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RATIONAL L.-S. CATEGORY AND ITS APPLICATIONS

BY

YVES FELIX1 AND STEPHEN HALPERIN

Abstract. Let S be a 1-connected CW-complex of finite type and put cat0(S) =

Lusternik-Schnirelmann category of the localization SQ. This invariant is char-

acterized in terms of the minimal model of S. It is shown that if <£: 5 -» 7*is injective

on tt ® Q then cat0(S) =s cat0(7"), and this result is strengthened when <f> is the

fibre inclusion of a fibration. It is also shown that if dim H*(S; Q) < oo then either

dim it (S) ® Q < oo or the groups nk(S) ® Q grow exponentially with k.

Introduction. In this paper topological space means a pointed, path-connected

normal space S1 such that the inclusion of the basepoint is a cofibration and the

rational singular homology is finite dimensional in each degree. All vector spaces

and algebras have Q as ground field. Homology and cohomology of spaces is

singular, with rational coefficients.

We shall be dealing with category of spaces (cat(S)) in the sense of Lusternik and

Schnirelmann [18]. A recent survey is given in [15] but our definition differs by one

from that of [15], so that for us spheres have category one, not two.

Our purpose is to provide a computationally useful characterization of the rational

category cat0(5) of space 5 and to apply this in a variety of situations. The

definition of cat0(5) is sketched below and given precisely in §4. It satisfies

cat0(S) < cauls'). When 5 is 1-connected cat0(5) coincides with the category of the

localization SQ, which has been studied by Toomer in [26 and 27] and Lemaire and

Sigrist in [17]. The characterization problem was posed by Berstein [26].

Most of the applications depend on the following fundamental mapping theorem,

which we derive as a consequence of our characterization.

Theorem I. Suppose <p: S -» T is a continuous map between \-connectedspaces, and

assume that 4>#: ir*(S) ® Q -> irt(T) ® Q is injective. Then cat0(5) =s cat0(r).

In [16] Lemaire considers a space W = (CP2 V S2) Uw e1, where co = [a, ß] and

a G 7T5(CP2), ß G ir2(S2) are the obvious basis elements. He announces a result of

[17], namely that cat(W) = 3. Using Theorem I we can recover this result and find

(Example 5.9) that the «-fold Cartesian product W" has category 3n.

Theorem I can be essentially strengthened for the inclusion of the fibre in a Serre
j K

fibration. Indeed, suppose £: F -*E -» B is a Serre fibration of simply connected
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2 YVES FELIX AND STEPHEN HALPERIN

spaces and consider j#: -n^(F) ® Q -> -n^E) ® Q. Put

Ídimker7#     if j# is injective in even degrees,

I co otherwise.

We have then

Theorem II. With the hypotheses and notation above,

A:{<cat0(F) ^cat0(£) + kv

Suppose <£: S -» T is a continuous map between 1-connected spaces inducing a

surjection 7r2(5) — ir2(T). If <i>#: tr^(S) ® Q -» irJT) ® Q is not surjective in odd

degrees or if Im <í># has infinite codimension then the first inequality of Theorem II

implies that the homotopy fibre of <j> has infinite rational category and hence infinite

category.

Perhaps more usefully, let \p: F -» E be a continuous map between simply con-

nected spaces and recall Massey's problem 10 in [19]: When is \p the inclusion of a

fibre? Define k(\p) using \p# exactly the way we defined k^ using j# and note that

Theorem II gives k(\p) < cat0(F) < cat0(£) + k(\p) as a necessary condition.

Next, fix a simply connected space F with cat0(.F) = m < co. The first inequality

of Theorem II asserts that for each Serre fibration

è:F^E^B(

the space ker((j£)#: tr^F) ® Q — w^Ft) ® Q) is concentrated in odd degrees and

has dimension at most m.

Consider the set Llker(^)# where £ runs over all Serre fibrations with fibre F.

This is easily identified with Gt(F) ® Q, where G^(F) C tr^(F) is the graded

subgroup defined by Gottlieb in [9]. We can improve Theorem II with

Theorem III. Let F be a simply connected space such that cat0(F) = m < co. Then

G^(F) ® Q is concentrated in odd degrees, and dimG^(F) ® Q < m.

Theorems II and III can be used to study the growth of the coefficients of the

formal power series f„(S, t) — 2™=2dim(irk(S) ® Q)tk of a simply connected space

S. Recall that the coefficients of a power series 2^aktk grow exponentially if there are

constants C2 » C, > 1 and an integer K such that

C,*<   2   \a,\<Cf,       k^K.

Theorem IV. Let S be a simply connected space such that dim H*(S) < co. Then

either

(i)dim?7,|t(S) ® Q< co, or

(ii) the coefficients off^S; t) grow exponentially.

Definition. A simply connected space S such that dim H*(S) < co will be called

rationally elliptic if dim n^S) ® Q < co. Otherwise (by Theorem IV) the coefficients

of /„(S; 0 grow exponentially and S will be called rationally hyperbolic.

Rationally elliptic spaces are studied in [6] where they are called spaces of type F.
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If S is rationally elliptic then

dinu>odd(S) ® Q)

is called the rank of S.

The coefficients in a formal power series 2 aktk grow polynomially of order at most

r if for some A > 0 and all k, \ ak\<Akr. Writing fH(S; t) = SJLndim Hk(S)tk we

have

Theorem V. Let S be a simply connected space such that dim H*(S) < co. Write

CIS for the loop space. If S is rationally elliptic the coefficients of fH(tiS; t) grow

polynomially of order rank S. Otherwise they grow exponentially.

Our remaining applications make use of another invariant, e0(S), introduced by

Toomer [26] to approximate cat0(S) and denoted there by f0(S). This invariant is

the largest integer k such that in the spectral sequence of Milnor and Moore,

ßk,* _¿ q (see §9 for more details).

It is always true that cat0(5) > e0(S) and that equality holds when S is formal or

77-formal (see §1 for the definitions). In [26] it is suggested that equality is always

true, but Lemaire and Sigrist show in [17] that for W = (CP2 V S2) Uu e\ cat0(W)

= 3 and e0(W) — 2. We shall show that the difference cat0 — e0 can be arbitrarily

large by computing that for the n-fold Cartesian product cat0(W") = 2m and

e0(W) = 2«.

The invariant, e0(S), is an essential ingredient in the proofs of:

Theorem VI. Let S be a simply connected rationally hyperbolic space such that

H*(S) is a Poincaré duality algebra. In the homotopy Lie algebra -n J^LS) ® Q there

are then homogeneous elements a, ß such that the iterated brackets

[ß[ß[ß--- [/?,«]] ■■■]        (kfactorsß,k= 1,2,3,...)

are all nonzero. In particular, m *(fi>S) ® Q ¿s not nilpotent.

Theorem VII. If S is simply connected and rationally elliptic then c&t0(S) > e0(S)

> rank(S). //, in addition, S is tr-formal then cat0(5) = e0(S) = rank(5).

Combining this with Theorem II we have the

j it
Corollary. If F ~* E -» B is a Serre fibration of simply connected spaces and if F is

rationally elliptic then

cat0(£)>dim7#(77odd(F)®Q).

The results described above are based on our characterization of cat0(S). Recall

that, by definition, cat(S) < m if 5 can be covered by m + 1 open sets, each

contractible in S. The least such m is the category of S; if there is no such cover,

cat(S) = co.

Equivalently [28, 3] cat(S) is the least integer m such that the diagonal map of S

into the (m + l)-fold Cartesian product Sm+l can be deformed into the fat wedge,

Tm+l(S). (This is the subspace of those (m + l)-tuples (5,,...,5m+1) with at least

one s¡ — *.) Further, in [7] Ganea constructs spaces Em from 5 and shows that

cat(S) =£ m if and only if S is a retract of E .
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The second definition has an obvious analogue in Sullivan's theory of minimal

models and we use this to define cat0(S) (cf. §4): we set cat0(5) to be the least

integer m such that the Sullivan representative of the diagonal map S -* Sm+l

factors up to homotopy through the model of the fat wedge. It follows at once that

cat0(S) < cat(S) and that if S is simply connected, cat0(S) = cat0(SQ) = cat(.SQ).

Moreover if HP(S) = 0,p>m, then cat^S) < m.

To describe our characterization of cat0(,S) we recall first that the minimal model

of S (in the sense of Sullivan) is, inter alia, a connected commutative graded

differential algebra (c.g.d.a.) of the form (AX, d), where

A* = exterior algebra ( Xodd) ® symmetric algebra (*even)

is the free graded commutative algebra over X. This algebra carries a (second) wedge

gradation AX = 1q>GAqX with AqX the linear span of the products x, A • ■ • Axq,

Xj G X. The ideals A>qX are d-stable, and the filtration they define gives the

Milnor-Moore spectral sequence.

Denote by (AX(m), d) the minimal model of the quotient c.g.d.a. (AX/A>mX, d)

and suppose <f>m: (AX, d) -> (AX(m), d) represents the projection (AX, d) ->

(AX/A>mX,d). We have

Theorem VIII. For any space S, cat0(S) < m if and only if there is a c.g.d.a.

morphism r: (AX(m), d) -» (AX, d) such that /■<#>„, = id.

The first step in establishing Theorem VIII is to make an algebraic construction

starting from (AX, d), which produces a c.g.d.a. carrying the rational homotopy

type of the fat wedge. The next is to construct c.g.d.a.'s (Tm, d) from (AI, d) which

are the analogues of Ganea's spaces Em. Indeed, when S is simply connected,

(Tm, d) carries the rational homotopy type of Em (Proposition 2.7).

The main step is the analysis of the rational homotopy type of (Ym, d). We show

that it has the same minimal model as a c.g.d.a. of the form (AX/A>"'X) © F in

which V has trivial differential and V ■ ( A+ X/A>mX © V) = 0. This yields

Theorem IX. Let S be a simply connected space with minimal model (AX, d) and

let W be a space whose rational homotopy type is represented by (AX/A>mX, d).

Then Ganea's space Em has the rational homotopy type of W\/ V0Sa, where the Sa

are spheres.

This paper is organized as follows. In §1 we recall basic definitions, notation and

results from Sullivan's theory of minimal models. In §2 we obtain a model for the fat

wedge, construct (TOT, d) and show that it represents Em when 5 is simply connected.

The analysis of (Tm, d) is in §3, including the proof of Theorem IX, which appears

there as Theorem 3.2.

Rational category is defined in §4, where also is established the characterization

theorem (Theorem 4.7) which contains Theorem VIII. The mapping theorem (Theo-

rem I) is proved in §5, while §6 contains the results on fibrations. In §7 we consider

examples for which the rational Gottlieb groups vanish.

Theorems IV and V are in §8, while §9 contains the basic facts about e0(S) and

§10 has the proofs of Theorems VI and VII. Finally, in §11 we list a number of open

questions.
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1. Minimal models. We recall here the basic facts and notation we shall need from

Sullivan's theory of minimal models, for which the basic reference is [25]. A

description can be found in [13] and complete details in [12]; the notation and

terminology in these latter two references is identical with ours.

A commutative graded differential algebra (c.g.d.a.) (A, dA) is a graded algebra

A = 2^5,0 Ap with a derivation dA of degree 1 such that d2A — 0 and such that

ab = (-\)pqba, a G Ap, b G Aq. The quotient algebra ker dA/lm dA is written H(A)

and called the cohomology algebra. The algebra A is connected if A° — Q.l and

c-connected if H(A) is connected. We write (A, d^®1" or simply A%m for the m-fold

tensor product in the category of c.g.d.a.'s.

A morphism <j>: (A, dA) -> (B, dB) is a homomorphism of graded algebras com-

muting with the differentials. It induces <p*\ H(A) -* H(B). If <j>* is an isomorphism,

<f> is called a quasi-isomorphism or an elementary homotopy equivalence, and we

write <f>: (A, dA) -*(B, dB). A sequence of elementary homotopy equivalences (in

alternating directions) is called a homotopy equivalence.

If (A, dA) -* (C¡, d¡), i — 1,2, are morphisms then C, ®A C2 is the quotient c.g.d.a.

obtained from (C,, dx) ® (C2, d2) by dividing by the ideal generated by a ® 1 — 1

® a, a G A.

If (A, d) and (B, d) are augmented c.g.d.a.'s with augmentation ideals IA, IB, the

c.g.d.a. Q © IA © IB defined by IA ■ IB = 0 is denoted (A, d) V (B, d).

Finally we denote by (u,, v2,...) the vector space If with basis vx,v2,... and we

write A(t>,, v2,...) for AW.

