then property (n) is an easy consequence of the Artin-Rees lemma

of commutative algebra (see Proposition 3.1 and [2]). For nonabelian n we use a

generalization of that lemma due to McConnell [7]. We include a proof of this result
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(see Theorem 2.1) since we were able to give a slightly different result with a

considerably easier proof.

In order to carry out our proofs of the property ( n ) we prove the following result

(see Theorem 5.10).

Theorem 2. //(g, f ) satisfies property (n) and if M is a nonzero (g, i)-module with

dim M < card F then nM#Ai.

The point of Theorem 2 is that admissibility and finite generation have been

dropped.

We now give a more precise description of what we prove relative to property (n).

Set m = {X E f | [X, a] = 0}. Put p = m © a © n.

Theorem 3. // dim a = 1 and M ¥" (0) is a (p, m)-module finitely generated as a

U(n)-module, then nM ^ M.

The case of Theorem 3 when [n, n] = (0) is due to Casselman and Osborne [2].

Theorem 3 suggests that the property ( n ) might be a property of p-modules. In §4

we give an example for ë/(3, F) which shows that Theorem 3 breaks down if

dim a > I.

The example in §4 actually shows that there exists M, an ê/(3, F)-module, such

that

(a)M=U(n)-v,

(b) n • M = M.

This example shows that Casselman's theorem is a theorem about (g, f)-modules,

rather than just about (p, m)-modules.

Our next results involve the pairs (äl(n, F), 3o(n, F)) where a is the space of

diagonal elements of §/(n, F) and n is the space of upper triangular matrices with

zeros along the main diagonal. Set p „ _, equal to the maximal parabolic subalgebra

consisting of elements of §/(«, F) of the form

L0

with A an n — I X n — 1 matrix. Then pn_, s g/(« — 1, F) © F*_1 (a semidirect

product with g/(« — 1, F) acting on F"   ' in the natural manner). We prove

Theorem 4. If M^O is a (p„, §>o(n, F))-module finitely generated under

U(n ® F") then (n © F")M # M.

This result easily implies property (n) for (ê/(w, F), èo(n, F)). The proof of

Theorem 4 proceeds by induction using Theorem 2 in a serious way. Theorem 4

suggests that property ( n ) is really a property of modules over maximal parabolic

subalgebras. We note that the example of §4 shows that the condition that M is a

(p„, S>o(n, F))-module cannot be dropped.

2. The Artin-Rees property and its immediate consequences. Let R be a Noetherian

ring (not necessarily commutative). Let / C R be a two sided ideal. Then / is said to

have the A-R property if given any finitely generated B-modules, N G M, then there
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exists an integer k such that IN D (IkM) n TV. The Artin-Rees lemma asserts that

any ideal of a commutative Noetherian ring has the A-R property. Let R[t] be the

set of polynomials in the commuting indeterminate t with coefficients in R. Then / is

said to have the strong A-R property if the ring

R* = R ® tl ® t I   ® ...

is Noetherian. The usual proofs of the Artin-Rees lemma show that the strong A-R

property implies the A-R property (cf. Zariski and Samuel [10, p. 55], Atiyah and

Macdonald [1, p. 107]).

Theorem 2.1. Let g be a finite dimensional Lie algebra. Let n C i/(g) be a finite

dimensional Lie subalgebra such that

(1) n is nilpotent as a Lie algebra,

(2)[g,n]çn.

Then I = nC/(g) has the strong A-R property. Consequently I has the A-R property.

Proof. Define n^ = n and n,+, = [n, rt,], /' > 1. Then there exists d such that

nd =£ 0 and nd+x = (0). Set g(/) = g © rn, © f2n2 © • • • ®tdnd. Then g(r) is a

finite dimensional Lie subalgebra of U(q)[í]. Hence there is a canonical homomor-

phism $: U(q(t)) -» U(q)[t]. Clearly, <p(U(q(t))) = U(q)*. So U(q)* is Noetherian

since U(q(í)) is Noetherian.

The above proof was inspired by an argument in Kostant [4].

The above result was only previously known when g was solvable [7]. However if g

is nilpotent then any two sided ideal of U( g ) has the A-R property [7]. This does not

seem to follow from Theorem 2.1.

Lemma 2.2. Let R be a Noetherian ring. Let I G R have the A-R property. Suppose

that M is a finitely generated left R-module such that M — IM. If N G M is a

submodule of M then IN = N.

Proof. There exists an integer k such that

IN D (lkM) n/V = M HN = N.

So IN = N.

Corollary 2.3 (to Theorem 2.1). Let g be a finite dimensional Lie algebra over a

field F. Let u G U(q) be such that [g, u] G Fu. If M is a finitely generated U(Q)-mod-

ule such that uM = M then u acts injectively on M.

Proof. Theorem 2.1 imphes that / = uU(q) = U(q)u has the A-R property. Let

m E M and put N — U(a)m. Lemma 2.2 implies that IN — N. Hence there is

g £ í/(g) such that m = gu ■ m. Thus urn = 0 imphes that m = 0.

3. Some analogues of Nakayama's lemma. In this section we apply the A-R

property in the case when the Lie algebras contain abelian or "almost" abelian

normal subalgebras. In particular we prove Theorem 3 of the introduction.

Throughout this section F denotes a field of characteristic 0.
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Proposition 3.1. Let q be a finite dimensional Lie algebra over F such that

g = FH ® V where V is a subspace of g and H an element of g with

(i) [V,V] = 0,
(ii) [H, V] G V and ad H/V diagonalizes with distinct eigenvalues Xx,.. .,Xk such

that 2f «,A, = 0 with each n¡ > 0 E Z implies that «, = 0 for all i.

