SMOOTHNESS OF THE BOUNDARY VALUES OF FUNCTIONS BOUNDED AND HOLOMORPHIC IN THE DISK

BY

SHINJI YAMASHITA

ABSTRACT. The non-Euclidean counterparts of Hardy-Littlewood's theorems on Lipschitz and mean Lipschitz functions are considered. Let $1 \le p < \infty$ and $0 < \alpha \le 1$. For f holomorphic and bounded, |f| < 1, in |z| < 1, the condition that

$$f^*(z) \equiv |f'(z)|/(1-|f(z)|^2) = O((1-|z|)^{\alpha-1})$$

is necessary and sufficient for f to be continuous on $|z| \le 1$ with the boundary function $f(e^{it}) \in \sigma\Lambda_{\alpha}$, the hyperbolic Lipschitz class. Furthermore, the condition that the pth mean of f^* on the circle |z| = r < 1 is $O((1 - r)^{\alpha - 1})$ is necessary and sufficient for f to be of the hyperbolic Hardy class H^p_{σ} and for the radial limits to be of the hyperbolic mean Lipschitz class $\sigma\Lambda^p_{\alpha}$.

1. Introduction. We shall prove the non-Euclidean counterparts of the following Theorems A and B due to G. H. Hardy and J. E. Littlewood [2, Theorem 4, p. 627 and Theorem 3, p. 625] (see [1, Theorem 5.1, p. 74 and Theorem 5.4, p. 78]).

Let Φ be the family of complex-valued functions φ defined on the real axis such that φ is periodic with period 2π . We say that $\varphi \in \Phi$ is of Lipschitz class Λ_{α} $(0 < \alpha \le 1)$ if

$$\sup_{|t-s| \le \tau} |\varphi(t) - \varphi(s)| = O(\tau^{\alpha}) \quad \text{as } \tau \to +0.$$

Let $D = \{ |z| < 1 \}$ and let $D^{\#} = \{ |z| \le 1 \}$ in the plane.

THEOREM A. Let f be a function holomorphic in D and let $0 < \alpha \le 1$. Then f is continuous on $D^{\#}$ and the function $f(e^{it})$ is of class Λ_{α} if and only if

(1.1)
$$f'(z) = O((1-|z|)^{\alpha-1}) \quad as |z| \to 1-0.$$

We say that $\varphi \in \Phi$ is of mean Lipschitz class Λ_{α}^{p} $(1 \le p < \infty, 0 < \alpha \le 1)$ if the restriction of φ to $[0, 2\pi]$ is of $L^{p}[0, 2\pi]$ and if

$$\sup_{0 < h \leq \tau} \left[\int_0^{2\pi} |\varphi(t+h) - \varphi(t)|^p dt \right]^{1/p} = O(\tau^{\alpha})$$

as $\tau \to 0$. For $0 \le r < 1$, 0 , and for <math>v nonnegative and subharmonic in D, we set

$$\mu_p(r,v) = \left[\frac{1}{2\pi} \int_0^{2\pi} v(re^{it})^p dt\right]^{1/p};$$

Received by the editors February 11, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 30D55.

Key words and phrases. Lipschitz functions, mean Lipschitz functions, Hardy class, non-Euclidean hyperbolic distance.

this is an increasing function of r. The Hardy class H^p (0 consists of <math>f holomorphic in D such that $\mu_p(r,|f|) = O(1)$ as $r \to 1$, or equivalently, the subharmonic function $|f|^p$ has a harmonic majorant in D. By the boundary value of a complex-valued function g in D at the point e^{it} of the unit circle we mean the radial limit $g(e^{it}) = \lim_{r \to 1} g(re^{it})$. Each function $f \in H^p(0 admits the boundary value <math>f(e^{it})$ at a.e. point e^{it} , and $f(e^{it}) \in L^p[0, 2\pi]$.

THEOREM B. Let f be a function holomorphic in D, and let $1 \le p < \infty$, $0 < \alpha \le 1$. Then $f \in H^p$ and the function $f(e^{it})$ is of class Λ^p_α if and only if

(1.2)
$$\mu_p(r,|f'|) = O((1-r)^{\alpha-1}) \quad \text{as } r \to 1.$$

In the case $\alpha = 1$, (1.2) says that $f' \in H^p$.