A KS-complex is a c.g.d.a. which can be written (AX, d) and in which X admits a

well-ordered homogeneous basis {xa} with Jxa G AX<a, X<a denoting the span of

the Xß < xa. We call this a KS-basis. If the KS-basis can be chosen so that

Xß < xa => deg x^ < deg xa the KS-complex is called minimal. When A X is con-

nected this is equivalent to d: X -* A*2^ [12, Chapter 2]. If in (AX, d), X = Y ®

d(Y) and d: Y^>d(Y) then the KS-complex is called contractible. An important

example is A(t, dt) in which deg t = 0. Putting t = 0,1 defines augmentations

p0, p,: A(i, <Ä)-»Q.
A homotopy between two morphisms <¡>0, <i>,: (AA\ d) -> (A, dA) from a KS-com-

plex is a morphism <£: (AX, û?) — (A, dA) ® A(i, dt) such that p^ = <f»,.. We call #0

and <i>, homotopic and write <í>0 ~ <i>,. The basic ///«'«g theorem [25, Corollary 3.6; 12,

Theorem 5.19] asserts that given <f>: (AX, d) -> (A, dA) and ^.(C, dc)^(A, dA)

there exists a unique homotopy class of morphisms x'(AX, d) -> (C, dc) such that

\PX~4>-

A KS-extension is a sequence !¡,:(B, dB) -*(C,dc) ^(A, dA) of morphisms in

which we can identify C = B ® A, i(b) = b ® 1, p = e ® id for some augmentation

e of B, and in which (A, dA) is a KS-complex with KS-basis {xa} such that

dc(\ ® xa) G 5® AA^. It is minimal if the KS-basis can be chosen so that

xa < xß =» deg xa < deg x^. If (B, dB) is also a KS-complex we call | a A-extension;

if 5 and £ are both minimal we call £ A-minimal. If | is a A-extension then (C, ¿?c) is

a KS-complex.
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Given a KS-complex (AI, d), the projection A+ X -* A+ X/A>2X induces a

differential Q(d) in the quotient. The inclusion X-* A+ X gives an isomorphism

X-* A+ X/AS"2X so that we may and usually do regard Q(d) as a differential in X.

It is the linear part of d.

Suppose (B, dB) ->(£, dE) is a morphism between c-connected c.g.d.a.'s with B

augmented. A main theorem of minimal models [25, §5; 12, Chapter 6] asserts the

existence of a commutative diagram of morphisms

E

(1.1) JÎ^^Î^
B^——*B® AX-»AI

in which the bottom row is a minimal KS-extension. This extension is determined up

to isomorphism by <i> and (1.1) is called the minimal model of <j>. When B = Q we

refer to AX^*E as the minimal model of E. A diagram of the form (1.1) where the

extension is not required to be minimal is called simply a model for <p (or for E). If B

is replaced by a model, (1.1) is called a A-model.

Fix a c-connected c.g.d.a. (A, dA). The spaces H(X,Q(d)) as (AI, d) runs

through the models for A can be naturally identified [12, Chapter 8] and their

common identification is denoted by tr*(A, dA), the \p-homotopy space. A morphism

<¡>:(A,dA)^-(B,dB) determines via the lifting theorem a unique homotopy class of

morphisms \p:(AX, d) -» (AY, d) between the minimal models. The linear part,

ß(^), of $ is a linear map <f: ir£(A, dA) -> irf(B, dB).

i P -

1.2 Lemma. Suppose (B, d) ->(.ß ® AI, d) -»(AI, d) is a KS-extension in which

H°(B) = Q and H(X, Q(d)) = 0. Then i* is an isomorphism and H(AX, d) = Q.

Proof. In view of [12, Theorem 2.2] we need only prove that H°(B ® AI) = Q.

Let {xa} be a well-ordered basis of I for which dxa G B ® AI<0. Choose the least

a such that H°(B ® AI<a) ^ Q. Then degxa = 0 and there is a degree zero

cocycle of the form 2%=0 ®kxk with Qk G (B ® AI<a)° and $m # 0.

Clearly i/Om = 0 and d<bm_l + m<bmdxa = 0. The first equation implies (by

hypothesis) that <$>m is a scalar; we may suppose 3>m = 1. The second equation then

shows that xa + i;í)m_1 is a cocycle. The composite projection B ® AI -* AI -»

A I/A3"2! = I © Q maps this cocycle to xa + y + X, y G I<Q, X G Q, and xa + y

is necessarily a nonzero Q(d) cocycle of degree zero, a contradiction.    Q.E.D.

The connection of minimal models with topology is provided by Sullivan's functor

K -> A(K) from simplicial sets to c.g.d.a.'s [25, §7; 12, Chapter 13]; A(K) is the

algebra of compatible rational polynomial differential forms on the simplices of K.

Integration induces a natural algebra isomorphism H(A(K)) ^ H(K).

When this is composed with the functor "singular simplices" we obtain the

functor S -> A(S) from spaces to c.g.d.a.'s with H(A(S)) and H*(S) naturally

isomorphic. A (minimal) model for A(S) is called a (minimal) model for S and we

write 77^(5) = ir*(A(S)). There is [25, Theorem 10.1] a natural isomorphism

(1.3) 77i*(S)^Homz(77,(5);Q)
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if S is simply connected. If <f>: S -» T then <f>#: ir*(T) -» tt*(S) is dual to <i>#: 77^(5)

If (AX,d) and (AT, J) are models for spaces S and T, a continuous map

4>: 5 -> T determines via the lifting theorem a unique homotopy class of morphisms

(AT, */) -» (AI, c/). Any one of these is said to represent <j>. If a: (^4, dA) ** (B, dB)

is a morphism, and (AY, d) and (AI, d) are models for (A, dA) and (B, dB) and a

lifts to a morphism representing <j> we say also that a represents <£.

Finally a space or c.g.d.a. with cohomology H is called formal if its minimal model

coincides with that of (H, 0). It is called tr-formal if its minimal model can be written

in the form (AX,d) with </:!-> A21.

2. Models for the fat wedge and for Ganea's spaces Em. In this section we first

obtain a description of the model of the fat wedge, Tm+ \S), in terms of a model

y.AX-A(S)

for S. A model for the (m + l)-fold Cartesian product, Sm+\ is given by y(m+":

(AX,d)®m+i -^A(Sm+l) where, if 77, is the projection on the /th coordinate of

Sm+\

T(»+1>(#, g ... ®<i>m+1) = ¿(„.h*. A ■ • ■ A ¿(irM+Ih*m+1.

With respect to these models the diagonal map S -> Sm+i is represented by the

multiplication map jüt: (AI, dfm+] -» (AI, d).

To analyse A(Tm+\S)) we let * be the basepoint of S and denote by r,m+1 C

Tm+1(S) the subset of points whose ah coordinate is *. Thus Tm+,(S) =

\j™+iTm+\ The singUiar simplices of Tm+\S) whose image lies in some Tfn+X

form a subsimplicial set. The compatible differential forms on the simplices of this

form [25, §7; 12, §13.5] a c.g.d.a. (Ä(Tm+\S)), d) and restriction is a surjective

morphism fromA(Tm+\S)) to Ä(Tm+\S)).

The projections iri determine morphisms

\™+1:A(S) ^A(Sm+i) ^A(Tm+,(S)) ^Ä(Tm+l(S)).

Multiplying these together yields a morphism

\m+i:(A(S),dfm+l -(¿(r-+,(,S»,rf).

If Is denotes the kernel of the augmentation A(S) -» Q determined by *, then

je>m+\ ckeT\m+\ We thus obtain from Am+1a morphism

m+i. (^5)'rf)  m      -*Ä(Tm+\S),d).

1s

2.1 Lemma. The morphisms

A(sfm+'* restriction

r<8m+l
2S

Ä(Tm+i(S))     *-     A(Tm+l(S))

are quasi-isomorphisms.
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Proof. Because S is well pointed and normal the identity map of S can be

deformed by a basepoint preserving homotopy to a map which contracts a

neighbourhood U of * onto *. The (m + l)-fold product of this map carries

S X • • • Í/ ■ • • X S to S X • • • * • • • X S. It is straightforward to deduce from this

that the inclusion of the subsimplicial set above into all the singular simplices

induces a homology isomorphism. It follows [12, Theorem 14.18] that the restriction

A -> Ä is a quasi-isomorphism.

To prove that <pm+x is a quasi-isomorphism we use induction on m. When m — 0,

<í>' = id: Q ^Q. Suppose the lemma holds for m = n — 1 and consider the case

m - n. Write Tn+\S) = [S X T"(S)] U [* X Sn] and observe that the intersection

of these sets is * X T"(S). Use the singular simplices whose image is in one of the

T"+1 (2 < i «S « + 1) to define a c.g.d.a. (Ä(S X T"(S)), d); as above, restriction is

a surjective quasi-isomorphism A(S X T"(S)) -* Ä(S X T"(S)). Use i(T"(5)) =

Ä(* X F^S)) to denote the c.g.d.a. constructed via the sets T" C T"(S).

The decomposition of T"+l(S) leads to the row-exact commutative diagram

0^   Ä(Tn+l(S))      V    Ä(S X T"(S)) ® A(* X S")     '-» 2 i(F"(S))  -»0

«f.^1 Î id-<f>" î îy<n) T<J>"

0
A(SY

Ff"+1 (/t./i)

¿(S)
®n

®A(srn -   ^— -o
Sgl_Ä2 iç

in which F„ F2,Gl,G2 are the obvious restrictions, while /,, /2, g,, g2 are the

algebraic analogues,

/, = obvious projection,       f2 — e ® id,

g, = e ® id,       g2 = obvious projection.

Note that (id • <¡>")<t> ® * = ^(t7,)<I> • ̂ (tt2)«í>"^ where 77,: S X rn(S) -» S, t72:

5 X F"(S) -* T"(S) are the projections. The diagram

a(s) ® a(t*(s))   m-    i(sxr(5))

74(<>)®"    =*
id-^":^(5)g>    v   ;       -*       y4(S)®i(r"(S))       -»      Ä{SXT"(S))

Is "       id®i¡>" mult.

shows that id • <j>" is a quasi-isomorphism. The induction is now completed by

applying the five lemma to the long exact cohomology sequences arising from the

earlier diagram.    Q.E.D.

Denote by

,:(AI)8m+l -(Alf m + 1/(A+I)®m+1

the projection, and use it to equip the quotient algebra with a differential. The model

morphism y: AJST-» A(S) then determines a morphism T: ( AI)0m+1/(A+ xfm+x

-» A(S)®m+i/I®m+i which is a quasi-isomorphism. For simplicity we adopt the
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notation A = (AI)®m+1 and I = (A+ X)®m+\ We have then the commutative

diagram of morphisms

y(»t+i)
A 2 A(Sm+i)

A/I
1 ls <j>

This yields

2.2 Proposition. Let v. AY ^ A/I be a model. Then it lifts to a model morphism

AY->A(Tm+x(S)). Moreover, if £: A -» AT represents tj then it also represents the

inclusion Tm+\S) -» Sm+i.

We turn our attention next to the space Em defined in [7, 2.1] by Ganea. Gilbert

[8, Proposition 3.3] has shown that if S is 1-connected, a space of the same

homotopy type as Em can be constructed by converting the inclusion Tm+\S) -»

Sm+i into a fibration, and then restricting it to the diagonal. Alternatively, we can

construct (up to homotopy equivalence) this space by converting the diagonal into a

fibration, and restricting to the fat wedge.

This last construction has an exact analogue in the category of c-connected

c.g.d.a.'s (A, dA). Let (AI, d) be the minimal model of one such. The minimal

model of the multiplication map ¡i: AI®AI-»AIis necessarily of the form

AI®AI-       —*AI®AI®AI,

in which the differential DinAI®AI® AI satisfies Q(D): X -> I © I.

Evidently Q(4>) — ß(/x): (x ® 1 + 1 ® x')i->x + x', and we may clearly suppose

ô(^) = 0 in X. Since [12, Theorem 7.3] Q(>//)*: H(X @ X ® X, Q(D)) =>I we may

conclude that Xp = Xp+], and that Q(D)x = 1 ® x — x ® 1, where the identifica-

tion I = I is denoted by x <-» x.

Form the (m + l)-fold tensor product of this diagram with itself over the c.g.d.a.

AI, adopting the convention that in (AI® AI) ®AA- (AI® AI), AI acts on

the immediately adjacent copies. The result is a diagram of the form

(2.3)
(AXfm+'--► (Alf m+' ® (AÏ)'

i

in which i is the inclusion of a KS-extension.

If we adopt the further convention that (AI),, 1 < i «s m + 1, and (AI),,

1 *£/</«, denote the respective copies of AI and AI in the z'th position in

(AI)8m+1 ® (AÏ)8"", then it is immediate from the construction that
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(2.4) for each 1 «S í < m, (AI), ® (AI),+1 ® (AI),, is stable under D, and

(2.5) in the algebra of (2.4), ô(D)x=l®x-x®l.

Finally, let (AI)8m+1 act on (Alf"+1/(A+lf"+l via the projection tj and

form the tensor product

-®(Axr+i(Al) ®(AI)     ,D\
(A+xy

{AX) 0(AlT>'1+1 v '

(UAI, d), D) = | ;;^.w+1 9 (Axf", D

\ Ia  *) /

2.6 Definition. The c.g.d.a.

(Al)®m+1 -  « \

{AX\ +, »(Air.j
(A+lfm+1 /

will be called the mth Ganea c.g.d.a. for (AX, d).

The analogy between Em and Ym is made precise in

2.7 Proposition. Let (AX, d) be the minimal model for a simply connected space S.

Then Tm(AI, d) represents the rational homotopy type of the Ganea space Em.

