
TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 272, Number 2, August 1982 

ON THE SCHWARZ REFLECTION PRINCIPLE 
BY 

J. S. HWANG 

ABSTRACT. Recently, we have solved a long outstanding problem of A. J. Lohwater 
(1953) by showing that if f( z) is meromorphic in I z I < I whose radial limits have 
modulus I for almost all points on an arc A of I z I = I, and if P is a singular point of 
f( z) 0" A, then every value of modulus I which is not in the range of f( z) at P is an 
asymptotic value of f( z) at some point of each subarc of A containing the point P. 

Lohwater proved this theorem for functions of bounded characteristic and he 
made a comment that his method is not, in general, applicable to functions of 
unbounded characteristic. In this paper, we shall present an alternative proof of the 
above theorem based on the very method of Lohwater. 

1. Introduction. In [6, Theorem 3], Lohwater proved the following result: Letf(z) 
be meromorphic in the unit disk D = {z: 1 z 1 < I} with bounded characteristic in the 
sense of Nevanlinna (see [2,p. 38]) and let the radial limits limr~d(rei6) = f(e i6 ) 
have modulus 1 for almost all points ei6 E A = {e i6: a < () < P}. If P is a singular 
point of f( z) on A, then every value of modulus 1 which is not in the range of f( z) at 
P is an asymptotic value of f( z) at some point of each subarc of A containing the 
point P. He then asked as to whether this result is still true if f( z) is not of bounded 
characteristic (see [6, p. 156]). Recently, in [4], we have solved this problem in the 
affirmative sense as follows. 

THEOREM 1. Let f(z) be meromorphic in D and let the radial limits limr~ I f(re i6 ) = 
f(e i6 ) exist and have the modulus 1 for almost all e i6 E A = {e i6: a < () < P}. If Pis 
a singular point of f( z) on A, then every value of modulus 1 which is not in the range of 
f( z) at P is an asymptotic value of f( z) at some point of each subarc of A containing the 
point P. 

The first purpose in this paper is to present a different proof of Theorem 1 based 
on the method of Lohwater which was apparently thought to be impossible by him 
[6, p. 156]. Next, we introduce three classes of functionsf(z) satisfying the condition 
limr~llf(rei6) 1= 1 for almost all points on A, but not necessary to have radial 
limits of modulus 1. We then prove the analogues of Theorem I with some 
additional conditions. Finally, we study a class of functions which belong to Seidel's 
class U (see [2, p. 107]) and we prove some extension of Seidel's theorem [7, Theorem 
4]. 
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2. Proof of Theorem 1. To prove this, we shall need the following result of 
Lohwater [6, Theorem 2]. 

LEMMA 1. Let g( z) be meromorphic in D such that lim r- 1 1 g( re dJ ) 1 = 1 for almost 
all e i9 E A = {e i9 : a < (J < {3}. If g(z) has no zeros or poles in the region 0..;; 1 - E 

<I z 1< 1, a < arg z < {3, then a necessary and sufficient condition that g(z) can be 
continued analytically beyond A is that g( z) admits neither 0 nor 00 as asymptotic 
values on A. 

With the help of Lemma 1 and the method of [6, Theorem 3], we are now able to 
prove Theorem 1. Let r = eia be a point not in the range of f(z) at P, then the 
function 

(I) g{ z) = exp ( f( z) + r ) 
f{z) - r 

is analytic without zeros in the region Ga(P) = {z: zED and 1 z - P I<~} for 
sufficiently small ~ > O. To prove the assertion, we shall consider two cases: Either 
there is a sequence of points ei9• tending to P for which 

limf(rei9.) = r, n = 1,2, ... , 
r->1 

or not. Clearly, if the first case occurs then there is nothing more to prove. We may 
therefore assume that whenever the radial limit exists at e i9, we have 

(2) lim f{ re i9 ) =1= r. 
r-1 

We shall prove that 

(3) lim 1 g{re i9 ) 1= 1, for almost all (J E (a, fJ). 
r-1 

For this, we write 
(4) f(re i9 ) = pe i4> where r < 1, p = p(r, (J), and cp = cp{r, (J). 
Let (Jo E (a, {3) be an arbitrary point for which the radial limit limr_t/(re i9o ) = 
f(e i9o ) exists and has the modulus 1. Then by (2) and (4) we have 
(5) limp{r, (Jo) = 1 and limcp(r, (Jo) = CPo =1= a. 