Let M be a nonzero ^-module, finitely generated as a U(V)-module. Then VM ¥^ M.

Proof. Suppose VM — M and write M — 2f U(V)mi for some m¡EM. Let

/. = VU(V). Then by Corollary 2.2 there exist, for 1 < /=£ k, u¿ E I such that

(w, - l)m, = 0. Define a E I by Ux(u, - 1) = to - 1. Furthermore (to - l)M =

±U(uj - l)2U(V)m, = ±2U(V)T\(uj - l)m, = 0. On U(V), ad H diagonalizes

with eigenvalues lxniXi with n¡>0 £ Z. Thus by hypothesis (ii) we can write

u = 2xo>i where each 0 ^ to, £ VU(V) and ad Hui — piui for distinct nonzero

elements p¿ E F. Now write X = {x E VU(V): xm = m for all m E M}. Then given

x E X and m EM,

[H, x]m = Hxm - x(Hm) = Hm - Hm = 0.

Thus [H, x]M — 0. In particular to £ X So set u, = to and for / > 1 put u, = u,._,

— M7-i[^> vi-\]- Then each v¡ E X and, by induction, pt = 2^=,-c¡a¡ for some

Cj = Cj(i) £ F. In particular vk — cuk £ X for some 0 <$ c £ F. Thus for any

m E M, 0 = [H, vk]m = pkvkM = pkM as üä E X. This is only possible if M = 0,

giving the required contradiction.

No/es. (1) This lemma is an analogue of Nakayama's lemma in the sense that

VU(V) is the unique ad H invariant maximal ideal of U(V).

(2) It would seem reasonable that there should be a generalization of Proposition

3.1, the case when V is nilpotent. However the obvious generalization to the case

when V is the three dimensional Heisenberg algebra is false, as will be shown in the

next section.

(3) The above proposition imphes one of the main results in Casselman and

Osborne [2].

The second result of this section gives one case in which the result of Proposition

3.1 does hold for a nilpotent subalgebra V, and for which the proof is still fairly

easy. We will first fix some notation. Let g be a semisimple Lie algebra, p a proper

parabolic of g. Then we can write p = m © a ® n where m, a and n are subalgebras

of p with n normal (as in the introduction).

We assume that dim a = 1 for the remainder of this section.

Proposition 3.2. Let M be a (p, xn)-module, finitely generated as a U(n)-module.

IfnM = MthenM = (0).

Proof. The method of proof is to find a second module over a subalgebra of U( p )

to which we can apply the result of Proposition 3.1. We first note some standard

results about p (see for example [5]). We can write a = FH with [H, m] — 0.

Further, ad H \ n has two eigenvalues 1, 2. So write ny = {X E n\[H, X] =jX) for

/ = 1 or 2. Note that [n,, n,] C n2. Given Y E m, let ad Y also denote the canonical
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extension of ad Y to S(n), the symmetric algebra of n. Set

S(n)m= {/ES(n)|ady-/=0for7Em}.

Then 5(n)m = F[qx, q2] where q¡ E S^n^n, for /' = 1,2 and qx, q2 are homogeneous

of degreesy, and/2 respectively.

We regard qx and q2 as elements of U(n) under the symmetrization map and we

first show that U(n)m = F[qx, q2\ For, let Uk(n) be the canonical filtration of

U(n). Then, as an m-module under ad, Uk(n)/Uk"x(n) = Sk(n), the homogeneous

elements of S(n) of degree k. Let Jk — 1{Fqxq2\ajx + bj2 — k} G U(n). Then

Uk(n)m =Jk+ Uk~x(n)m, as claimed.

Suppose M t^ 0 and nM = M. As an w-module M = © My where My is a direct

sum of irreducible finite dimensional /n-modules each isomorphic with a fixed

m-module, say V . Now if M ¥= 0 then My¥=0 for some y. Let V* be the m-module

contragradient to V . Extend V* to a g-module by defining HV* — nV* = 0. Then it

is easily seen that:

(a) M ® V* is finitely generated as a t/(n)-module,

(b)n(M® V*) = M® V*,
(c)(M® V*)m^0.

Set N = U(n)(M ® F*)m. Then by Lemma 2.2, niV = N. Furthermore, A is a

g-module since (M ® V*)m is m © a invariant. By (a), M <S> V*, and hence N, is

finitely generated as a U(n)-module. So choose m„... ,mt £ (M ® F*)m such that

N = lU(n)mi.
Since m acts semisimply on U(n), there exists a projection of t/(n) onto U(n)m.

Given w E Í7(n) let w° denote the image of u under this projection. Now if « £ Am

then n = "Za¡m¡ for some a, E U(n) and so n = 2a,°w,. Thus Am is a finitely

generated i/(n)m = F[^,, ^2]-module.

Set è = FH®Fqx® Fq2. Then [//, qx] = jxqx, [H, q2] = j2q2 and [qx, q2] = 0. So

§ satisfies the hypotheses of Proposition 3.1 and N m is an S-module.

Further, given n E Nm the A-R property imphes that there exists u £ nU(n) such

that un — n and hence u°n = n. But m° E ^fjFI^,, q2] + q2F[qx, q2] whence 7Vm =

qxNm + q2Nm. Now Proposition 3.1 with g = §, V = Fqx © Fq2 implies that Am =

0. This contradiction proves the proposition.

4. A family of 8/(3, F)-modules. In this section we study a family of modules for

§/(3, F) whose existence implies, in particular, that Proposition 3.1 is false if V is

replaced by the Heisenberg algebra.