Proof. The diagram (2.3) exhibits (AI)8m+1 -> (AXfm+] ® (AXfm as a

model for the multiplication map ¡i. Since p represents the diagonal map S -> Sm+]

it follows exactly as in [10, §2] that this model is a model for the fibration £,

obtained from the diagonal map.

On the other hand, by Proposition 2.2 we can think of n as representing the

inclusion Tm+\S) =» Sm+\ It follows from [12, 20.6] that Tm represents the rational

homotopy type of the pullback of the fibration £ to Tm+i(S). But, as we observed

above, this pullback is Em.    Q.E.D.

3. The rational homotopy type of Ym. Let (AI, d) be the minimal model of a

c-connected c.g.d.a., and fix m > 0. As in §2 let

r|:(Air+'-(AI)8"+'/(A+ir+1

denote the projection, and let (Tm, D) be the wth Ganea c.g.d.a. In this section we

shall establish

3.1 Theorem. There is a homotopy equivalence

rm^[AI/A>ml] © V

in which the right-hand c.g.d.a. is defined by: AI/A>mI is a sub-c.g.d.a.,  V =

2^,3, i Vp, the differential in V is zero, and

V■ (AI/A>mI© V)+ = 0.

The homotopy equivalence will be constructed explicitly as a sequence of three

quasi-isomorphisms a,, a2, a3.

As an immediate corollary of Theorem 3.1 and Proposition 2.7 we have
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3.2 Theorem. Let S be a simply connected space with minimal model (AX, d), and

let W be a space whose rational homotopy type is represented by A X/A>mX. Then the

space Em of Ganea has the rational homotopy type of WV Va Sa, where the Sa are

spheres^

We now proceed to the construction of a,, a2, a3. As a first step we consider the

c.g.d.a.

((Alf"+l®(AI)8m,i)),

which we denote (A, D) for brevity, and collect some necessary results. Let e: AI ->

Q be the projection, and consider the KS-extension

AI^'(AI)8m®(AÏ)8m,

where X, is the inclusion onto the j'th factor, and p, = £ in the ;th factor AI and is

the identity in the other factors.

A simple calculation using (2.5) shows that the differential D induced in (AI)®m

®(AXfm (which depends, of course, on i) satisfies Q(D): X® ■ ■ ■ ®X=>X

© • • • ©I. We can thus apply Lemma 1.2 to obtain

(3.3) H((Axfm®(Axfm,D)=Q.

The fact thafQ(D) is the isomorphism above, together with (3.3), implies that the

differential D induced in (AI)®"1 is zero;

(3.4) ¿"=0,

as follows from [13, Theorem 5.2].
XT L- J A    1_ i.'Now bigrade A by putting

A>«= 2 [A"I® ■■•®A^'I®(Al)*m]?+',

P\+   ■■■  +Pm+l=P

Since (AI, d) is minimal, d: X -» A*2! This, together with (3.4), implies that

D: Ap'' -* li^A4'*. Thus we have

00

(3.5) D =   2 A>       A- homogeneous of bidegree (/, 1 — /').
/=i

With respect to the induced bigradation in (AXfm ® (AXfm it follows that

D - 2¡>iDí. Evidently Q(D{) = Q(D) so that as above

(3.6) Q(Dt): X® ■■■®X =>X® ■■■®X.

Lemma 1.2 again applies and yields

(3.7) H((Axfm®(AX~fm,Di) = Q.

Observe next that tj defines a projection (A, D) -* (Tm, D) and that the bigrada-

tion projects to a natural bigradation of Tm. In the sequel we will construct a number

of other c.g.d.a.'s from (A, D) by a sequence of ideals and quotients. In each case

the newly constructed object will carry a unique (natural) bigradation with respect to
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which the defining map is homogeneous of bidegree (0,0). In each case, therefore,

(3.5) will apply.

Filter Tm by the ideals Fp — lLj>p Tp'*. This defines a spectral sequence (1st

quadrant, converging to H(Tm)), which will be denoted (rEf,q, d¡). From (3.5) we

see that

TE0 =r£, = T„   and   dx = £>,.

There will be analogously defined spectral sequences with the same properties for

the other c.g.d.a.'s we construct.

In particular, we are now ready to construct the quasi-isomorphism a,. Consider

the short exact sequence

0 -*   (A*C®A+*   * (Axf" L> TJ^'iAX)9" ® (Axfm -* 0(A+I)®m®A+I ' ^       '

where pm+, is induced from the projection pm+ [ above. Set

\

_ A+I®(AÏ)®4
(A+Xfm '    J

and denote its differential again by D.

Denote the spectral sequence for (Am, D) by ¿Ep-q. The inclusion

«1:(Am,Z))-(rm,JD)

induces an isomorphism at the £2-level of the spectral sequences, as follows from

(3.7) and the short exact sequence above. Hence (or directly from (3.3)) a, is a

quasi-isomorphism.

3.8 Proposition. rEf-' =AFf* = 0,p>m.

Proof. Since a, gives an isomorphism rE2 = A£2 we have only to show that

Hp-'(Am, O,) = 0,p > m. Permute the factors of Am to write

Am = Q©j   (AX)  "   ®(AÎ)0"'''   ®A+I®AI
m \(A+Xfm     K       '        J

where we have included the first m — \ copies of AI inside the brackets.

It follows from (2.4) that the algebra in the brackets is D-stable (hence also

0,-stable); moreover it clearly coincides with Tm_l. Thus we have

(3.9) Am = Q©rm_, ® A+I® AÏ

On the other hand, by dividing Tm by the ideal generated by (A+1)®"' ® AI we

obtain a quotient c.g.d.a. Permuting the factors of this as we did for Am, we can

write this quotient in the form (Tm_, ® AI ® AI, D). Evidently

o -(a; , Z>.) ̂ rm_, ® AI® Aï, Dx) -(rm_, ® AX, Dx) - 0
is a short exact sequence of bigraded c.g.d.a.'s.
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Since a, gives an isomorphism A£2 s TE2 and A^ = Q (all m), H°(Tm) = Q =

H°(Tm, £>,), all m. Thus Lemma 1.2 implies (in view of (3.6)) that

(3.10) Hp-q(Tm_u Dx) - Hpq(Tm_x ® AI® AÏ, D,).

We argue now by induction on m. When m = 1, T0 = Q and (3.10) shows that

H+(At,D{) =D,(1 ® Aï) CI® Aï,

which establishes the proposition in this case.

Assume the proposition to hold for m — 1. In view of the short exact sequence

above and (3.10) it will be sufficient to prove that

(3.11) ^*(r„^,® AÏ, D,) = 0,       p^m.

By the very definition of a KS-extension, I admits a well-ordered basis {xa} such

that T)xxa G Tm_, ® AI<a where I<a is the span of the x», ß < a.

Suppose we have established

(3.12) Hp-'{Tm_l®AX^,D])^0,       p>m,

for all ß < a. (This is true by our earlier inductive hypothesis when a is the initial

element.)

Then

Hp-'(Tm_, ® Aï<a, Dx) = Urn Hp-'(Ym_, ® AX^, D,) =0,       p > m.

There are obvious short exact sequences

o - rm_, ® Aï<a ® a*% - rm_, ® Aï<a ® A^+,xa - rm_, ® Aï<a - o

(k — 0 if deg xa is odd; k = 0,1,2,... if deg xa is even). These imply (3.12) with ß

replaced by a. A final limit argument completes the proof of (3.11) and hence closes

the induction.    Q.E.D.

We are now ready to complete the proof of Theorem 3.1 by constructing a2 and

a3. In A™;* choose a graded complement U for the subspace A™;* D ker £>,. Put

/ = A.><*.' © t/.

Clearly J is a bigraded, Z)-stable subspace. Moreover, because A+ C A^*, J is an

ideal.

Let

a2:(Am,D)^(AJJ,D)

be the projection. Because of Proposition 3.8,

0,       p < m,

H»-(äm,D]) = Q,       p>m.
H»-'{J,DX) =

It follows that a2 induces an isomorphism at the F2-level of the spectral sequences.

In particular, a2 is a quasi-isomorphism.

Note also that because A+ C A+-\ LJJ satisfies (Am/J)+ ■ ...-(àm/J)+ = 0

(w+1 factors).
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We now construct our final quasi-isomorphism

a3: AI/A>mI© V=*Am/J.

The inclusion

A+I- 1 ® A+I® 1 =* {      ' a   ®A+X®(Axfm
(A+Xf"

defines an inclusion |: (AI, d) -> (Am, D), which factors to yield a morphism

\. AI/A>mI-Am//. Bigrade AI by putting (AI)''« = (A"X)p+q; then d =

2,ai^,, <i, homogeneous of bidegree (/', 1 — /'), and | and | are homogeneous of

bidegree (0,0).

Choose V C (Am/J)m•* to be a graded subspace such that

H"-*(LJJ, Dx) = f(//-fAI/A>mI, J,)) © K.

Then ¿, together with the inclusion of V, defines a morphism

«3:Ai/A-ie^Am/;.

We show that a3, too, induces an isomorphism at the F2-level of the spectral

sequences. For this it is sufficient to prove that

\*: Hp-'(AX/A>mX, dx) -* Hp-'(AJJ, Dx)

is an isomorphism for/? < m and injective for/? = m.

For this, consider the sub-c.g.d.a.

Q© {(AI)0m® A+I®(AI)8m} =*A

and note (via (3.7)) that the inclusion induces an isomorphism of spectral sequences

at the F2-level. Next observe that the projection n ® id: A -> Tm restricts to a

projection from this subalgebra to AOT and that this restriction factors to produce a

commutative diagram:

Q©{(Air'®-^®(Air")

AI/A>mI-A /J
I

Using Lemma 1.2 we see that the arrow marked inclusion is an isomorphism at

the F2-level. But <j> itself is an isomorphism in bidegrees (p,q) with p < m, and

injective in (kerZ),)m*. It follows that </> (and hence ¿) induces an isomorphism at

the £2-level in bidegrees (p, q) with p < m and an injection in bidegree (m, q). This

completes the proof that a3 induces an isomorphism at the F2-level.

The quasi-isomorphisms

(AI/A>-I© F)aÍAm//2Am^rm

establish Theorem 3.1.
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4. Rational category. Let S be a space with minimal model y: AX -> A(S). Recall

from §2 that y(m+1): (AI)®m+1 - A(Sm+i) is a model for 5m+l and that the

multiplication map u:(AI)<8m+l -» AI represents the diagonal map. Let AF —

A(Tm+\S)) be a model for the fat wedge, and let £: (AXfm+[ -» Ay represent the

inclusion of Tm+[(S) in Sm+i.

4.1 Definition. The rational category of S, cat0(S), is the least integer m > 0

such that there is a morphism p: A F -* AI for which

jr(AX)

AI.—■- AY
p

is homotopy commutative.

4.2 Remarks. (1) It is trivial that the definition is independent of the various

choices.

(2) A deformation of the diagonal into the fat wedge induces such a diagram, and

so cat0(S) < cat S. If S is simply connected then such a diagram induces a

deformation of the diagonal map of the localization SQ into the fat wedge Tm+ \SQ).

Thus in this case cat0(S) = cat(5Q).

In view of Proposition 2.2, £: (AI)8ffl+ ' — AY fits into a homotopy commutative

diagram

( A A )

In

Ay—,(AI)8m+1/(A+ir+l.

Of course A Y and £ are completely determined (up to homotopy) by this diagram.

We can use this formulation to extend the definition of cat0 to the category of

c-connected c.g.d.a.'s (A, dA). Indeed, let (AI, d) be the minimal model for one

such and define AY and £ by a diagram of the above form. Then we have the

4.3 Definition. The rational category, c&i0(A, dA), of (A, dA) is the least integer

m > 0 such that there is a morphism p: AF -> AI for which p ° £ ~ u. If there is no

such m, cat0(/l, dA) — co.

4.4 Remarks. (1) Evidently cat^S) = cat0(A(S)) for any space S.

(2) If a,: AI- (AI)®m+l is the inclusion of the r'th factor then u ° X,. = id and

so p o ¿ o X,. = t|/,. ~ id. It follows from [12, Theorem 7.2] that (because AI is

minimal) \pj is an isomorphism. We may replace £ by £' = £ ° (t^f1 ® • ■ • ®*r'n+\)

without changing the homotopy class of £; i.e., we may assume p ° £ o X, = id.

4.5 Definition. An augmented algebra with augmentation ideal K has product

length m if m is the least integer such that K •...  K = 0 (m + 1 factors).

4.6 Definition. A morphism <¡>: A -+ B of c-connected c.g.d.a.'s makes A into a

retract of B if there are morphisms

AI^AF-AI
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(Ala model for ,4, A F a model for B) such that a represents <i> and ßa ~ id. (If AI

is minimal we can always modify ß so that ßa — id.)

The main result of this section is the

4.7 Theorem. Let (AX, d) be the minimal model for a c-connected c.g.d.a.,

(A, dA). The following conditions are then equivalent:

(i)cat0(A,dA)<m.

(ii) (AX, d) is a retract of Tm(AX,d).