r-1 r-1 

Since the quotient 

f{z) + r _ If{z) 12 - 1 + rM - ff{z) 
f( z) - r 1 f( z) - r 12 

it follows from (1), (2), (4) and (5) that 

lim 1 g(re i9o ) 1= exp{lim p{r, (JO)2 - 1 } = 1. 
r- 1 r- 1 1 pei4>o - e ia 12 

This yields (3) due to the fact that the radiallimitsf(e i9o ) exist and are of modulus 1 
almost everywhere on A. Thus the function g( z) satisfies the hypothesis of Lemma 1. 
Moreover, it is easy to see that the point P is also a singular point of g( z). It then 
follows from Lemma 1 that there exists an arc L lying in D and terminating either at 
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P or at a point P' of I z I = 1 as close to P as we please, such that the function g( z) 
tends to 0 or 00 as z -> P or P' along L. This yields that f( z) admits ~ as an 
asymptotic value either at P or P' and the proof is complete. 

Note that by a theorem of W. Rudin [6, p. 155], Lohwater constructed a function 
f( z) which has the radial limit 1 almost everywhere on I z I = 1, and the associated 
function g( z), defined by (1), where ~ = 1, has the property that lim r- I I g( rei6 ) I = 00 

for almost all ei6• However, in this case, the functionf(z) has the asymptotic value 
~ = 1 almost everywhere on I z I = 1 and of course close to any singular point P on 
I z 1= 1, so that the assertion of Theorem 1 becomes obvious if the value ~ = 1 is not 
in the range of f( z) at P. This example is in a sense misleading to overlook the 
difficulty of Theorem 1. 

3. Generalized Seidel's class U. Following E. F. Collingwood and A. J. Lohwater 
[2, p. 107], we shall denote by U the class of all functions f( z) meromorphic in D for 
which the radial limits f(e i6 ) exist and have modulus 1 for almost all points ei6• 

Instead of a function f( z), Lohwater has also considered its modulus I f( z) I [6]. In 
this connection, we shall now define three generalized classes I U I , I U 1-, and I U I + 
as follows. A meromorphic function f E I U I , if for almost all points ei6 the radial 
limit of the modulus lim r- d f( re i6 ) I = l. In this case, the function f( z) may not 
have radial limits almost everywhere on I z 1= l. Clearly, the class U is a subclass of 
I UI· Moreover, we call a functionf EI UI- or I UI+ if for almost all points ei6, the 
radial limit of the modulus If(re i6 ) I tends to 1 from below or above respectively as 
r -> l. In this case, the class U needs not be a subclass of I U 1- or I U I +, but both 
I UI- and I UI+ are subclasses of I UI. Notice that the above definitions can go 
through in a local sense. For instance, we say that f E I U I on an arc A of I z 1= 1, if 
for almost all points ei6 E A, limr_1 I f( re i6 ) 1= l. Clearly, if f E I U I , then f EI U I 
on any arc of I z I = l. 

We shall now construct functions belonging to each of the above three classes. 

THEOREM 2. There exist three functions f E I U I - U U I U 1- U I U I + ,f - E I U 1- - U 
U I UI+, andr EI UI+-UU I UI-· 

PROOF. We shall first construct the functionf(z). For this, we let A be an arc on 
I z 1= 1 and let r be a continuous curve (not closed) surrounding and converging to 
A. Denote by E a set of first category and of measure 2'1T on I z 1= 1, and {R6} a 
family of radial segments terminating at the points e i6 E E, where none of the 
closure R6 contains the origin. Let g(z) be a function mapping each R6 homeomor-
phically onto r, then, by a well-known theorem of Urysohn, the function g(z) can 
be extended to be continuous through D. It follows from an approximation theorem 
of F. Bagemihl and W. Seidel or W. Rudin (see [2, Theorem 8.11)) that there is a 
functionf(z) analytic in D such that, for every ei6 E E, 

f(z)-g(z)->O, asz->ei6 0nR6 • 

Since the curve r converges to A, it follows that 

lim If(re i6 ) 1= lim I g(rei6 ) 1= 1 for each ei6 E E. 
r-l r-I 

Moreover, the set E has measure 2'1T, so that the function! E I U I . 
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It remains to show that f ~ U U I U 1- U I U I +. This, however, is simple, because 
the curve r surrounds the arc A, so that the radial cluster set Cp(f, e ili ) coincides 
with A for every point e ili E E, and the limit If(re ili ) I tends to 1 alternatively from 
below and abov~, as r --> 1. 

