
transactions of the
american mathematical society
Volume 273, Number 1, September 1982

SIMPLE KNOTS IN COMPACT,

ORIENTABLE 3-MANIFOLDS
BY

ROBERT MYERS1

Abstract. A simple closed curve J in the interior of a compact, orientable

3-manifold M is called a simple knot if the closure of the complement of a regular

neighborhood of J in M is irreducible and boundary-irreducible and contains no

non-boundary-parallel, properly embedded, incompressible annuli or tori. In this

paper it is shown that every compact, orientable 3-manifold M such that 9AÍ

contains no 2-spheres contains a simple knot (and thus, from work of Thurston, a

knot whose complement is hyperbolic). This result is used to prove that such a

3-manifold is completely determined by its set %( M) of knot groups, i.e, the set of

groups »,( M — J) as J ranges over all the simple closed curves in M. In addition, it

is proven that a closed 3-manifold M is homeomorphic to S3 if and only if every

simple closed curve in M shrinks to a point inside a connected sum of graph

manifolds and 3-cells.

1. Introduction. The topology of a 3-manifold is closely related to the type of

"knot theory" it supports. This was demonstrated by Bing [1], who proved that a

closed 3-manifold M is homeomorphic to S3 if every knot in M can be shrunk to a

point inside a 3-cell. McMillan [10] then proved that M is homeomorphic to S3 if

every knot in M can be shrunk to a point inside a solid torus. In another direction

Jaco and Myers [7] and Row [14], inspired by earlier work of Fox [2], have shown

that closed, orientable 3-manifolds are completely determined by their knot groups:

If %(M) denotes the set of isomorphism classes of the groups ttx(M — J) as J

ranges over all the knots of M, then two closed, orientable 3-manifolds M and N are

homeomorphic if and only if %(M) = %(N).

Each of these results depends on the existence of certain "nice knots" in the

3-manifold whose exteriors share certain properties with those of nontrivial knots in

S3, such as irreducibility and boundary-irreducibility. It is to be expected that the

existence of knots with nicer properties would lead to stronger theorems about their

ambient 3-manifolds.

One very nice class of knots in S3 is the class of simple knots. A simple knot in S3

is classically defined [15] as a knot which has no nontrivial companions. This

property is equivalent to the assertion that either the knot is a torus knot or every

incompressible annulus and torus in its exterior is boundary-parallel. This latter
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property of the exterior has in recent years been taken over as the definition of a

simple 3-manifold [8, 9]. It is in this sense that we shall use the term "simple". Thus,

a knot in a 3-manifold is simple if its exterior is irreducible and boundary-irreduc-

ible and contains no non-boundary-parallel incompressible annuli or tori. (Note that

under this definition torus knots are not simple because their exteriors contain

non-boundary-parallel incompressible annuli, although they do have the virtue of

containing no non-boundary-parallel incompressible tori. Perhaps such knots and

such 3-manifolds should be called "pseudo-simple".) One particularly nice feature of

simple knots is that they are hyperbolic, i.e. their exteriors admit complete hyper-

bolic structures. This follows from Thurston's theorem that simple Haken manifolds

admit hyperbolic structures.

In this paper it is proven that every compact, orientable 3-manifold whose

boundary contains no 2-spheres contains a simple knot (Theorem 6.1), and thus a

hyperbolic knot. Two applications of this theorem are given. First, the theorem of

Jaco and Myers [7] and Row [14] is extended to 3-manifolds with boundary: Two

compact, orientable 3-manifolds M and N, whose boundaries contain no 2-spheres,

are homeomorphic if and only if %(M) = %(N) (Theorem 8.1). Second, the

characterization of S3 due to McMillan [10] is generalized: A closed 3-manifold M is

S3 if every knot in M can be shrunk to a point inside a connected sum of graph

manifolds and 3-cells (Corollary 9.2).

A larger class of "nice knots" in S3 is formed by the prime, non torus, noncabled

knots. The exteriors of these knots are "semisimple" in the sense that they contain

no non-boundary-parallel incompressible annuli. Johannson [9] has shown that

semisimple Haken manifolds are completely determined by their fundamental

groups. This one of the main tools used to prove Theorem 8.1.

The general strategy in proving Theorem 6.1 is similar to that of Bing [1],

McMillan [10], and Row [14]. It consists in approximating the dual 1-skeleton of a

triangulation of the manifold by a simple closed curve, replacing vertices by suitably

chosen "tangles".

The main novelty consists in expressing the exterior of the resulting knot as the

union of two 3-manifolds along an incompressible 2-manifold in their boundaries in

such a way that it is seen to be simple. Lemmas 3.1-3.3 give fairly general conditions

under which the union of two compact, orientable 3-manifolds along an incom-

pressible 2-manifold in their boundaries is semisimple or simple. These results may

therefore be of independent interest.

2. Preliminaries. We shall work throughout in the PL category.

A knot J in a 3-manifold M is a simple closed curve in the interior of M. The

exterior of J is the closure of the complement of a regular neighborhood of J in M.

We refer to [3, 4, 8, and 19] for the definitions of incompressible and boundary-

incompressible surfaces and of irreducible, boundary-irreducible, and sufficiently

large 3-manifolds. The meaning of the terms "compressing disk" and "boundary-

compressing disk" will be apparent from these definitions. These references are also

cited for the notions of parallel surfaces, boundary-parallel surfaces, and paral-

lelisms in a 3-manifold. The expressions "surface in a 3-manifold" and "surface in

the boundary of a 3-manifold" are used as in [19].



SIMPLE KNOTS 77

A compact, orientable, irreducible, boundary-irreducible, sufficiently large 3-

manifold is called a Haken manifold.

