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THE ASYMPTOTIC EXPANSION FOR THE TRACE OF THE HEAT

KERNEL ON A GENERALIZED SURFACE OF REVOLUTION

BY

PING-CHARNG LUE

Abstract. Let M be a smooth compact Riemannian manifold without boundary.

Let / be an open interval. Let h(r) be a smooth positive function. Let g be the metric

on M. Consider the fundamental solution E(x, y, rx, r2; t) of the heat equation on

M X I with metric h2(r)g + dr ® dr (when E exists globally we call it the heat

kernel on M X /). The coefficients of the asymptotic expansion of the trace E are

studied and expressed in terms of corresponding coefficients on the basis M. It is

fulfilled by means of constructing a parametrix for E which is different from a

parametrix in the standard form. One important result is that each of the former

coefficients is a linear combination of the latter coefficients.

0. Introduction. We shall present here a relation between the coefficients of

pointwise asymptotic expansion for the trace of the heat kernel on a generalized

surface of revolution and the corresponding coefficients on its cross section. Let

(Af, g) be a compact Riemannian manifold with metric g and 7 be an open interval,

h(r): I -» R+ a smooth positive function. Then we call Af X 7 with metric h2(r)g +

dr ® dr a generalized surface of revolution with section M. The asymptotic expan-

sion for the heat kernel on M had been introduced and studied by Minakshi-

sundaram and Pleijel [7]. Then the first author in a short paper [8] gave another

proof and wrote the expansion in the following form:

i
(0.1) E(x,x,t)~   ——-r"/2(\ + ax(x)t + a2(x)t2 + ■■■).

Here F(jc, jc, t) denotes the pointwise trace of the heat kernel on Af ". The heat

kernel E(x, y, t) can be written as F(jc, v, t) = 2>~x,'<í>,(jc)</>,(y) [1] where 0 < X0 *£

X, • • • Î co are the eigenvalues of the Laplacian on M and {</>,-} are corresponding

orthonormal eigenfunctions. If we integrate (0, 1) with respect to the volume form we

obtain [1]

00

(0.2) 2 e"X'' ~  (4wir"/20o + axt + a2t2 + ■■■).
,-=o        f-°

The coefficients {a,} have geometric meaning; for example a0 is the volume of the

manifold, and when n — 2, ax = 7rx(A/)/3 (where x(A72) is the Euler characteristic

of Af2). While it is known that the {a¡} depend on the curvature tensor R and its
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94 P.-C. LUE

successive covariant derivatives [1], it is very difficult to calculate them explicitly. In

fact, only the first few of them have been calculated for general manifolds. For some

special manifold, such as compact symmetric spaces of rank one, Cahn and Wolf [2]

have found an explicit formula for all the coefficients.

The method used by Minakshisundaram-Pleijel [7] to study the asymptotic expan-

sion was to construct a sufficiently good parametrix. The properties of the heat

kernel at the diagonal are determined by the parametrix. Therefore it might appear

that the most natural way of studying our problems would be to start with a

parametrix of the following form:

(0.3)

-x)„+|)/2gp2/4'("o(ri^2^ *. y) + «t(rt, r2, x, y)t +U2(rx, r2, x, y)t2 + •••).
(4wf)        '

Here (jc, v) denotes points on the cross section, rx, r2 G R and p denotes the distance

between (rx, x) and (r2, y) on M X R. But even though it is possible to express p in

terms of the distance function on Af and the warping function h(r), this approach

does not lead to a formula for the coefficients on M X I in terms of the correspond-

ing coefficients on Af (see §IV). Instead we construct a parametrix of nonstandard

form. The idea of constructing such a parametrix was initially suggested by the

following considerations. By using separation of variables we can express the heat

kernel on Af X F in the form Z%oft(ru r2, t)<j>¡(x)^>i(y). Then the Laplace trans-

form of each f will be a parametrix for the kernel of the resolvent of the associated

1-dimensional Sturm-Liouville problem. Gel'fand and Dikii have studied the

asymptotic expansions for the trace of these kernels [4]. This leads to an asymptotic

expansion for the/¡. The construction of our parametrix was motivated in part by a

certain formal procedure for "adding" these asymptotic expansions. Here the

following difficulty arises: the asymptotic expansion of each /■ starts with the term

Cx/1. But the asymptotic expansion we want must start with / <"+')/2_ ¡n fact we

have infinitely many asymptotic expansions starting with F1/2 and not holding

uniformly. We want to "add" these in such a way to obtain an expansion starting

withr<"+"/2.