The non-Euclidean hyperbolic distance between z and w in D is defined by

$$\sigma(z, w) = \frac{1}{2} \log \frac{|1 - \bar{z}w| + |z - w|}{|1 - \bar{z}w| - |z - w|}.$$

We set $\sigma(z) \equiv \sigma(z, 0)$, the hyperbolic counterpart of |z|, $z \in D$. We say that $\varphi \in \Phi$ is of class $\sigma \Lambda_{\alpha}$ (0 < $\alpha \le 1$) if φ is bounded, $|\varphi| < 1$, and if

$$\sup_{|t-s| \le \tau} \sigma(\varphi(t), \varphi(s)) = O(\tau^{\alpha}) \quad \text{as } \tau \to +0.$$

Let B be the family of functions f holomorphic and bounded, |f| < 1, in D. Then, apparently, $f(e^{it})$ exists a.e. For $f \in B$, the Schwarz-Pick lemma reads

$$f^*(z) \equiv |f'(z)|/(1-|f(z)|^2) \le (1-|z|^2)^{-1}, \quad z \in D.$$

We note that $\log f^*$ is subharmonic in D, so that $f^{*p} = \exp(p \log f^*)$ (0 is subharmonic in <math>D. The hyperbolic analogue of Theorem A is

THEOREM 1. Let $f \in B$, and let $0 < \alpha \le 1$. Then f is continuous on $D^{\#}$ and the function $f(e^{it})$ is of class $\sigma \Lambda_{\alpha}$ if and only if

(1.3)
$$f^*(z) = O((1-|z|)^{\alpha-1}) \quad as |z| \to 1-0.$$

We say that $\varphi \in \Phi$ is of class $\sigma \Lambda_{\alpha}^{p}$ $(1 \le p < \infty, 0 < \alpha \le 1)$ if $|\varphi(t)| < 1$ a.e., if the restriction of $\sigma(\varphi)(t) \equiv \sigma(\varphi(t))$ to $[0, 2\pi]$ is of $L^{p}[0, 2\pi]$, and if

$$\sup_{0 \le h \le \tau} \left[\int_0^{2\pi} \sigma(\varphi(t+h), \varphi(t))^p dt \right]^{1/p} = O(\tau^{\alpha})$$

as $\tau \to 0$. For $f \in B$ set $\sigma(f)(z) \equiv \sigma(f(z))$, the hyperbolic counterpart of |f(z)| ($z \in D$). Then $\log \sigma(f)$ is subharmonic in D because $X(x) \equiv \log \sigma(e^x)$ is a convex and increasing function of $x \in (-\infty, 0)$, with $-\infty = X(-\infty) \equiv \lim_{x \to -\infty} X(x)$, and $\log \sigma(f) = X(\log |f|)$. For each $a \in D$, the identity $\sigma(g) = \sigma(f, a)$ holds, where $g = (f - a)/(1 - \bar{a}f) \in B$ for $f \in B$. Therefore $\log \sigma(f, a)$ and $\sigma(f, a)^p = \exp[p \log \sigma(f, a)]$ (0) are subharmonic in <math>D. Let H_{σ}^p be the set of all $f \in B$ such that $\mu_p(r, \sigma(f)) = O(1)$ as $r \to 1$, or equivalently, the subharmonic function $\sigma(f)^p$ admits a harmonic majorant in D. The hyperbolic Hardy class H_{σ}^p ($0) is the counterpart of <math>H^p$. We are now ready to propose a hyperbolic analogue of Theorem B.

THEOREM 2. Let $f \in B$, and let $1 \le p < \infty$, $0 < \alpha \le 1$. Then $f \in H_{\sigma}^{p}$ and the function $f(e^{it})$ is of class $\sigma \Lambda_{\sigma}^{p}$ if and only if

(1.4)
$$\mu_{n}(r, f^{*}) = O((1-r)^{\alpha-1}) \quad as \ r \to 1.$$

In the case $\alpha = 1$ in (1.4), the subharmonic function f^{*p} admits a harmonic majorant.