Finally, we shall construct both functions f-(z) and r (z). To do this, we need 
only require the curve r tend to A from the interior or exterior of D respectively. 
Then by the same argument as before we can obtain the desired functions. This 
proves the assertion. 

4. Boundary behaviour of class I U I . Before proving some extensions of Theorem 
1, we shall now study the boundary behaviour of the class I UI. For convenience, if 
G is a domain we shall denote by aG the boundary of G and in particular, if G = D, 
the unit disk, we shall write the unit circle by C = {z: I z 1= I}. 

According to an extension of Lowner's theorem [9, Theorem VIII.30] and a 
theorem of Bagemihl on ambiguous points [2, Theorem 4.12], we have the following. 

THEOREM 3. Let f( z) be a function in the class I U I ' such that for n > 1 the domain 
Gn = {z: zED and If(z) I> n} is not empty, and let Hn be a component of Gn. If 
z( w) is a conformal mapping from Dw = {w: I w 1< I} onto Hn and if E is the set of all 
points on I wi = 1 such that for each e ili E E the radial limit limr~ I z(re ili ) exists and 
has the modulus 1, then the set E is of measure O. 

PROOF. Let E* be the image of E on I z 1= 1, i.e. E* = {e i</> = z( eili ): e ili E E}. 
Since E is a Borel set, it follows from the aforementioned theorem of Lowner that 
E* is a Borel set and the measures I E I.;;; I E* I . Therefore, to prove the assertion 
I E I = 0, it is sufficient to show that I E* 1=0. 

We now consider the function f E I U I . Let EI be the set of all points ei</> on C 
such that 1imr~ I If(re i</» 1= 1, then the measure I EI 1= 2'77". Denote by CpU, e i</» the 
radial cluster set of f( z) at the point ei </>, then clearly we have 

(6) CpU, e i</» C {K: I K 1= l} for each e i</> EEl· 

On the other hand, if e i</> E E*, then there is a point e ili on I w 1= 1 for which 
limr~1 z(reili ) = e i</>. Let rli be the radius in Dw ending at e ili and let y</> = z(rli), then 
y</> is an arc lying in Hn and ending at e i</>. Denote by Cy",U, e i</» the cluster set off(z) 
along y</>, then we have 

(7) Cy..{f, ei</» C {r: I K I;;.. n} for each e i</> E E*. 

To prove I E* 1= 0, we suppose on the contrary that I E* I> 0, then the measure 
of the intersection I E* nEil> O. Since n > 1, it follows from (6) and (7) that the 
following set is empty 

CpU, e i</» n Cy",U, ei</» = 0 for each e i</> E E* n E I • 

This contradicts the aforementioned theorem of Bagemihl and the proof is complete. 
We notice that the above Theorem 3 can be extended. For this, we let Bm be the 

class of all functions f( z) meromorphic in D for which the radial cluster sets 
CpU, e i</» C g: I K I.;;; m} for almost all points e i</>. Locally, we say thatf E Bm on an 
arc A of I z 1= 1, if the above property holds for almost all points e i </> EA. 
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COROLLARY 1. Theorem 3 is still true if the class 1 U 1 is replaces by the class Em 
restricted on an arc A(a, 13) = {e i9 : a < 0 < f3}, where Gn = {z: a < arg z < 13 and 
If(z) I> n}, and m < n. 

PROOF. The proof can be easily finished just by replacing equation (6) by 

(6)' cp(f,ei<P)C{r:ltl";;;;m}, wherem<n. 

5. Generalizations of Theorem 1. In view of Theorem I and the definitions of U 
and 1 U 1 ' we can see that Theorem I holds for any function f( z) in the class U. We 
may therefore ask as to whether Theorem I is still true if the class U is replaced by 
the class 1 U 1 . This question will be answered partially by the following two results. 
However, we believe that the answer should be affirmative. 

THEOREM 4. Iff E 1 U 1- U 1 U 1 + on an arc A of C and if P is a sungular point of f( z) 
on A, then every value of modulus I which is not in the range of f(z) at P is an 
asymptotic value of f( z) at some point of each subarc of A containing the point P. 

