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A NEW SOLUTION TO THE WORD PROBLEM

IN THE FUNDAMENTAL GROUPS

OF ALTERNATING KNOTS AND LINKS

BY

MARK J. DUGOPOLSKI

Abstract. A new solution to the word problem for alternating knots and links is

given. The solution is based on Waldhausen's algorithm, but is greatly simplified.

I. Introduction. The conjugacy problem, and hence the word problem for alternat-

ing knots, was solved by Appel and Schupp [1], and Weinbaum [3], using algebraic

methods. Waldhausen [2] gave an algorithm for determining if a loop in a certain

type of 3-manifold bounds a singular disk, thus solving the word problem in the

fundamental groups of those manifolds. Although Waldhausen's algorithm applies

to knots and links, it is extremely difficult to apply. One must first find, using an

algorithm of Haken, a hierarchy of surfaces for the 3-manifold which splits it into

balls. To do this, one must find nonnegative, integral solutions to a rather large

system of equations.

In this paper we show that in the complementary spaces of alternating knots and

links, we do not need to use Haken's algorithm to obtain the surfaces. The surfaces

are readily available from a projection of the knot or link. By obtaining the surfaces

geometrically, we get a better understanding of how the word problem is solved for

alternating knots and links.

II. A preliminary result from graph theory. The most difficult part of the proof can

be reduced to a question about planar graphs. For clarity we have separated this

from the rest of the proof and will take care of it before proceeding to the algorithm.

A loop in a graph is a finite sequence a0, ax,.. .,an_x of oriented edges, such that

the terminal vertex of a¡ is the initial vertex of ai+x (mod n), and for each /', a, and

ai+x (mod n) are different edges. Suppose we have a finite sequence of symbols and

we place them in order around the boundary of a disk. If there is a way to pair the

symbols using nonintersecting arcs contained in the disk, such that each arc connects

a pair of identical symbols, then the sequence is called a matching sequence.

For a loop in a graph we obtain a finite sequence of symbols as follows. Let the

open regions of the complement of the graph be labeled with distinct symbols. We

travel around the loop once, in the direction prescribed by the orientation of the

edges. We obtain a sequence of symbols, one for each edge of the loop. The first
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symbol is the symbol of the region on our left when traversing the first edge, the

second symbol is the symbol of the region on our right when traversing the second

edge, etc. The symbols in the sequence correspond to the symbols of the regions on

alternating sides of the loop. We will call a sequence obtained in this way an

alternating sequence corresponding to a loop. A loop will be called a matching loop if

the loop has an alternating sequence which is a matching sequence. Diagram 1 shows

how a matching sequence might be matched.

D       r^C

Diagram 1

Theorem 2.1. In a connected planar graph where each edge has two distinct vertices

and each vertex has order at least two, there are no matching loops.

Proof of Theorem 2.1. Suppose we have a matching loop. Note that among the

arcs used in the matching of a matching sequence, there must be an innermost arc.

Thus a matching sequence must have at least one letter occurring twice consecu-

tively. Since consecutive edges of the loop must be different, this means that by

traversing these two edges, we find a region A first on one side and then on the

other. These two edges have only one vertex in common and its removal would

disconnect the graph. Encircle part of the graph with an arc starting at the common

vertex and lying in region A, as shown in Diagram 2. We call the region enclosed by

this arc a zone.

Diagram 2

Each pair of consecutive identical letters occurring in the sequence means the loop

is entering a new zone. The only way the loop can leave that zone is to exit at the

same vertex where it entered. If the loop enters a zone and then another pair of

consecutive identical letters occurs before it exits, the loop is entering a new zone,

entirely within the previous zone.
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There must be a zone which is innermost in the sense that no double letters occur

in the sequence before the loop exits that zone. Each zone is either innermost or

contains an innermost zone. Since no pairs of consecutive identical letters occur

within an innermost zone, there can be no matching of letters among those occurring

within an innermost zone. Thus when a matching loop enters an innermost zone

there must be at least one letter in the sequence that can only be matched by

returning to that zone. Now among all such innermost zones choose one where the

number of edges of the loop before returning to that zone for the matching is

minimal.