Let Ejj £ End(F3) be defined by Eijek — 8jkei (where ex, e2, e3 is the standard

basis of F3). We set x = Ex2, y = E23, z — EX3, h — Exx — E33, h' = Exx — F22,

x = E2X, y — E32, z = E3X. Set n = Fx + Fy + Fz. Let M = © Fvk „ the sum over

k £ Z, / E Z, with k > 0. Set vkl — 0, k <0. We define the following linear maps

for a £ F:

^A,/ = fft+i,/»        ^aü*,/ = ü*:,/-i-i — kvk_x i_x,       ZavkJ — vkl_x,

HcPk,i ~ 3vk+\,i+2 + (k~ 2l)vk„       H'avkl = (2k- /+ a)t)fei/>

^a«*,/ = e*+u+4 + Ml - A: - a + l)»fe_u +(a - 2 - l)vkl+2,

YavkJ = -2vk+2J+3 +(a + l)vk+XJ+x,       Za = -[Xa, Ya].
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Lemma 4.1. Suppose that A: M -» M is a linear map that commutes with Xa, Ya, Za

and H'a. Then A — XI for some X E F.

Proof. Set Avkl = 2 ars. kJvns. Then [A, H'a] = 0 imphes

(1) «,,,= *./= 0    if2r-s^2k-l.

[A, Xa] = 0 implies

(2) ar+\,s; k+\,l — ar,s; k,l-

[A, Za] — 0 implies

W) ar,s+l;k,l+l~ar,s;k,l-

(2), (3) combined with [A, Ya] = 0 imply

(4) <W,/ = °    '^r^k.

(1) now implies that Avk¡ = akjVk ¡.

Now (1), (2) clearly imply the lemma.

Theorem 4.2. The correspondence x -> Xa, y -» Ya, z -> Za, A -* 77a, //' -* /F^,

* ~* Xa, y -* Ta a/ii/ z -* Za defines an §/(3, F)-module structure on M which we

denote by M„.

Ma has the following properties:

(1) U(n)v0fi = Ma.

(2) zMa = Ma.

Proof. Assuming that Ma is indeed an ê/(3, F)-module, properties (1) and (2) are

clear. Indeed, Ma — 2 Fx^y'^o.o + 2 Fxkz'v0fi and u^ / = zvki+x.

To prove the theorem we must only demonstrate that the commutation relations

come out correctly. This is straightforward (but tedious). The only possible difficulty

is to show that [Za, Xa] — [Za, Ya] = 0. However, Lemma 4.1 imphes (assuming that

the reader has verified all of the other commutation relations) that [Za, Xa] — pi

and [Za, YJ = A/with A, p E F._Also [H'a,[Za,_Xa]] =t -3[Z„, XJ; hence 0 = -3pl.

Thus p = 0. Similarly, [Ha, [Za, YJ] = -3[Z„, YJ and hence -3X1 = 0.
We note that in §6 we will prove a result (Theorem 3 in the introduction) that has

the following corollary. Suppose that Fis an §/(3, F)-module such that:

(a) x — x has a nonzero eigenvector,

(b) Fis finitely generated under U(n).

Then F^nF.

5. The property (n). The goal of this section is to prove Theorem 2 of the

introduction. Throughout this section g will be a semisimple Lie algebra over an

algebraically closed field F of characteristic 0. Let 6 be a nontrivial involutive

automorphism of g. We set

f = {XEq\0X= X),        V= {XEq\6X= -X}.

We fix a C V a subspace satisfying

(l)[o,a] = 0.
(2) If H E a then ad H is a semisimple endomorphism of g.

(3) {XBq\[X, a] = 0) n V=a.

Such an a C F always exists (cf. Dixmier [3, p. 58, 1.13.6]).
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If X £ a* the set gx = {X E g | ad H ■ X = X(H)X, H £ a}. Clearly g = ©x g\

Set A = {X E a* \ X ¥- 0, g* ^ 0}. Fix A+ C A satisfying

(a)A+ U-A+ = A.

(b)A+n-A+= 0.

(c) If p, X E A+ and X + p E A then X + p E A+ .

Such a A+ exists (cf. [3, p. 54]); fix it. We set n = 2XeA+ gx and m = g° n f.

Putting ñ = On, we have

(4)g = f©a©n = ñ©m©a©n.

Let b C g be a Cartan subalgebra of g such that b H V = a and 6 b = b (see [3, p.

58, 1.13.7]). Let A be the root system of (g, b). Let for a E A, ga = {X £ g | ad H ■

X = a(H)X, H Eb). Fix a system A+ of positive roots for A such that, if n+ —

2„eA+ 9athenn En+.

Let M be a (g, f)-module. Then M is said to be admissible if, for each finite

dimensional f-module W,

dimHomt(M/, M) < oo.

Definition 5.1. (g, f) is said to have property (n) if whenever M is an admissible

(q, t)-module, nM = M implies M = (0).

Before we get to the main results of this section we recall two theorems and we

develop some formalism.

Theorem 5.2 (Osborne, cf. [8]). If M is an admissible (g, l)-module that is finitely

generated as a U( g )-module then M is finitely generated as a U( n )-module.

Theorem 5.3 (Harish-Chandra, cf. [9]). Let M be a (g, t)-module finitely

generated as a U(q )-module. Let Z( g ) be the center of U( g ). //, for each m EM,

dim Z(g) • m < oo then M is admissible.

Corollary 5.4. If M is an irreducible (g, l)-module then M is admissible.

Proof. Quillen's lemma, cf. Dixmier [3, p. 88, 2.6.6], implies that there exists x:

Z -» F such that z • m = x(z)m for m E M, z E Z(q). Now apply 5.3.

The following lemma is due originally to J. Dixmier (see [3, Note 2.8.9, p. 97]). We

include a proof for the reader's convenience.