PROOF. We shall first consider a functionf E 1 U 1- on the arc A. As before, we let 
t = e ia be a point not in the range of f(z) at P and let g(z) be the function defined 
by (1) which is analytic and has no zeros in the region Gs(P) defined in (1). Denote 
by E the set of all points ei9 E A such that If(re i9 ) 1 tends to I from below, as r --> 1, 
then the measure 1 E 1 =1 A I. Let aGiP ) be the boundary of Gs(P). We shall prove 
that for each point e i9 E E n aGs(p) there is a radial segment R9 such that the 
function g(z) is bounded by one on R 9. To do this, we writef(re i9 ) as in (4), then 
the real part 

(8) Re f( re i9 ) + t = p2 - I 
f(re i9 ) - t If(re i9 ) - t 12 ' 

where p = p(r, 0) = If(re i9 ) 1 and r < 1. Since e i9 E E, there is a number ro > 0 
such that ro ,,;;;; r ,,;;;; 1 implies 1 f( re i9 ) I,,;;;; 1. Moreover, the point e i9 E aGs( P), so that 
there is a number r1 for whichf(re i9 ) =1= t provided r1 ,,;;;; r < 1 where r1e i9 E Gs(P). 
Let R9 = {re i9 : max(ro, r1) ,,;;;; r ,,;;;; I}, then by (8) we conclude that on the radial 
segmentR9 

(9) { f(rei9) + t} 
1 g(rei9 ) 1 = exp Re .9 ,,;;;; 1 for each e i9 E En aGs(p)· 

f(re' ) - t 

We now choose two points e ia, e iP E E n aGiP) such that the point P lies on the 
arc between eia and e iP. Let Ra and Rp be the associated radial segments for which 
(9) holds. Let L be the line segment joining the endpoints of Ra and Rp which lie 
within the domain GiP). Then we have for some M > 1, 

(10) Ig(z)I";;;;M foreveryzERaULUR p' 

Denote by G the region bounded by R a, L, R p, and the arc A(a, 13) = {ei<P: 
a < cp < f3}. If the function g(z) is bounded in G, then the assertion follows from 
Lohwater's theorem [6, Theorem 3]. Therefore we need only consider the case that 
g(z) is unbounded in G. Let n > M be a positive integer and let Zn be a point in G 
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for which I g(Zn) I> n. Define the domain Gn = {z: I g(z) I> n} and choose a 
component Hn of Gn for which zn E Hn' 

We shall prove that Hn e G. Suppose on the contrary that Hn ¢. G, then by (10) 
and the maximum principle we find that lin n A( a, fJ) =t= 0. In this case, we 
consider the function l/g(z) which is bounded by lin on Hn and therefore has 
radial limits almost everywhere on Ii,. n A(a, fJ). It follows from (3) that the 
function g(z) has radial limits of modulus 1 almost everywhere on Ii,. n A(a, fJ). 
This clearly is impossible because I g(z) I> n for any z E Hn' We thus conclude that 
Hn eG. 

The key point to find the desired asymptotic value is to prove that the function 
g(z) is unbounded in Hn' For this, we let H: be the smallest simply connected 
domain containing Hn' Since Hn e G, we have H: eD, and the boundaries of H: 
and Hn on C are the same. Let z = z( w) be a conformal mapping from Dw = {w: 
I w 1< I} onto H:. Denote by E) the set of all points on I w 1= 1 such that for each 
ei6 E E) the radial limit lim,_) z(rei6 ) exists and has the modulus 1. In view of (8) 
and (9), we can see that the radial cluster sets Cp(g, ei6 ) e {A: I A I..; I} for each 
ei6 E E, where IEI=IA I, so that the function g E B) on the arc A. Since the 
number n > M > 1, the domain H: eD, and the boundary of H: on C is the same 
as that of H n , it follows from Corollary I that the set E) has measure O. This 
concludes that for almost all points ei6 on I w 1= 1 the radial limits lim,_) z(re i6 ) 

exist and have modulus less than 1. 
We now consider the function h(w) = g(z(w». By what we have just proved, we 

find that 

lim h(rei6 ) = n for almost all e i6 on I wi = 1. , .... ) 

If h( w) were bounded in Dw' then by the strong form of the maximum principle 
[2, Theorem 5.3], the function h(w) would be bounded by n through Dw' This in tum 
implies that the function g(z) is bounded by n in the component Hn of Gn, 
contradicting the definition of Gn = {z: Ig(z)l> n}. We thus conclude that g(z) is 
unbounded in Hn' 

Finally, by the same argument as in [4], we can construct a path r ending at a 
point Q E A(a, fJ) for which the function g(z) tends to 00 along r. This concludes 
that the function f( z) tends to the value ~ along r and proves the assertion for the 
casef EI UI-· 

On the other hand, if f E I U I +, then instead of the associated function g( z), we 
consider its inverse, i.e. 