An irreducible, boundary-irreducible 3-manifold is called semisimple if every

incompressible annulus in M is boundary-parallel. A semisimple 3-manifold M is

called simple if every incompressible torus in M is boundary-parallel.

A compact 3-manifold M is hyperbolic if the complement of the torus components

of dM has a complete Riemannian metric with finite volume and constant negative

sectional curvature with respect to which the nontorus components of dM are totally

geodesic.

A knot in a 3-manifold is called semisimple, simple, or hyperbolic if its exterior is,

respectively, semisimple, simple, or hyperbolic.

A 3-manifold pair (M, F) consists of a 3-manifold M and a 2-manifold F in dM.

(M, F) is an irreducible 3-manifold pair if M is irreducible and F is incompressible.

Let (M, F) be a 3-manifold pair. A surface G in M with dG in F is F-compressible

if there is a boundary-compressing disk D for G such that dD lies in F U G. G is

F-parallel if it is parallel to a surface in F.

A properly embedded, non-boundary-parallel arc in an annulus is called a

spanning arc.

Let (M, F) be a 3-manifold pair. Let G and H be surfaces in M with 3(7 and dH

in F. H is minimal with respect to Gii H and G are in general position and among all

surfaces in M which are isotopic to H, have their boundaries in F, and meet G in

general position, HOG has a minimal number of components.

The following two lemmas are straightforward consequences of the definitions.

Their proofs are left to the reader.

2.1. Lemma. Let (M, F) be an irreducible 3-manifold pair. Then every F-compressi-

ble annulus in M is F-parallel.

2.2. Lemma. Let (M, F) be an irreducible 3-manifold pair. Let G be an incompressi-

ble surface in M with dG in F. Suppose G is not F-compressible.

(1) If A is an incompressible annulus in M with dA in F such that A is minimal with

respect to G, then A C\ G consists at most of spanning arcs or of noncontractible simple

closed curves in A.

(2) If T is an incompressible torus in M which is minimal with respect to G, then

T n G consists at most of noncontractible simple closed curves in T.

3. Gluing lemmas. In this section sufficient conditions are given for the union of

two compact, orientable 3-manifolds along a compact, orientable, incompressible

2-manifold to be semisimple or simple. Let (M, F) be a compact orientable

3-manifold pair.

(M, F) has Property A if

(1) (M, F) and (M, dM — F) are irreducible 3-manifold pairs,

(2) no component of F is a disk or 2-sphere, and

(3) every disk Din M with D D Fa single arc is boundary-parallel.

(M, F) has Property B if

(\)(M, F) has Property A,
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(2) no component of F is an annulus, and

(3) every incompressible annulus Ain M with dA O dF = 0 is boundary-parallel.

(M, F) has Property C if

(1) (M, F) has Property B, and

(2) every disk Din M with D H F a pair of disjoint arcs is boundary-parallel.

(M, F) has Property B' (respectively Property C) if

(1) (A/, F) has Property B (respectively Property C),

(2) no component of F is a torus, and

(3) every incompressible torus in M is boundary-parallel.

Now suppose M = Af0 U Af,, where M0 and M, are compact, orientable 3-mani-

folds and F = M0 f1M, = 9A/0 n 3Af, is a compact 2-manifold.

3.1. Lemma. // (M0, F) and (Mx, F) have Property A, then M is irreducible and

boundary-irreducible and F is incompressible and boundary-incompressible.

Proof. The incompressibility and boundary-incompressibility of F are obvious.

See [18] for a proof of the irreducibility of M.

Suppose D is a compressing disk for dM which is minimal with respect to F. If

D O F — 0, the result follows from the incompressibility of 3A/(- — F and the fact

that no component of F is a disk. If D O F ¥= 0, then minimality and irreducibility

imply that no component of D O F is a simple closed curve. Thus, some component

a of D n F is an arc which cobounds a disk E inD with an arc ß in dD such that

E fi F = a. E is parallel in some A/,- to a disk E' in 3A/,-. The component F' of

F' n F containing a must be a disk. Isotop D in Af so as to move E across the 3-cell

in A/,- bounded by £ U £' to F and then into M — M¡. This removes at least one

component from DflF, thereby contradicting minimality.

3.2. Lemma. // (Af0, F) has Property B and (Af,, F) has Property C, then M is

semisimple.

Proof. Suppose A is an incompressible annulus in Af which is minimal with

respect to F.

If A O F = 0, then A is boundary-parallel in some Af,-. Since no component of F

is a disk or annulus, A is boundary-parallel in Af.

If A n F consists of noncontractible simple closed curves, then some component a

of A n F cobounds a subannulus A' of A with a component /? of dA such that /4' lies

in some Af,. A' is parallel in Af, to an annulus A" in 3A/,-. Since no component of F is

a disk or annulus, F' = F O .4" is an annulus. Isotop ^4 in Af so that .4' is moved

across the parallelism between A' and A" to F' and then into M — M¡. This removes

at least one component of A OF, contradicting minimality.

If A O F consists of spanning arcs, then a component of A O M, is a disk E such

that EOF consists of two disjoint arcs a and ß. Let y and 8 be the components of

E O (3M, — F). E is parallel in Af, to a disk £' in 3Af,. There are two possibilities

for E' O F.

Case l.f'flF consists of two disks, each of which meets F in one component of

E n F. In this case /l is boundary-compressible in M and hence boundary-parallel in

Af.
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Case 2. E' O F consists of a single disk F'. In this case isotop A in Af so that E is

moved across the parallelism between E and E' to F and then into Af0. This

removes at least two components from A O F, contradicting minimality.