(iii) (AI, d) is a retract of an augmented c.g.d.a. of product length < m.

(iv)   The projection  (AX, d) — (AI/A>mI, d)  makes  AX into  a  retract  of

AI/A>mI

4.8 Corollary. If (A, dA) is a retract of(B, dB) then cat0(^, dA) < cat0(2>\ dB).

4.9 Corollary. The c.g.d.a. (A, dA) has cat0(/l, dA) = 1 if and only if there is a

quasi-isomorphism <j>:(AX, d) -» (V ® Q, 0), where (AX, d) is the minimal model for

(A, dA) and the multiplication in V is trivial.

4.10 Corollary. For any c-connected (A,dA), cat0(A, dA) > product length of

H(A). If (A, dA) is formal (i.e., its minimal model is isomorphic to the model for

(H(A),0)) then cat0(A, dA) = product length of H(A).

4.11 Remarks. (1) When A = A(S) and S is a simply connected rational space

then cal0(A, dA) = cat S (cf. Remark 4.2(2)). Given Proposition 2.7, the implication

(i) ** (ii) coincides in this case with a result [7, Proposition 2.2] of Ganea.

(2) Theorem 4.7 clearly implies Theorem VIII of the introduction.

(3) For simply connected spaces 5, Corollary 4.9 is simply the well-known fact

that cat0(5) = 1 if and only if S has the rational homotopy type of a wedge of

spheres.

Proof of Theorem 4.7. (i)=>(ii) As in §2 denote (AI)8m+l by A and

(A4 xf'+ ' by /. Denote (AXfm by X. By the definition we have a diagram

AI

in which the lower triangle is homotopy commutative, while the upper is strictly

commutative (Remark 4.4(2)).

Now consider the KS-extension

A-A ®X - X

defined in diagram (2.3). Let A act on A F via £ and form the tensor product

AF®A A®X = AF®X.

The morphism v extends to a morphism

(4.12) AF® X - A//®AV AF® X = A/I® X
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which is a quasi-isomorphism because v is [12, Lemma 1.9]. In particular it exhibits

AF ® A as a model for A/I ® A.

Next, consider the morphism ^: A® A-AI of (2.3) and observe (because

p o £ = id) that ß = p®<p:AF®A->AIisa morphism. On the other hand, any

of the inclusions AI — A, when composed with £ and the inclusion A F -» A F ® A,

yields a morphism a: AX -> AF ® A such that ß o a — id. We thus exhibit AI as a

retract of AF® X.

Finally, observe that the c.g.d.a. A/1 ® A of (4.12) can be written

A//®X = A//®AA®X,

where A acts on A/I via v ° £. Because v ° £ ~ r/ there is a c.g.d.a. morphism

$: A - A/I ® A(t, dt) with p0$ - v ° £ and p,$ = n (cf. §1). Use 0, p0, p, to

define

A//®A A ® X^A/7® A(t,dt) ®A A ® X-A//®A A ® X,

in which A acts on A/I on one side via v ° £ and on the other via i\. In particular,

one of these c.g.d.a.'s is Tm( AI), and so they are all c-connected.

It now follows from (4.12) that there is a quasi-isomorphism A F ® A -» Tm( AX),

which exhibits A F ® A as a model for Ym and AI as a retract of Ym.

(ii) =» (iii) This follows from Theorem 3.1.

(iii) =» (iv) Suppose AI is a retract of a c.g.d.a. B with augmentation ideal K such

that K- ...-K=0 (m+ 1 factors). Let AY^B be a model, and let i: AX - AF,

r: AY -> AI be morphisms such that ri — id.

Clearly 77°/ maps A>mI to zero, and so factors over the projection AI->

AI/A>mI If AZ - AI/A>mI is a model we can thus find morphisms

-,
AI-AZ-AF

whose composite is homotopic to i. Set r, — r ° i2, then r,i, ~ id and (iv) is

established.

(iv) => (i) It is a matter of trivial diagram chasing to verify that if A is a retract of

B and cat0(5) =s m then cat0(/l) < m. We need only verify, therefore, that B =

AI/A>mI satisfies cat0(£) *£ m. Let K be the maximal ideal B+ and notice that

multiplication B®m+l - B factors over the projection B®m+[ - B9m+]/K9m+1 to

give a morphism from this latter c.g.d.a. to B.

Some more elementary diagram chasing completes the proof.    Q.E.D.

5. The mapping theorem.

5.1 Theorem. Suppose 4>:(A, dA) -> (B, dB) is a morphism of c-connected c.g.d.a.'1 s

such that 4>*: tr*(A, dA) — 77^(5, dB) is surjective. Then

cai0(A,dA) ^cat0(B,dB).

Proof. Let (AI, d) -(AI ® AF, d) -(AF, d) be a A-minimal A-model for $,

and write cai0(A,dA) = m. Then by Theorem 4.7, the projection (AI, d) —

(AI/A>mI, d) makes AI into a retract of AI/A>mI. It follows that AI ® AF
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is a retract of AI/A>mI ® AF, so that we need only prove

cat0(AI/A>mI® AF, d) < m

(cf. Corollary 4.8).

Our hypothesis on <j>* implies that Q(d): Y — I is injective. It follows from [13,

Theorem 5.2] that d = 0 and so d: AY — A+ I ® AF. Now consider the projection

p: AI/A>mI - I © Q and use

p® id: AI/A>mI® AF-(I©Q) ® AF

to induce a differential, D, in (I © Q) ® AF.
D D

Since d = 0, AF —I® AF —0. A second derivation, Z),, also of this form in

(I©Q)® AF, is defined by Dxy = Q(d)y ® 1, y- G F. Since [d - Q(d)]: F-
A*2(I® F) we have

(5.2) £>,: AmF-I® Am~'F,        (D -£>,): AmF - I® A^T.

Since £>(¿): F - I is injective so is £>,: A+ I - I ® AF; in view of (5.2), D: A+ Y

— I ® A F is also injective.

Let U C I ® A F be a graded complement for D( AF) and

/>':(I® AF)© AF-(I® AY/U)® AF

be the projection. Then p' ° (/? ® id) projects AI/A>mI® AF onto an acyclic

c.g.d.a. Hence if K = ker( /?' ° ( p ® id)) then # © Q is a c.g.d.a. and the inclusion

/C©Q-AI/A>mI® AF

is a quasi-isomorphism.

By inspection, K C A+ X/A>mX ® AY and so K has product length m. Now

Theorem 4.7(iii) implies that

cat0(AX/A>mX® AY,d) = cat0(K®Q,d) <m.     Q.E.D.

5.3 Proof of Theorem I. Given Remark 4.4(1) and the natural isomorphisms

■n£(A(S)) s Homz( 77^(5); Q), Theorem I is a corollary of Theorem 5.1.    Q.E.D.

5.4 Remarks. 1. The main theorem of [13] asserts (with the same hypothesis on 77^

as in Theorem 5.1) that if HP(A) = 0, p > n, then H(B) has product length =£ n.

Since then cat0(>l) < n, and product length H(B) < cat0(i5), the present result is a

substantially stronger theorem.

2. Theorem 5.1 immediately implies the well-known fact that a sub-Lie algebra L

of a free graded Lie algebra £ v on a positively graded space of finite type is again

free. Indeed, if C* denotes Koszul's cochain functor to c.g.d.a.'s it transforms the

inclusion L — £K into a surjective c.g.d.a. morphism C*(tv) — C*(L) in which

both c.g.d.a.'s are minimal models.

On the other hand, it is easy to see that the obvious projection C*(£ v) — £* © Q

— KffiQ   is   a   quasi-isomorphism,   whence  (Corollary   4.9   and   Theorem   5.1)

cat0(C*(L)) < 1. Apply Corollary 4.9 again to finish.

5.5 Example. Let W be the space (CP2 V S2) Uue7, where the seven-cell e1 is

attached by [a, ß] G 776(CP2 V S2), and a G 775(CP2) and ß G tt2(S2) are the

obvious basis elements. We shall show that

(5.6) cat0(IF) = 3,
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and, more generally for the «-fold Cartesian product,

(5.7) caX0(W) = 3«.

First observe that H*(W) ss H*(CP2 V S2 V S1) as graded algebras so that a

model of Wean be obtained by perturbing a model of the formal space CP2 VS2V

S1 as described in [14, §4]. The latter has the form (AZ, d) in which Z carries a

second, lower, grading Z = ^p»oZp, d is homogeneous of lower degree -1 and

H+(AZ) = 0.
Explicit bases are given by (subscripts denote degrees)

Z0:x2,x2,x7,       Zl:y3,yí,ys,ys,y¡,       Z2:v4,v6,...

and d(Z0) — 0 while

dy3 = x2x2,      dyg = x2x7,     dv4 = y3x'2 - y'3x2,

dyi = (x2) ,    dy¡ = x2x7,     dv6 = y5x'2 - y3x\,

dys =x\.

The model for W is then of the form (AZ, D) with D - d: Zp - (AZ)KLp„2.

Necessarily D = d in Z0 and Z, and in Z<6. The choice of w forces Z)u6 = dvb — x7

and/) = dinZi2.

In AZ the ideal generated by Za,2, y3, y3, ys, y%, x\, y5x2, (x2)2, x2x2 and

x7 — y5x'2 + y3xl is D-stable. The quotient c.g.d.a. has the form/1 = A(x2, x2, y5)/I,

where I is the ideal generated by (x2)2, x2x2, x2 and >"5X2. The differential dA is

given by dAx2 — dAx'2 — 0 dAy5 = x\.

The elements

1, x2, x2, x2 1, X
and

*2> y*y$x'i x2> ysxi

represent, respectively, a basis for A and a basis for H(A). It follows that

(AZ, D) — dA). Since^4 has product length 3, Theorem 4.7 shows that cat0(5) <£ 3.

On the other hand a second D-stable ideal in AZ is generated by x2, x2, x7 + ^3x2,

v3, v5, ̂ 8, Vg and Z>2. Its factor algebra is A(x2, y3)/I where I is the ideal

generated by x2. The projection lifts to a c.g.d.a. morphism <p:(AZ, D)—

(A(x2, y3, y5), D) where Z>x2 = Dy3 = 0 and Dy5 = x2. Moreover $x2 = x2, <j>y3 =

y3 and ^ = j5.

This implies that $*: //(Z, Q(D)) — (x2, j3, v5) is surjective and we may thus

apply Theorem 5.1. Since (A(x2, y3, y5), D) is the model for the formal space

CP2 X 53, and since H(CP2 X S3) has product length three, we conclude that

cat0(5) > cat0(CP2 X S3) = 3.

This finishes the proof of (5.6). Formula (5.7) is proved in the identical way, except

that all c.g.d.a.'s must be replaced by their «-fold tensor products.

5.8 Example. We show now that

cat(CP2 V52U„e7) = 3    and   cat(CF2 V S2 Uu e1)" = 3«.

Indeed, write

CP2 V S2 U„ e1 = S2V S2U e4U e1
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and conclude from [15, §2] that cat(CP2 V S2 Uu e1) < 3. Since cat0 < cat (Remark

4.2(2)) we get equality from (5.6).

Use [15, Proposition 2.3] to find cat(CP2 V S2 Uu e1)" < In, and conclude equal-

ity from (5.7).

6. Fibrations. Recall the restrictions on topological spaces imposed at the start of
j       it

the introduction. Given a sequence £: F — E — B of base point preserving continuous

maps between such spaces, there is a commutative diagram of augmented c.g.d.a.

morphisms

A{B) _^-.   A[E)     -A^-, A(F)

(6.1) „,st, U U

(AY, D) -> (AF® AI, D)-—» (AI, d)
i

in which m B is the minimal model for B and the bottom row is the A-minimal

A-extension which models A(v) ° mB.

If a*: //(AI) — //(F) is an isomorphism (so that a is the minimal model for F)

then £ is called a rational fibration [13]. If £ is a Serre fibration in which tr^B) acts

nilpotently in each HP(F) then £ is a rational fibration [12, Theorem 20.3]. This

includes the Serre fibrations of Theorem II in the introduction.

With each rational fibration £ is associated [13, (4.9)] a canonical long exact

sequence

(6.2) ^7rp(5)"_:7r,(£)C^(F)-77/+l(Ä)- ,

which, when £ is a Serre fibration of simply connected spaces, is dual to the standard

long exact homotopy sequence.

We can derive (6.2) from (6.1) by recalling that F = n*(G), X = tt*(F) and,

because (AF ® AI, D) is a model for E, H(Y ® X, Q(D)) = irf(E). Now (6.2) is

the sequence arising from the short exact sequence

(Y,0)^(Y®X,Q(D))^(X,0).

Note that Q(D) maps I into Fand F to 0 and that 3* = Q(D): X - F.

Given a rational fibration £, put

£  _ I dimCokery*,    if (y'*)even is surjective,

[ co,    otherwise.

(Even if (y#)even is surjective it may well happen that k( — co.) Note also that

kç = co if 9* is not zero in 77^ven(F). If it is zero there then by the exactness of (6.2),

(6.3) kç — dim Im 3* = dimKer7r* — dimCokery*.