-) _ (f( z) + ~ ) g( z ) - exp - f( z) _~ . 

By the same argument, we can obtain the assertion. This completes the proof. 
Unfortunately, we have not been able to prove Theorem 4 for any function 

f E I U I . However, if the function f( z) is required to be analytic in D then the 
assertion of Theorem 4 is still true. More general, we state and prove the following. 
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THEOREM 5. Iff EI UI on an arc A ofl z 1= 1, and if P is a singular point off(z) on 
A such that the function f( z) is analytic in a relative vicinity of P, then every value of 
modulus 1 which is not in the range of f( z) at P is an asymptotic value of f( z) at some 
point of each subarc of A containing the point P. 

PROOF. As before, let r = e ia be a point not in the range off(z) at P,J(z) analytic 
in the region GB(P), and E = {e iIJ : e iIJ E A and limr_Ilf(re ilJ ) 1= I}. Choose two 
sequences {e ia.} and {e iP.} of points in E such that e ia• f P and e iP• ! P as n ..... 00, 

where an < {In' For each e iIJ , we let R( fJ) be the radius ending at e iIJ • Let G:: be the 
subregion of GB(P) bounded by the radii R(an) and R(an+I), and the boundary of 
GiP), and let G! be the subregion of GB(P) bounded by the radii R({Jn) and 
R({Jn+I)' and the boundary of GiP). We shall consider three cases about the 
boundedness of the functionf(z), namely, either bounded in each G::, or G!, or both 
of them. Notice that in each case the functionf(z) is not necessary to be uniformly 
bounded through all n. However, the condition of boundedness guarantees that the 
function f( z) have radial limits almost everywhere on the boundary of each G: or 
Gf. Therefore, if the last case occurs then f( z) has radial limits almost everywhere 
on a sub arc B of A which contains the point P. In this case, the assertion follows 
from [4]. Turning to the first case, we may assume that there is a subsequence {n k } 

such that f( z) is unbounded in each G~, otherwise we would reduce to the last case 
and we are done. Let Ynk be the portion of aG~ which lies inside D. Since f(z) is 
analytic in GiP), we may, without loss of generality, assume thatf(z) has no poles 
on the portion of aGiP) which lies inside D. This together with the choices e iP• E E 
yields that 
(11) If(z) I.,.;; Mnk < 00, foreachzEynk • 

Sincef(z) is unbounded in the region G!k' by (11) and the same argument as before 
we conclude thatf(z) has the asymptotic value 00 along a path fnk lying in G~ and 
tending to a point Pnk on C. Since e iP• ! P, it follows that Pnk ! P, as k ..... 00. 

We now consider the function 

g(z) = 1/ U(z) - n, wheref(z) * r in GB(p). 

By what we have just proved, the function g( z) has the asymptotic value 0 along 
each f nk. Since we consider the functionf(z) to be bounded in each subregion G::, 
the function g(z) has finite radial limits almost everywhere on each arc of the form 
{e iIJ : an < fJ < arg Pl. For each k (associating with the subsequence nk ), we let Rk 
be a radial segment lying in Gk such that g(z) has a finite radial limit along R k , and 
let Lk be the line segment joining the endpoints of fnk and Rk which lie within 
GiP). Then we have 
(12) Ig(z) I.,.;; Mk < 00, foreachzEfnkULkUR k · 

Denote by Hk the region bounded by f nk, L k, R k, and the arc Bk on I z 1= 1 
connecting the endpoints of fnk and R k. If the funciton g(z) is bounded in Hk, then 
the functionf(z) has radial limits almost everywhere on Bk • This reduces to the last 
case and we are done. We may, therefore, assume that g(z) is unbounded in H k • It 
then follows from (12) that there is a path Y C Hk ending at a point on Bk such that 
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g( z) has the asymptotic value 00 along "y. This in turn implies that the function f( z ) 
has the asymptotic value t along "Y and proves the assertion for the first case. The 
second case can be proved by the same argument. This completes the proof. 

Notice that the above proof actually yields the following more general result and 
we omit the proof. 

COROLLARY 2. If f E I U I on an arc A of C and if f( z) has radial limits on a 
sequence {e ian } which tends to the singular point P from both sides, then the assertion of 
Theorem 5 is still true. 