The proof of Theorem 1 is not difficult and depends on Theorem A; we need comparisons of the non-Euclidean distance and the Euclidean distance. The proof of the "if" part of Theorem 2 is, in a sense, routine. Not easy is the proof of the "only if" part of Theorem 2. There is no relation between $\sigma(f)$ and f^* like that between |f| and |f'|, namely, one cannot assert that $\sigma(f') = f^*$ even if |f'| < 1.

2. Proof of Theorem 1. Consider the two inequalities

$$(2.1) |z-w| \leq \sigma(z,w), z,w \in D,$$

(2.2)
$$\sigma(z, w) \leq 2|z - w|/|1 - \bar{z}w|$$

for $z,w\in D$ with $|z-w|/|1-\bar{z}w| \le 1/\sqrt{2}$. The inclusion formula $\sigma\Lambda_{\alpha}\subset\Lambda_{\alpha}$ follows from (2.1). If $\varphi\in\Lambda_{\alpha}$ and if $|\varphi(t)|<1$ for all $t\in(-\infty,\infty)$, then $\varphi\in\sigma\Lambda_{\alpha}$. To observe this we set $\max|\varphi(t)|=M<1$ because φ is continuous. Then there exist two positive constants K and δ such that

$$K\delta^{\alpha} \leq (1 - M^2)/\sqrt{2}$$
 and $|\varphi(t) - \varphi(s)| \leq K\tau^{\alpha}$

for all τ , $0 < \tau < \delta$, and for all t, s with $|t - s| \le \tau$. Since

$$|\varphi(t)-\varphi(s)| \leq (1-M^2)/\sqrt{2},$$

it follows that

$$|\varphi(t)-\varphi(s)|/|1-\overline{\varphi(t)}\varphi(s)| \leq 1/\sqrt{2}$$

whence, by (2.2),

$$\sigma(\varphi(t), \varphi(s)) \leq [2/(1-M^2)] |\varphi(t)-\varphi(s)| \leq K_1 \tau^{\alpha}$$

for all t, s with $|t - s| \le \tau < \delta (K_1 = 2K/(1 - M^2))$. Therefore $\varphi \in \sigma \Lambda_{\sigma}$.

To prove the "only if" part of Theorem 1, we notice first that $f(e^{it}) \in \Lambda_{\alpha}$. Since $|f(e^{it})| < 1$ for all t, it follows from the maximum modulus principle that $A = \max\{|f(z)|; z \in D^{\#}\} < 1$. Since $f^* \leq |f'|/(1 - A^2)$, the conclusion (1.3) follows from (1.1).

To prove the "if" part of Theorem 1 we first note that (1.1) holds by $|f'| \le f^*$. By Theorem A, f is continuous on $D^\#$ and $f(e^{it}) \in \Lambda_\alpha$. Now, if $|f(e^{it})| = 1$ for a certain t, then

$$\infty = \lim_{r \to 1} \sigma(f(re^{it}), f(0)) \le \lim_{r \to 1} \int_0^r f^*(\rho e^{it}) d\rho < \infty$$

by (1.3); this is a contradiction. Therefore $\max |f(e^{it})| < 1$, which, together with $f(e^{it}) \in \Lambda_{\alpha}$, shows that $f(e^{it}) \in \sigma \Lambda_{\alpha}$.

3. Proof of Theorem 2. For the proof of the "if" part we assume that

(3.1)
$$\mu_{p}(r, f^{*}) \leq K(1-r)^{\alpha-1} \quad \text{for } 0 < r < 1,$$

where K > 0 is a constant. To prove that $f \in H^p_{\sigma}$ we apply the continuous form of the Minkowski inequality (see [3, (7), p. 20]) to

$$\sigma(f(re^{it}), f(0)) \leq \int_0^r f^*(\rho e^{it}) d\rho$$

for $0 \le t \le 2\pi \, (0 < r < 1)$. Then

$$\mu_p(r, \sigma(f, f(0))) \leq \int_0^r \mu_p(\rho, f^*) d\rho \leq K/\alpha < \infty$$

by (3.1). Since $\sigma(f) \le \sigma(f, f(0)) + \sigma(f(0), 0)$, the Minkowski inequality in the usual form yields that $\mu_p(r, \sigma(f)) = O(1)$, or $f \in H^p_\sigma$. Since $\mu_p(r, \sigma(f))$ is bounded for 0 < r < 1, the Fatou lemma shows that $|f(e^{it})| < 1$ a.e. and $\sigma(f)(e^{it}) \in L^p[0, 2\pi]$.