6.4 Theorem. Let £ be a rational fibration. Then

k( =s cat0(F) < cat0(F) + kv
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6.5 Remarks. Because the fibrations of Theorem II of the introduction are

rational fibrations, that theorem follows from this. We also recover Theorem 4.15(ii)

and (iii) of [13].

Proof. We show first that k( < cat0(F). Consider (6.1) and let A F - A F ® A F

— AF be the A-minimal A-extension in which (AF® AF, /),) is acyclic. Then

Q(DX): Y-*Y and hence by [13, Theorem 5.2] the differential £>, induced in AF is

zero.

Tensor (AF® AF, />,) with (AF® AI, D) over (AF, D) to obtain a c.g.d.a.

AF ® AF ® AI together with c.g.d.a. morphisms

<J>,: AF® AF® AI- AI,       <f>2: AF ® AF® AI - AF.

Because A F ® A F is acyclic, <p* is an isomorphism. Since Alis a KS-complex there

is a c.g.d.a. morphismip: AI— AY® AF ® AI with <>,i// = id.

It follows that the linear part of ip, Q(*p): I- F© F© I, has the form xt-

(a(x), -Q(Dx)xQ(D)x, x) for some a(x).

Now let F, C F correspond under Q(DX) to lm(Q(D): X - Y), and let/?: A F -

AF, extend the identity in AF,. Then Q(p4>2^) is surjective and so by Theorem 5.1,

cat0(AF,,0) *£ cat0(AI, d) = cat0(F).

On the other hand, by Corollary 4.10, cato(AF,,0) is the product length of AF,.

This is co unless F, is oddly graded, in which case it is dim F,. Since F, s Coker j*

the inequality k^ < cat0(F) follows.

To establish cat0(F) < cat0(F) + k(, we need the

6.6 Lemma. Z/AZ — AZ ® Am — Am is a connected A-extension in which u has

odd degree then cat0( AZ ® Am, d) < cat0(AZ, d) + 1.

Proof. We may clearly suppose cat0(AZ, d) = m < co. Then by Theorem 4.7,

(AZ,d) is a retract of (AZ/A>mZ,d) and it follows that (AZ® Au, d) is a

retract of (AZ/A>mZ ® Au, d). This has product length m + 1 and we apply

Theorem 4.7 again to finish.    Q.E.D.

Now we show cat0(F) =£ cat0(F) + /c£ by induction on k^. (When ££ = co there

is nothing to prove.) When k^ = 0 this is just Theorem 5.1; assume now that k^ = m

and that the inequality holds for n with kv = m — 1.

In the c.g.d.a. ( AF ® AI, D) of (6.1) choose a well-ordered basis {xa} of I such

that Dxa G AF ® AI<a and let xa be the first basis vector for which Q(D)xa — y

¥" 0. Set n = deg v; because k^ < co, n is even.

Divide by AF<n to obtain a c.g.d.a. (AF*" ® AI, D) and note (by Theorem 5.1)

that catotAF*" ® AI, D) < cat0(AF ® AI, D)j= cat0(F). Define a c.g.d.a.

( AF*" ® AI ® Au, D) extending this, by putting Du = v. Lemma 6.6 implies that

cat^AF*" ® AI® Aw, D) < catoíAF*" ® AI, D) + 1.

Divide now by y- and by u to obtain a quasi-isomorphism

(AF*" ® AI® Am, D ) -(A(F*"/^) ® AI, D').

In the A-extension n: A(F*7» - A(F*"/v) ® AI - AI we have kJ] = ki¡- 1.

With the aid of the inequalities just derived we can now close the induction.

Q.E.D.
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6.7 Remark. Note that the theorem holds for all connected minimal A-extensions,

and not merely those arising from rational fibrations.

Fix a connected minimal KS-complex ( A I, d) and suppose

£: AF-AF® AI-AI

is a connected A-extension with (AI, d) as fibre. The first inequality of Theorem

6.4 asserts (in view of (6.7)) that if cat0(AI, d) = m < co then (p*)even is surjective

and Im(p*)odd has codimension at most m in Xodd.

Define a graded subspace G¿(AI, d) C I by

(6.8) G*(AX,d)=   H Imp*,
i

where £ runs over all connected A-extensions with (AI, d) as fibre. If (AI, d) is

the minimal model of a space F then we write G$(F) and note that it can be

canonically identified as a subspace of -n*(F).

6.9 Theorem. Suppose (AX, d) is a connected minimal KS-complex with

catn(AI, d) = m < co. Then
(i) G™\AX, d) = Ieven, û«J

(ii) G^AI, d) has codimension at most m in Iodd.

6.10 Corollary. Suppose cat0(AI, d) < co. There is then an integer N such that

for any connected A-extension £ with fibre AX, (p*)" is surjective, n> N.

6.11 Corollary. If F is a topological space and cat 0( F') = m < co í/ic«
(i)G|wn(F) = 77-en(F).

(ii) G£dd(F) has codimension at most m in 771^>dd(F).

(iii) For a/ij' rational fibration F —F — £•, Im y    D G*(F).

Let G*(AI, ¿) C Hom(I"; Q) be the space of linear functions/: I" - Q which

extend to derivations 6f of degree -n in AI such that 6fd — (-X)"d6f = 0. It is easy

to see that

G;(AI, d) = {x G I"|/(x) = 0,/eC+(AI, d%

We thus obtain

6.12 Corollary. // cat0(AI, d) = m < co, i/ien G*(AI, c/) is concentrated in

odd degrees and has dimension at most m.

6.13 Remark. Let S be a simply connected space with minimal model (AI, d).

Write G+(AI, d) = G*(S). Then dim I" < co each n, and so G+(S) C trn(S) ® Q
= "•„(■Sq).

If / G G*(S), extend it to 6f and define a c.g.d.a. morphism (AI, d) - H(S") ®

(AI,d) by x - 1 ® x + a ® 0f(x), where a is a fixed basis of H"(S"). The

resulting continuous map S" X SQ — Sq exhibits / as an element of the Gottlieb

subgroup G„(SQ) C 77„(S0). It follows easily that

G„(S) ® Q C G„(SQ) = G*(S).
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If S has finite rational category m we may conclude from Corollary 6.12 that

Gç(S) ® Q is concentrated in odd degrees and has dimension at most m. This

proves Theorem III of the introduction.

Proof of Theorem 6.9. Assertion (i) is immediate from Theorem 6.4. Were (ii) to

fail we could find connected A-minimal A-extensions £,,... ,£r with fibre (AI, d)

and such that
r r

H Im(p*)=  Pi ker3£*
i i

had codimension > m in I.

Write £,: AF, - AF, ® AI — Aland divide by A*2F¿ to produce a KS-extension

(Y,. © Q) - (Y¡ © Q) ® AI - AI The differential £», is given by D,(Y¡) = 0 and

£>,(x) = dx + ô,x, 5,(x) G F, ® AI.

Let A = Q © ©r F,., with trivial multiplication and differential, and define a

KS-extension (,4,0) - (A ® AI, D) - (AI, d) by putting Dx = dx + 2¡=, 8,x.

Construct a commutative diagram of c.g.d.a. morphisms

(A,Q)        -       (A® AX, D)       -      (AI, d)

î~ "N Î «

(AF, D)      -     (AF®AZ, D)      -     (AZ, d)

in which the bottom row is a A-minimal A-extension. By [12, Chapter 6] a is an

isomorphism. We may thus identify (AZ, d) = (AX, d) and put a = id.

Evidently ß restricts to a linear map Y ^ (B^,. A simple calculation shows that

ßd£x = (3|"x,.. .,3|"x), x G I. It follows that ker 3* C fï,ker3* has codimension

> m. This contradicts Theorem 6.4.    Q.E.D.

7. Examples.

7.1 The wedge F, V F2. Let (AI,, </) and (AI2, d) be the minimal models of

spaces F, and F2. It is then easy [12, Chapter 15] to see that the minimal models of

F, V F2 and ( AI,, d) V (AI2, d) are the same. In particular (use Theorem 4.7)

cat0(F, VF2) = max{cat0(F,),cat0(F2)}.

/ TT
7.2 Proposition. Let £: F, V F2^>E ->B be a rational fibration of simply connected

spaces in which F, and F2 have finite rational category and nontrivial rational

homology. Then j#: 77+(F, V F2) ® Q — 77„.(F) ® Q is injective.

Proof. Since cat0(F, V F2) < 00, dim ker j# < 00 (Theorem 6.4). With a shift of

degrees down by one, we may identify this with

ker((Ö/)#: *,(Q(F, V F2)) ® Q - 77,(Í2£) ® Q).

This latter space is thus a finite dimensional ideal in the graded Lie algebra

77+(ñ(F, V F2)) ® Q and we must show it vanishes.

For this, observe that an element of maximum degree in ker(ßy)# is in the centre

of 77^(Í2(F, V F2)) ® Q and hence in the centre of its universal enveloping algebra

U. If follows easily from the work of Quillen [24] and Baues-Lemaire [2] that
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U = £/, * U2 (coproduct in the category of associative algebras) where Ui is the

universal enveloping algebra of 77„.(ßF,) ® Q.

Thus U+ is the direct sum of the vector spaces c/+ ® • • • ® Ut+ , p > 1, with each

/'„ = 1 or 2 and iv ¥= /„+,. Multiphcation is given by ( • • • ®a) ■ (a' ® • • • ) =

• • • ®aa' ® • • • and ( • • • ®a) ■ (b ® ■■■) = (■■■ ®a ® b ® ■■ ■), with a, a' in one

of C/,+ or U2 and b in the other. An elementary calculation shows that if U has a

nontrivial centre then dimt/,+ = dimt/2+ = 1. It follows that w„(ßF,.) ® Q is a

one-dimensional space of odd degree.

Hence X¡ = (x,), x, of even degree, and H(F¡) = A(x,) is a polynomial algebra,

which contradicts cat0(F,) < 00.    Q.E.D.

7.3 Connected sum. Suppose M, N are compact oriented connected «-manifolds

with H\M) = H\N) = 0 (n> 3), and minimal models AItf - A(M), AXN -

A(N). Let aM G A"XM and aN G A"!^ represent the fundamental classes of M and

N and define a c.g.d.a. (AXMV AXN ® Au, D) extending AXM V AXN by Du =

«M - «N-

Let

(AIWV AI^)® Am-(AIwV AI„) ® Am® AI- AI

be a minimal KS-extension such that i* is an isomorphism in cohomology in

degrees =£ n, and such that HP((AXM V AXN) ® Am ® AI) = 0 for /? > n. In

particular I is concentrated in degrees > n.

7.4 Proposition. The minimal model ofM#N is the minimal model for the c.g.d.a.

(( A XM V A XN ) ® A u ® A X, D ). In particular, if M and N are formal, so is M#N.

Proof. Write

M#N = (M - D") Us„-, (N - D")

and let K be the set of singular simplices for M#N whose image is in one of

M — D", N — D". Restriction defines a quasi-isomorphism A(M#N) ^A(K).

The model for M can be chosen so that A+ XM maps to forms which restrict to

zero in /)". These forms, when restricted to M - fl", extend by zero to elements of

A(K). The same construction applies to N and yields a morphism <¡>: AIM VAI^

— A(K) such that </>(aw, -<%) - d<S>. Extend <¡> to (AIM V AXN) ® Am by putting

(¡>u = $. The new <f> is a cohomology isomorphism in degrees < n; since H>n(M#N)

= 0 it extends automatically to a quasi-isomorphism

4>: (AXM V AIJ ® Am ® AX^A(K).

To prove the second part, suppose \¡iM: AIM — H(M) and \pN: AXN — H(N)

induce the identity in cohomology and extend these to a quasi-isomorphism

fr (AXM V AXN) ® Au ® AI- Hi<M) W_ tf(jV) =H(M#N)

by^M = ^(I) = 0.    Q.E.D.

7.5 The manifold M2" = (S" X Sn)# ■ ■ ■ #(S" X S"). Fix an odd integer n and

let M2n denote the connected sum of g copies of S" X S". When n = 1 this is a



RATIONAL L.-S. CATEGORY AND ITS APPLICATIONS 25

Riemann surface and hence formal by [4; 14, Corollary 6.9]. For n > 3 it is formal

by Proposition 7.4.

We establish now properties of the model (AI, d) for M2n, beginning with n — 1.

(See [25, §5] for a sketch of the answer here.)

7.6 Lemma. When n = 1, I = I'.

Proof. Choose x G I1, write AI=Ax®AF and observe that //(AF) =

//(AI® Am, d), where du = x. Filter AI ® Am by putting F~p = AI® A^m.

The resulting spectral sequence is convergent and has F2 « //(//(AI) ® Am, d)

with du = [x].

Now //(AI) = H(M2), so that an elementary calculation gives E2. Since u has

degree zero one sees that (aside from Q) F2 is concentrated in degree one. This is

then true for //(AF) and the argument in [14, Theorem 7.10] shows now that

F= F1.    Q.E.D.

