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^-EXTENSION OF THEp-ADIC GAMMA FUNCTION. II
BY

NEAL KOBLITZ'

Abstract. Taylor series and asymptotic expansions are developed for ¿/-extensions

of the p-a.dk psi (derivative of log-gamma) function " twisted" by roots of unity.

Connections with p-adic L-functions and ^-expansions of Eisenstein series are

discussed. The p-adic series are compared with the analogous classical expansions.

Introduction. We shall study g-extensions of the ^-function (derivative of log-

gamma) and its " twists" (by roots of unity, Dirichlet characters, etc.) in the complex

analytic, and especially the />adic analytic cases. Using expressions for these

functions as convolution transforms, we derive two types of expansions for them:

Taylor expansions near x — 0 (or x = 1), and Stirling series for x large. For the

usual type of ^-function (which is the limit of the ^-extension as q -> 1 in both the

classical and p-adie cases), the coefficients in the Taylor and Stirling series are

essentially the values of the Riemann zeta-function (or Dirichlet ¿-functions) at

positive integers (Taylor series) and at negative integers (Stirling series). For the

^-extensions, these coefficients involve Eisenstein series, as well as values of zeta- or

L-functions; in this context, the kth normalized Eisenstein series Gk, for variable k,

play the role of q-extensions of Ç(k).

In the complex analytic case this occurrence of Gk as Taylor coefficient, generaliz-

ing Ç(k), is related in a simple way to the appearance of ££(1 — k) as the constant

term in Gk(q). Namely, a weight-^: modular form/(z), q = e2l"z, satisfies f(-l/z) =

zkf(z), so its behavior as q = e27": -> 1" (i.e., as z -» /0+ ) is directly determined by

its behavior as q -* 0+ (i.e., asz-> ico). In the />-adic case, the connection between

the Taylor coefficient, which is a function of q near 1, and the ^-expansion of the

corresponding p-adie modular form, which is a function of q near 0, is more indirect.

The connection is by p-adie analytic continuation, a purely analytic procedure which

does not, so far as we know, admit any interpretation in terms of moduli of elliptic

curves.

The p-adie construction of the convolution transform requires us to twist the

/?-adic ip by a number z outside the unit disc around 1, e.g., z G fï, z ¥= 1, p\ d.

(The use of the letter z in this context should not be confused with its use in

q = e27"z.) Such a twist, sometimes called "regularization", is routinely needed in

order to make a bounded />-adic measure.
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112 NEAL KOBLITZ

In the complex analytic construction, one is not required to twist, and in fact,

classical discussions of psi and q-psi functions generally treat the untwisted func-

tions. However, the following classical examples illustrate that the twisted log-gamma

and ç-log-gamma functions have arisen naturally in the history of the subject.

Example 1. Let p > 2 be a prime, let S„ = {j = 1,2,... ,pn — 1 | (j/) — 1} be the

set of numbers less than pn which are squares modulo p (here (j) is the Legendre

symbol), and let NS„ — {j — l,2,...,pn — 1 | (-£.) = -1} be the set of nonsquares.

Problem. Does the ratio

(o.i) n j/ n j
j£NS„      jes„

approach a finite nonzero limit as n -» oo, and, if so, what is it?

Solution. Using the formula

(n — I)'«*
(0.2) T(x)= lim-^-»*2--,

«-oo x(x + 1) • • • (x + n - 1)

we see that n to the power 2jT/(-f)^ times (0.1) approaches the limit

(0.3) u r(j/p)/ n W/p)
yes, j£NS,

as n -» oo. The exponent 2(£)^ is zero if and only if p = 1 (mod4). If /> = -1

(mod 4) and p > 3, then this exponent is a negative integer equal to minus the class

number of Q(fZIp), according to a well-known formula of Dirichlet. Thus, in the

former case (0.1) approaches the limit (0.3), while in the latter case it diverges to

+ 00.

Here the logarithm of (0.3) is the value at 0 of the log-gamma function twisted by

the quadratic Dirichlet character x = (j),

p-\

(iogr)x(*)= 2 xO) logr((*+ /)//>)•
def y=0

The derivative of this function is typical of the twisted ^-functions whose ^-exten-

sions we shall be studying.