Now since the sequence is a matching sequence, there must be a pair of

consecutive identical letters among those letters before the return. Choose the first

such pair and then the first innermost zone within that zone. This innermost zone

must also have a letter that can only be matched by returning to that zone. By the

minimality condition we imposed on the first zone, this return must occur after the

first return. The arcs used in these matchings must cross. Hence, there can be no

matching sequences.

III. The algorithm. All work will be done in the piecewise linear category. Unless

stated otherwise, a surface F in a 3-manifold M will be connected and have

F fi 3Af = 3F. The word "disk" will always mean a nonsingular disk. A line over a

symbol indicates closure and a small circle is used to indicate interior.

Let Mx be a 3-manifold and F, a compact, connected surface in M,. We obtain a

manifold M2 = Mx — NFX where NFX is a small regular neighborhood of F,. We say

that M2 is Mx split at Fx. There is a natural projection px:M2 -» A/,. A finite

sequence of such surfaces F,,.. .,F„, where F, C M¡ and each M¡ is obtained from

Af,— , by sphtting Af,_, at F,_,, is called a hierarchy of surfaces for the manifold A/,.

We define also the map F, = p, ° p2 ° • • ■ ° p¡. At times it is convenient to view all

of the surfaces of the hierarchy as lying in A/,. In this situation, we will often omit

the projection maps. For instance, we may write F, n Ft■ — 0 when we mean

F, n P¡(F¡) = 0. Whenever we introduce a new object, we assume it is in general

position with respect to all structures already present.

A surface F in a 3-manifold M is called incompressible in M provided that (i) F is

not a 2-sphere, and (ii) if D is a disk in M with D n F = 3D, then oD — aD for

some disk D in F.

A loop in a 3-manifold M is the image of a map from the 1-sphere Sx to M.

Suppose / is a loop in M, F is a surface in M, and /* is an arc of / such that

/* n F = 3/*. If we know that there is a deformation of /* to F that keeps the

endpoints of /* fixed, then we can deform / so that / intersects F in two fewer points.

This is called a type 1 reduction of / with respect to F. In general, we will use the

same letter to denote an object after deformation as before.

Suppose /* is an arc in M such that /* D aM = 3/*, F is a surface in M such that

3/* n F = 0, and l\* is a subarc of /* such that If n F consists of one point

of 3/f and /* Pi 3/* is the other point of dl\*. If we know that l\* deforms to an arc

lying in F U aM intersecting 3F once, then /* deforms to an arc lying partly in aM,

where the part not in 3AÍ intersects F one less time than / does. This is called a type 2

deformation of /*. See Diagram 3.
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i]*   X / X i*

Diagram 3

Suppose F,,... ,F„ is a hierarchy for A/,. It will be called a /ype I hierarchy if the

following hold:

1. F, is an incompressible surface which may be orientable or nonorientable, and

is not necessarily connected.

2. F2,...,Fn are disks such that, for i > 2, F¡ C\ U 2<J<¡ Fj — 0.

3. If i > 2, Dis a disk, and/is a map from D to A/2 such that/"'(F¡) = ß, an arc

in aD, f-\UJ<iFj) = 0, and f~\aNFx) = aD - ß°, then there is a map /:

F> - M2 such that/l, =f\ß,f(D) C F„ and/"'^^) = 92) - ß°.
4. If D is a disk and /is a map from Z) to Mx such that/"'(F,) = aD, then there

exists/': tD -» A/, such that/' |3D = /|3D and/'(/)) C F,.

5. Mn+1 consists only of balls or balls with holes. (A ball with a hole is a ball

where a ball disjoint from the boundary of the original ball has been removed.)

Theorem 3.1. If Mx has a type I hierarchy, then there is an algorithm by which we

can determine if an arbitrary loop I in Mx is contractible or not.

The algorithm is essentially Waldhausen's [2], except that for our hierarchy it is

simpler. It differs from Waldhausen's algorithm in allowing a nonorientable surface.

Before we prove Theorem 3.1, we need some preliminaries. We can assume / is

nonsingular and in general position with respect to U " F( and oNFx. We also assume

that NFX is fibered locally and that if / D A^F, ¥= 0, then / fl NFX consists only of

fibers. If / D NFX ¥^ 0, then / is split into arcs /,,• • ■ ,lm by the surface F,. Each of

these arcs has a small segment at each end which is half of a fiber in NFX. Let V, be

the subarc of /, which has endpoints on aNFx and otherwise does not intersect AT,.