Because M2 is formal its minimal model carries [14, §3] an additional (lower)

grading: I = 2?>0 AlJ with respect to which d is homogeneous of lower degree -1

and H+(AX) = 0. Because I = I1 we have therefore that d: X¡ - (A2!1)^,. If

x, y G IÔ satisfy xy- = dx, then there are elements x^ G Xp with dx^, = xp_ ¡y. Thus

for g > 2 no I vanishes.

We turn now to the general case.

r2n7.7 Proposition. The minimal model of M2" has the form (AZ, d) in which

Z = 2/,s,o^+l>("-')+1, d: Zp - (A2Z)p_x andH+(AZ,d) = 0.

7.8 Corollary. If n> 3 and g 3= 2 then trt(M2") ® Q is zero except in (the

arithmetic progression of) the degrees 1 + q(n — 1), q > 1. In these degrees it is

always nonzero.

7.9 Corollary. M£" is intrinsically formal and tr-formal.

Proof of 7.7. Put z^+l)<"-')+l = Xpl. Because n is odd so is (p + \)(n - 1) + 1

and so we can identify AZ,. = AI4 as algebras. Use this to transport the differen-

tial in AI to a differential, d, in AZ. A direct computation shows that d: Zk —

(A2Z)*íj (of course k ¡= (/? + l)(/i - 1) + 1).

Moreover H+(AZ, d) = 0 so that (AZ, d) is a model for H0(AZ, d) s H(M2").

Since M2n is formal we are done.    Q.E.D.

Proposition 7.7 shows that in the minimal model (AZ, d) for M2" (n s* 3, g > 2):

Z is concentrated in odd degrees.

d: Z - A2Z.(7.10)
dim //( AZ) < co and 2H)Pdim Hp( AZ) ¥= 0.

j
7.11 Proposition. Let F -*E ->B be a rational fibration of simply connected spaces

in which the minimal model of F satisfies (7.10) and cat0(F) < co. Then j#: 77 „/F) ®

Q — -n^(E) ® Q is injective.

Proof. If the proposition fails at all it does so when B is an even sphere S2k. In

this case we get a c.g.d.a. of the form ((1 © a2k) ® AZ, D) representing F with
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Dz = dz + a ® 6z, where 0 is a derivation of odd degree in AZ, anticommuting with

d. The failure of the proposition translates to the supposition that 0: Z2* ' — Q is

nonzero.

Extend this linear function to a derivation 0o in AZ2* ' and extend 60 to AZ by

zero in Z', i =£ 2k — 1. Then 6 — 0O preserves A+ Z while 60: A'Z — A'~[Z, and it

follows from (7.10) that 60d + d60 = 0.

Set F = ker0o n Z and choose z G Z2/í_l so that 00(z) = 1. Then AZ - AY ®

Az and hence AF= ker0o. Thus A F is J-stable and contains dz. Let t denote

multiplication by [dz] in //(AF). The inclusion AF— AZ induces an inclusion

Cokerr - //(AZ), so that by (7.10), dimCokerr < co.

On the other hand, by (7.10), F is concentrated in odd degrees, and it follows that

for some/?, (dz)p = 0. The same is thus true of [dz]. Since //(AF) is generated as an

algebra by a subspace isomorphic to Cokerr, together with [dz], we conclude that

dim//(AF)< co.

Finally, filtering by A F gives a spectral sequence converging from //(AF) ® Az

to //(AZ) and it follows that //(AZ) has zero Euler characteristic, in contradiction

with the final hypothesis of (7.10).    Q.E.D.

8. Rational homotopy.

8.1 Theorem. Let (AX, d) be the minimal model of a c-connected c.g.d.a. of

rational category m such that HP(AX) = 0, /? > n. Assume that dim X>1 = co. Then

(i) there is an infinite sequence of integers r, < r2< ■ ■ ■ with r{■ < n + r¡_,, such that
Xr<=£0,i = 1,2,...,

(ii) there is an infinite sequence of integers </, < q2 < • • • with q¡< (m + 1)<7,_,,

and there is a constant C > 1 such that dim Xq' > Cq', i — 1,2,_

Proof. Step I. Proof of (i). We note first that dim Xp ¥= 0 for infinitely many p.

Otherwise dim Xp — co for some largest /? > 2 and dim X>p < co. Since d(X>p)

can then only involve a finite-dimensional subspace F C Xp there is a surjection

(AI, í/) - (Aiy F,0). By Theorem 5.1, dim Xp/Y < cat0(AXp/Y,0) < m, which

contradicts dim Xp — co.

Next, by Corollary 6.12, there is an integer N such that Gf(AX, d) = 0, r 3* V.

Let pj < r2 < • •"• be the infinite sequence of integers r>N such that Xr ¥= 0. We

show that rt. — r,_, < n.

If not there is some r 3= A such that Xr ¥= 0 and I' = 0, r < i < n + r. Fix a

nonzero function/: Ir — Q. We shall show it is in G?(AX, d)by extending it to a

derivation 6f of degree -r with 6fd — (-\)rd0f = 0.

First put 0f(x) = 0, x G I<r, and 07(x) = /(x), x G Ir. Then fyd - (-\)rd6f = 0

in AI*'. Choose a well-ordered basis {xa} of X^"+r such that dxa G AI*r®

AI*^+r. Suppose fyextended toAI*'® AI^+r with 6fd - (-\)rd0f = 0.

Then d0f dxa = (-1 )r6f d 2xa = 0. Thus 6f dxaisa cocycle in AI of degree 3» n + 1.

Thus we can solve 0fdxa = (-\)rdy for j'. Put y = 0¡xa. Continue in this way to

construct 0, and achieve a contradiction.

Step II. We show that either dim Xp — co for infinitely many/? or that for those/?

with dim Xp < co the integers dim Xp are unbounded. Suppose the first condition
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to fail and let r be one of the integers ri of (i), chosen so that dim Xp < co, /? > r.

Put F = 22L72 Xj and Z = X>2r~2. Write k = dim F and note from (i) that

(8.2) k^(r-2)/(n-\).

Moreover, in the quotient c.g.d.a. (AI*r, d) = (AF® AZ, d) we have d = 0 in

AF. By Theorem 5.1, cat0(AI5"r, J) < cat0(AI, d) = m. Hence A"'+IF C Im d.

Define a: Z - AF of degree 1 by dz - ccz G AF ® A+ Z. Then a(Z) • AF D
Am+1F.

Because dega = 1 and elements in Am+1F have degree at most 2(r — \)(m + 1)

this yields a(Z<2(r-1)(m+1)) • AF D Am+IF. Because (AI, d) is minimal, a(Z) C

A*2F. It follows that in the quotient algebra AF/A>m+IF,

I m-\ \
^z^r-mm+\)j.        £   A>F     DA"'+1F.

\ 7 = 0 /

By (8.2) we may suppose (for sufficiently large r) that k 3» 2w + 2. Then

Í     *
\w + 1/      \ 2(m + 1)

while

k+J.     l\<(2k)J^(2k)m~\      j<m-\.

Because (k) < dim A-'F < (k+Jj]) it follows that dim z<2(^1)(m+1) 3* XÂ:2, where X

is a constant dependent only on m.

Again by (8.2) Z<2ir~,)im+ '* C Z**1* where /x is a constant dependent only on n

and w. It follows that for some /? > r, dim I^ = dim Zp 3* Xk/p. Thus as /- — co

the integers dim Ip are unbounded.

Step III. Proof of (n). Set e = (\/4(m + \))m+]. By Step II we may choose/? so

that A = dim Xp satisfies Ne > 1. The argument of Step II, applied to (AXp ®

AX>P, d), yields a degree 1 linear map a: X>p - A*2!' such that a(X>p) ■ AXP
D Am + 1I".

Now a(Xq) = 0 unless q = Ip - 1, / 3= 2, and a(l'''~1) C A'!'! It follows that

m+ 1

Am+,I' =   2  A",+ 1-'l* • «(I"-1).
1 = 2

The inequalities of Step II then yield (because N 3* \/e s* 2w + 2)

.. \   m+1 WI+ 1

, J        <   2  (2A)"!+1''dimI^-1.
2(m + 1) I ,f2 V      ;

This implies that for some / G [2, m + 1], dim X,p~ ' 3* <?#'.

Since eeV7 > (eN)2 > 1 the procedure can be iterated to yield a sequence /?=/?,

</?2 < ■ • • with /?,+ , = /,/?, — 1 for some integer /, G [2, w + 1] and such that

dim Xp>+> > e(dim Xp')''. Because 1 + /,. + /,./,._ , + ■■•+/,-■• l2 =s /,.-■• /, (since

ij 3= 2), it follows that

(dim Xp'+')l/pl+' 3, (edim I/7)'/p.

Now set q¡ = p,+ .    Q.E.D.
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The next theorem implies Theorem IV of the introduction.

8.3 Theorem. Let (AX, d) be the minimal model of a c-connected c.g.d.a. such that

dim //(AI) < co anddim Xp < co,/? = 1,2,_Then either

(i) dim I < co, or

(ii) the coefficients of fx(t) = 1p>\ dim Xptp grow exponentially.

Proof. Because dim I1 < co, if dim I = co then dim I>1 = co. By Theorem 8.1

there is then a sequence qx < q2 < ■ ■ ■ and a constant C > 1 such that dim Xq' > Cq'

and <7,+ , < (m + \)qr (m = cat0(AI, d).) For any k » qx we have g, =£ k < qi+x,

some i, and so

k

2   dimI''3*dimI«'3*C'7'3>(C1/(m+1))*.

On the other hand, Lemma 8.5 below shows that for some n, HP(AX>X, d) = 0,

p > n. Since AI*1 has finite type this implies dim H(AX>1, d) < co. Let f(t) be

the polynomial 2"pZ\ dim Hp_h\AX>l)tp.

Define a graded space I by Xp = Xp+]. In [14, §7] is constructed a spectral

sequence converging to AI*' with F,-term isomorphic as a graded space with the

tensor algebra ® V, where F' = Hp+ '( A !> ' ), p 3* 1. It follows that dim Xp+] <ap,

where

^aptp = .

In particular

A k — 1 A- — 1

2   dim IX 2 a,< 2 /(ir</(l)*.     Q.E.D.
p=2 p=\ p=0

8.4 Remark. If S is a simply connected space, the path fibration ßS — PS — S is

a rational fibration. Since the model for the augmentation (AI, d) — Q of the

minimal model of S is of the form (AI® AI, d) with Q(d): X — I, we may

identify AI= Z/(ßS).

Recall that Theorem V of the introduction reads

Theorem V. Let S be a simply connected space such that dim H*(S) < co. Write

US for the loop space. If S is rationally elliptic the coefficients of f„(SIS; I) grow

polynomially of order rank S. Otherwise they grow exponentially.

In view of 8.4, this theorem follows at once from Theorem 8.3 and its proof.

8.5 Lemma. Let (Au ® AX, d) be a KS-complex in which u is a degree 1 cocycle

and Hp(Au® AX) = 0,p>n. Then HP(AX, d) = 0,p>n.

Proof. Extend the KS-complex to (Am ® AI® Au, d) with deg v = 0 and

dv — u. This has the homotopy type of (AI, d). Filter by putting F~P = Am ® AI

® A^v and note that Ex=H(Au® AX)® Av.    Q.E.D.
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9. The invariant e0. Let S be a simply connected space. There is a standard

spectral sequence converging to H*(S) (usually the dual, homology spectral se-

quence is considered) due to Milnor and Moore (cf. [20, 21, 22]). It is based on

considering S as a classifying space for ßS.

One description (of many) is to form the bar construction BC*(S) on the

augmented cochains for S and then form the cobar construction on this differential

coalgebra to obtain a differential algebra SBC*(S). If V = B+C*(S) is the

canonical complement to Q then 9BC*(S) is the tensor algebra over V. Filtering by

the ideals 2ySe/) ®' F yields the spectral sequence.

Clearly any homomorphism $: Ax — A2 of augmented graded differential algebras

yields a spectral sequence homomorphism, which is an isomorphism from F, on if

<í>*: H(AX)-*H(A2). According to [12, Theorem 14.18] there are such homomor-

phisms C*(S) -* C *- A(S) for a certain g.d.a. C. We may thus replace C*(S) by

A(S) and hence by the minimal model (AI, d) of S to compute the spectral

sequence.

On the other hand the projection fi+(AI) — A+I— I extends to a g.d.a.

homomorphism SB(AX) — AI If we filter (AI, d) by the ideals A>yI then this

homomorphism is filtration preserving, and it is an easy exercise to see that it gives a

spectral sequence isomorphism from E2 on. This proves

9.1 Proposition. Let (AX, d) be the minimal model of the simply connected space

S. Then the Milnor-Moore spectral sequence for S can be identified from E2 on with the

spectral sequence arising from the filtration of AX by the ideals A*JI.

Henceforth if (AI, d) is the minimal model of any space 5 or c-connected c.g.d.a.

(A, dA) we call the spectral sequence arising from the ideals A*71 the Milnor-Moore

spectral sequence for S (or (A, dA)).

9.2 Definition. Let EP,q be the Milnor-Moore spectral sequence for a space 5 (or

c.g.d.a. (A, dA)). The largest integer k such that E¡¡¿* ¥= 0 will be written e0(S) (or

e0(A, dA)). If there is no such integer we put e0 = co.