Lemma 5.5. Let V be a vector space of dimension strictly less than the cardinality of

F. If T is an endomorphism of V then there exists X E F such that T — X is not

bijective.

Proof. Let F(x) be the field of rational functions in an indeterminate x. Then

( 1 ) dimFF(x) > cardinahty(F).

Indeed, it is easily seen that the elements {(x — A)~'|AEF}are linearly indepen-

dent over F.

Suppose T - X is bijective for all X E F. Fix v E V, v ¥= 0, and define <p:

F(x)^Vby

<í»(n^-A,r'-Jp(x)) = n(r-x,r./,(F)t;
V/=i /      ¿=1
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for Xx,...,Xr EFandp E F[X]. Suppose that <¡>(p/q) = 0. Thenp(T)v = 0. This

imphes that T — p is not injective for some root p of p. Thus <i> is injective. Since

dim V < card(F) this combined with (1) is a contradiction.

If M is a g-module, set Af*[n] = (u £ M* \ nk ■ p — 0 for some k (depending on

p)}. Since ad(n) acts nilpotently on g, M*[n] is a g-submodule of M*. We note that

M ~» Af*[n] is a functor from the category of g-modules to the category of

g-modules. For if A: M -» M, is a g-module homomorphism then A*(Mx*[n]) G

M*[n].

Theorem 5.6. (i) // M is a ^-module finitely generated as a U(n)-module then

M*[ n ] is finitely generated as a U( g )-module.

(ii) Let M be as in (i). If m E M/ D^=xnkM, then dim Z(g) • m < oo.

(hi) Let M, N, P be ^-modules that are finitely generated as U( n )-modules. Let

0-»A/^"iV ->PP -* 0 be an ^-module exact sequence. Then

0-F*[n]^A*[n]-M*[n]-0

is an exact sequence.

Proof. We first derive some consequences of the assumption that M is finitely

generated as a i/(n)-module that will also be useful later. The most obvious

consequence is dim M/nkM < oo. Clearly, M*[n] = U™=x(M/nkM)*.

If V is an a-module and if p E a* set V^ — {v E V\ (H — p(H))kv = 0 for some

k and all H E a}, a is abehan and (M/nkM)* is finite dimensional; hence

(M/nkM)* = e([M/nkM)*. But then M*[n] = ©^M^n]^.

Set S = {p E a* | (M/nM)* i= 0}; clearly S is finite. We first prove:

(1) If p E a* and (M/nk+lM)¿ =£ 0 then u = £ - (Xx + ■ ■ ■ +\}), with £ £ S,

X, £ A+ and 0 <j < k. If there exists v E (M/nk+xM)* and v £ (M/nkM)* then

H = | - X, - • •■ -Xk with X, £ A+ .
Indeed, if v £ (M/nk+xM)* but v g (M/nkM)*, then there are elements Xj £

gx., X, E A+ , / = 1,... ,k, so that Xx ■ ■ ■ Xk ■ v ¥= 0 and n • Xx ■ ■ ■ Xk ■ v = 0. But

then 0 =£ Xx ■ ■ ■ Xkv E (M/nM)*+x¡ + ... +x . This proves (1).

Let H0 E a be such that X(H0)> 1 for X £ A+ . (Such an H0 exists since we can

take H0 to be the element that satisfies X(H0) = 1 for X E A+ a simple root.)

(2) If p E a* and if Af*[n]M ¥= 0 then there exists k so that

M*[n]ti^(M/nk+xM);.

If not then there would be an infinite sequence kx < k2< ■ ■ ■ < kn < ■ ■ ■ so that

(M/nkJ+lM)* * (M/nkJ+' + xM)*. (1) would then imply u = & - X,,-Xik.

with|, ESandX, y E A+,/= 1,2,....

But S is a finite set. Hence by replacing [k¡] by a subsequence we may assume

I, = l i = 1,2,.... But then (£ - ,x)(#o) = X„(tf0) + • • • +X,,(//0) > k„ i =

1,2,_This is ridiculous.

(2) immediately implies that

(3) dimM*[n]tl< oo.
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Let Z denote the center of U(q). If F is a Z-module and if x: Z -► F is a

homomorphism then set

Fx = [v £ V\(z - x(z))*u = 0 for some k and all z £ z).

Clearly, Z • M*[n]fl C M*[n]/1. Hence M*[n]/l = ©x M*[n]x since M*[n]ß is finite

dimensional. But then M*[n] = ©  M*[n]x.

(4) There exist Xi,- • • ,Xr, r < °o, so that M*[n]Xi ^ (0) (1 <j < r) and M*[n] =
©,r=1M*[n]x'.

We note that (M/nM)* = {v E M*[n] | n • v = 0). Thus Z • (M/nAf )* C

(M/nAf)*. But then (M/nM)* = ©,r=1((M/nAf)*)*■ with r < oo. If v £ M*[n]x

then ü £ ((M*/n*+1M)*)x for some x- There exists n E i/(n) so that 0 ¥= n ■ v E

((M/nM)*)x. Hence x — X, f°r some 1 < / < r. This proves (4).

Let V — (A E b* | the Verma module with highest weight A has infinitesimal

character x, for some 1 </'</•}. See Dixmier [3, Chapter 7] for the pertinent facts

on Verma modules. In particular, F is a finite set.

We are now ready to prove the theorem. We note that m • (M/nkM)* G

(M/nkM)*. Hence the actin of n+ on Af*[n] is locally nilpotent. This implies that if

M is a nonzero subquotient of M*[n] then there exists 0 ¥= t>0 £ M and p £ b* such

that n+ -t;0 = 0 and h ■ v0 = p(h)v0, h £ b- But then p £ Fby the definition of V.