Example 2. More generally, for any nontrivial Dirichlet character x modulo d, the

value (log T)x(0) is essentially the derivative at 0 of the corresponding Dirichlet

L-series (see [23, p. 271]):

F'(0,X) = F,,xlog¿+(logr)x(0),

where BXx = VSjZlMji (*,.x = 0 if and only if X(-l) = I.)
Example 3. Among the simplest of the Rogers-Ramanujan identities are the

following power series identities:

00 00 n2

n(i-<,5"+,r'o-^+4r'= 2 f^
/q  .x n = 0 n = 0  \1 )n

n (i-^+2r'(i-^+3r'= 2 f-t-,
n=0 n=0   \Q)n
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where

(<7)n = (<7;<7)„=(l "<?)(! -42) ••■(!-?")
def

(more generally,

(*;,?)„= 0-*)0 -*<?)••• (1-Xi""1)).
def '

Both sides of (0.4) converge if q is a real or complex parameter with \q\< I. It can

also be shown that the ratio of the first product to the second in (0.4) is equal to the

continued fraction

1+ -q-2-•

q31+TTTT7

The identities (0.4) are equivalent to a statement about partitions (see [1, Chapter 7]

for a detailed discussion).

The logarithm of the ratio of the two products on the left in (0.4) is a twisted

version of the ¿7-gamma function

f(\s\ ^r..\ _   (<F g)oo  /-,        _^-*_     0 -g)0 "g   ) •••      /, xl-*(0-5)     W-(^L(1_i)    -(,-^)(,-,-)... (1-9)    •

Namely,

logn^o(i-.-ni-^r = ¿(z)logr;/z^
?s\5

The right-hand side is the value at 0 of the g-log-gamma function twisted by the

character (,), where one defines

(0.6) (logrJ»=   2xU) log I>((x+ /)/</),
def

7 = 0

for a character x modulo d. It is the derivatives of functions like (0.6) which we shall

be studying.

Although the classical and /?-adic cases (the first and second sections of the

present paper) are logically independent, there is a striking similarity between them.

In fact, they are formally the same in the following sense. If the root of unity z used

in the twist is replaced by z in the open unit disc about zero, then the same power

series (in Z[[z, q]]) occurs as Taylor coefficient classically and /?-adically (except for

"removal of the p-Eulet factor" in the /j-adic case). With z in this open disc the

measures in the convolution transform are given by essentially the same formula in

the classical and p-adic situations. Of course, the theory only has arithmetic or

modular meaning when z is a root of unity; hence, the relation between the complex

and />-adic functions is formal and indirect.
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1. The classical case.

1. Taylor series. Let <p(-x) be defined by convolution of a function g(u) with a

Stieltjes measure df(u) on R+ :

(lo <p(x) = rg(u+x)df(u).

We shall suppose in what follows that / and g are such that the integrals below

converge.

Expanding

(1.2) g{u + x)=2^-frixJ
y = 0        J "

(or, alternately, noting that <p(7)(0) = J™g(J)(u) df(u)), we have for x small:

(1.3) <?(*)=   2   jrfgU\u)df(u).
7 = 0 J ■    0

The »//-function, twisted »//-functions, ^-extension of the »//-function, and ^-exten-

sions of twisted »//-functions are special cases of (1.1) with rather simple choices of/

and g.

Examples. I. Let f(u) = u — [u] — { be the first Bernoulli polynomial (made

periodic with period 1), and let g(u) = -l/u. Start with the formula [23,p.261]

n a\ ,     r(*)      Í        M, fœf(u)du
(1.4) log-è-+= \x--   logx-x- /    **-£—.

Differentiating and replacing * by x + 1, we obtain

W1+,) = log(,+,)--J—+f/Wi|.
2(1 + ■*)     ■'i    (u + x)

Integrating by parts, we have

«It,)-**!+,)-5^ + ̂ + p #(»)

(1.5)
+ x

log(l +x) + f   %¥±.
J x -    U   t   X

To find the Taylor coefficients in the expansion of i//(l + x), we have »//(l) = -v, and

for;>l,

*/-'

i! y -V u'

(-1))j        ■   ,,yf(    du d[u]\

J ^    \'i-rW+1      uJ + ] I

(-ir'f^d[u]
+1
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But

J,-    ijJ^ ' _ ,   nJ

This gives the expansion

00

(1.6) lK] + x)---y+ 2(-inov-'.
7=2

Alternately, in the integral in (1.5) we could have expanded
00

g(u + x) = -i/(u + x)= 2 (-i)V-y«;
7=1

for | x | < 1 *£ u as in ( 1.2).

Our reason for belaboring this derivation of a well-known expansion (see, e.g.,

[23, p. 241]) is that it is the prototype for the examples that follow and for our

discussion of the p-adic case in §2.

II. Let p: Z -> C be a periodic function of period d such that ~2daZQp(a) = 0. The

key examples are: (1) p(j) — x(j)> a nontrivial Dirichlet character modulo d; and

(2) p(j) = zJ, for z ^ 1 a dth root of unity. Let g(u) = -l/u be the same as in

Example I, and set fp(u) = 2[a"l0p(a).