6. Omitted values. In view of Theorem 1, we may ask whether there exists a 
function fEU which omits a prescribed value t of modulus 1 in D. This question 
will be answered by the following. 

THEOREM 6. Let t = e ia =1= I, then there is a function fEU which omits the value t 
in D. 

PROOF. In view of [6,p. 155], there is a function g(z), analytic in D and having the 
radial limit 1 almost everywhere on I z I = I. We set 

(13) f(z) = t[(1 + t)g(z) + 1 - t] wheret =1= 1. 
(I + t) g( z) - I + t ' 

Clearly, we have for each e i8, 

lim g( rei8 ) = 1 implies lim f( re i8 ) = 1, 
r--> 1 r--> 1 

so that the function fEU. 
It follows from (13) that f( z) = t if and only if g( z) = 00. Since g( z) is analytic 

in D, the functionf(z) must omit the value t in D. This proves the theorem. 
Notice that Theorem 6 is still true if the class U is replaced by the class I U I . Also 

notice that as far as the omitted values are concerned, Theorem I can be extended to 
the class lUI. 

THEOREM 7. If f E I U I on an arc A of I z 1= 1, and if f omits three values in a 
relative vicinity V of P, then the assertion of Theorem 1 is still true. 

PROOF. According to a well-known theorem of Montel (see O. Lehto and K. I. 
Virtanen [5, p. 53]), the function f( z) is normal in V. It follows from a result of F. 
Bagemihl and W. Seidel [1,Corollary 1] that f(z) has angular limits on a dense 
subset of A. The assertion now is a consequence of Corollary 2. 

7. The range of UI -c1ass. In this section, we shall improve a result of Seidel [8, p. 
211]. For this, we let U1 be the class of all functionsf(z), analytic in D, bounded by 
1, having radial limits If( ei8 ) I = I almost everywhere on I z I = I, containing an 
isolated singularity at eia, and omitting a value v with I v I < I in a relative vicinity of 
e ia• Functions of this kind do exist, for instance, the typical function fl(z) = 
e(z+ I)/(z-I) E U1• Based on an application of Seidel's theorem [7, Theorem 4], we 
proved that if f E U1, then the range of f( z) covers the interior of some circle of 
radius! [3, Theorem 7], where the condition of omitting value is not required. We 
shall now improve this result in the following two sides sense. 
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THEOREM 8. Let f E U\ and let f(z) have an isolated singularity at a point eia and 
omit a value v with 1 v 1 < I in a relative vicinity of eia. If D- and D+ denote 
respectively the lower and upper half-disk in D separated by the diameter passing 
through the point eia, then both of the ranges f(D-) and f(D+) cover the deleted disk 
D-v. 

PROOF. We let C-(f, e ia ) and C+ (f, eia ) be the lower and upper cluster set with 
respect to D - and D + , then both of them are closed sets. There are two cases to be 
considered: Either C-(f, eia ) = C+ (f, eia ) = Dw or not, where Dw = {w: 1 w 10;;; I}. 
We shall begin to settle the first case. To prove the assertion, we suppose on the 
contrary that there is a value wE Dw for which w =1= v and w ff. f(D-). We then 
consider the function g(z) = l/(f(z) - w). Choose a number /3 < a for which the 
radiallimitf(e ifl ) =1= w, and denote by Ra and Rfl the radial segments on which the 
function g(z) is bounded. Join Ra and Rfl by a line segment L such that g(z) is also 
bounded on L. Let 6.(/3, a) be the region bounded by R a , L, R fI , and the arc 
A(/3, a) = {e if/: /3 < (J < a}. Since w E C-(f, eia ), it follows that the function g(z) 
is unbounded in 6.(/3, a). By the same argument as Theorem 5, we conclude that the 
function f( z) has the asymptotic value w either at the point eia or at a point P 
arbitrarily close to eia from below. Since f( z) is bounded, the first case implies that 
w = v, a contradiction, while the last case violates the isolated singularity of eia . 

This proves the assertion for f(D-) and the same argument yields the assertion for 
f(D+). 

It remains to settle the case, say, C-( f, eia ) =1= Dw' Since any analytic function is 
an open mapping and the set C-(f, eia ) is closed, it follows that any point w on the 
boundary of C-(f, eia ) is omitted by f(z) in a vicinity of eia relative to D-. By 
choosing one of such points w =1= v and applying the above argument, we can reach 
the same contradiction. This completes the proof. 
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