In concluding this introduction, the author would like to thank his advisor, Jeff

Cheeger, who patiently guided the work.

I. Preliminaries.

LI. The Laplacian on M X I. Let Af X 7 be the generalized surface of revolution

as we defined it in the introduction. If we denote the Laplacians on Af X 7 and M by

A and A respectively then a standard computation shows

1.1.1. Proposition.

_/ 9 \2      nh'(r)   d 1

\drj h(r)   dr      h2(r)~'
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1.2. Asymptotic expansions. We will use the following result.

1.2.1. Theorem. If f(z) is analytic in -a < 0 < a, 0 < r < b, z = re'6 and if

f(z) ~ lf=0akzk uniformly in 0 then f'(z)    ~   2k*'=xkak_xzk~x uniformly in any

small sector -a < a, < 0 < a2 < a.

Proof. See [6].

1.2.2. Corollary. Ifl%0e-X>' ~ r"/2(a0 + axt + ■■■) then

oc

2 \,e-*« ~ h~^~\ + (J - \)r»/\ + ■■■.
,Zq r-*G 2 \ 2 I

Proof. J,°°=0e~Xi' is analytic in —a < 9 < a. a < tr/2 [1] so this follows from

Theorem 1.2.1.

We also need

1.2.3. Theorem. Suppose F(s) is the Laplace transform of f(t) and F(s) has a

half-plane of convergence. Iff(t) ~ 1%0cvtXv (where -1 < FA0 < FA,- • •) then

•    r(\,+ i)
F\s)   ~    1 cp-.

FA, denotes the real part o/A,.

Proof. See [9].

1.3. Heat kernels and their parametrices.

1.3.1. Definition. A fundamental solution of the heat equation on a smooth

Riemannian manifold N is defined as a function F on N X N X R*+ which satisfies

the following:

(1) F is C° in the three variables, C2 in the second variable, C1 in the third

variable.

(2) (A2 + d/dt)F — 0. Here A2 is the Laplacian applied to the second variable.

(3) lim,_0F(jc, -, t) — Sx for any jc G A/.1

1.3.2. Definition. When N is compact the fundamental solution is unique. We

call it the heat kernel of N.

Remark. Since we are interested in the case of pointwise asymptotic expansion,

we can regard M X I as a portion of a larger compact smooth manifold.

1.3.3. Definition. We call 77 a parametrix of D = A + 9/3; if it satisfies:

(i)77G C°°(N X NX R*+).
(ii) D77 can be extended to become a function in C°(N X N X R+ ).

(iii) lim,^0 77(jc, ■, t) = 8X for all jc G A/.

In the definition, R+ denotes the nonnegative real numbers, R*+ denotes the

positive reals and 8X denotes the Dirac function at the point jc.

'For R\ . Sx see Definition 1.3.3.
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IL Construction of a parametrix. We will construct a parametrix of the following

nonstandard form:

„0   £$^^¿L.Í^L^_^

■ 2 aJ(rx,r2,Xi)^i(x)4>i(y)t y-1/2

7=o

Apply the heat operator D2 = A2 + 9/9; to the above expansion with respect to

the second variable (r2, y). Collect those terms with the same power of t and set the

resulting expression equal to 0. In particular by setting the coefficient of ?'~'/2

equal to zero we get

+jt*j- (n -r2)-^-aj
3 A,(/i(r2)^"(r2)-2(/z'(r2))2)
:—a i-—-———-a

h(rx)h\r2)
7-2

2    M'fo)      9 , (    Kh'(r)    \2
-   h(rx)h2(r2) *r2a>~2     \h(r,)h2(r))  ^

where j > 0, a_3 = a_2 = a_x = 0.

i~«\ t x     k'ln      Ah'(r)2      n h"(r) A,

(23) -(,) = 2(2- ')^y + 2-¿T+Fw'

We can then solve a successively: a0 = const. Here we use the following normal-

izing conditions; let a0 = 1.