Put F0 = {A |Q | A £ V). Then F0 is a finite set. Put W = ©^eKoM*[n](l. Then

dim W < oo by (3). Put N = U(q) ■ W. If ju E F0 then (M*[n]/AL_ = 0. The above

observation implies that M*[n]/N — 0. Hence N — M*[n]. This proves (i).

To prove (ii) we note that our proof of (i) imphes that there exist v,,...,vs £

Af*[n], positive integers k¡ and homomorphisms x, of Z to F such that

(a)A/*[n] = 2ï=1l/(gM,

(b) (z - XiO))*'c, = 0, / = 1,... ,s andz £ Z.

But then LTf=1(z - x,(z))kiv =Q,vë M*[n]. Hence if m E M then

Is k       \
A II {'z-Xi(z)) '-m    =0,       oEM*[n],z£Z.

'"

Hence Il;= ,('z - Xi(z))k'M G fl^L, n"M. This implies (h).

The only nontrivial part of (iii) is the surjectivity. We may assume that M is a

g-submodule of N. We must show that A*[n] \M = M*[n]. Theorem 2.1 implies that

for each k a positive integer there is a positive integer r(k) such that

nr(k)N HM GnkM.

Hence(M/nkM)* G (M/(nr(k)N) n M)*. Now

M/(nr(k)N) DM G N/nrWN.

Thus if X £ (M/nkM)* then X E (M/(nr(k)N) n M)*. Hence X extends to an

element of (N/nr{k)N)*.

Part (hi) of the above theorem is part of a theory discovered independently by the

second named author and W. Casselman. A complete theory of the modules Ai*[n]

will be developed in a forthcoming paper of Casselman and Wallach.
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Theorem 5.7. Let M be an admissible finitely generated (g, ï)-module. Suppose that

(g, f) has property (n). Then M has finite length.

Proof. The assumption that ( g, f ) has property ( n ) implies that if F is a nonzero

finitely generated (g, f )-module then V*[n] =£ (0).

Theorem 5.6(i) says that Af*[n] is finitely generated as a U( g )-module. Hence

A/*[n] satisfies the ascending chain condition. Theorem 5.6(iii) implies that a

descending chain

M = M, J M2 Í  • ' ■ 9 Mk Í • • •

gives rise to an ascending chain

(M/Mx)*[n]G(M/M2)*[n]G ••• G(M/Mk)*[n] G-■ ■

in M*[ rt ]. The result follows.

Note. Theorem 5.7 is well known in the case F= C and M is a (g, A')-module

with K compact. It is usually proven using the deep theorem of Harish-Chandra

which states that the characters of admissible, irreducible, representations of semi-

simple Lie groups with finite center are locally Lx -functions.

If M is an admissible finitely generated (g, f)-module, set E(M) — {p £ o* |

(M/nM); * 0}.

Lemma 5.8. Let M be an admissible finitely generated (g, l)-module. Suppose that

M — Mx D M2 D ••• D Md D Md+, = (0) is a composition series for M such that

M¡/Mi+X = N¡ is irreducible. (It exists whenever (g, f) satisfies property (rt) by

Theorem 5.7.) //M*[n]M ¥= (0) then p = £- Q with £ £ Uf=1 E(N¡) and Q is a sum

of elements of A+ .

Proof. By induction on d. If d = 1 then the result is just (1) in the proof of 5.6.

Suppose the result is true for d. Then we have the short exact sequence 0 -» Md -* M

-» M/Md -> 0 which according to 5.6(iii) induces the short exact sequence

0^(M/Md)*[n] ->M*[n] ->JWJ[n] -» 0.

Thus given a weight of M*[n] it must be a weight of (M/Md)*[n] or a weight of

M*[n]. The induction hypothesis now imphes the result for M.

Let z,,...,z, be generators for Z = Z(g). Let f denote the set of isomorphism

classes of irreducible finite dimensional f-modules. If y E ï fix Vy E y. If y E f and

if x: Z -» F is a homomorphism then put

My,x,k=U(z)®umVy/?á(zi-x(zi))k(U(z)®umVy).
i = i

Theorem 5.3 imphes that Myxk is an admissible, finitely generated (g, f )-module.

We note that the inclusion

2 (z, - xU.))*+1(c/(ö) ®umVy) G 2 (z, - x(z,)V(g) ®U(t)Vy)
i=l (=i
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induces a surjective g-module homomorphism Myxk+X -*   MyxJc with

ker *k+l = 2 (z, - x(z,))*(t/(g) ®£/(i)^)/ 2 (*, " x(z,))*+'(t/(g) »^fJ.
i=i /=i

Thus ker t/>A+, is isomorphic with a quotient of a direct sum of copies of M    x.

Since M k is admissible and finitely generated, Theorem 5.7 imphes that if

(g, f) satisfies property (n) then M k has a finite Jordan-Holder series (a

descending chain with irreducible quotients). Let ü(x, y) be the set of isomorphism

classes of the constituents of the Jordan-Holder series of M ,. The above observa-

tions imply

Lemma 5.9. Assume that (g, I) satisfies property (n). Then

(l)|n(x,y)1<oo.
(2) The class of any subquotient of M    k is in W(x, y).

We are now ready to prove the main result of this section.

Theorem 5.10. Suppose that (g, f ) satisfies property (n). Let M be a (g, l)-module

such that dim M < card(F). IfnM = M then M - (0).

Proof. (1) If F is a g-module such that nV = V and if F is a quotient of V, then

nF= V.

This is clear. We display it since it will be used repeatedly in the proof of the

result. Let zx,... ,z, be the generators of Z as above.