It is then obvious that there is a deformation of l\ to aNFx that keeps the endpoints

fixed if and only if there is a deformation of /, to F, that keeps the endpoints fixed.

We will need the following lemmas.

Lemma 3.2. There is an algorithm by which we can check if there is a type 1

reduction that can be performed on I with respect to Fx.

Proof. Suppose q is an arc such that q n F, = dq, and q' is the subarc of q with

endpoints on aNFx. Now q' is spht into arcs by UJ F(. Since these arcs lie in the

balls of Mn+X, it is only the position of the endpoints of the arcs that determines

whether or not a deformation can be performed. We can check each of these arcs

just by looking at aMn+x to see if we get a type 1 reduction of / with respect to F¡, for

some i > 1, or if we get a type 2 deformation. Call this process X.
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Diagram 4

If q D U 2 Ft — 0, then we use X to check q for a type 1 reduction of / with

respect to F,. Since all of the surfaces have Property 4 of the hierarchy, when a type

1 reduction with respect to any surface exists, it can be done in essentially only one

way. If q D U 2 Fl■ =£ 0, then for every arc of q' with endpoints on the same disk,

we check for a type 1 reduction of / with respect to that disk. We perform all such

reductions, each time reducing the number of points of q' D U 2 F¡ by two.

If now q D U2 Ft■= 0, we use X. If not, let q\,.. .,q's be the subarcs of q'. We

then use X to check q\ for a type 2 deformation. Conditions 3 and 4 of the hierarchy

guarantee that a type 2 deformation is essentially unique. If we get a type 2

deformation, we deform q' so that it lies partly in dNFx and the part which is not in

aNFx, is an arc with endpoints in oNFx, intersecting U" F¡ in one point fewer. We

then continue to try for the same type of reduction on the new arc, provided the arc

still intersects U2 F¡. If it does not, we use X to check for a type 1 reduction on the

last arc. If we are successful at each point, we see that q' deforms to oNFx, and hence

q deforms to F,.

If we fail at any point in this sequence of checking, then q does not deform to F,.

The reason for this is clear if we consider the map/: D -> M2 such that f~x(q') is an

arc ß in aD and f(oD — ß) C dNFx. We can put f(D) in general position so that

/"'( U " F¡) consists of the following kinds of disjoint arcs and simple closed curves:

1. arcs with both endpoints on ß,

2. arcs with both endpoints on aD — ß,

3. arcs with one endpoint on ß and the other on aD — ß,

4. simple closed curves.

Using Properties 2-4 of the hierarchy, we can get a /such that f~\Fx) is empty,

f\ß — f\ß, the set/(3Z) — ß) C aNFx, and f~\U2F¡) consists only of disjoint arcs

of types 1 and 3. It is then obvious that the process will work as described. See

Diagram 4, where the dashed lines represent arcs of/"'( U 2 F¡).

Lemma 3.3. If I contracts, then the number of times I intersects F, can be reduced to

zero by performing all possible type 1 reductions.
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Proof. If / bounds a singular disk, we have a map / from a disk D to A/,, where

f\dD is /. We put f(D) into general position, so that f'\Fx) consists of disjoint

simple closed curves and arcs. Suppose a is an innermost simple closed curve of

f~\Fx). Since/(a) bounds a singular disk in M2, Property 4 of F, implies that/(a)

bounds a singular disk in F,. We move this disk off of Fx, changing the map/so that

/"'(F,) contains one fewer simple closed curve. In this way we can get a map /:

D -> Mx, where/ |az) is / and/"'(F,) consists only of disjoint arcs. This shows us that

if we do all possible type 1 reductions, then / will be deformed so that / fl F, = 0.

Proof of Theorem 3.1. If / n F, =£ 0, / is spht into arcs /,,... ,lm. Check each

arc for a type 1 reduction. If we get one, we reduce / n F, by two points and try

again. If we cannot get / n F, = 0 by repeating this, the answer is "no", by Lemma

3.3. If we got I H Fx = 0, then / lies in M2 and each component of M2 is a

handlebody. Since F, is incompressible, we see that / contracts in M2 if and only if /

contracts in A/,. We could check algebraically if / represents the trivial element in

itx(M2), since w,(Af2) is free. However, we can continue to perform all possible type

1 reductions on /. It is easy to see that / contracts in M2 if and only if / can be freed

from intersecting the disks when we apply all possible type 1 reductions.