(2-4) ax = -±- f\(r) dr + *'
r,     r2Jr¡ h(rx)h(r2)

(2.5)

'2_-,/ \22(r,-r2)2Vr,       ;     /        rx-r2\Jr^   'K'     ! h{rx)h(r2)

i^fr;uÁr)dr-^^{^
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The lower limit is so chosen in order to avoid the singularities which would arise

when /-, = r2 if we did otherwise. In general,

(2.6)

, 2

*j+\

(^('■-'1^1 -%-')
u   \h'(r)

h(rx)h\r)

_ Xl(h(r)h"(r)-2h'(r))

dr2^ h(rx)h3(r)
7-1

,;3^~rYlS'jMrir^r)-H^Mr •)

h(rx)hz(r)

Let Hk denote the expression (2.1) with the second summation replaced by the

finite sum 2*=0.

ILL Main theorem. Hk is a parametrix for D if: [f] > f + f. More precisely we

multiply Hk by a Cx cut off function

1,     p<F/2,
VR(p((r¡,x),(rz,y2)))

0,    p>R,

in order to get a parametrix in the sense we have defined.

R/2        R
*■ P

In order to prove the theorem we need to check the conditions for a parametrix

(1.3.3). For the first condition we need the following lemma.

II.2. Lemma. aJ+x(rx, r2, A,) is C°° in the variables rx, r2.

Proof. We prove it by induction. Write

aJ+l=--—f\rx-r)J&J+x(rx,r,X,)dr.



98 P.-C. LUE

Here @,J+X is Cx in rx, r2 from the induction hypothesis. In order to show that aj+x is

Cx it is then sufficient to check that (d/drx)k(d/dr2)'a+, exists for r, = r2. By

Taylor's theorem

«y+ii'i, r, A,) = Ô,+ 1(r„ r„ A,) - (d/dr2)3J+x(rx, rx, A,)(r, - r)

+ ... + ((-l)k+1f (k + l)\)(d/dr2)k+l&l+x(rx,t, A,)(/-, - r)* + /,

| is a number between rx and r. Therefore,

_ &J+X(rx,rx, A,)      (d/dr2)&J+x(rx, rx, A,.)(r, - r2)
a/+i

7+1 7 + 2

(-1)A '2/    3
+ ---+7J:iiV/2^        «y+I(r„€.X1)(rI-ry+'+**.

( /*,   — r2 y Jr]   \  or2 I

Each term of the right-hand side of the above expression is Cx in rx, r2 except

possibly the last term. But, after applying (d/drx)k(d/dr2)' to it then taking the limit

r2 -» rx we will get const • (d/dr2)k+'@,J+x which shows (d/drx)k(d/dr2)'&j+x exists

for rx — r2. This completes the proof.

For condition (iii) we need the following lemma. From (2.6) the degree of A, in

aj+x increases at most with each increase of index. Therefore deg A,-a-+1 <j + 1,

which we will need in the proof.

II.3. Lemma. \im,^0Hk(rx, x; -, t) = 8(r x).

Proof. Let f(r2, y) be a smooth function with compact support which contains

the point (r,, x). Then

lim i     Hk(rx,x,r2,y;t)f(r2,y)dV
1^0 •'MX/

= lim [      Hk(rx, x, r2, y; t)f(r2, y)h"(r2) dr2dy
f->0 JMXI

r 2

= lim f\--zzrh-"/2(rx)h"'/2(r2)exp(-ir]~/2)  )r'/2

(2.7)

k

1
7=0

A.«

t,loeXP\
^¡{x)^{y)f{r2, y)

■aJ(rx,r2,Xl)tJdy h"(r2)\dr2

Xd
= lim   2   (   2 exp—-t^—U.-ixH.O )/(/■!. y)aJ(rx,rx,Xi)t->dy

Í-.0 j=oJMi=0       \   h2(rx))

= f(i-\,x).
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The second from the last equality holds since degA.a-(r,, r2, A,) is finite. In fact,

when j # 0

lim
t-o

f   2 exp
•/M/ = 0 I     hl\r\)

X,t
K<S>i(xhÁy)f(r],y)dytJ = lim Asf(rx,x)tJ = 0.

i^O

Hence only the term containing a0 = 1 remains.    Q.E.D.

