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TRACE-LIKE FUNCTIONS ON RINGS

WITH NO NILPOTENT ELEMENTS

BY

M. COHEN AND SUSAN MONTGOMERY

Abstract. Let Rbea ring with no nilpotent elements, with extended center C, and

let E be the set of idempotents in C. Our first main result is that for any finite group

G acting as automorphisms of R, there exist a finite set L Ç E and an /,6-bimodule

homomorphism t: R -» (RL)G such that t(R) is an essential ideal of (RE)G. This

theorem is applied to show the following: if R is a Noetherian, affine P/-algebra

(with no nilpotent elements) over the commutative Noetherian ring A, and G is a

finite group of A -automorphisms of R such that RG is Noetherian, then RG is affine

over ,4.

0. Introduction and definitions. Let R be a semiprime ring, G a finite group of

order | G | acting as automorphisms on R, and RG = {r G R \ rs = r, all g e G), the

fixed ring of G on 7?. The trace of G on R is the function tG: R ^ RG given by

ic(x) = 2g(=cxg. It is clearly an 7x"c-bimodule homomorphism, and it is known that

if either R has no aditive | G | -torsion [3] or G is "A-outer" on 7? [15], then

0 7e tG(R) is an essential ideal of RG. That is, tG behaves almost like a projection.

The existence of such a nontrivial trace function has had a number of applications in

studying the relationship between R and RG (see, for example, [5, 8, 15, 17]).

Is is this rather nice situation which we would like to imitate for rings with no

nilpotent elements. The trace function itself will not work, since it is possible that

tc(R) = 0, even when R is a division ring [16], When R is a domain, an appropriate

substitute exists for tG, namely, a "partial trace function". For a subset A Ç G, let

t\(x) — 2„eA xg. If rA(7?) Ç RG, tA is called a partial trace function; if also tA(R) s 0,

tA is non trivial. It was proved in [16] that for any finite group G acting on a domain

7?, there exists a nontrivial partial trace function tA for G on R. This had been

proved earlier for division rings in [8]. Clearly tA is an 7\G-bimodule homomorphism,

and tA(R) is essential in RG as RG is also a domain. Unfortunately, partial trace

functions will not work for any ring with no nilpotent elements. If G is solvable, or

acts as inner automorphisms on R, then nontrivial partial trace functions exist [7];

however, for any nonsolvable group G, a ring R with no nilpotent elements can be

constructed such that all partial trace functions for G on R are trivial [9]. In
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132 M. COHEN AND SUSAN MONTGOMERY

addition, even when a non trivial partial trace function exists, tA(R) may be only a

small part of RG, and not essential. Another trace-like function was constructed in

[12]; it also has the disadvantage that its image can be very small, and in addition,

the image of R is in Q0(R)G, where Q0(R) is the Martindale quotient ring of 7?, and

not in RG itself.

In this paper, we show that trace-like functions exist which have essential images,

in a ring very close to RG. Our main result is the following:

Theorem 2.8. Let R be a ring with no nilpotent elements, let C be its extended

center, and let E be the set of idempotents in C. Let G be any finite group acting as

automorphisms on R. Then there exist a finite set L Q E and an Rc-bimodule

homomorphism r. 7? -» (RL)C sch that t(R) is essential in (RE)G.

Moreover, there exists an essential ideal K of R such that t(K) C Rg and is

essential in RG.

The construction of t in this theorem specializes, in the case of a domain, to the

construction of the partial trace function in [16].

In §3 of the paper, we give an application of Theorem 2.8 to determining when

certain fixed rings are affine (a ring 7Î is affine over a central subring A if R is

finitely-generated as an ,4-algebra); this extends E. Noether's theorem on finite

groups acting on commutative rings. Some results on this problem had already been

obtained by L. W. Small and the second author [17], Their first result is that if R is

Noetherian and affine over a commutative Noetherian ring A, and | G |_1 G 7?, then

RG is affine. Note that in this situation, the mapping p(x) =\G\~fG(x) is a

projection of 7? onto RG. Their second result, with no assumptions on | G \ , is the

following: if R is a Noetherian domain satisfying a polynomial identity (PI), which is

affine over a commutative Noetherian ring A, and G is a finite group of A -automor-

phisms of R such that RG is Noetherian, then RG is affine over A. The proof of this

theorem used the partial trace function t described above. It is not surprising that

the proofs of these theorems use trace functions; classically, the existence of a

projection from 7? to RG played an important role in Hilbert's theorem that for

G = SL(m) acting on R = k[xx,.. .,xn], k of characteristic 0, RG is affine over k

[18].
The second main theorem in the present paper extends the second result of

Montgomery and Small to the case of semiprime TV rings.