IV. A new solution to the word problem in the fundamental groups of alternating

knots and links. A knot is a piecewise linear homeomorphic image of Sl and a link is

a disjoint union of finitely many knots. Consider a knot or link in S3 and project it

onto a plane so that there are only finitely many singularities, all double points. An

alternating projection is one where the double points are alternately overcrossings

and undercrossings as we travel around the knot. An alternating knot or link is one

that has an alternating projection. In this section we will show that for alternating

knots and links, the type I hierarchy is readily available from the alternating

projection and the algorithm of §111 can be apphed.

The projection of a knot or hnk onto a plane separates the plane into open

regions. Suppose the regions are colored alternately black and white so that any two

regions whose closures share an edge are to be of opposite colors. Let the unbounded

region be colored white. In the case where we have a single knot, we can get a

spanning surface of the knot from the black regions. It consists of disks joined

together by ribbons with a half-twist at every double point. For the projection of the

trefoil given in Diagram 5, the black surface is a Möbius band. Of course, different

projections may yield different surfaces.

Diagram 5
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Theorem 4.1. Given an alternating projection for an alternating knot or link T, we

can obtain a type I hierarchy for the manifold Mx =S3 — NT where NT is a small

regular neighborhood of T.

Proof. If we let F, be the black surface formed from the coloring of the regions,

then A/, - AT, is a handlebody. The disks which split M2 into a ball come from the

white regions of the projection. See Diagram 6.

We first show that F, satisfies Condition 4 of a type I hierarchy. We may assume

that the closure of every black region is simply connected, since this could be

accomplished by untwisting any section where this fails to hold. F, may consist of

several components, but it suffices to prove the theorem for F, connected.

We view F, as a collection of disks connected by strips, each given a half-twist.

Since the projection is alternating, all twists are in the same direction. We view

f(aD) as a path which travels between the disks, crossing the strips to get from disk

to disk. We may assume /(3F>) has been straightened on the strips, so that all

singularities lie in the disks. We may also assume that/(3D) has been simplified by

homotopy so that it does not go from disk Dx, to a disk D2, then immediately back

to Dx over the same strip. If the path does not cross any strips, then it contracts in

F,. We will thus show that crossing at least one strip is impossible for a path

simplified as we have just described. To prove this, we transform the problem into

an equivalent problem in graph theory.

The disks which form F, are replaced by vertices, and the ribbons connecting the

disks are replaced by edges connecting the appropriate vertices. This gives us a

planar graph in which every edge has two distinct vertices and each vertex is at least

of order two. The path/(3F>) then becomes a loop in the graph as in §11.

Now f(D) is in A/, - F, and Mx - F, is split into a ball by the disks F2,... ,F„.

Whenever/(3F>) crosses a strip in Fx,f(aD) intersects one of the disks F2,... ,F„. In

terms of the graph, f(oD) intersects a disk for each edge it crosses, but because the

projection is alternating, it alternately intersects the disks on the left or right side of

the edge it is crossing.

In D, /"'(U2F,) consists of arcs whose endpoints are on aD. The points of

f-\f(dD) D Un2 F¡) on the boundary of D are matched with the arcs of/"'( U "2 F¡).

Diagram 6
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The situation we are in is precisely the one described in §11. By Theorem 2.1, f(oD)

must be contained in one disk of F, and cannot cross any ribbons. Thus f(dD)

contracts in F, and we have established Property 4. This also gives us Property 1.

For Property 3 of the hierarchy, suppose we have a disk D and a map /: D -* M2

suchthat/^F^isanarcßinSA/^U,.^) = 0, and f~](dNFx) = 3D - ß°. If

the endpoints oif(ß) are in the same component of Fi n dNFx, we are done. If they

are in different components, then 3F, — f(oß) consists of two arcs, say dx and d2.

Consider f(aD — ß) U dx. This is a loop in 3Af2 which contracts in M2. The

endpoints olf(ß) are in different black disks of the projection. Thuspx(f(oD) — ß)

is a path in F,, running across at least one twist even after it is simplified. An

argument similar to that used to establish Property 4 will show that this is

impossible. Thus Property 3 is satisfied and the other properties are obvious. Thus

the proof of Theorem 4.1 is complete.
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