9.3 Remarks. 1. If (AI, d) is any KS-complex then e0(AI,d) is the largest

integer k such that some nontrivial class in //(AI) is represented by a cocycle in

A**I. Equivalently it is the least integer such that the projection AI — AI/A**!

induces an injection of cohomology algebras.

In view of Theorem 4.7 we recover the inequality cat0(AI, d) > e0(AX, d) (cf.

[26, Theorem II B2; 17]).

2. If Sx and S2 ave spaces then the minimal model of S, X S2 is (AI,, d) ®

(AI2, d) where (AI,, d) is the model for S¡. The spectral sequence for Sx X S2 is

then the tensor product of the spectral sequences for Sx and S2, and we recover [26,

Theorem II C4]:

e0(Sx XS2) = e0(Sx) + e0(S2).

3. Evidently if «0(AI,d) is the product length of //(AI) then n0(AX,d)^

e0( A I, d ).
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4. [17] If (AI, d) is formal (i.e., it is the model of (//( AI),0), then by Theorem

4.7, «0(AI, d) = cat0(AI, d) and so

n0( AX, d) = e0( AX, d) = cat0( AI, d).

5. [17] If (AI, d) is 77-formal then d: X — A2I and in this case it is immediate

from Theorem 4.7 that e0(AX, d) = cat0(AI, d).

6. Suppose e0(AI,d)=l. Then AI - AI/A*2I = I© Q is injective in

cohomology. Since I is equipped with the zero differential and product we may

divide I by a subspace F to obtain a quasi-isomorphism AI — X/V® Q. We thus

recover a result of Toomer [26] which asserts that a simply connected space S with

e0(S) = 1 has the rational homotopy type of a wedge of spheres.

9.4 Examples. 1. Let W = (CP2 V S2) Uu c7 be the space of Example 5.5. It is

shown there that the minimal model of W maps to c.g.d.a. (A, dA) by a quasi-

isomorphism and, by construction, (A + )4 = 0. It follows, moreover, from 5.8 that

A — A/(A + )3 induces an injection at the level of cohomology. Hence the model

AI — A satisfies AI — AI/A*3I is injective in cohomology, and so e0(W) < 2.

In view of 9.3.6 we obtain Lemaire's result [16] that e0(W) = 2. Hence e0(W") =

2«, and (cf. (5.7)) cal0(Wn) - e0(W") = 3n - 2n = n.

2. We show that Theorem I has no analogue for e0. Indeed, in Example 5.5 we

constructed a c.g.d.a. morphism \p:(AZ, D) — (A(x3, y3, y5), D) which defines a

continuous map

/:(CP2 X S3)Q- WQ

and/is injective at the level of rational homotopy groups.

Because CP2 and S"3 are formal the remarks above yield e0(CP2 X S3)Q = 2+1

= 3, whereas we have just seen in Example 9.4.1 that c0(Wq) = 2.

10. Poincaré duality and rationally elliptic spaces. A c.g.a. H will be said to have

formal dimension n if Hp = 0, p > n, and H" ¥= 0. If in addition dim H < co,

dim H" = 1, and multiplication Hp ® H" p — //" s Q is a nondegenerate bilinear

form for each /?, then H is called a Poincaré duality algebra (P.d.a). An element

0 ¥= ce G //" is called a fundamental class.

Our aim is to establish Theorems VI and VII of the introduction.

10.1 Lemma. Let (AX, d) be a connected KS-complex such that //(AI) is a P.d.a.

and suppose w is a fundamental class. Then e0(AX,d) = sup{& | w can be represented

by a cocycle in A*AI}.

Proof. Observe that any algebra homomorphism <j> with domain //(AI) is

injective if and only if <j>o> ¥= 0.    Q.E.D.

10.2 Lemma. Let (AX ® Au, d) be a connected KS-complex in which (AX, d) is a

sub-KS-complex, dim H(AX) < co, //(AI) has formal dimension r, u has odd degree

q and du G AX. Then dim //(AI ® Am) < co and //(AI ® Am) has formal dimen-

sion q + r.

If in addition //(AI) is a P.d.a. then so is //(AI® Am) and in this case,

e0(AX® Au,d)<e0(AX,d) + 1.
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Proof. Filter AI® Aw by the degree of AI and use a standard spectral

sequence argument for the assertions on dimension, formal dimension and Poincaré

duality. If e0( AX ® Au, d) = k then Lemma 10.1 gives a representative 0 ® u + ^

G A**(I © m) for the fundamental class. Since 4> G A**-1! represents the funda-

mental class of//(AI), e0(AX, d)^k-\.    Q.E.D.

Fix now a A-extension

(10.3) (A>>,0) -(Ay® AI, Z))-(AI, d)

in which (Ay ® AX, D) is a connected minimal KS-complex. The differential D can

be written D — D2 + D3 + ■■ ■ ,Dt raising wedge degree by i — 1. Write

D2(\ ® $) = 1 ® ¿2$ + v® yí>,        3>GAI;

then y is a derivation of A I, homogeneous of wedge degree zero. The main step in

proving Theorems VI and VII is

10.4 Theorem. Suppose in (10.3) that dim //(Ay ® AI) < co. Write q = deg y

and n = formal dimension H(Ay ® AX).

(i) ///):!- A*3(y ® X) then dim //(AI) < co.

(ii) // there is a decomposition I = V @ y(X) (for some graded subspace V) such

that vectors of the form ykv, v G V, k = 0, 1,..., span X, and if I1 =0 and q > 1,

then dim//(AI) < co.

(iii) //dim //(AI) < co and //(AI) has formal dimension r then

n - q ifq is odd,

n + q — 1     if q is even.

(iv) If H(Ay ® AI) is a P.d.a. and dim //(AI) < co, then //(AI) « a P.d.a.

In this case

ík v ,\. [e0(Ay®AI,/))- 1    ,/i/iodrf,

[eo(Ay®AI,/))   ifqiseven.

10.5 Corollary. Suppose (AX, d) is a connected minimal KS-complex such that

d: I- A"*3 X and H( AX) is a P.d.a. Then dim I< co.

Proof. Let x,,x2,... be linearly independent elements of I1 such that ¿/x, G

A(x,,... ,x,_|). Parts (i) to (iv) of the theorem imply that if (AI,, d) is the quotient

c.g.d.a. obtained by putting x,,...,x, = 0 then //(AI,) is a P.d.a. of formal

dimension n — i (n = formal dimension //(AI)).

It follows that dim I1 < co and that the quotient c.g.d.a. (AI*1, d) satisfies the

hypothesis of the corollary. Since dim H(AX>[) < co we find dim Xp < co, each p.

Use part (iv) of the theorem to conclude that dim Iodd < co. Hence for some/?, X*p

is concentrated in even degrees, and so the induced differential in A X>p is zero.

By Theorem 5.1, cat0(AI*/,,0) < co. Thus X*' = 0.    Q.E.D.

Recall that Theorem VI of the introduction reads

Theorem VI. Let S be a simply connected rationally hyperbolic space such that

H*(S) is a Poincaré duality algebra. In the homotopy Lie algebra 77!).(ßS) ® Q there
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are then homogeneous elements a, ß such that the iterated brackets
r     r     r- -,

[ß[ß[ß--- [ß,a]] •••]        (kfactorsß,k= 1,2,3,...)

are all nonzero. In particular, 77„/ßS) ® Q is not nilpotent.

Proof. Let (AI, d) be the minimal model of S and write d = d2 + d3 + ■ ■ ■

where dp: AqX — Aq+p~xX. Because S is simply connected, I1 = 0. Choose a basis

x,,... of I with dxi G A(x,,... ,x,_,). Since dim I = 00 we conclude from Theo-

rem 10.4(iv) (as in Corollary 10.5) that for some i, dim H(A(xt,...)) < 00 but

dim H(A(xi+x,...)) = 00.

If d is the differential in A(x,,...) we can now apply part (ii) of Theorem 10.4 and

deduce the existence of an infinite sequence of vectors yx, y2,... in (x,+ ,,...) such

that d2yj - x,. ® y,_, G A(x,+ „...).

Now (AI, d2) is the Koszul construction [24, 2, 5] of the cochain algebra on a

graded Lie algebra L = 2^, Lp with Lp = (Xp+l)*. If a, ß G L satisfy (a, x,)= 1,

(ß, y,)= 1, (ß, x¡)— 0 then our conclusion above shows that

([ß[ß[---[ß,a]---],yJ+x)*0,

j factors

and so these iterated brackets are nonzero.

Finally, the results of [14, §7] imply that L can be identified with the Lie algebra

of primitive elements in the Hopf algebra dual to H(B(AX, d)), where B(AX, d)

denotes the bar construction. The techniques of [2] thus identify L = ir^tiS) ® Q as

graded Lie algebras.    Q.E.D.

The next result contains Theorem VII.

10.6 Proposition. Let (AX, d) be a connected minimal KS-complex such that

dim I< 00 and dim //(AI) < 00. Then cat0(AI, d) 3= e0(AX, d) > dim Iodd. //,

moreover, I1 = 0 and d: X - A2I then cat0(AI, d) = e0(AX, d) = dim Iodd.

Proof. Recall from [11, Theorem 3] that //(AI) is a P.d.a. Choose a basis

x,,. . . ,x„ of I such that dx¡ G A(x,,. . . ,x,_,). The quotient c.g.d.a.'s

(A(x,,... ,xn), d) all have finite rational category by Theorem 5.1. Since

dim A(x,,...,xn)/A*r(x,,...,x„) is finite this implies dim //(A(x,,... ,x„)) < 00

for all i. Apply part (iv) of Theorem 10.4 to each Ax, ® A(x,+ ,,... ,x„) to obtain

the inequality e0(AX,d)> dim Iodd.

Finally, suppose d: X — A2I and put e = e0(AX, d). Bigrade AI by putting

(AI)M = (ApX)p+q; then d is homogeneous of bidegree (1,0). Since I' = 0,

(AI)+0 = 0 and hence H+0 = 0. By Poincaré duality H*q = 0, q > n - e, and

fj*,n  e _ ije,n-e jnus tne formal power series

2 (-1)"dim ( AXy-'t" = 2 (-If dim H"-"t"
p.q P,1

is a polynomial of degree n — e.

On the other hand the left-hand side can be written in the form Wr(\ + (-l)rtr'])a%

where ar — (-l)r~' dim Xr. Since this is a polynomial of degree n — e we find

n - e =   2 (r ~ 0 dim Xr -   2   (r - 1) dim I'".
rodd reven
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But according to [11, Theorem 3]

h= 2 rdim!'-   2   (r-\)dimXr
rodd reven

and we conclude e = dim Iodd.    Q.E.D.

Proof of Theorem 10.4. Case I. q is odd. In this case DO = d<& + y ® 6<&,

0 G A I, where 6 is a derivation of even degree 1 — q in A I, commuting with d. A
j p

short exact sequence of differential spaces (AI, d) —(Ay ® AI, D) —(AI, d) is

given by y'í> = (-l)deg*y ® í>. The connecting map in the resulting long exact

cohomology sequence is (up to sign) the derivation 0* induced by 6 in //(AI). Thus

kery* = Im#*, Imp* = kerf?* and j* factors over the projection //(AI)—

Coker 0* to yield the short exact sequence

(10.7) Coker6*^H(Ay®AX) & ker0*.

We now consider each part of the theorem in turn.

(i) If D: X - A*3(y © I) then 6: APX - A*P+1I Using Theorem 5.1 we con-

clude that c0(AI, d) *z cat0(AI, d) < cat0(Ay ® AI, D) < n. Hence (6*)" = 0

and it follows that //(AI) is spanned linearly by vectors of the form (8*)pv,

0 </?<«, v G W, where W is any subspace complementing ImO*. Since y* maps

W injectively it follows that dim //(AI) < co.

(ii) Suppose dim //(AI) = co and choose 0 ^ a0 G HP(AX) with p > n. Be-

cause y ' is injective a0 = 8*ax with deg a, = deg a0 + q — 1 > deg a0. Continue to

find an infinite sequence (a,) with 0*a, = a,_,.

As in (i), Theorem 5.1 gives e0(AI, d) =£ n. Let «, < n be the greatest integer such

that a, admits a representing cocycle in A*"'I. Thus «0> n, > • • •. We establish a

contradiction by showing that for any y there is some i >y such that n¡> n¡. It is of

course sufficient to do this when j = 0.

The hypotheses I1 = 0, degy>l, dim//(Ay ® AI) < co together imply

dim Xq < co, all g. The existence of K thus implies a decomposition I = F © Z into

y-stable graded spaces with I*p C F C X*r.

Choose / so that deg a, > «r. Let 3> G A*"'I represent a,, and write í> = í>, + <í>2,

3>i G A"I and í>2 G A>B'I. Since «, =£ n, $, is in the ideal generated by Z. Hence

so is y'$,. But deg y'^i = deg a0 = p and Z = Z>p.

We conclude y'$, = 0 and hence #'<!> G A>n'X, whence n0 > «,.