We will suppose that n M = M but M ¥= 0 and aim for a contradiction.

(2) There is a homomorphism x: Z -» F so that M has a quotient M on which

z ~~ x(z) is locally nilpotent for all z G Z.

Let M' be the F[zx]-torsion submodule of M. If M' ¥= M then F[zx] is torsion free

on M/M'. Hence Lemma 5.5 imphes that there is a X, E F such that z, — X, is not

surjective on M/M'. Hence z, acts by X, on (M/M')/(zx — XX)(M/M'). We

therefore see that M has a quotient M so that F[zx] acts by pure torsion on M.

Arguing in the same way for z,,... ,z¡ we see that M has a nonzero quotient M such

that if_w E M then dim Z • m < oo. But then M = © Â7X. Fix x so that Â7X = 0.

Then Mx is the desired quotient.

By (1) nM = M. Thus we may assume M = M. Let A/' be the f-finite dual of M.

Let /x £ AT, p ¥= 0, so that t/(f ) • ju is irreducible as a f-module. Let y* be the class

of U(l)p. Set M = /7(g) • p._Let 7V_= {u £ M\ M(v) = 0}. Then M = Af/A still

has the property that n M = M and Af ^ (0). We may assume M = M.

Set Afft = {w E M | (z, - x(z,))*m = 0, i = 1./}. Then Af, C M2 G ■ ■ ■ and

U M, = M. Set A/, = M\„k = {*|%|{ G A/}. Set ('x)(z) = x('z)- Then A/, is a

quotient of My.ixk. Since My.,xk is admissible we see that

(3) A/j. is admissible.

Now Mk = Mkx D MK2 D ■ ■_■ D Affci</ D A/Aid+1 = (0) with MkJ/Mkj+x irre-

ducible and (the class of MkJ/MkJ+x) E n(y*,'x). Set n(y*,'x)* equal to the set

of equivalence classes of irreducible (g, f)-modules whose f-finite duals are in

n(y*,'x). Then if Mkj = {m E Mk\ Mkj(m) - 0} we see that Mk = Mkd+X D

Mkd D • • • D Mkx = (0) and the class of Mkj/MkJ_x is in n(y*, 'x)*.
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We therefore have

(4) Mk is a finitely generated admissible (g, f)-module and the equivalence class

of every irreducible subquotient of Mk is in the finite set n(y*, 'x)*.

(5) For each k = 1,2,... there is i(k) so that Mk G nMi(k).

Let m,,... ,mn be generators of Mk as a [/(n)-module. Then m,■ E nM, i = 1,... ,n.

Hence m¡EnMk for some integers k¡,i= l,...,n. Let i(k) be the maximal of the

k,.
Then

Mk = 2 U(n)m¡ G 2 U(n)nMm = nMi(k).

Set

Jjk) = ,(... *(l)).

¿-tknes   '

Then

We are finally ready to derive a contradiction. Put F = U;ven( », .. E(N). Then

£ is a finite set. Every weight p of Afj^Jn] is of the form $ — Q, £ E E and Q a sum

of elements of A+ by 5.8. If t; £ Afftn] then there is v' E M*(k)[n] so that

v' \M¡ = v. Now AT, C nkMjW; hence v' £ (MJ(k)/nkMJ(k))*. But then u = £' - (X,

H-+Xr), with £' £ E(Mj{k)), X; £ A+ and r > A: by (1) in the proof of 5.6.

Hence p = £ — px — ■ • ■ —ps,£ £ E, /*, £ A+ andi > k.

We therefore see that if p is a weight of j(Mx) then for each k = 1,2,... there is

ikE E and /*&>1,-.. ,/x^ s  £ A+ , sk> k, so that

sk

>* = **- 2 M*,/-
<=i

Now argue as in the proof of (2) in 5.6 to obtain a contradiction.

Corollary 5.11. Suppose that (¡¿®FF,l®FF) has property (n®FF) for all

sufficiently large algebraically closed field extensions F of F. If M ¥= 0 is a ( g, f )-

module then n M =£ M.

Proof. Let F be an algebraically closed field extension of F such that card F >

dimjrAf and so large that (g ®jrF, g ®FF) has property (n ®jrF). If M = M ®FF,

then Theorem 5.10 imphes (rt ®f F)Af = Af. But then nM ¥= M.

Note. It is not known to us whether (g, f) having property (n) for F implies

property (n®jrF) for (g®fF, t <8>FF) when F is an algebraically closed field

extension of F. However, our proof of property (n) for the cases covered in §6

proves the result for every algebraically closed field.

6. Property(n) for (§>l(n, F), êo(«, F)).In this section we give a proof of property

(n) for (§/(«, F), èo(n, F)) for F an algebraically closed field. Here n„ is the Lie

algebra of upper triangular n X n matrices over F with zeros on the main diagonal, a

is the space of diagonal matrices in êl(n, F). We prove this result simultaneously

with Theorem 4 of the introduction. The proof rests on several lemmas.
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If F is a vector space over F we say that T E End(F) is nilpotent if for each

v E V there is a positive integer k (depending on v), such that Tkv — 0. If R is an

associative algebra over F then T £ R is said to be nilpotent if ad F: R -> R is

nilpotent.

Lemma 6.1. Let R be an associative algebra over F. Let x E R be nilpotent. If M is

an R-module then M[x] = {m E M \ xkm = 0 for some k} is an R-submodule of M.

Proof. If m E M[x], r E R, then xkm = 0, (ad x)' • r = 0 for some positive

integers k and /. Hence xk+l(rm) = 0.