We define the twisted »//-function as follows:

(1.7) M-ijU')*^^).

Using the formula (0.2) for T(x), we easily see that

..oo dffu)

<>"8> «*> = -l7TT+

If, for example, p = x is a nontrivial Dirichlet character, so that, in particular,

p(0) = 0, then the integral really goes from 1" to oo, and for | x \ < 1 <awe have

oo „ Af (u\ oo

(1.9) *,(*)= 2 (-l)V-1/   ^Y= 2 (-l)V-'L(y,x),
7=1 'V        UJ 7=1

since

/    u-Jdfx(u)=  2 x(n)n-J = L(j,x).

In the example p(j) = zJ, we have df(u - 1) = z"1 df(u) for u > 1 (we use the

notation/ =fp, ^ = fy here), so that by (1.8),

(1.10) =IjH)v-ifáW

1   °°
= 7 2 (-l)V-L(y,z),

7=1
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where

L(j,z)=    2  -■
def „=]  nJ

Note that (1.8), combined with the rule dfz(u — 1) = z"1 dfz(u), gives the func-

tional relation

(1.11) z^(x + 1) - b(x) = l/x,

which generalizes the relation \¡/(x + I) — \p(x) — l/x for the usual »//-function.

Combining (1.11) with the above Taylor series for \pz(x + 1) gives

(1.12) fc(*) = -7+ ï(-iyxJLlL(j,z).
7=1

III. Let 0 <\q |< 1, and take f(u) = [u], g(u) = (log^yO - q")). The 4-

gamma function defined by (0.5) has the properties:

(l)Tq(x + 1) = ((1 - q*)/(\ - q))Tq(x),

(2) Tq(x) - T(x) as q - 1".

The logarithmic derivative of Ta(x) is, by (0.5),

00 x+j

(1.13) *,(*) = -log(l - i) + log<¡r 2 -3—J—.
y=0  1  - ff*  J

Hence,

00 *+7

*,(1 + *) = _log(l - q) + log «7 2   ,  q    x+i
(1.14) 7=1  1 - Í     ?

/•OO

= -log(l-?) + /    g(« + *)<//(«)•

Note that for q < 1 the integral always converges, whereas in the limit when

q -» 1" and g(«) becomes -1/w (Example I) one must modify f(u) to make the

integral converge.

Now define

so that (1 - q)kPk(q) G Z[?]. Since g(w) = (log<7)(gV(l - ?")), we have g(*_I)(K)

= (log q)kPk(qu), so that for fc » 2,

tá*-l)(l)      (loe o)*   /•«

(fc-1)!      (k-l)\<x-

this integral is equal to 2°°=xPk(qj) = 2™=xok_x(m)qm, where

def¿

It is common to set »/^(l) = -y and call y? the ^-Euler constant. Thus

yq = Mi - 9) - log ? 2 ■;-; •
7=i i - qJ
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Now for k > 4 an even integer, the weight-^ Eisenstein series

(116) Ek(z)=       2        ,      l     -&
m,n<EZ    (mz + n)

(m,n)*(0,0)

has the following expression in terms of q = e2n'z [22]:

(1.17) Ek(z) = 0^Gk(q),

where

1 °° B °°
(1.18) Gk(q)=-t(l-k)+   2»k„x(m)q" = -^+   2°k-Á™)qm,

m—\ m=1

in which Bk is the kth Bernoulli number:

k

(1-19) -T~=2Bk{,.
e~\      *=o     k-

The definition (1.18) makes sense for any k ¥= 0 (since f(l — k) and a/fe_,(w) =

2dm^*_1 make sense), but the relation to modular forms for SL(2,Z) only holds for

k = 4,6,8,....
Returning to »// , we thus have

+)(l+,) = -v, + J2îf^y7(log9),(G((,) + i|).

Using (1.19) with t replaced by x log q, we can rewrite this in the form

(.*»   ̂ H^^^l.i^iÄl«,),»
Comparing with the Taylor expansion (1.6) for the usual »//-function, we see that

(-loza)k
(1.21) )   _,(  G\(g)   corresponds to f(A:);

(A:      1).

in particular,

Hogf)*rr;^     f/~v(1-22) hm   \-31¿ Gt(g) = f(fc).

(Thus one might want to take (-log ^)íGí(^)/r(í) as a ^-extension of f(s).)