(iii) From the fact that (10.3) is a A-extension we may deduce ^$ = 0,OeAi

where N may depend on $. With dim //(AI) < co it follows that for some fixed N,

(6*)N = 0. Because deg#* =s 0 it follows that the graded space Coker 0* has the

same formal dimension r as //(AI). Apply (10.7) to find n = q + r.

(iv) Suppose //(Ay® AI) is a P.d.a. with fundamental class w. Define a

nondegenerate bilinear form (, > in //(Ay ® AI) by (Hp, Hs) — 0 if /? + s ¥= n

and a ■ ß = (a, ß)u if deg a + deg/? = n. Since Im y* • Im y* = 0, (, ) factors to

give a bilinear form Im j* X H( Ay ® AI)/Im y* — Q.

In view of (10.7) this can be identified with a bilinear form ((,)): Coker8* X

kerf?* — Q and because dim Coker 6* — dim kerf?* and (, ) is nondegenerate, so is

((, )). We show next that //'(AI) - (Coker 6*)r is one-dimensional.
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Because/': (Coker f?*)' -//"(Ay ® AI), dim (Coker 8*)r = 1. If deg f?* < 0 then

(Cokerf?*)' = Hr(AX). If degf?* = 0 then //'(AI) has a basis of the form co',

0*u',...,(B*)pu', and (0*)p+iu' = 0. Since (8*)pu' G kerf?* and ((,)) is nondegen-

erate, it follows that

j*((e*Y'co') = ((l,(0*yV))co^O.

Hence/? = 0 and dim Hr(AX) = 1 in this case as well.

Fix co' G //'(AI) so that y'*co' = co. Define a bilinear form (,) in //(AI) by

(Hp, Hs) = 0 if /? + j ^ r and a • ß = (a, j8)co' if deg a + deg 0 = r. Recall that

degf?*«0 and that if degf?* = 0 then f?*co'= 0. It follows that (0*a, ß) =

-(a,0*ß), a, ß G //(AI). In particular (Im f?*, kerf?*) = 0 and so (,) induces a

bilinear form Coker f?* X ker f?* — Q. This coincides up to sign with ((, )) and hence

is nondegenerate.

Let N C H be the subspace of those a such that (a, H) = 0. We have just

observed that N C Imf?*. Suppose inductively that N C lm(6*)p, some p > 1, and

let a G A. Then a = 0*0 and (Imf?*, ß) = -(//, a) = ±(a, //) = 0. Since ((,)) is

nondegenerate there is some y G kerf?* such that ß — y G N. Hence a = 0*ß =

f?*(/3 - y) G e*(N) C Im(f/*)^+l. It follows by induction that N C lm(6*)p for ail

/? and so N = 0. Thus //(AI) is a P.d.a.

Suppose finally that e0(AX, d) = /c; by Lemma 10.1, co' can be represented by

4> G A**I. Theny ® O represents co and so c0(Ay ® AI, D) > k + 1.

Case II. </ is even. Extend (Ay ® AI, D) to a minimal KS-complex (Ay ® AI

® Am, D) by putting Du - y2. Apply Lemma 10.2 to find dim //(Ay ® AI ® Am)

< co, formal dimension

//(Ay ® AI® Am) = m + 2</- 1.

If, moreover, //(Ay ® AI) is a P.d.a. so is //(Ay ® AI ® Am) and then

c0(Ay ® AI® Am, D) <e0(Ay® AX, D) + 1.

Define a quasi-isomorphism 77: (Ay ® AI® Am, D) — ((Ay/y2) ® AI, Z>) by

77y2 = 77 m = 0. Now exactly the same argument as in Case I establishes (i), (ii), (iii)

and the assertion on Poincaré duality in (iv). It remains to prove the assertion on e0,

assuming//(Ay ® AI) a P.d.a.

Write Ay ® AI ® Am = A(y, u) ® AX and let / C A(y, u) be the ideal gener-

ated by y2 and u. Thus ker 77 = / ® AI. Define o: I — / by a(y*M) = 0 and

a(yk) =yk-2U; then oD + Da = id. Put i = D ° (a ® id) + (a ® id) ° D: I ® AI

-/® AI.

C/c7/'m. For each <E> G / ® AI there is an N such that (<// - id)N$ = 0.

Indeed by hypothesis there is a well-ordered basis xa of I such that Dxa G

A(y, m) ® AI<Q. In the quotient space

/®AI<a®A**x„
--^-Í=I®AX     ® xk
I ® AI<0 ® A  kxa
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the map induced by ip coincides with \p ® id, where i// is the restriction of \j/ to

/ ® AI<a. The claim follows by a straightforward induction.

Write Z = (y, u) © I so that / ® AI C AZ. If ß G / ® AI n A>kZ then the

same is true for i^ß, because D increases wedge degree by at least one, while a

decreases wedge degree by exactly one.

Now choose $ G AS'PX to represent the fundamental class. As in Case I, y ® $

represents a nonzero class in H((y © 1) ® AI, D). In particular Z>(y ® $) G/®

AI By our claim above (vp - id)ND(y ® $) = 0 and hence

Z)(y®4>)=   Íak^kD(y®<S>)
k=\

N

=   2 ak[D o (a ® id)] kD(y ® $)

k=\

N

= Do (a® id) °   2 akxpk~* °D(y® $).
k=\

Put * = (a ® id)2 akxPk~ lD(y ® 0). Then * G A*^Z. Evidently y ® $ - £>* is

a cocycle in A*/,+ 1Z such that 7r(y ®$ — ̂ )=y®0 represents a nonzero class.

Hence c0(A(y, m) ® AI, £>)>/?+ 1.

It follows by Lemma 10.1 that

e0(AI, d) < c0(A(y, m) ® AI, D) - I < e0(Ay ® AX, D).    Q.E.D.

11. Some open problems and remarks. We collect here some unresolved questions.

The first is classical.

1. The product formula. It is evident from Theorem 4.7 that cat0(5 X T) <

cat0(5) + cat0(F). Does equality hold? Does equality hold at least when one space

is a sphere? an odd sphere?

2. Nilpotence [17]. Is there a c.g.d.a. or space with rational category m whose

minimal model does not have the homotopy type of a c.g.d.a. of product length ml

(Theorem 4.7 asserts only that the model is a retract of such a c.g.d.a.)

3. Ganea's spaces. Theorem 3.2 shows that Ganea's space Em (for a simply

connected S) has the rational homotopy type of a space W wedged with spheres.

Give a geometric construction of W and determine the spheres.

4. Is there an analogue of Theorem I for category?

5. Residual category. Denote by Sn the «-connected Postnikov fibre of a simply

connected space S. By Theorem 5.1, cat0(S) > cat0(S2) ^ cat0(S3) > ■ ■ ■. We call

lim „^oo cat0(S„) the residual rational category of S, and write it resid cat0(5).

Conjecture. If 5 is 1-connected and dim H*(S; Q) < co, then resid cat0(S) < 1.

6. Gottlieb groups. If S is simply connected of formal dimension =s n, Theorem III

implies that G^(S) ® Q is finite-dimensional. Is there a function N(n) such that

Gp(S) ® Q = 0, /? > N(n)1 (Clearly N(n) = 2n - 1 would be best possible. Does it

in fact work?)

Is there a relation between e0(S) and dimG^S) ® Q?
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7. The homotopy Lie algebra. Can the rational homotopy Lie algebra of a finite

simply connected CW-complex be nilpotent? abelian? (i.e., can the hypothesis of

Poincarè duality in Theorem VI be weakened to dim H* < co?). What are the

constraints on the Lie structure?

8. Growth of ir^(S) ® Q. Suppose S simply connected, dim H*(S) < co and

HP(S) — 0, /? > n. If S is rationally hyperbolic then for k 3* K and some C > 1,

2^* dim Hp(QS) 3= Ck. It is easy to see that C < lirn,^ sup^fdim Hk(tiS))l/k.

ltf(z) = l"pZ\ dim Hp+l(S)zp and z0 is the complex root of f(z) - 1 of smallest

modulus then it follows from the proof of Theorem 8.3 that C =s 1/| z0 | .

Since the coefficients of /are nonnegative, | f(z) | *s f(\ z \). It follows that | f(z) \ < 1

if |z|<x0, where x0 is the unique positive real root of f(x) —1=0. Hence

|z0|=x0^(dim//*(5)- l)'-".Thus

C*z (dim H*(S) - l)"4

and equality is achieved for a wedge of «-spheres.

Is there a lower bound for C of the form 1 < M *£ C where M depends only on

//*(£)?

9. The invariant e0. Are there spaces for which e0(S) < co but cat0(S) = co? Can

cat0(S) > e0(S) for rationally elliptic spaces?

10. Category for other fields. Let k D Q be a field and define catk(S) exactly as

cat0(S) was defined, but using k as ground field. Then cat^S) < cat0(5). Does

equality hold?

11. Cocategory. In [7] Ganea discusses the dual notion of cocategory, and the

rational analogue is considered by Toomer in [27]. Which results of this paper

dualize?

References

1. D. Anick, Ph.D. Thesis, M.I.T., Cambridge, Mass., 1980.
2. H. J. Baues and J.-M. Lemaire, Minimal models in homotopy theory, Math. Ann. 225 (1977),

219-242.
3. I. Berstein and T. Ganea, Homotopical nilpotency. Illinois J. Math. 5 ( 1961 ), 99-130.

4. P. Deligne, P. Griffiths, J. Morgan and D. Sullivan, 77ie real homotopy of Kahler manifolds. Invent.

Math. 29(1975), 245-274.
5. Y. Felix, Modeles bifiltrës: une plaque tournante en homotopie rationelle. Cañad. J. Math, (to appear).

6. J. Friedlander and S. Halperin, An arithmetic characterization of the rational homotopy groups of

certain spaces. Invent. Math. 53 (1979), 117-133.

7. T. Ganea, Lusternik-Schnirelmann category and strong category, Illinois J. Math. 11 (1967), 417-427.

8. W. J. Gilbert, Some examples for weak category and conilpotency, Illinois J. Math. 12 (1968),

421-432.

9. D. H. Gottlieb, Evaluation subgroups of homotopy groups. Amer. J. Math. 91 (1969), 729-756.

10. K. Grove, S. Halperin and M. Vigué-Poirrier, The rational homotopy theory of certain path spaces

with applications to geodesies. Acta Math. 140 (1978), 277-303.

11. S. Halperin, Finiteness in the minimal models of Sullivan, Trans. Amer. Math. Soc. 230 (1977),

173-199.

12. _, Lectures on minimal models, mimeographed notes. Université de Lille I, 1977.

13. _, Rational fihrations, minimal models and fihrings of homogeneous spaces, Trans. Amer. Math.

Soc. 244(1978), 199-223.
14. S. Halperin and J. D. Stasheff, Obstructions to homotopy equivalences. Adv. in Math. 32 (1979),

233-279.



RATIONAL L.-S. CATEGORY AND ITS APPLICATIONS 37

15. I. M. James, On category in the sense of Lusternik-Schnirelmann, Topology 17 (1978), 331-348.

16. J.-M. Lemaire, Autopsie d'un meurtre dans l'homologie d'une algèbre de chaînes, Ann. Sei. École

Norm. Sup. 11 (1978), 93-100.

17. J.-M. Lemaire and F. Sigrist, Sur les invariants d'homotopie rationelle liés à la L. S. catégorie,

Comment. Math. Helv. 56 (1981), 103-122.

18. L. Lusternik and L. Schnirelmann, Méthodes topologiques dans les problèmes variationneles, Her-

mann, Paris, 1934.

19. W. S. Massey, Some problems in algebraic topology and the theory of fiber bundles, Ann. of Math. (2)

62(1955), 327-359.
20. J. Milnor, Constructiion of universal bundles. I, Ann. of Math. (2) 63 (1956), 272-284.

21._, Construction of universal bundles. II, Ann of Math. (2) 63 ( 1956), 430-436.

22. J. C. Moore, Algèbre homologique et homologie des espaces classifiants, Séminaire Cartan 1959/60,

Exposé 7, Paris.

23. A. Oukidi, Sur I 'homologie d ' une algèbre différentielle ( de Lie), Thèse (3f cycle), Université de Nice,

1978.

24. D. Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205-295.

25. D. Sullivan, Infinitesimal computations in topology, Inst. Hautes Etudes Sei. Publ. Math. 47 (1978),

269-331.
26. G. H. Toomer, Lusternik-Schnirelmann category and the Moore spectral sequence. Math. Z.  138

(1974), 123-143.
27._, Topological localization, category and cocategory, Canad. J. Math. 27 (1975), 319-322.

28. G. W. Whitehead, The homology suspension, Colloque de Topologie Algébrique, Louvain (1956),

Thone, Liège; Masson, Paris, 1957, pp. 89-95.

DÉPARTEMENT  DE   MATHÉMATIQUES,   UNIVERSITÉ  DE   LOUVAIN-LA-NEUVE,  LOUVAIN-LA-NeUVE,  BEL-

GIQUE

Department of Mathematics, University of Toronto, Toronto, Ontario M5S 1A7, Canada