Theorem 3.3. Let R be a semiprime Noetherian PI ring which is an affine algebra

over a commutative Noetherian ring A. Let G be a finite group of A-automorphisms of

R such that RG is Noetherian. Then RG is also affine over A, in any of the following

cases:

( 1) R has no \ G \ -torsion,

(2) G is X-outer on R,

(3) R has no nilpotent elements.
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We note that the analog of Noether's theorem is not true for noncommutative

rings in general; an example is given in [17] of a prime, Noetherian, affine,

P7-algebra R and a group G of order/?, a prime, such that RG is not affine. Another

example is given there to show that even in characteristic 0, the hypothesis that 7? is

Noetherian cannot be omitted. However, the hypothesis that RG is Noetherian may

be superfluous (see comments at the end of §3 below).

We now review the definitions used in this paper. For any semiprime ring 7?, let

<3' — <3(R) denote the filter of essential two-sided ideals of 7?, and let Q0(R)

= hm¡e9HomR(RI, RR), the Martindale quotient ring of R. Q0(R) is also semi-

prime, and is prime when R is prime. We may consider R ç ôo(^) via r -> fr, right

multiplication by r. By construction, for any 0 ^ x G R, there exists 7 G 'tt(R) such

that 0 ¥" Ix C 7?. The extended center C = C(R) of R is the center of Q0(R) (it is

also the center of the maximal ring of quotients), Q0(R) was defined for prime rings

in [14] and for more general rings in [1].

Let E = E(R) be the set of idempotents in C, and let N = N(R) = {x G Q0(R) |

xR = Rx}, the set of 7?-normalizing elements of ô0(^)- The normal closure RN of R

is the subring of Q0(R) generated by R and N(R); it was defined in [16] and studied

further in [6], When 7? has no nilpotent elements, RN also has no nilpotent elements

[16]. The set N has the structure of an inverse semigroup; that is, for each x G N

there is a unique "inverse" x' G N and e = ex G E such that xx' — e — x'x, ex = x,

and ex' — x' [6],

For any g G Aut(Ä), g has a unique extension to Q0(R). Let $g = {x G Q0(R) \

rx — xrs, ail r G R); we say that g is X-inner if </> ̂= 0. For any subgroup

G C Aut(Ä), Giim is the set of A-inner automorphisms in G. If Girm = (1), we say

that G is X-outer. It should be noted that Girm is not necessarily a subgroup of G,

though it is closed under conjugation and under inverses. These definitions, gener-

alizing the usual notion of inner automorphism, are due to Kharchenko [11], who

also proves in [12] that for any g G Aut(7?) there exists xg G <¡>g such that <j> — Cxg,

a cyclic C-module. Now, clearly <¡>g ÇZ N, so we may work in RN rather than Q0(R).

In particular, xg has an inverse x'g with xgx'g = eg G E by the above. We say that eg

is the idempotent belonging to g. For any h E G, it is straightforward to check that

(«,)* = **-'**•

In the special case when R is a semiprime Goldie ring with classical quotient ring

0(7?), the extended center C(R) is just the center of 0(7?), and g G Aut(7?) is

A'-inner if and only if, when extended to Q(R), g is genuinely inner on some nonzero

ideal of Q(R).

1. A-inner automorphisms of semiprime rings. Let 7? be a semiprime ring. In this

section we prove a number of technical lemmas which will be required in §2. These

results concern certain subgroups of Girm which arise from central idempotents, so

may be of independent interest. We will not require that 7? have no nilpotent

elements until the end of this section.

For an idempotent e G E(R), we summarize some properties of e with respect to

Q0, N, C, and E, as defined in the introduction. Let Re = {re\ r G 7?}; Re is a

subring of RE. As the arguments are standard, we only outline the proofs.
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Lemma 1.1. Let e G E(R). Then

(I) Q0(Re) = Q0(R)e,

(2)N(Re)D N(R)e,

(3)C(Re) = C(R)e,

(4)E(Re) = E(R)e,

(5) if A is an R-R submodule and a subring of QQ(R), then C(A) Ç C(R) and

E(A)QE(R).

Proof. (1) Let 0 ¥= x G Q0(Re); then x: 7 -* Re, where 7 is an essential ideal of

Re and x is a left Äe-module homomorphism. Let J he an essential ideal of 7? such

that Je C R. Then the mapping x: JI © AnnR(JI) -* R defined by (a, b)x = ax is

a nonzero element of <20(7\) satisfying xe = x. Thus Q0(Re) Ç Q0(R)e. For the

reverse inclusion, choose 0 ¥= x G Q0(R)e. Then Kx Q R, for K an essential ideal of

R, and ex = xe = x. But then Ke is essential in Re, and Tiex = Kxe C Re. Thus x

restricted to Ke is an element of Q0(Re). (2), (3), and (4) are proved similarly.