Remarks. 1. For even A s* 4, the relationship ( 1.22) follows from the fact that

Gk(0) = !?(1 - k) (see (1.18)). Namely, for q = e2"iz, we have

fdZalL-r (   \      (-2*»*)* „ ,   x      z* ,       1 „ /    1\

by the modular property of Ek. But as -1/z -> /oo along the positive imaginary axis

(i.e., as q -» 1"), this gives

y£*(|°o)=j     2     -7 *.«*)■
Z L n(EZ,n*0 n
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2.1 f one takes ( d 2/dx2 ) log of both sides of the relation T( x ) T( 1 — x ) = w/sin 7rx,

one obtains

(1.23) »/-'(.v) + i//(1 -x) = 772/sin2 TTx.

The right side has the partial fraction decomposition

(1-24) -^- = (2^/)2    e 2    2 = 2 —1—2,

sin2 77-x (! _ e2«i*)2       „ez (x + n)

while »//'(x) is equal to 2^=0l/(x + «)2.Thus, (1.23) expresses the fact that the sum

for 4>'(x) is "half" of the sum for tt2 csc2 trx.

The situation with the ^-extension »//'(x) is similar. For simplicity, we take one

more derivative, and we use (1.13) and (1.24) to write

^(x)=¿(log<?)22

(1.25)

J oo x + j

¿dog?)2 2 ,   '      2
ax j=o(l-qx+J)

,   °°      A 2viz(x+j)

= (2ttiz)2 2 4--
7 = 0 dX   (1  -e*«i**+»f

= ̂ 22 4- 2-!-1
j=odx nez(z(x+j) + n)

= -2    2    -!-jî
7^0,«ez(x+7 + «(-l/z))3

(1.26) *>'(\-x) = -2      2-L--"i-
7<o,«gz       (x + j + n(-l/z))

So »//' is "half" of the sum for ¡p'(x,— l/z) (whereto' denotes the derivative of the

Weierstrass ^-function); that is, subtracting (1.26) from (1.25) gives

£iogTq(x)Tq(i -x) =-2 2-~--j=^'(x,-|).
dx 7,„ez(x+y + n(-l/z))3 V        z)

Thus, the expansion (1.20) for \pq(x + 1) is closely related to the expansion

(127)        '('-7)",¿.+ ÍM-7)(*-.!í

k even

Namely, if one adds (1.20) plus (log q) (qx/(l — qx)) (which will give ¡l>q(x) on the

left) to (1.20), with x replaced by -x, then the odd terms cancel in the sum on the

right, and the derivative of the resulting expression is (up to a constant not

containing x) equal to (1.27).

IV. Let p and fp be as in Example II, and let g(u) = (log q)(q"/(l — q")) as in

Example III. We define the ¿¡-extension of the twisted »/--function (1.7) as follows:

ix"-2
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By (1.13),

(1.29) *,.„(*) = log? !  Py)qXl =  rg(u + x)dfp(u).
7=0 1 - 1X '       Jo-

If p = X is a nontrivial Dirichlet character, then for | x | < 1 < u,

*,J*)=   î^f^f^P^dUu),

where Pk is defined by (1.15). The integral here is equal to 1f=xp(j)Pk(qj) =

2™=iok_xJm)qm,with

ok-Kx(m)=2x(^)d^.
def  d\m     V   a  '

If p(j) — zj, where z ¥= 1 is a dth root of unity, then

1   r00
^q,z(x+l)=-j^g{u + x)dfz(u)

in which the integral is equal to

00

(1.30) S't-i»?"-   withoA_,i(m)=  2zm/ddk~l.
m=\ def  ^m

In analogy to (1.11), i// z satisfies the relationship zi//?z(x + 1) — i//? ,(*) =

— (log ?)(?V(1 ~~ ?x))' which combines with the above Taylor series for ipQ,z(x + 1)

to give

(1.31) ^(x) = log?T^--+   Í^'t^(^")4(«).

2. Stirling series. As before, let <p(x) be of the form /0°°g(w + x)df(u). Heuristi-

cally, we would like to consider x to be large, u to be small compared to x; then

expand g(u + x) with x (rather than u) as the center: g(u + x) = 2(g<-')(x)//!)H-';

and finally write

S   e(7)(x)  /-°°
(1.32) <p(x)~  2 St^/   "'#(")■

7 = 0        J ■        J0

Unfortunately, for positive/, the integrals f™uJdf(u) diverge in the examples I-IV

above, although heuristically we might take, for example, fxfuJd[u] — 2nJ = £(-/).

Because of the divergence, we have to proceed somewhat differently to obtain the

asymptotic series in the classical case; but we shall see that in the p-adic case there

will be no convergence problem, and the /?-adic version of (1.32) will be literally

correct.

We now make the additional assumption that/(«) is periodic of period d and

(d .

(1.33) //(«) du = 0.
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We write/as a Fourier series

/(«)=   2 ay-"/".