For condition (ii) we need the following:

11.4. Lemma. For given F > 0

\DHk\< const tlk/3]-"/2-3/2,       t<T.

The constant in the above estimate depends on h(r). For the proof of Lemma II.4

some inequalities about the degree of A, in a, are essential. The need to control the

degree arises from the fact that each increase in the degree of A, in the expression

2°L0As,e"X'' will lower by 1 the degree of / in the asymptotic expression. This follows

easily from Theorem 1.2.1.

11.5. Lemma, (i) degA a,(r, r, A,) «S [2//3].

(ii) degx ((3/3r2)*a/j(r, r, X,) < [(2/ + k - l)/3], 0 < k < /.

(lii) degx(id/dr2)ka,)(r, r. A,) </,*>/.

Proof. By induction on /, suppose the above inequalities hold for all /' < /. Then

(2.8)    degx a,(r, r, X,) < max
2 •(/-!) 2(/-2)

1 +
2(/-2) + 1 - 1

2 +
2(1-3)

which proves the first inequality. Consider

(2-9) la,- (r, -r2)-^-a,

Mfel-' 1 M 9r,
ai-yr\-ri)      a

r,=r2
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and

(2.10)
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la,-   (rx ~r2)^-a,= - lufa) l^Mr7))a^+(^

(r\ ~r2)
X,h'(r2) ^ X,{h(r2)h"(r2) - 2{h'(r2)f)

h(rx)h(r2)
'i-\

+ 2
X,h'(r2)      9

^r—a,_, +
h(rx)h(r2)2 9'2"'-2  ' \ h(rx)h(r2) 1

X,h'(r2)

h(rx)h3(r2)

2

'/-2

If we want to know the degree of A, in ((d/dr2)ka,)(r, r, A,) we need only know the

degree of the £:th derivation w.r.t. r2 of the r.h.s. of the above expression:

(2.11)

UJ Ui(r2)
h(rx)h(r2) <

-.

u¡(r2)
A,

h(rx)h(r2))\dr2

(rx)h(r2)j\dr2+ (î)îd"'(rï)-*7)feU   a>'

+ ■■■ +

+ ••• +

(¿)m h<*>

(£)'{»<<">-

h(rx)h(r2)J\dr2
«/-i

h(rx)h(r2)
♦/-!•

Therefore

degM^

(2.12)

«/(ll)

max { 1. +

h(rx)h(r2)
•/-l

J ri=r1

2(1- 1) + k- 1 + 1
,...,1

+
\2(l- 1) + k- m - 1

,...,1 +
2(/-l)

2/ + k - 1
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Similarly we have

(2.13) deg*.ll9^)   \W2l i-\
21 + k- 1

degA
3r9

X,h'(r2)

^-r2)WJhJr7)a'
21 + k- 1

deg^i - 9r,

degA

Xi{h(rx)h"(r2)-2(h'(r2)f)
-al-2

h(rx) (r2)

21+ k- 1

X,h'(r2)    \   9

3r2/     U(^,)^('-2)/9r2
'1-2

r,=r2

21 +k- 1
^

degA
9'-2/1U('-,)ä2(''2)

2 \

'1-3
21+ k- 1

'■|='"2

Combining the above inequalities we get

(2.14) deg 1371  at\(r>r>Xi)
21 + k - 1

so we have proved (ii). (iii) is trivial since degx a,(rx, r2, A,) is never greater than /.