(5) Let c G C(A); that is, c: I -> A where 7 is an essential ideal of A and ca = ac,

for all a G /I. Let B = {t G 7 D 7? | ic G A D R). Then B is an essential ideal of

A n 7?, and Tic ̂  0. Let 7' = (A n T?)T7(^ n Tí) and define c: T' © AnnR(T) -» 7?

by (a, ¿>)c = ac. It is not difficult to show that c is an R-R bimodule homomor-

phism. Thus c G C(R), and so C(A) Ç C(R).

We note here another easy fact about Q0(R): if A is any essential ideal of R and

g G Aut R fixes yl, then g fixes Q0( R).

Now consider a finite group G acting on R. We review some notation from [6].

For each w G Ginn, we associate a subgroup T7, as follows: Hw is a subset of C7inn

maximal with respect to the property that ewUheHjeh ¥= 0. It is easy to see that Hw

must be a subgroup; we note also that if w ¥= I, HK^ 1, as 77, D (w). Let

L = n»eH/* and let Sw={g£G |/* =./„}, the stabilizer of/, in C?. Note that by

the maximality of Hw,egfw¥=0 if and only if g G 77,. Finally, let X = {1, g2,... ,gk)

be a set of right coset representatives of Sw in G, and let Aw be a G-stable essential

ideal of 7? such that Awfw Q R.

Usually we shall fix some w G Ginn, and for simplicity omit the subscript w in the

above.

Lemma 1.2. For w G Ginn, let H,f, S, and A be as above.

(1) In Rf, SiTm — H; moreover, the elements of H become genuinely inner on RNf.

(2) Iffw = 1 for some w G C7inn, then every element of Ginn becomes inner on RNf;

in particular, Gmn is a normal subgroup of G.

Proof. Clearly (2) follows from (1), as S = G. Thus it suffices to show (1). Choose

h G 5inn; that is, h G S is A-inner on 7?/. Now Af is an 5-invariant ideal of R,

essential in Rf, and h is A'-inner on Af. Since being A-inner on an ideal of R implies

A-inner on R [7, Lemma 1.4], h is A-inner on R. Thus h G Ginn and certainly

ehf¥"0; this implies h G 77. Conversely, if h G H, then ehf = f; as xhx'h = eh,

(xhf)(x'hf) = f and xhf G RNf. Thus each element of T7 becomes genuinely inner

on RNf.
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Lemma 1.3. For w, f, S, and H as above, the following are equivalent, for any

g EG:
(\)f = P(thatis,gES),

(2)ffg*0,
(3) g G NG(H), the normalizer of H in G,

(4) If = (If)g, for any g-stable ideal I such that If ¥= 0.

Proof. We will show (2) => (3) =» (1) '=» (4) =» (2). First observe that since <?g =

eg-,hg, we have fg = ïïheHeg->hg. Thus if ff* * 0, then feg-,hg f 0 for all h G 77,
which (by the maximality of H) implies g~xhg G 77, all h G 77. Thus (2) =» (3). Also

(3) => (1), again using e\ = e -\h and the definition of/. (1) => (4) follows since 7 is

g-stable. Finally, (4) =* (2) since if If = (If)g, there is some a G 7, 0 ¥= afg G If, and

so afsf = afs ¥= 0, showing (2).

We now begin to construct our trace-like function. Recall that X = {I, g2,.. .,gk}

is a set of right coset representatives for S in G. Write E — E( R ) for simplicity. For

yfE(REf)5 = (RE)sf, define tx(yf) = 2gex(yf)s. We let e = tx(f) = lgéxfs-

Lemma 1.4. Let X, E,f, tx, and e be as above. Then

(1) the set (/, fgl,... ,/g*} consists of orthogonal idempotents,

(2) 0 =£ e G EG, and fge = fg for each g G A, consequently (RE)e is a G-stable

ideal of RE,

(3) tx: (REf)   — (RE) e is an (RE) -bimodule isomorphism.

Proof. (1) Say that/*'/gj ^ 0, for some i,j. Then ffg>g-' ̂  0, so by Lemma 1.3,

gjg~] G S. But then gy and g, are in the same coset, giving g, = g..

(2) Since e = 2g6A-/8 and the {/g | g G A"} are orthogonal, efg=fg, all g G A.

The fact that e G EG will follow from the proof of (3).

(3) Since G permutes the cosets of S, for each g G G we have Sg,g = Sgj. Since

yf G (REf)s, it follows that (yf)gig = (yf)gj. But then

tx(yf)*= 2 (yf)g'g= 2 (yf)gj = tx(yfh
g/ex gj(EX

thus tx(yf) G (RE)G. Also, r^v-/) G (RE)Ge since fge = fg, all g G A, and tx is

injective by the orthogonality of the {/g'}. Finally, if ze G (RE)Ge, then ze =

zetx(f) = tx(zef) = tx(zf), hence r^is surjective.