Let /(_l> denote the integral of/ normalized so that Jof{'l)(u) du — 0, and define

/<"■" inductively as (/(^+1))("1),/ = 2,3,.... Then

f(-J)(«) = (éri)J 2 V"""
O^nEZ

In particular,/' J)(0) is the value of the corresponding Dirichlet series:

(1.34) f'~J)^=(éi)J    2     ~r
O^neZ

Examples revisited. I. If f(u) = «-[«] — { - Bx(u — [«]), then /' J)(u) =

(l/(j + l)\)BJ+x(u — [«]) are the successive Bernoulli polynomials, and

(1.35) /W)(°)=(7TT)T^'-7!^)-

(Alternately, we have/(«) = - ^lU2"'"", and so by (1.34):

/W)(0) = -7tV  2   -¿z^jiW

by the functional equation for Ç(s).)

Differentiating ( 1.4) and successively integrating by parts, we have

»//(x) = logx- --; + f
1 /■»    /(«)

-du
o   (M + x)2

i    /(_,)(o) , „ r /M>(") J
= logx - 2" - ^^ + 2/    ;      V   'du

LX XA J0      (m + x)

¿x X X

x^+l ^o   (u + x)J+2

Making obvious estimates for the integral and using (1.35), we see that

(1.36) logx+lT^^TT
7 = 0 (-Xf

is an asymptotic series for »//(x).

II. Let p be as before, but now modify fp by setting fp(u) = Bx p + 2["l0p(a),

where Bx   — (\/d)1dalx0 ap(a); in that way we have (1.33). As in Example I, we first
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rewrite fg(u + x)df(u) as jg'(u + x)f(u)du and then continue integrating by

parts/ more times:

œdfU)        Bu. ,00      /.(«)

;0- « -t- x       x      y0   (u + x)2
J«

- — +-j—+"•+-t^-w+1)!J-7fTidu-
x x2 xJ+] Jo   (u + x)J

We find, as in Example I, that »// (x) has asymptotic seriespv

0-37) *P(*)~! 7^-
7=0 (-x)J

III. Let/(w) = u — [u] — j be as in Example I, and let

q"
g(u) = \Q$qj—z,

where q is a parameter, I q I < 1. By ( 1.13) we have
/.OO

*,(*) =-log(l ~q)+       g(u + x)d[u]

JfOO /.OO
g(w + x)df(u) + \    g(u + x)du

0" '0

,00

= -log(l -q) + log(l -qx)-       g(u + x)df(u)
Jo-

= log -T^-+ 7 S(x)+      g'(u + x)f(u)du.
i      q       L J0

Proceeding just as in Example I, we obtain

(1.38) ^(x)~log-î-^+ 2 ^rP-8U)(x),
q    J=o  J■

where

g<JKx) = (logq)J+'(tf()Jj^^^ (logq)J+lPJ+x(qx).

This is D. Moak's [20] asymptotic series for \pq. (Note that our use of the notation 7>

is slightly different from Moak's.)

IV. Let f(u) =fp(u) be as in Example II, and let g(u) = (logq)(qu/(l - q")).

Following the procedure in Example III, we find the asymptotic series,

(1.39) *,»~! ^¡7^-g0)(x).
7 = 0 J '

Note that in Examples III and IV, as q -» 1   we have

so we obtain the asymptotic series in Examples I and II, as expected.
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2. The />adic case. Let Qp denote the field of /j-adic numbers, Zp denote the ring

of /7-adic integers, Z* = Zp — pZp, a + (pN) = {x G Z  | x = a mod pN], and C

denote the completion of the algebraic closure of Qp. The />adic absolute value | |

on Cp is normalized so that | /? \p = 1//?.

The compact-open subsets of Zp are finite disjoint unions of sets of the form

a + (pN). A C -valued measure ¡i on Zp is a bounded, finitely additive map from

compact-open subsets to Cp. The integral of a continuous function g: Z -» C with

respect to ¡u, defined as the usual limit of Riemann sums, always exists. These facts

are easy to prove; for details, see, for example, [12, Chapter 2].

Let z G Cp be outside the open unit disc about I: \z — l\p> I. Define

»z(a + {P»)) = zy(l-z»N),

where a is the least nonnegative integer representative: 0 < a < pN. Then it is easy to

prove [14, Chapter 2] that:

(1) nz extends to a measure on Z , with | ¡iz(U) |  *£ 1 for all compact-open U.

(2) If z is a root of unity, p(j) = zj (see Examples II and IV in §1), and

L(s, z) = L(s, p) = 2"=i z"/n" (continued analytically onto the complex s-plane),

then the number L(-k, z) G Q(z) is given by the/>adic formula

(2.1) L(-k>z) = [xkdfiz(x).