Q.E.D.
Now let us return to the proof of Lemma II.4. Consider that

(2.15)

o2Hk= 2
/=ot

(r\ - h)^7ak+\(r\^ h> xi) ~(k+ lK+i(>-|, r2, A,)
dr-

Gdk~x/2

+ 1
1=0

Xi{h(r2)h"(r2)-2(h'(r2))2)

h(rx)h(r2)

,   Mv>2)     9

h(rx)h2(r2) 9r2

<*k(rVr2>h)

2

ak(rx,r2,X,)

+ 1
(=0

\h'(r2)

h(rx)h2(r2)
ak(rx,r2,Xi)

where

G, = -^r«/2(r,)/!-«/2(,2)exp (-(r'4/2)  )

h(rx)h2(r2)

■ak-x{rx,r2,Xl)

G,tk+3/2

X,t

Gttk+'/2

exp
h(rx)h(r2)

*Ax)*i(y)-
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Since we know that
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(2.16)

(2.17)"

and

(2.18)

2 e-x^,(x)^(y) < const • r"/2,        t < T,
;=o

2 A>-A''<i»,(x)^( v) < const ■ r"/2-\       t < T,
,=o

■   (rl ~ r2)    1/
exP —;n—K'z-'ï)4t

=£ const - t'k/2,       k¥=0,

it is easy to see that

(2.19) 2 exp
i'=0

(rx-r2)2\(r2-rx)k!   3

4r A:!        \ dr2k «/(>V2, A,)

•exp
A,/

ft(r, )A(r2)
*/(jc)*/(^)

< COnSt .f"/2 + */2-[<2'+*-l>/3]_

Now, we expand a,(rx, r2,X¡) into a Taylor series at r2 — rx with r2 as variable. If we

denote the sum of all terms with power of (r2 — rx) greater than / by a,(rx, r2,X,)

then

(2.20)      a,(rx,r2, A,) = a,(rx, rx,X,) + (r2 - rx)\^-a,(rx, r2, A,)
r¡=r2

(r2- r\)

k\
97 I  ai(r

ri=r2

[r2- r\)'-, »  v-j-«A'i.'iA)-

Note that degA a,(rx, r2, A,) < /; we have pointed this out in the remark following

II.2. In order to estimate G,, we multiply each term of the Taylor series expansion by

G¡, and then use the above inequalities to obtain

(2.21) |a,(r,, r2, X,)Gt\< const • r"/2"12'/31.

See Corollary 1.2.2. Similarly we can estimate 02Hk since we can estimate each term

of it.

(2.22)

|D277A|«const-/A-|/2-"/2-!2(<: + 1)/3|+const-iA + |/2-',/2-'I/2-l2*/3]-1

+ COnSt .?*+l/2-V2-[2(A-.)/3]-2   + COnSt .tk + y2-n/2-l2k/3)-2

*£ COnSt .f[*/31-»/2-3/2.

This completes the proof of Lemma II.4 and shows that 77^. does represent a

parametrix   for  the  heat  kernel  on  Af X 7  when  [f ] > § + \.   Since  the  heat
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kernel is symmetric w.r.t. its variables (r,, jc), (r2, y), if we represent it as

1%ofi(rx, r2, /)(J),(jc)<i>,(y) we can see thatf(rx, r2, t) is also symmetric w.r.t. rx and

r2. For some special functions h(r) (for example; h(r) = sin r),

00

f,(rx,r2, t)^(x)^t(x)^(y) =  2 «M, h, X,)G^-^2
7 = 0

is convergent for each /'. Since G, is symmetric w.r.t. rx and r2, in these special cases

Aj(rx, r2, A,) is also symmetric w.r.t. rx and r2. But if we look at the construction of

a • more carefully we find that the form of a, in terms of h(r) is universal2 so that we

get the following

11.6. Corollary. aj(rx, r2, A,) is symmetric w.r.t. rx, r2.

In proving 77A. represents a parametrix we also get the following asymptotic

expansion:

11.7. Corollary.

(2.23)    Trace F ~   2 -pA~"(r) 2 exp [--j- \a¡(r, r, X,)<¡>2(x)t^/2.
'-o,.=o2/Ï7 l=o       \   h2(r)J

III. An explicit formula for the asymptotic expansion. In this section we relate the

result of §11 to the result of Gel'fand and Dikii [4] in order to get an explicit

formula. They have studied the asymptotic expansion of the resolvent kernel for the

Sturm-Liouville equation and obtained recursive formulas for the coefficients of the

expansion. Moreover they also have a generating function for the recursive formulas.

Let us start with some formal considerations.