3.3. Lemma. If ( Af0, F) has Property B' and ( Af,, F) has Property C, then M is

simple.

Proof. Suppose T is an incompressible torus in Af which is minimal with respect

toF.

If T O F = 0, then T is boundary-parallel in some Af,. Since no component of F

is a disk, annulus, or torus, T is boundary-parallel in Af.

If T O F ^ 0, then a component of T O M0 is an annulus AQ which is parallel in

Af0 to an annulus A'0 in 3A/0. There are two possibilities for A'0 O F.

Case 1. A'0 O F = A'0. Isotop F in Af so that A0 is moved across the parallelism

between A0 and A'0 to A'0 and then into Af,. This removes at least two components of

TOF, contradicting minimality.

Case 2. A'0O F consists of two annuli F, and F2. Let G0 = (A'0 - (F, U F2)).

Then the annulus G0 = A0 U F, U F2 is parallel in M0 to G¿. Let A =T - A0 and

G = A U F, U F2. G is incompressible in Af and hence is parallel in M to an annulus

G' in 3Af. If Gq = G', then Fis compressible in Af, a contradiction. If G'0 ¥= G', then

T is parallel in Af to the torus G„ U G' in 3A/.

4. Atoroidal tangles. A tangle is a pair (X', X") of disjoint, properly embedded arcs

in a 3-cell B. A ia«g/e space is the closure of the complement of a regular

neighborhood of a tangle in B. A tangle is atoroidal if its tangle space is simple.

The tangle in Figure 1 is called the true lover's tangle.

4.1. Proposition. The true lover's tangle is atoroidal.

This proposition is presented as Exercise IX.23 on p. 194 of Jaco's book [6]. The

following proof is presented for the convenience of both the reader and the author.

Figure 1
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The lemmas constituting the proof are used in a sequel [13] to this paper dealing

with homology cobordisms.

Proof. We express the true lover's tangle space as the union of three cubes-with-

handles, as illustrated in Figure 2. Let F = F, U F2. The proof consists in showing

that (F, U P2, F) has Property B' and (P, F) has Property C. To prove the former

it is sufficient to prove that (Px, Fx) has Property B'.

\_,_«_

F, P

Figure 2

3F, is the union of the planar surfaces F, and G, and the annuli U[ and U" shown

in Figure 3. irx(Px) is free on x and ;y, w,(F,) is free on y< and z, and -nx(Gx) is free on

x and w. The following relations hold: z = x~xy~xx~xyx, w = y~]x~ly~lxy, r =

x~*yx, s = y~'xy, t = xyx. Note that any reduced word W'(y, z) is a reduced word

W(x, y), and any reduced word V'(x, w) is a reduced word V(x, y). This shows that

F, and G, are incompressible in Px. Px is a cube-with-handles and is thus irreducible.

Figure 3

4.2. Lemma. irt(Fx) O irx(Gx) = gp(bx).

zy = (wxy\ gp(bx) C 7r,(F,) n trx(Gx). Suppose g G 7r,(F,)Proof. Since b.

O trx(Gx). Clearly g is not a power of y, z, w, or x unless g = 1. If g = yCizl

yl'x   'v   'jc   s'yx. then   g = wa'xß'. . . = y   x   y  "'xyx?'. . ..   Hence   g

>>   lx~iy-*xyxh= y   xz~xh - b\~xh, where h G w,(F,) n 7r,(G,). If g - zf| vé
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similar argument shows that g = bxh, where h G vr,(F,) Pi w,(G,). The result follows

by induction on the letter length of g in jc and y.

4.3. Lemma. trx(Fx)s O tt,(G,) = 0, and77,(F,)r~' O 77,(G,) = 0.

Proof. Suppose g G irt(F,)j D w,(G,). Then g = »"(y, z)(y~'jcy) = F'(w, jc),

where W and K' are reduced words in y, z and w, x, respectively

Case 1. W(x, y)(y~]xy) is reduced in x and y. Then

g= (■■■zm)(y~lxy) = (...X-]y-]x-myxy-lxy).

Sog ** (.. .w") = (.'.iy~lx~,iy~1xyy, which is impossible.

Case 2. W(x, y)(y~[xy) is not reduced in jc and v. If g = yms = ym~xxy, then

g = (.. .w") — (.. .y~iX~iy~"xy), which is impossible. If

g = (.. .z"y"')s = {.. .x-'y-lx-"yxym^xy),

then g = (.. .x~iy~lx~pyx2y) or (.. .jc^'-y^'jc^yjcy"'"';^) is reduced, and g =

(... w ") = (.. .y ~ 'jc - ]y - "xy ), which is impossible.

The proof that 77,(F,)r~' O Ttx(Gx) — 0 is similar.

4.4. Lemma. w,(F,) n sirx(Gx)s~l - gp(y), and rttx(F-)r~K O itx(Gx) = gp(x).

Proof. Suppose g G s~\(Fx)s O tt,(G,). Then

g = s~lW'(y,z)s - V'(w,x),

sog = (y~[x~ly)W(x, y)(y~lxy) = V(x, y), where IFand Fare reduced.

Case 1. (y~ix~iy)W(x, y)(y~1xy) is reduced. Then

g = s-\z"'...)s=(y-ix-]y){x-ly-lx-"'yx...){y-]xy).

So g — (w"...) — (y~lx~ly~"xy...), which is impossible.

Case 2. (y~[x~ly)W(x, y)(y~^xy) is not reduced.

If W'(y,z) = (ym...zn), then

g = ( y~lx~,y)(ym...x~ly~>x-"yx)(y-lxy),

which has reductiony~ lx~ lym+l, ..x~ ly~ 'jc""yjcy~ 'jcv ory~'jc-2. ..y~ xx~"yxy~ lxy.