(3) If w: Z* -# l'/</''l) is the Teichmüller character (considered to be either

C-valued or C -valued; we suppose we have fixed imbeddings of the algebraic

numbers in both C and C^), (x) = x/w(x) for x G Z* and

L*(s,œk,z)=      2     «*(«)3.
def »*7,p}n n

then the />adic function

(2-2) L,(i,«>,z)= / <x)-^-1(x)^z(x),
def Jl*

| z — 1 |p > 1, 5 G Z , when z is a root of unity interpolates the algebraic values

L*(-k,uJ'-k~y,z)= f xk^~k-\x)dnz(x).
■>z;

(4) If a function tp: C^ -* Cp is defined by <p(x) = /z g(w + x) dfiz(u) (where g:

C^ -» Cp is continuous; in examples, <p and g might only be defined on a subset of

Cp ), then <p satisfies

(2-3) z<p(x+ l)-(p(x) = -g(x).

(5) If <p*(x) is defined by <p*(x) = fz.g(u + x)dnz(u), then

(2.4) zp<p*(x + p) - <p*(x) = - 2 z"g(x + a).
a=\
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A basic example of the construction of tp and tp* occurs when g(u) = -l/u. For

any z G Cp with | z — 1 |   3= 1, we define (see [13 or 14])

(2.5) ^/x^-ff^—dfiM,       x^Qp-Zp,

(2.6) rp,z(x) = -f —|—^(n),       xGC.-Z;.

By (2.3), »//'    satisfies the relationship

(2.7) z»//,,z(x+l)->//,,z(x)= l/x

(compare with (1.11)).  It is also easy to check that \¡/p , satisfies the "Gauss

multiplication formula"

i    rn — 1 / i    j   \
1    t.    u . x + h

m(2-8) M*)=¿ 2***,.,
h = 0

for any positive integer m, and the "Euler parity relation"

(2-9) >^p,(x) = z-|^,z-,(l-x).

The function »//* (x) relates to \¡>p z(x) as follows ("removing the/?-Euler factor"):

^,(X)=%,(X)-^P,r(-

Remark. Compare with Example II of §1 when p(z) = zJ. In the classical case the

measure dfz(u) gives the integer u = a the point mass za. In the />adic case, if we

take | z | < 1, then as N -> oo, the measure of the interval a + (pN) around a has

measure /x,(a + (pN)) = z"/(l — zp ), which approaches z"; that is, formally the

measure fiz(u) also gives u = a point mass z". Thus, for | z \p < 1 the />-adic

construction is formally the same as the classical one: i//z(x) and »// ,(x) are given by

the same series -2^=0za/(x + a). However, the functions \pz and »// are of

arithmetic interest (relate to Dirichlet L-series or modular forms, see below) only

when z is a root of unity. In other words, we must extend analytically beyond the

disc where »/. and \pp , are formally the same in order to reach values of z for which

the functions are of number-theoretic interest. Note that \ppz and »//, satisfy the same

relations (2.7) and (2.8).

Now let q G Cp he a parameter with | q — 1 \p < 1. We want the function q" to

make sense for certain « E C . If « e Z , then q" converges for any | q — 1 |   < 1.

More generally, q" can be defined as e\p(u log^ q) for any u G Cp with \u\   < r ,

where r = | logp q \~pip~l/ip~ "■ We shall usually assume that \q — \\p< p~x/(p~ '\ in

which case

j
r„ =-TT,—rr > 1 •
*      \q- lLp'/^-"i/'

Let

t \    i °" d i     i -q"g(») = log^T^^ = -^lo8,T^7
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Note that Ihr,     , g(u) = -l/u. Also define

q" qpu

g*(u) =g(u) - g(pu) = logpqi
V\\-..qu      l-qpur

Theorem 1. Let \ z - l\  > l,\q — 1 \p < 1. The functions

g(u + x)dß,(u)
def JZn

u + x

ft \ W      I      A.  )   UfA 7\ U I

U + X

-dpz(u),        \x\p<rq,x&Z*p;

def-'z;"'

<PP.q.Âx) =  f g(u + x) dpz(u)
def Jz

.       „U+X

= l°g^/   1-^T^Mz(")<        \x\p<rq,x£Z \
JZp 1 - q

"Pp.q.Âx)= f g(u + x) dnz(u)
def •'z*

. „u + x

= ^gpq      ---¿+-xdpz(u),        \x\   <r   x&Z*;
Jz; 1 - q

i**q.Âx) = f g*(u + x)dtxz(u)
def •'z*

r  I    a(u+x) ap(u+x)     \

= \ogpqj^-fZ^x- xq_qpiu+x)y»z(u),    \x\p<rq,x$Z*p,

satisfy the following relations:"      J b

(2.10) z^qJx +D- *,„» = -log, q^—: = fx log, -^ ;