Consider E(rx, r2, x, y, t) = "Zf=0f¡(rx, r2, t)<j>,(x)<j>,(y) since the Laplace trans-

form of the heat kernel is the kernel of the resolvent of A [5].

(3.1) /   e-A'e-s'dt= (A + i)"1,

the Laplace transform of each/, should satisfy the following differential equation:

9   \2     nh'(r2)   9 A,
(3.2)

or

(3-3)

+
dr2) h(r2)   dr2      h^)

f,(rx,r2,s) = 0

' h"(r2f      n h"(r2) A,

' h2(r2)       2   h(r2)       h2(r2)

= -sh"/2(r2)f(rx,r2,s).

f(f-') h"/2(r2)f(rx,r2,s)

20j is the summation of (r, — r2) ' to some power multiplied by the integral of a rational function of

h(r), h'(r),... ; the coefficients of the denominator and numerator of the rational function are indepen-

dent of h(r). See (2.5) for; = 2.
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This in turn suggests that h"/2(rx)h"/2(r2)fj(rx, r2, s) is the kernel of the resolvent of

-d2/dx2 + (u,(r) + s) where u,(r) is defined as in (2.3).

Applying the result of Gel'fand and Dikii [4] we have

h"{r)f,(r,r,s)z    lf^
s^00 /=o  S

where R, = R,[u, «', u",...] is a polynomial in u, u', u"',... and satisfies

co — 2 >     ^1 4M>

(3.4) 4F/+, = 2 2 RkR'i-k-  IWt-k
k=0 k=\

-4uÍRkR,_k-4ÍRkR,_k+x.
k = 0 k=\

From 1.2.3 we see that if/ has an asymptotic expansion it is in the following form:

(3.5) h"(r)f,(r,r,t)~    f -^<L,'->/2.
'-0  /=o 1 V i" 2}

The following proposition tells us that it is possible to factor e~u,t out of the above

asymptotic expansion.

ULI. Proposition. Summing up those terms in 1%q(R,[u¡]/T(1 + í))f'~l/2 which

contain a fixed monomial of derivatives of u, of the form ü\ ^u\ ^ • ■ ■ u\ki\ kj ¥= 0,

gives the sum as Ak ...k e~u*'ui ■ ■ ■ u\k')tk, Ak ...k is a constant, k is the power of t in

the first monomial of such a form.

Proof. From (3.4) a straightforward proof by induction shows (cf. [3])

(d/du^R^u,] — -(I — 2)^/-i[«,] which in turn implies

(36) 9     */Kl   _        */-ik] OFn
(3-6) 3«, r(/ + i)--r(/-i+i)-  Q"E-D-

If we compare the expression after factoring e'"'1 out of (3.5) with the asymptotic

expansion in the end of the last section, we find that we should multiply some part

of e'u,t back into the expression. Split u, into the following two parts:

ut(r) = q(r) + Xt/h2(r).

Then multiplying e~q{r)l back into the expression, we obtain

l I      X t   \  °°
(3.7)        f(r,r,t) ~   -^r"/2(r)exp   -----    2 äj(r, A,)t^2.

'-0 2/tt \   h2(r)l /=0

Therefore äj(r, A,) is nothing but (Rj[q, u'¡, u'¡',...]/T(j + j)) ■ 2fif, i.e. replace u¡

(but not its derivatives) in Rj by q.

The following theorem is essential for the purpose of this section.

III.2. Theorem, a/r, r, A,) = äj(r, A,).
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Proof. Consider the expression

(3.8)

^\(r^r2,\,) = u,(r2)
A,

al-\  - al-2 + ^°l-
h(rx)h(r2)      2!   '-3\ h(rx)h(r2)

A,

+ (-1)
i-\

i-]

(l-l)\\h(rx)h(r2)

+ 1
X,

a<     a"h(rx)h(r2)
+ ■■.+(-!)'