This implies g = (.. .wp) — (.. .y~xx~xy~pxy), which is impossible.

If W(y,z) = (zm...y"), then

— Í    -1-1    \l    -1    -1    -m n\t    -1      \g-(y   'x   'v)(jc   ly   lx  myx...y")(y   'xy),

which has reduction -y^'jc-{yx~ly~lx~myx.. .y"~]xy ory~xx~xyx~xy~xx~my. ..x2y.

So g = (wp...) = (y~lx~iy~pxy...), which is impossible.

If W'(y, z) = (ymz".. .yp), then

g=(y-lx-ly){ymx~ly-[x-"yx...yp)(y->xy),

which has reduction y" 'jc _ ly "' + 'jc ~ \y~ lx~ " yx. . . yp" ]xy or

y~xx~2y'xx'nyx. . .yp~xxy or y~ 'jc" ' ym+ 'jc" xy~ 'jc" "y. . . jc 2 y or

■y"'jc"2">'_'x">. ..x2y. So g — (wq...) = ( y~xx~xy~qxy...), which is impossible.

The only remaining possibility is W'(y, z) — ym, as desired. The reverse inclusion

is easily checked.

The proof that rw^F,)/-"1 O ttx(Gx) = gp(x) is similar.
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4.5. Lemma. (F,, F,) has Property A.

Proof. Suppose D is a disk in F, which meets F, in an arc a and 3F, — F, in an

arc ß. Let J = dD.

Case 1. a joins bx to itself. Isotop D and orient J so that the initial point of a is the

basepoint. Let y be an arc in bx running from the terminal point of a to the

basepoint. Then [J] = [ay][y"'/3] — fg, where / G w( F, ) and g G trx(Gx). Since

[J] = \,f= g~\ hence by Lemma 4.2/= (bx)k. Since/is represented by a simple

closed curve, k = 0 or ±1. It follows that a is parallel in F, to y or bx — y. Thus, D

can be isotoped so that J lies in G,. By the incompressibility of G,, D is boundary-

parallel.

Case 2. a joins bx to c". Isotop Z) and orient J so that a runs from the basepoint to

s O c'{ and ß O Ux = s O U". Let y = s O Fx, 8 = s O Gx, and e = ß O G,. Then

[J] = [ay"']s[ô"'e] = /sg, where /G ttx(Fx) and g G 77,(G,). Since [J] = \, fs =

g" '. However, this is impossible by the first part of Lemma 4.3.

Case 3. a joins bx to c\. Using the second part of Lemma 4.3, the proof is similar

to that of the previous case.

Case 4. a joins c" to itself. Isotop D and orient J so that a ends at s D c" and

ß O U" has two components, one of which is s O U". Let y = s O Fx, 8 = s O Gx,

and e = ß O G,. Let ¿ be an arc in c'{ joining the points of 3a, and let rj be an arc in

d" joining the points of 3e. Then, referring J to the basepoint via y and orienting the

arcs properly, we have

[J] =[yiay-l]s[S-}eti8]s-1 =fsgs~\

where / G w,(F,) and g G 7r,(G,). Since ['/J — \,f— sg~'s~'. By the first part of

Lemma 4.4, f = ym. Since/is represented by a simple closed curve, m = 0 or ± 1. It

follows that a is parallel in F, to £ or c" — £. Thus, D can be isotoped so that / lies

in G, and the result follows.

Case 5. a joins c\ to itself. Using the second part of Lemma 4.4, the proof is

similar to that of the previous case.

Case 6. a joins c'x and c'{. Isotop D so that J misses a collar C on bx in F,. Regard

F, as embedded in S3 in the manner shown in Figure 3. Let F be a 3-cell in S3 such

that F n F, = C. Then E U F, is the exterior of a trefoil knot in S3 and J is a

simple closed curve in 3(F U F,) which meets a meridian of the knot transversely in

a single point. Thus, [J] ¥= 1 in E U F, and, hence, [J] ¥^ 1 in F,, a contradiction.

4.6. Lemma. (Px, Fx) has Property B'.

Proof. Clearly, F, contains no incompressible tori.

Let E be the disk in Figure 4. Regard E as [0,2] X [0, 1], where {0} X [0, 1] = E

O U{, {2} X [0,1] = E D V", and ([0,1] X {0}) U ([1,2] X {1}) = E O F,. Sup-

pose A is an incompressible annulus in F, with dA O 3F, = 0 which is minimal

with respect to E. We may assume that A O (U'x U U") = 0. Then A O E consists

of spanning arcs of A each of which is either parallel to an arc in [0,2] X {0,1} or

joins the components of [0,2] X {0,1}. These arcs will be called, respectively,

end-parallel and spanning arcs of E.
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Figure 4

Case 1. dA lies in F,.

Suppose 3,4 n ([0,1] X {0}) = 0. Then every component of A O E is parallel in

E to an arc in [1,2] X {1}. It follows that A is F,-compressible and, hence

F,-parallel. A similar argument handles the case dA O ([1,2] X {1}) = 0.

Suppose A meets both components of E O F,. For homological reasons, the

components of dA are parallel in F, to ¿>,. Hence, dA — 3/4', where /4' is an annulus

in F,. Since ,4 is minimal with respect to E, A' O E consists of two arcs. Thus,

A n E consists of two arcs which are either both end-parallel or both spanning in E.