Lemma 6.2. Let R and x be as in Lemma 6.1. Suppose that M is an R-module such

that for each R-module quotient M of M there is 0 =£ m £ M such that xm = 0. Then x

acts nilpotently on M.

Proof. Let Af[x] be as in 6.1. Then x clearly acts injectively on M/M[x]. Hence

M/M[x] = (0) by the hypothesis.

Lemma 6.3. Let V be a vector space over F. Let X, Y, C E End(F). Suppose that

(1) [C, X] = Y, [C, Y] = -Xand[X, Y] = 0.

(2) C acts semisimply on V.

(3) There exists v ¥= 0, v E XV, with CV — Xv for some X E F.

Then X2 + Y2 is not injective on V.

Proof. Set e+ = {(X - iY), e'=\(X+ iY). Then [C,e±]= ±ie± . By assump-

tion v = Xw for some w £ V. Now w — 2 vv„ with Cw„ = pw„. Hence v = 2 e+ w„ +

2 é?-wM. Now w = %=k wx+ir + 2MeA+,z h>„, with wx+i¡ ̂  0 and wx+ik ^ 0. Clearly,

v = %=k e+ wx+ir + %=k e'wx+jr. If / > 0 then it is clear that e+ wx+il = 0. If / < 0

then e~wx+ik — 0. In any event e+ e~— \(X2 + Y2) is not injective.

Corollary 6.4. Let X, Y, C, V be as in Lemma 6.3. If XV = V then X2 + Y2 acts

nilpotently on V.

Proof. Let R be the subalgebra of End(F) generated by X, Y and C. Clearly,

X2 + Y2 is a nilpotent element of R. If F is an B-module quotient of V then

XV = V. Hence Lemma 6.3 imphes that X2 + Y2 has a nonzero kernel on V. But

then Lemma 6.2 implies that X2 + Y2 is nilpotent on V.

Let g „denote the semidirect product êo(n, F) © F" (Fn abelian) with [X, v] = Xv

for X E êo(n, F), v E F". Let ex,.. .,en denote the standard basis of F".

Lemma 6.5. Let M be a (g„, êo(n, F))-module. Assume that n 3= 2 and that

M — 2"=/e¡M. Then there exists an element f E U(F") of the form f— e2k +

2*=ô e2Jgj(ex,. ..,en_x) that acts nilpotently on M.

Proof. Put Af0 = (0), AF = 2;=1eyAf. Set Mr = M/Mr. Then M0 = M._We

assume that Mr — M, Mr_, ¥= M. By assumption r < n — 1. Clearly erMr_, = Mr_,.

Let, for 1 < /' <j *z n, c(- • £ So(n, F) be defined by c¡¡e¡ = ej, cijei = -e¡ and

cijek — 0, k ¥= i, j. Then ctJ acts semisimply on M. Clearly crnMr_x G Mr_x.

Corollary 6.4 imphes that e2 + e2 acts nilpotently on Af,_,.
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Suppose that we have shown that

(e2_k + ■ • • +e2 + e2)(e2_k +■■■ +e2r_x + e2n) ■ ■ • (e2r_k + e2)

acts nilpotently on Mr_k_x and r — k — 1 > 1. Then er_k_xMr_k_x = 0 implies

that

A = (e2r_k_x + e2_k + • • • +e2 + e2)(e2_k_x + ■■■ +e2„, + e2)

••• (e2_,_,+^, + e„2)

acts nilpotently on A#r_fc_i.

Let (0) ^ at be a [/(Fcr„,(._,„ ®F")-quotient module of Â7r_A_2. We note that

[c^-yt-! „, h] — 0. If w G N there is / so that h'w G er_k_xN. Thus there is v ^ 0 so

that

cr_k_Xnv — Xv    and    h ■ v = er_k_xv'

for some t/ £ N. Either h ■ v = 0 or Lemma 6.3 implies that e2_k_x + e2 has a

nonzero kernel on A. Hence h(e2_k_x + e2) is not injective on A. Lemma 6.2 now

implies that h(e2_k__x + e2) is nilpotent on Mr_k_2.

We therefore have by induction that

/= (ef + v +e2 + e2)(e2 +■■■ +e2_, + e2) • ■ • (e2 + e2)

is nilpotent on M0 = M. Clearly / is of the desired form.

Let p„ be the semidirect product of g/(«, F) with the abelian Lie algebra F" with

[X, v] — Xv, X E Ql(n, F), v E F". Let rt„ be the Lie algebra of upper triangular

matrices in g/(«, F) with zeros along the main diagonal.

We look at p„ as a Lie subalgebra of g/(« + 1, F) as follows: If v E F" then we

look upon v as an n X 1 column vector. If (X, v) E p„ then we identify it with

Eg/(« + 1,F).

Then n„+1 = rt„ © F" with this identification.

Theorem 6.6. Assume that F is uncountable. If(0) ¥= M is a (<¡l(n, F), êo(n, F))-

module finitely generated over U(nn) then nM =£ M.

Theorem 6.7. Assume that F is uncountable. 7/(0) =£ M is a (p„, g>o(n, F))-module

finitely generated under U(n„ © F") then (n„ © F")M ¥= M.

We prove Theorems 6.6 and 6.7 simultaneously by induction on n. We first note

(1) If Theorem 6.6 is true for«, then (§/(«, F), §o(«, F)) has property (n„).

Indeed,   g/(«, F) = FI © §/(«, F).   Let   (0) =£ M   be   a   finitely   generated,

admissible, (ë/(«, F), êo(n, F))-module. Define IM = 0. Then M is a

(al(n, F), èo(n, F))-module finitely generated over U(nn) (see Theorem 5.2). Hence

nnM¥= M.