Now, let $0 < h \le \tau < 1/2$, and set s = t + h for $t \in (-\infty, \infty)$. Let (h <) 1 - h < r < 1, and set $\rho = r - h$. Then

$$\sigma(f(re^{is}), f(re^{it})) \leq \int_{\rho}^{r} f^{*}(\lambda e^{it}) d\lambda + \int_{\rho}^{r} f^{*}(\lambda e^{is}) d\lambda + \int_{\rho}^{s} f^{*}(\rho e^{ix}) \rho dx.$$

The third term in the right-hand side is not greater than $Kh(1-\rho)^{\alpha-1}$ by (3.1). Applying the Minkowski inequality first in the usual and then in the continuous form we obtain

(3.2)
$$\left[\frac{1}{2\pi} \int_0^{2\pi} \sigma\left(f(re^{i(t+h)}), f(re^{it})\right)^p dt\right]^{1/p} \\ \leq 2 \int_\rho^r \mu_\rho(\lambda, f^*) d\lambda + Kh(1-\rho)^{\alpha-1}.$$

The first term in the right-hand side is not greater than $(2K/\alpha)h^{\alpha}$ by (3.1), together with $(1-\rho)^{\alpha} \leq (1-r)^{\alpha} + h^{\alpha}$, while the second term is not greater than $K(1-\rho)^{\alpha} \leq 2^{\alpha}Kh^{\alpha}$. Therefore the left-hand side of (3.2) is not greater than $K_1\tau^{\alpha}$, where $K_1 > 0$ is a constant. Letting $r \to 1$ and considering the Fatou lemma one finds that

$$\left[\frac{1}{2\pi}\int_0^{2\pi}\sigma(f(e^{i(t+h)}),f(e^{it}))^p\,dt\right]^{1/p}\leq K_1\tau^\alpha,$$

which completes the proof of $f(e^{it}) \in \Lambda^p_{\alpha}$.

For the proof of the "only if" part in the case $0 < \alpha < 1$ we remember [1, p. 74] that

(3.3)
$$\int_{-\pi}^{\pi} \frac{|t|^{\alpha} dt}{1 - 2r \cos t + r^2} = O((1 - r)^{\alpha - 1}).$$

Fix $z = re^{\theta} \neq 0$ in D for a moment, and set

(3.4)
$$g(w) = (f(w) - f(z))/(1 - \overline{f(z)}f(w)), \quad w \in D.$$

Since $g \in B$, the Cauchy integral formula of $g - g(e^{i\theta})$ yields

$$g'(z) = \frac{1}{2\pi i} \int_{|\zeta|=1} \frac{g(\zeta) - g(e^{i\theta})}{(\zeta - z)^2} d\zeta,$$

whence

(3.5)
$$f^*(z) = |g'(z)| \le \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{|g(e^{i(t+\theta)}) - g(e^{i\theta})|}{1 - 2r\cos t + r^2} dt.$$

Since

$$|g(e^{i(t+\theta)}) - g(e^{i\theta})| \le \sigma(g(e^{i(t+\theta)}), g(e^{i\theta}))$$

= $\sigma(f(e^{i(t+\theta)}), f(e^{i\theta})),$

it follows from (3.5) that

(3.6)
$$f^*(re^{i\theta}) \leq \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{\sigma(f(e^{i(t+\theta)}), f(e^{i\theta}))}{1 - 2r\cos t + r^2} dt.$$

Now, it is an easy exercise to observe that

$$\int_0^{2\pi} \sigma \left(f(e^{i(t+\theta)}), f(e^{i\theta}) \right)^p d\theta \le K_2 |t|^{p\alpha}$$

for all t, $|t| < \pi$, where $K_2 > 0$ is a constant. The Minkowski inequality, together with (3.3), asserts from (3.6) that, for 0 < r < 1,