+ {rx-r2)-
a<     "'"' h(rx)h(r2)

9r,
ai-\ - al-2

+ ■■■ + (-1)

X,

h(rx)h(r2)

1

l\\h(rx)h(r2)

j_

+ ■■• + (-!)'-
1

/-i

(/-!)! \h(rx)h(r2)

We can express the right-hand side of the above as the sum of terms of the following

form:

(3-9)

(-1)'
k\\h(rx)h(r2)

ufa)
h(rx)h(r2)

X

I 3r2 '

-(ri ~r2)T77
h(rx)\h(r2)

'l-k-\ (l-k)a l-k

(*\ - r2)^rai
*>--'  '  h(r2)\h(r2)>

+
2Xj i     1     \' 9

h(rx)\h(r2)J  dr2'-k~2      h(rx) \\ h(r2)

/\2

Since a, satisfies (2.2) of the last section, each term of this form must be zero and so

is their sum, i.e. 7C,(r,, r2, A,) = 0. Similarly, if we denote by K2(rx,r2,X¡) the

expression which comes from Kx(rx, r2, A,) by interchanging the roles played by r,
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and r2, then we also have K2(rx, r2, A,) = 0. Moreover,

(3.10) dr-
Kx(rx,r2,Xl) = 0,       3^-Kx(rx, r2, A,) = 0,

3-^K2(rx,r2,X,) = 0, -K2(rx,r2,Xi) = 0.

Combining these identities, and letting r, = r2, we get

(3.11)    (/ ;«/-i itèl.M4

2"' »/-i

2\/,2

-0/-2

(-2

+ ¿(¿' +

- + ...
'/-I

\
°<-^+-

Now, since by construction of à, we have

(3.12) a — a.
K
h2

+ tKa<
/!      c

R,

r(/+i)
2^

and from (3.4) by induction we have R', = \R¡-X — uR',^x — \u'R,_x, then by

substitution we will see that a, satisfies the same differential equation as above. Since

both of them satisfy the same differential equation of first order they may differ by a

constant. But because this constant is universal,3 it is sufficient to check the special

case h = const. Then we will get that it must be zero, so that äXr, r, A,) = à¡(r, A,).

Q.E.D.

111.3. Corollary.

00 , 00 I X   t

(3.13)    TraceF-   2 -f-=h-(r) 2 exp \--j- \äJ(r, X,)4>2(x)t^^2.
'-« ,=o {4* ,=o       \   h2(r) '

This proves the legitimacy of the addition of the infinitely many asymptotic

expansions to form the asymptotic expansion we wanted.

Now we are ready to calculate the coefficients. Now if we let

00 1

(3.14)     2 e-^2(x) ~   -^(C0r"/2 + Cxr"/2

i=o <-°  {Äir

+ ■•• +Csrn/1 + ••• +Csr"/2+s + ■■■)

3 From the constructions of both a, and ä, we see that the coefficients involved in them are independent

of h(r).
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then

(3.15)
CO

2 Ke-^ti(x)
( = 0 i-0 c0(f)(f + .)-(f + (-,)—

-/+1

where / > 1 and

00

(3.16)     2^, exp
/ = 0 h2(r)

+ti(3-t)f---(5+>,-2)^
+ ---+C^-s)...^2+l-s)r^ +-..}

i^O
C

-n/Z-l
I

+...+c,(f-s)-.,(.i+,-s)

I ̂ (r)

/ -n/2-/+s

Suppose we denote the coefficients of A', in ¿^'(r, A,) by a'j(r), and then consider

those terms containing t~(n+ ̂ /2+k which come from 5 .(r, A,).

W^D^w(f -);•■ (f+'-)M •)
n/2 + s-/

r7-l/2

with -I + s + j = k. But since degx a- = degx a,(/-, r, A,) < [2j/3] and s > 0 then

7 < 3£. Now let j vary and collect all those terms containing ¿-(»+1>/2+/c ^g wjii

have

(3.18)    2   ÏT^^^Hy-/

i-r^'HPM:) ̂
If we denote

(3.19)   ¿,=    2    2«jC*-y+i(f-*+y-/).-.(|-*+^-l)-ÄV(r)
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then

oo , /       1       \*

(3.20) TraceF-    2 -—^dk[ — \   .
r~° k=o {asm       ^h yr> i

Remark. When / = 0, (f - k +j - I) ■ • ■ (f - k +j - 1) will be replaced by 1.