(2) If Theorem 6.7 is true for n < k then Theorem 6.6 is true for n *£ k + 1.

Indeed,   a  (g/(n + 1, F), §o(« + 1, F))-module M,   finitely  generated  under

U(nn+X), is clearly a (p„, §o(n, F))-module finitely generated under U(nn © F").

0     0
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AEQl(n-l,F)\ Gql(n,F)

We now proceed with the proof of Theorems 6.6 and 6.7. If n — 1 then Theorem

6.7 follows from Proposition 3.1. We assume Theorem 6.7 for 1 =£ n =£ k and

consider the case n = k + 1. Let M =£ (0) be a (p„, êo(n, F))-module finitely

generated over U(n„ © F") such that (n„ © F")Af - M.

(3)F"M = M.
Indeed, M — M/F"M is a (g/(n, F), %o(n, F))-module finitely generated under

U(nn) such that nnM — M. Hence the inductive hypothesis and (2) imply that

Â7 = (0).
Suppose now that M — 2"ÇX e¡M. Lemma 6.5 says that there is / = e2k +

2*r¿ e2Jgj(e,,...,e„_,) acting nilpotently on M.

The inductive hypothesis combined with (1), (2) imply that (êl(n, F), äo(n, F))

has property (n„). We partition the elements x E äl(n, F) in the following way;

\A     b
id     c.

with A E Ql(n - 1, F). Set q = {[%$] | with iann-lXl matrix). Theorem 5.10

implies that q M ^ Af. Since/above acts nilpotently on M, M is finitely generated as

aU(n„® 2?=,' Fe,)-module.

We identify g/(« — 1, F) with the space of all

A    0
0     0

Then M = M/a M is a (ql(n - 1, F) © 2?=,' Fe„ êo(« - ^Fj^module finitely

generated under U(nn_x © 2"=/ Fe¡) and (n„_, © 2?=/ Fe,)A/ = M. The inductive

hypothesis now implies the contradiction that M — (0). We have therefore shown

(4) 2?=/ etM # M.
We identify p„_! with the corresponding subalgebra of g/(«, F) as before the

statement of Theorem 6.6.

Let h be the element of g/(n, F) with exactly one nonzero entry which is in the n,

n position. Then [p„_ „ 2?=,' Fe¡] G 2"= / Fe,. Let

n-\ n-\

K = en + 2 Fe, £ F"/ 2 Fet.
i=i i=i

Then Â7= M/l^Zl eiM™ a (f n-i © F?„ © FA, êo(« - 1, F))-module.
We note that n„ C pn_, as usual and M is finitely generated as a U(nn® Fen)-

module.

(5)n„À7=À7.
Indeed, set A = M/nnM. Then A is a (FA © Fe~„)-module finitely generated as a

(7(Fen)-module and enN — N. Proposition 3.1 imphes that A = (0).

Let F be a nonzero irreducible quotient ofAfasa(p„_,© Fën)-module. Now

[P„-!, êj — 0. Hence Lemma 5.5 implies that en acts by a scalar X on V. Hence Fis

a (P„_i, S>o(n — 1, F))-module finitely generated under i/(n„„, © F"~x) and

(n„_| ® F"~X)V = V. This imphes F=(0). A contradiction. This contradiction

completes the inductive step and hence the proof of Theorems 6.6 and 6.7.

If Af is an irreducible finite dimensional p „-module then it is well known that

F" ■ M = (0). Our first corollary is a generalization of this fact.
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Corollary 6.8. Let F be algebraically closed and uncountable. If M is an

irreducible (p„, §o(«, F))-module finitely generated as a U(nn ® F")-module, then
FnM = (0).

Proof. F"Af is a (p„, %o(n, F))-submodule of Af. Theorem 6.7 implies that

F"Af =£ M. Hence F"Af = (0).

Corollary 6.9. Let F be algebraically closed (but not necessarily uncountable). If

(0) =£ Af is a (p„, êo(n, F))-module finitely generated over U(n„ © F") then

(nn® Fn)M¥=M.

Proof. Let F be an uncountable algebraically closed extension of F. Suppose Af is

as in the statement but that (n„ © F")Af = Af. Then M®FF is a (p„®FF,

èo(n, F))-module finitely generated under U(nn ®FF © F") and

(nn®FF®Fn)M = M.

Hence Theorem 6.7 implies a contradiction.

Corollary 6.10. Let F be an algebraically closed field of characteristic 0. Then

(êl(n, F), èo(n, F)) satisfies property (nn).

Proof. In light of Corollary 6.9 the arguments proving (1) and (2) of the proof of

6.7 and 6.8 prove the corollary.

Notice that the only property of admissible finitely generated ( g, f )-modules that

we have used in this section is that they are finitely generated as U( n )-modules. We

end this section by showing that the two properties are equivalent.

Theorem 6.11. Suppose that (g, f) satisfies property (n) and that M is a finitely

generated (g, l)-module. Then the following are equivalent:

(1) M is admissible.

(2) M is finitely generated as a U(n)-module.

Proof. We need only show that (2) imphes (1) (see Theorem 5.2). Suppose M

satisfies (2). Then A = H".., n*Af is a g-submodule of M and thus A is a finitely

generated U( g )-module. Thus if A ¥= (0) then A has an irreducible quotient A.

Property (n) imphes that nN ¥= N. Hence nJV #= A. On the other hand Proposition

2.1 imphes that there is a positive integer k so that n^Af n A C nJV. But A C n*Af.

Hence nA = A, a contradiction. We have thus shown that A = (0). Theorem 5.6(h)

now imphes that if m E Af then dim Z • m < oo. Theorem 5.3 now applies and says

that Af is admissible.
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