If both are end-parallel, then A is F,-compressible and, hence F,-parallel. If both are

spanning, then consider the torus T = A U Ä. Referring loops to the basepoint, we

have that a component of dA is homotopic to ft,. The existence of a spanning arc in

A O E implies that of a simple closed curve J in T which is homotopic to t. Hence /

and bx commute. But this is easily seen to be impossible.

Case 2. dA lies in G,.

By a proof similar to that of the previous case, A is G, -parallel.

Case 3. One component a of 3.4 lies in F,; the other component ß lies in G,.

Suppose a is parallel to c\ in F,. Then ß is parallel to d\ in G,. Let C and D be the

respective parallelisms. By minimality, A O E is a single spanning arc y. Let E' be

the disk in F joining y with U{. Then E' is a (U'x U C U Decompressing disk for A.

It follows that A is parallel to U{.

If a is parallel to c'{ in F,, then a similar argument shows that A is parallel to £/"■

Suppose a is parallel to bx in F,. Then /? is parallel to 6, in G,. Let ^' be the

annulus in 3F, bounded by 3,4. If A O E contains a spanning arc of E, then as in

Case 1, t and bx commute, which is impossible. Hence, A O E consists of end-paral-

lel arcs, and thus A is ^'-compressible and so ^'-parallel. This completes the proof.

Now consider (P,F), shown in Figure 5. Note that F = H X [1,2], where H is a

punctured torus and H X {/} = (F, U U,), i = 1,2. This implies that F, U U, is

incompressible in F and hence that F„ U¡, and G are incompressible in P. Clearly F

is irreducible and has no incompressible tori.
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Figure 5

4.7. Lemma. (P, F) has Property A.

Proof. Suppose D is a disk in F which meets F in the arc a and 3F — F in the arc

ß. We may assume a lies in F,. By the incompressibility of F, U Ux, ß must be a

boundary-parallel arc in {/, or G. Thus D can be isotoped so that 3F> lies in F,. The

result now follows from the incompressibility of F,.

4.8. Lemma. (P, F) has Property B'.

Proof. Suppose A is an incompressible annulus in P such that dA O 3F = 0.

Isotop A so that 3/1 lies in F. For homological reasons both components of 3/4 lie in

the same component of F, say F,. Thus, 3/1 lies in H X {1}, and hence, by Corollary

3.2 of [151, A is parallel to an annulus in H X ( 1 ).

4.9. Lemma. (P, F) has Property C.

Proof. Suppose D is a disk in F which meets F in the disjoint arcs a, and a2.

If 3£> n F2 = 0 or 3D n F, = 0, then D can be isotoped so that 3D lies in

F, U t/; for some /'. The incompressibility of F¡ U U¡ implies that D is boundary-

parallel.

Suppose a, lies in F¡, i = 1,2. We may assume neither a, is boundary-parallel in F¡.

But this implies that 3D is homologous in P to c'x ± c2, which is absurd.

5. Special handle decompositions. For the definition of a handle decomposition of a

compact 3-manifold we refer to [19]. A handle of index k is denoted by hk. Note that

our 0-handles, 1-handles, and 2-handles are, respectively, the balls, beams, and

plates of [19]. Let H' be the union of the 0-handles and 1-handles, and let H" be the

union of the 2-handles and 3-handles.

A handle decomposition {hk} of a compact, orientable 3-manifold N is special if:

(1) The intersection of any handle with any other handle or with 3A/ is either

empty or connected.

(2) Each 0-handle meets exactly four 1-handles and six 2-handles.
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(3) Each 1-handle meets exactly two 0-handles and three 2-handles.

(4) Each pair of 2-handles either

(a) meets no common 0-handle or 1-handle, or

(b) meets exactly one common 0-handle and no common 1 -handle, or

(c) meets exactly one common 1-handle and two common 0-handles.

(5) The complement of any 0-handle in H' is connected.

(6) The union of any 0-handle with H" is a cube-with-handles which meets 3A7 in

a disjoint collection of disks.

5.1. Lemma. Every compact orientable 3-manifold N has a special handle decomposi-

tion.

Proof. Let (K0, L0) be a triangulation of (N,dN). Let (K, L) be the second

barycentric subdivision of (K0, L0). Note that L is a full subcomplex of K and hence

that each 3-simplex of K meets L in at most one 2-simplex. Let (K*, L*) be the dual

cell complex of (A., L). A k-cell of K* is the dual a% of either a 3 — k simplex a3~k

in K or a 2 — k simplex o2~k in L, i.e. a* = C\vst(v), where v ranges over the

vertices of a3-* (respectively a2"*) and st(t>) is the star of v in the first barycentric

subdivision of K (respectively L).

We now associate a handle decomposition to (K*, L*) in the usual way: the

0-handles are regular neighborhoods of the 0-cells, the 1-handles are regular neigh-

borhoods of the intersections of the 1-cells with the closure of the complement of the

0-handles, and so on.'
Properties (l)-(4) are easily checked.

Since L is a full subcomplex of K, the complement of any 3-simplex of K is

connected. This implies (5).

Let G be the graph (K(l) - L(1)), where K(l) and L(l) are the 1-skeleta of K and L,

respectively. Then H" is a regular neighborhood of G in N and hence is a

cube-with-handles. The core of a 0-handle /z° is the barycenter of some /c-simplex ak,

where either k = 3 and ak G K or k = 2 and ak G L. Let G' be the graph obtained

from G by replacing G O ak with the star on the vertices of a* from the barycenter

of ak. Then H" U A- is a regular neighborhood of G' in N and hence is a

cube-with-handles. Its intersection with 3A/ clearly consists of disks. This establishes

(6) and completes the proof.