1   "1"' / x + h \
(2.11) t,Âx)^~  Iz^A^ir)'    ^rm= 1,2,3,...;

h = 0 v '

(2-12) U^)=iV!,;-,(1-Jt);

log  a
(2-13) »^,,-i.z(x) = .*,,«¿(x) +^37;

(2-14) 4>P*,q,(x) = %.q,(x) - \%.q>Ax/p)\

(2.15) z'^Jx+p) - ^V.(x) = -2 z" log, g    *'*"+„ ;
a=l l •      ¥

(2-16) ^.u*) = *;*..(*) - -*/.«',*>(*)•

Proof.  (2.10)  is an  immediate consequence of (2.3).  To prove  the "Gauss

multiplication formula" (2.11), we write the right side as

1    "'-1 P   _1        „m(j + {x + h)/m) ,mj

lim  ¿   2 zMog,*   2   71-
¿V-oo m    ~0          °p^ j?0   1 - qmU+(x+k)/m)   j _ ^

=   lim  log„o2 -;—
1   -q-j™™   J   _zmp-
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If we write mj + h = pNk + I, k = 0,1.m - 1, /= 0,l,...,pN - 1; and if we

use the fact that qp k+l -» q1 as N -» oo, we find that the last limit is equal to

/>""! /+* «-I       z/."/t 9*-) l+x zt

lim  log  q  2-r-^' 2  -;=  1™  log,?   2-JT7-v
rV-oo      '     /=0   l-?'+*    Ml-Z*i       w-oo /=0   l-9'+*i-z*

= l°êp1      "j-Tïï+I^m'").
'z   1 ~ Í

as desired. The proofs of (2.12)-(2.16) are equally straightforward.    Q.E.D.

Remark. The "multiplication formula" (2.11) and the parity relation (2.12) can be

combined into the following more general identity:

W*) = r^2^,?».,».(~),
where the summation is over min(w,0) < h < max(m,0) and m is any positive or

negative integer.

Returning to the general situation, <p(x) = fz g(u + x)d¡x(u), we note that the

following two expansions are possible:

I 5      \" )for x small,   g(u + x) — 2 TT£0)(M)

(2.17) 7=0
OO j

-    <p(x)= 2 tt/ giJ)(u)dp(u)
7 = 0 J ■  %

°°    UJ

forxlarge,    g(« + x) = 2 —gU)(x)

(2.18) J=°J'

7 = 0        >!

The second of these expansions holds whenever the infinite sum converges; since the

integral is bounded, we have convergence if \gu)(x)/j\\ -» 0. The first expansion

holds for | x | <p~x/(p~X) provided that the gU)(u) are defined, continuous, and

bounded (uniformly in/) on the support of u. We can apply the second expansion

for n = ¡iz and u = uz |z. and for g(u) « -1/M and g(«) = (log, q)(qu/(l - qu)).

We can apply the first expansion for \i — ¡iz |z. and for g(u) = -1/w, g(w) =

(logp q)(q"/(I -q")) and

*t   \     i i     1" °PU     \g*(u) = ^pq[Ytq-u-TZrqTu)-

Theorem 2. Let ^PtZ(x), i/£z(x),.//,,?,7(x), ^p¡q.z(x) and xP*qz(x) be the functions

defined in (2.5)-(2.6) awd iw Theorem 1. 7« (2) èe/ow we suppose that \q — 1 \p <

/j-i/(p-D; am^„ (4) we suppose that \ q - 1 L, < /T2/«/--!) (/.^ r? >/,i/(^i))i jy,^

( 1 ) /«="" I -^ U < 1.
00

>&*(*)= 2(-i)V-v^"'^^)

(compare with (1.12));
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(2)for\x\p<p-^(p-]),

*;,,,(*) = 2 xJ-]7^Lf PÂq")dU«),
y=l (7 -  U' •'ZJ

oc (log  o)"'

*;4»= 2 x^>j-^-/z(7>/(^)^z(M),
7=1 W V

w/iere P was defined in ( 1.15) ßrtd

¿?(«) =/,(<?)-/^WM^
7-1

</?/       \ 1 - 9       1 - V

(compare with (1.31));

(3)for\x\p>\,

*,,(*>= l^#,  ^)=1^^
7=0 (-*y 7=0 (-x)

7+1

(compare with (1.37)). Here in the first sum L(-j, z) = fz uJ dfifu), which coincides
def      '

with the classical value L(-j, z) when z is a root of unity;

(4)forpl/(p-i)<\x\p<rq,

%.q,(x)=   2 t±^(\og,q)J+xPJ+i(q'),

7=0 7 ■

7=0

»   L_(-j,«>+\*)

7!
(tog^r'^.íí-),

(compare with (1.39)).