$$\mu_{n}(r, f^{*}) = O((1-r)^{\alpha-1}).$$

To prove that $\mu_p(r, f^*) = O(1)$ if $f \in H^p_\sigma$ and if $f(e^{it}) \in \sigma \Lambda^p_1$ we need some properties of $F \in H^p_\sigma$ with $F(e^{it}) \in \sigma \Lambda^p_1$. Since $\sigma \Lambda^p_1 \subset \sigma \Lambda^1_1 \subset \Lambda^1_1$, $F(e^{it})$ is equal a.e. to a function of bounded variation on $[0, 2\pi]$ (see [1, Lemma 1, p. 72]). Since $F \in B \subset H^1$, $F(e^{it})$ can be considered as an absolutely continuous function on $[0, 2\pi]$ by [1, Theorem 3.10, p. 42]. Furthermore, by [1, Theorem 3.11, p. 42],

$$F'_*(e^{it}) \equiv \frac{d}{dt}F(e^{it}) = ie^{it}\lim_{r \to 1}F'(re^{it}) = e^{it}F'(e^{it})$$

exists a.e. on $[0, 2\pi]$; this derivative $F'_*(e^{it})$ is of class $L^1[0, 2\pi]$. The principal point we need is the fact that

$$F^*(e^{it}) \equiv |F'_*(e^{it})|/(1-|F(e^{it})|^2)$$

for $t \in [0, 2\pi]$ is of class $L^p[0, 2\pi]$. In effect, since $F(e^{it}) \in \sigma \Lambda_1^p$, there exist constants $K_3 > 0$ and $\delta > 0$ such that

$$\int_0^{2\pi} \left[\frac{\sigma\left(F(e^{i(t+h)}), F(e^{it})\right)}{|h|} \right]^p dt \le K_3$$

for all h with $0 < |h| < \delta$. Letting $h \to 0$ and considering the Fatou lemma, one obtains that

$$\int_0^{2\pi} F^*(e^{it})^p dt \le K_3.$$

Now, consider g of (3.4). Since $f \in H^p_\sigma$ and $f(e^{it}) \in \sigma \Lambda^p_1$, if follows that $g \in H^p_\sigma$ and $g(e^{it}) \in \sigma \Lambda^p_1$. Therefore g is absolutely continuous and $g'_*(e^{it})$ is of $L^1[0, 2\pi]$. Differentiating the Poisson integral

$$g(w) = \frac{1}{2\pi} \int_0^{2\pi} P(R, s - t) g(e^{it}) dt$$

with respect to s, where $w = Re^{is} \neq 0$, and $P(R, s - t) = (1 - R^2)/|e^{it} - Re^{is}|^2$, one observes that

(3.7)
$$iwg'(w) = \frac{1}{2\pi} \int_0^{2\pi} \frac{\partial}{\partial s} P(R, s - t) g(e^{it}) dt$$
$$= -\frac{1}{2\pi} \int_0^{2\pi} \left[\frac{\partial}{\partial t} P(R, s - t) \right] g(e^{it}) dt$$
$$= \frac{1}{2\pi} \int_0^{2\pi} P(R, s - t) g'_*(e^{it}) dt.$$

On the other hand,

$$|g'_{*}(e^{it})| = \frac{|f'_{*}(e^{it})|(1-|f(z)|^{2})}{|1-\overline{f(z)}|f(e^{it})|^{2}} \leq f^{*}(e^{it}).$$

It then follows from (3.7), together with $f^*(e^{it}) \in L^p[0, 2\pi]$ that

$$|w|^p |g'(w)|^p \le \frac{1}{2\pi} \int_0^{2\pi} P(R, s-t) f^*(e^{it})^p dt.$$

On setting $w = z = re^{i\theta}$, one obtains that

$$|z|^p f^*(z)^p \le \frac{1}{2\pi} \int_0^{2\pi} P(r, \theta - t) f^*(e^{it})^p dt,$$

so that $\mu_p(r, f^*) = O(1)$.

REFERENCES

- 1. Peter L. Duren, *Theory of H^p spaces*, Pure and Appl. Math., vol. 38, Academic Press, New York and London, 1970.
- 2. Godefrey H. Hardy and John E. Littlewood, A convergence criterion for Fourier series, Math. Z. 28 (1928), 612-634.
 - 3. John E. Littlewood, Lectures on the theory of functions, Oxford Univ. Press, London, 1944.

DEPARTMENT OF MATHEMATICS, TOKYO METROPOLITAN UNIVERSITY, FUKAZAWA, SETAGAYA, TOKYO 158, JAPAN