Now let Af be a compact, orientable 3-manifold and let C be a collar on 3AF Let

N —M — C. Choose a special handle decomposition for N, with H' and H" as

above. Let Z = H" U C. For each 0-handle /i°, let R, = Af n Z. Let R = U, R,.

For each 1-handle h), let S = h) O Z. Let 5 = IFS,.

5.2. Lemma. If dM contains no 2-spheres, then (Z, R) has Property A.

Proof. Since H" is a cube-with-handles, C = (3Af ) X /, no component of 3Af is a

2-sphere, and H" O C consists of disks, Z is irreducible and dM is incompressible in

Z.

Suppose D is a compressing disk for R¡ in Z. Then 3Z) = dD' for a disk D' in 3/i°.

H" U h[] is a cube-with-handles which meets C in disks. Therefore, ZU/i° is

irreducible. Thus, DUD' bounds a 3-cell B in M. Since the complement of h® in H'
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is connected, it lies either in B or Af — B. This implies that (3/i° — R¿) lies either in

D' or in (3/i° — D'). In either case 3D bounds a disk in R¡. Thus F, is incompressi-

ble in Z.

The incompressibility of S follows from that of R.

Let D be a disk in Z such that Z) n R¡ is a single arc a. Let ß =dD — a. Then a

meets exactly one 1-handle /¡j, and ß is boundary-parallel in S.. Isotop D so that 3F>

lies in F,. By the incompressibility of R¡, D is boundary-parallel.

5.3. Lemma. 7/3Af contains no 2-spheres, then (Z, R) has Property B'.

Proof. Let F be any incompressible surface in Z such that either 3F = 0 or 3F

lies in 3M. We may assume F is minimal with respect to H" O C. Then F lies in C

and so, by Corollary 3.2 of [19], is parallel to a surface in 3Af. Thus, every

incompressible torus in Z and every incompressible annulus A in Z with dA O H' =

0 is boundary-parallel.

Let A be an incompressible annulus in Z such that dA O dR = 0 and 3/4 O dH'

¥= 0. Then at least one component a of dA lies in R or S. We may assume a lies in

some R¡. Let /? be the other component of 3/1.

Let C\ denote the core of the 2-handle h\. We may assume that A is minimal with

respect to C2 = U^ C\. It follows from the fact that R is incompressible and Z is

irreducible that A O C2 consists of spanning arcs of A.

Case 1. a is boundary-parallel in R¡.

Then a is parallel in R- to 3(/)° D h¡) for somey. Let hi and ft2 be two distinct

2-handles meeting hj. Then A O C\ ¥= 0. Let y be a component of A O C\. y is a

spanning arc of A which runs from F, to some Rm or Sm. Thus ß lies in Fm or Sm.

We may assume /? lies in Rm.

If F, = Rm, then y is parallel in C% to an arc in R¡ O C\. Thus A is ./^-compressi-

ble and hence F-parallel in Z.

If Rj ¥" Rm, let 8 be a component of /I n Q2. 5 is a spanning arc of A which runs

from R¡to Rm. Thus, h\ and h2 meet the common 0-handle Rm. This implies that hj

joins /i° and /i° . Suppose ß is not parallel in Rm to 3(/i^ n /zj). Then /I meets some

C2 which does not meet h¡. Let e be a component of A O C2. e is a spanning arc of

A which joins Rm to Rp, where we may assume Rm ¥= Rp. But since C2 does not

meet h), Rp ¥= R¡, hence a does not lie in R¡, a contradiction. Therefore, ß is parallel

in Rm to d(h°m O /ij). Thus A is 5,'-compressible, where Sj is the union of S¡ with the

boundary-parallelisms of a and ß in F, and Rm, respectively. Therefore A is

boundary-parallel.

Case 2. a is not boundary-parallel in R¡.

Then a partitions 3F, into two groups of two components each. It follows that a

must meet the cores of at least four distinct 2-handles which meet /i°. Let y,, y2, y3,

and y4 be arcs in the intersection of A with the cores of these 2-handles. They are all

spanning arcs of A. Each y joins F, with the same Rm or Sm. So ß lies in Rm or Sm.

We may assume ß lies in Rm. If R¡ = Rm, then A is R -compressible and hence

F,-parallel. If R¡ ¥= Rm, then each of the four distinct 2-handles meets both h° and

h°m. Therefore, h° and h°m are joined by a 1-handle /i' and each of the four distinct

2-handles meets hx. This contradicts the fact that each 1-handle meets exactly three

distinct 2-handles.
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6. Simple knots.

6.1. Theorem. Let M be a compact, orientable 3-manifold whose boundary contains

no 2-spheres. Then M contains a simple knot.

Proof. Let (X'¡, X") be a copy of the true lover's tangle in a 3-cell B¡. Let Q¡ be the

associated tangle space. Let C be a collar on 3Af. Choose a special handle

decomposition of N — M — C. Let Z and R be as in Lemma 5.2.

Identify each 0-handle h° with Bi in such a way that d(X\ U X'[) is identified with

the intersection of h°¡ with the cores Ç) of the four 1-handles meeting h®. Do this in

such a manner that / = U,(X; U X"¡) U U ,Ç) is a simple closed curve, where the

unions are taken over all the 0-handles and 1-handles of the handle decomposition.

Let Q = U,Q,. Then the exterior X of J is Q U Z. Note that Q O Z = R. By

Proposition 4.1 Q is irreducible, boundary-irreducible, and simple. Since R and

dQ — Rare clearly incompressible in Q, (Q, R) has Property C. By Lemma 5.3

(Z, R) has Property B'. Thus by Lemma 3.3 X, and hence J, is simple. This

completes the proof.