IV. The significance of the approach and applications of the result. In the end of

the last section we got a formula for the coefficients dk on Af X 7 in terms of

coefficients c, and a'j where aj are the coefficients of A',. When we write a ■ into the

polynomial of A,, we should know a,-. Although the a¡ can be constructed by the

recursive formula which we have derived in §11, a generating function for them will

be more helpful. Gel'fand and Dikii have a generating function for R, which can be

exploited to construct a, as a polynomial in u, u', u",... and then to translate R, into

the so-called symbolic polynomial, which in turn has a generating function. Judging

from the sophisticated way they derived the function, we expect that a generating or

even a more directly recursive formula for dk than the one we got is unlikely.

Now we will give some arguments to show why we cannot start from (0.3), the

standard parametrix, and get a reasonable result. Let us consider first the case of the

metric cone, h(r) — r. Since the first coefficient of the asymptotic expansion of the

heat kernel is the reciprocal of the square root of the determinant of the exponential

map, we should find the relation between the determinant of the exponential map on

the cone and the determinant of the exponential map on the base.4

A straightforward calculation leads us to

(i) e{(P,,),(Q,K)) = e_(p,Q)[^-l)"'

where 0((p, t), (Q, k)) denotes the determinant of the exponential map from tangent

space Af X I(pT) to Af X 7 evaluated at (expip T))~\Q, k), 6(P, Q) denotes the

corresponding notion on M, and / denotes the distance between F and Q on Af. In

order to find the coefficients of the asymptotic expansion of the heat kernel we

should apply A to fT1/2 [l,p. 208]. From the relation A = A/r2 - (n/r)(d/dr) -

d2/dr2 and the fact that the right-hand side of the above relation is independent of r

we have

A*0-i/2_ -A-(A+2«-2.3)(A+4n-4.5)

j      y(n-])/2

■ ■ ■ (A + (2k - 2)n - (2k - 2)(2k - l))r'/2( -1_ )

This formula shows the complication of a direct computation. There is the difficulty

not only of writing out explicitly the operator in  the right-hand side into a

4More generally, the /cth coefficients are something like A*#"1/2 on the trace (i.e. rx = r2, x = v) [l,p.

208].
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polynomial of A but also of applying each term to a product of two functions.

Moreover the expression does not lead immediately to the formula of correct type,

i.e. coefficients on Af X 7 are a linear combination of coefficients on base M. Thus

our result implies some interesting cancellation. In the case of more general h(r) it

becomes even more hopeless since the relation between the determinant of the

exponential maps must involve r. This involvement of r will make the application of

A to the determinant even more complicated and it will be unlikely there is any

expression as the above one.

For the first application, if we set h(r) — r and dk = 0 in formula (3.19) this will

give us a recursive formula for Cy which is just the coefficient of the asymptotic

expansion of the trace of the heat kernel on S". The formula so obtained is no more

complicated than the corresponding formula obtained by Cahn and Wolf [2]. In

their formula they have two cases, when n is even or odd. We have a single formula

for all n. However their approach is more general and they apply it to the cases of

compact symmetric spaces of rank one.

For the second application, let us consider the special case when Af is flat. In this

case all the coefficients c, in the expansion for trace of the heat kernel of Af except c0

are zero. Then

-, = -l+,(f)(f +.)-(§+/- .)*»«V).
Here, as before (f )(f + 1) •••(§ + /- 1) will be repaced by 1 when / = 0.

Let us list below the first two nontrivial coefficients:

n(n - 1)    ,  .2      n   (  .,„,  ,
dx = —-i-g—'-h'(r)  - -h(r)h (r),

.. n(n - l)(5n2 + 17» - 66) 4
d2 - -360-h {r)

n(n2 - 36n + 4I)Ä(r)A/(r)2A#(r)
90

«(2« - 3)
h2(r)h'(r)h'"(r) - j\h3(r)h'v(r)15 *•/■•*•/"   v  ,       15

"(" ~ 9) ,.2i    \2,„,    ,2-gô-h\r) h (r) .

In general dk is a polynomial of h(r) and its derivatives with homogeneous

differential order 2k.
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