*ñA*)=>   2  Lpi~J^r,Z)(^PqY+lPAÁqx)
7=0 J ■

The proof of Theorem 2 follows immediately from (2.17), (2.18), (2.1), (2.2) and

the following observations concerning convergence: in (1), (3) and (4), L (j, w1 ~f z),

L(-j, z), Lp(-j, uJ + \ z) are bounded with respect to/; in (2), (log^y'T^^") and

(logp q)JP*(qu) are bounded over u G Z* uniformly with respect to/; and in (4), we

have

(log,?)7    Pj+Aqx)
log,? ^'+l     ,14/+i

l-q>

and the same relation for | (log^ q)J+ XP*+ x(qx) \p.

Remark. The integrals a, = a- in the coefficients of the Taylor series for

4>ptz(x) (part (2) of Theorem 2) are related to /7-adic Eisenstein series, but more

indirectly than in the classical case. To see this connection, first suppose that
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\z\p< 1. In that case

**p m > 1, /?|/m

If we also suppose that | q \  < 1, then we have

n>\, p\n

and

2   25*(if!■)**■.=«    2   ?m 2 ^"12</'-
m~s*\,p\m m**\,p\m        dd' — m

Now set z equal to a nontrivial 7)th root of unity, and define/on Z/DZ X Z/DZ

hy f(u, v) = zv (/does not depend on w). Then

«;,,z+(-0X,,-= 2       ?"     2     dJ-Íf(d,d') + (-l)Jf(-d,-d'))
m^s\,p\m        dd' — m

is the series Katz denotes 2<t>*_,0/ (see (6.4.1) of [8]; note that the definitions and

results generalize trivially to Z^zj-valued functions/). It is ap-adic modular form

for the congruence-subgroup T(D) (see [8]).

In other words, we can consider the power series

a.=       2     qm   2   ^-1zd'GZ[z][[<7]]cZ[[z^]]

m^\,p\m        dd' = m

as a p-âdic analytic function in the two variables z, q for | z | < 1, | q \p < 1. When

zD = 1 we essentially have a />adic Eisenstein series. On the other hand, for any

fixed z with | z |  < 1, the same series Oj has a unique analytic continuation

a,=      2     P*(qm)zm

mí* I, /?|m

to the region {q G C_| | <? | < 1, g" # 1 for all rc, />)«}. This />-adic analytic

function is given on the region 0 <\ q — I \p < p~i/(p^i) by the integral

fz,P*(qu)dpz(u). Finally, for any fixed q with 0 <| q - 1 |, <^"1/</,_1), this in-

tegral gives a unique analytic continuation (in z) to the region \z— 11_> 1. In

particular, for z a Dth root of unity we obtain essentially the/th Taylor expansion

coefficient of the twisted psi-function i//,**^. This is a /j-adic analogy to the

occurrence discussed in §1 of classical Eisenstein series in the expansion of \f/(x + 1)

and ty„z(x + I).

Finally, we discuss the relationship between \pp and the ^-extensions defined in

[15] for J. Diamond's/?-adic log-gamma function [5], We temporarily use »// to denote

the functions defined in [15] by means of limits of the form

i- 1        v       /     ,   -\
hm   —Z      Z     g\x+J)-

JV_~,     AnN
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In what follows 2' means that indices divisible by p are omitted. Thus for zd = 1

(with z ¥= 1, p \ d) and for | x \p < rq, x £ Zp,

1 1 — qx+J

Tpnaz(X)=      hm     -K 2        ^lOgp-i-T~>
^•"•A    V  Af^oo   dPN 0^dpN *      I"?

#,,,*(*)=   lim  T>7     2'   ^log,^-=^
'"*' def  A^oo   ¿B     „_. v i        ?

0^j<dp"

= $p,q,ÂX) -  -%,q-,Ax/P)-

Theorem 3. (1) %^z(x) = %^z(x)for \x\p<rq,x£ Zp.

(2) ft„(x) = t*q,z(x)for \x\p<rq,x(ï Z*p.

The proof is similar to the proof that G z(x) = G z(x) in [14, p. 51]. Namely, one

first shows that (2.11) also holds for »//. Then we can use (2.11) with m — p" for both

»// and ip to see that it suffices to prove that

x + h\ (x + h\
I%.q'-,z'"\—jr-\ -^

i.e., to prove that \pp   z(x) = xpp   z(x) for | x |   large. But this is true because both

sides have the same Stirling series. The proof that »//* = »//* is similar.
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