We now quote

6.2. Thurston's Theorem. Every simple Haken manifold is hyperbolic.

in order to prove

6.3. Corollary. Let M be a compact, orientable 3-manifold whose boundary

contains no 2-spheres. Then M contains a hyperbolic knot.

7. Some technical lemmas. Let (V, V) be the pair of solid tori in Figure 6. Let L be

the core of V. Let F = dV, T - dV, and W = V - V. Note that W is the exterior

of the Whitehead link in S3. Let t be a simple twist of V, i.e. t is a self-homeomor-

phism of V such that t(s) is homologous to s and t(í ) is homologous to s + t in T.

Figure 6
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W can be obtained from the cube-with-handles F in Figure 5 by identifying F,

and F2 to obtain the surface F' in Figure 6. Since w,(F) is free on jc and y (the

basepoint is on F2), trx(W) has the presentation

/ — i — i        \
(x, y, t: txt   ' = y, twt     — z) .

Noting that w = jcv" 'jc"xyx~ ' and z = jcv" 'jc" ', we use the first relation to eliminate

the generator y and obtain the presentation

(x, t: ts = st),

where s — wx = [jc, î][jc~', t]. ([a, b] — aba~lb~].)

Now let W'(p, q) be the manifold obtained from W by adding a 2-handle to T

along a simple closed curve homotopic to tpsq, where (p,q)= 1. Then G =

"■i(W(F' <7)) has the presentation

(x,t:ts = st,tpsq= 1).

Let / be the oriented longitude of V, referred to the basepoint as shown in Figure 6.

Then/= [x, í"'][jc, t].

7.1. Lemma. 7" is compressible in W'(p, q) if and only if p — ± 1 and q — 0.

Proof. Suppose p = ±\ and q = 0. Then clearly there is a compressing disk D

for 7" in W'( ±1,0) with dD homotopic to /.

Suppose T is compressible in W'(p, q). Let D be a compressing disk. Then 3F> is

homotopic to / because every other noncontractible simple closed curve on T' is

homologically nontrivial in W'(p, q). We first show that p = ±1 by proving that

otherwise / =£ 1.

Assume/^ =£ ± 1. We may assume/? > 0.

Case \.p = 2m, m s* 0.

Define <í>: Gpq -* 53 by setting <>(jc) = (1,2,3) and <i>(< ) = (1,2). Then «f>([*, f]) =

<i>([jc, i"1]) = (1,3,2) and </>([*"',*]) = (1,2,3). This implies <f>(s) = <t>(t2) = 1, so <f>

is well defined. Since <J>( / ) = ( 1,2,3), I ¥= I.

Case 2. p = 2m — l, m > 2.

Define <f>: G ^> S2m by setting </>(*) = (1, m + \)(2, m + 2)...(m,2m) and

<t>(t) = (\,2,...,2m- I). Then </>([*, /]) = <¡>([x~\ t]) = (m - 1, w)(2m - l,2w)

and <i»([x, f~']) = (l,2w)(An, m + 1). This implies <j>(s) — 1 and ^>(i'') — 1, so ^> is

well defined. Since <i>(/) *= (1,3)(2,4) for m = 2 and

<¡>{l) = (\,2m — \,2m)(m — 1, m, m + 1)

form>2,l¥= 1.

Thus /? = ± 1. Suppose q ¥= 0. Then ^'(z?, ^) is homeomorphic to the manifold

obtained from (V — T~q(V')) by attaching a 2-handle to F along a simple closed

curve homotopic to /. But T~q(T') is the boundary of a regular neighborhood of a

nontrivial twist knot r~q(L) in the 3-cell formed by the union of Fand the 2-handle.

Therefore 7" is incompressible, a contradiction.

Now let W(p, q) be the 3-manifold obtained from IF by adding a 2-handle to 7"

along a simple closed curve homotopic to xplq.

7.2. Lemma. T is compressible in W(p, q) if and only if p = ±1 and q = 0.
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Proof. This follows from Lemma 7.1 and the fact that the Whitehead link is

interchangeable: there is a self-homeomorphism of W which interchanges T and T,

interchanging / with s~x and x with t~l,

7.3. Lemma. W is simple.

Proof. Following Whitten [20], this can be deduced from work of Seifert [16] and

Schubert [15] on doubled knots. Alternatively, it follows from the fact, due to

Thurston [17], that W is hyperbolic. However, it also can easily be deduced from

Lemmas 3.1-3.3, as follows.

Regard W as the union of the cube-with-handles F in Figure 5 and a regular

neighborhood N = F' X [1,2] of the planar surface F' in Figure 6, where F, is

identified with F' X {;}, / = 1,2. By Lemma 4.9, (F, F) has Property C. (N, F) has

Property A by the incompressibility of F in N. Property B' of (N, F) follows from

Corollary 3.2 and Lemma 3.4 of [19].

8. An algebraic determination of compact, orientable 3-manifolds.

8.1. Theorem. Let M and N be compact, orientable 3-manifolds whose boundaries

contain no 2-spheres. Then %(M) = %(N) if and only if M is homeomorphic to N.

The main tool used to prove this theorem will be

8.2. Johannson's Theorem [9]. Let X and Y be Haken manifolds. Suppose X is

semisimple. If irx(X) and irx(Y) are isomorphic, then X and Y are homeomorphic.

Proof of Theorem 8.1. Suppose %(M) — %(N). By Theorem 6.1 Af contains a

simple knot K. Let U be a regular neighborhood of K in M, and let Af' = M — U.

Let n be the torus Haken number [3] of N, i.e. « is a positive integer such that if

{F,,..., Tm) is a collection of disjoint, incompressible tori in N or 3A/ and m > n,

then at least two of the tori are parallel in N.

Let (V„ V;\ 1 < i « n + 2, be copies of (V, V). Identify Vx with U. Identify V2

with V[ so that s2 is homotopic to jc, and t2 is homotopic to xqlx, where q ¥= 0. For

3 < i < n + 2, identify Vj with V[_x so that s¡ is homotopic to jc,_, and f, is

homotopic to /,_,. Let F0 = 3K, and 7) = dV¡, 1 *s i < n + 2.

Let J be the core of K„'+2. Let X be the exterior of J in Af. X = M' U U"+,2 W¡.

Since Af and the Wi are simple, (AF, F0), (W¡, T¡_x), and (W¡, T¡) all have Property

C. So by Lemma 3.2, X is semisimple.

By hypothesis there is a knot J in N such that ttx(M — J) is isomorphic to

trx(N — J). Let Y be the exterior of / in N. Let f be the component of 3T which

bounds a regular neighborhood of J in N. irx(X) is isomorphic to trx(Y). Since X is

irreducible and boundary-irreducible, ttx(X) is not an infinite cyclic group or a

nontrivial free product [4, 5]. It follows that Y — T#S, where Y is a Haken

manifold and 2 a homotopy 3-sphere [4]. Let A? be the union of Y with a regular

neighborhood of /. By Johannson's theorem there is a homeomorphism /: X -> Y.

Let t,=f(T,) and W,=f(W,).
Suppose fn+2 ¥= f. Since the Wi are simple, none of the ft are parallel in N.

Therefore, some of the T¡ are compressible in N.  Since the   W¡ are boundary
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irreducible, f0, fx, and F2 are compressible in N. Let Ê0 be a regular neighborhood

of a compressing disk D0 for T0. Since F, is compressible in N and 3(IF, U F0) — F,

is a 2-sphere, F, is compressible in IF, U E0. By Lemma 7.1 dD0 is homotopic in Fq

to t . Moreover, if F, is a regular neighborhood of a compressing disk 7), for fx,

then ST), = /,. But since q ¥= 0, W2U F, is homeomorphic to the exterior of a

nontrivial twist knot in a 3-cell. Therefore F2 is incompressible in W2 U Ex and

hence in A/, a contradiction.

Thus, F„ + 2 = T. Let jc be a meridian of a regular neighborhood of/.

Note that both Tn+X and Fn+2 are compressible in N. By Lemma 7.2 this implies

that jc = x,f+2.

Thus/carries a meridian of a regular neighborhood of / to a meridian of a regular

neighborhood of/. Therefore,/can be extended to a homeomorphism/: Af -» A?.

We therefore have that N is homeomorphic to Af#2. By a symmetrical argument

we have that M is homeomorphic to A/#2'. The uniqueness theorem for connected

sums of compact, orientable 3-manifolds [4, 11] now implies that 2 = 2' = S3 and

thus that Af is homeomorphic to N.

9. A characterization of S3. Recall that a graph manifold [18] is a compact,

orientable 3-manifold containing a disjoint collection of tori, the closures of whose

complementary domains are S '-bundles. Clearly any finite union of graph manifolds

along their boundaries is again a graph manifold.

9.1. Theorem. Let M be a closed, orientable 3-manifold such that every knot in M

shrinks to a point inside a connected sum of graph manifolds and 3-cells. Then M is

homeomorphic to S3.

Proof. By Theorem 6.1 Af contains a simple knot /. By hypothesis J shrinks to a

point inside a connected sum X of graph manifolds and 3-cells. Assume that among

all such manifolds dX has a minimal number of components. Let F be a regular

neighborhood of / in X. Let X' = X- V and A/' = M - V.

If dX contains a 2-sphere S, then S bounds a 3-cell B in Af — X. Replacing X by

X LI B produces a connected sum of graph manifolds and 3-cells in which J shrinks

to a point and which has fewer boundary components, contradicting minimality.

Therefore 3 X contains no 2-spheres.

If dX contains a torus T, then either F is compressible in Af or F is boundary-

parallel in A/'. Suppose F is compressible in Af, with compressing disk D. We may

assume that D lies either in X' or M — X'.

Suppose D lies in A". Let F be a regular neighborhood of D in X', and let S be the

2-sphere F — dE U 3F — T. S bounds a 3-cell B in M — X U E. It follows from Satz

6.3 and Lemma 7.2 of [18] that X — E is the connected sum of some graph

manifolds and one 3-cell. Thus, X — E U B is a connected sum of graph manifolds

which contains J and has fewer boundary components than did X. This contradicts

minimality, so D must lie in Af — X.

Let F be a regular neighborhood of D in Af — X. Let S be the 2-sphere T — dE

U 3F- F Then S bounds a 3-cell B in M - (XU E). Therefore, F U B is a solid

torus. Replacing X by X U F U B gives a connected sum of graph manifolds which
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contains J and has fewer boundary components. This contradicts minimality, so T is

incompressible in Af.

Thus F is parallel to 3 V in Af. Since 3 X contains no 2-spheres or compressible tori

it follows from Corollary 3.2 of [19] that F is parallel to dV in A". However, this

implies that A" is a solid torus with core /, contradicting the fact that / shrinks to a

point in X.

Therefore dX = 0 and so Af is a connected sum of graph manifolds. The

conclusion now follows from the theorem of Montesinos [12] that every simply

connected graph manifold is homeomorphic to S3.

9.2. Corollary (McMillan [10]). Let M be a closed 3-manifold such that every

knot in M shrinks to a point inside a connected sum of solid tori and 3-cells. Then M is

homeomorphic to S3.
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