To each v G Ginn, we may associate various Hv. However, since G is finite there

exists w G Ginn with an 77, such that | 77, | > \ Hv \ , for all v G Ginn. We call such a w

a maximal element of Ginn. Let w be a maximal element and associate to it an 77,. of

maximal order. We show that in this case, certain conjugates of w give rise to the

same e as does w.

Lemma 1.5. Let w be a maximal element of Girm, and let H, f, S, X, and e be as

before. Choose g G A. Then v = g~xwg G Ginn with an Hv = g~lHg, fD = fg, Sv =

g-]Sg,andt4fg) = e.

Proof. Let v = g~lwg. Then 0 ^fg = Hh^Heg-ihg, hence 77,, D g~]Hg. However,

by the maximality of the order of HW,HV = g~lHg. Thus/, = fg, and it is easy to see
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that S0 = g'lSg and Xv = g"'Ag. Finally,

^U) =   2 (/*)*"**=(  2 f*Y = eg = e.
xex Kxex     '

We now specialize to the situation when R has no nilpotent elements. We require

here some results of Kharchenko. First of all, he proves in [11] that for any finite

group G acting on a ring R with no nilpotent elements, T?c ̂  (0). Secondly, in [13]

he studies the situation for G acting on a semiprime ring R such that the "algebra of

the group" B = 2geG</>g is semiprime. This is certainly true in our situation, as

B Ç RN, which has no nilpotent elements. The specific results we use are [13,

Theorem 4, Theorem 7, and Lemma 10]:

Proposition 1.6 (Kharchenko). Let R be a ring with no nilpotent elements and G

be a finite group acting as automorphisms on R. Then

(a) the centralizer of RG in Q0(R) is B,

(h) Q0(R)G = Q0(RG),

(c) if I G '»(R0), then RI contains some K <E<5(R).

Corollary 1.7. Let R have no nilpotent elements, and G be a finite group acting on

R. Then E(RG) = E(R)G.

Proof. Choose e G E(RG). Then by Proposition 1.6(b), e G Q0(R)G. Moreover,

since e G E(RG), it centralizes RG. Thus e G Ti by part (a) above. Hence e G RN,

which has no nilpotent elements. Since all idempotents in such rings are central,

e G C(R); thus e G E(R), and also e G E(R)G as it is fixed by G. Conversely, if

e G E(R)G, then by part (b) above, e G Q0(RG). As e centralizes R, we certainly

have e G C(RG), and so e G E(RG).

The corollary is certainly false if R has nilpotent elements, even if | G |~' G T?, as

can be seen by considering R — M2(Q) and G — (g), where g is conjugation by

Í1       °).lo    -1/

When R has no nilpotent elements, then for any x G 7? we have {vGT\|yx = 0}

= [y G R | xv = 0}. We denote this set by AnnÄ(x).

Lemma 1.8. Let R have no nilpotent elements, and let I ¥= 0 be a G-stable right (left)

ideal of R. Then AnnR(IG) = AnnR(I).

Proof. Let 7 ^ 0 be a G-stable right ideal of R. Then by [11, Theorem 2],

Ie ¥= (0). Let W = AnnR(IG), a G-stable ideal of 7?. If IW # 0, then (IW)G # 0.

But then, 0 # (IW)G(IW)G ç IGIW = 0, a contradiction. Thus IW = 0, so W ç

AnnR(I). The reverse inclusion is trivial.

2. Existence of trace-like functions for rings without nilpotent elements. Unless

otherwise stated, we assume throughout this section that R has no nilpotent

elements, and prove the existence of essential trace-like functions on R. Our first

lemma is known; we include it for the sake of completeness.
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Lemma 2.1. Let R be semiprime and G a finite group acting on R such that either (1)

R has no \G\ -torsion, or (2) G is X-outer on R, and consider the usual trace function

?c(x) = ^geGxS- Then tG(R) is an essential ideal of RG.

Proof. Case (1) follows from Bergman and Isaac's theorem [3] that RG ¥= 0 in this

case. For then, t(R) D t(RG) = | G | RG ¥= 0, and | G | T?c is clearly essential in RG.

Case (2) follows from the fact, proved in [15], that if G is A-outer, then t(X) ^ 0

for any nonzero left (right) ideal A of T?. Thus for any 0 ¥= a E RG, 0 ^ t(aR) =

at(R) Ç aRG n t(R). This proves that t(R) is essential.

In order to prove the main theorem, we will actually prove a slightly more general

result in which certain finite sets of central idempotents are adjoined to T?. In

E — E(R), we let E0(R) — {L C E such that L is a finite multiplicatively-closed set,

and 1 = 21, for some {t,} CL}. Our aim is to prove

Proposition 2.2. Let R be a ring without nilpotent elements and G a finite group of

automorphisms of R. Then there exist LX,L2 in E0(R) and an RG-bimodule homomor-

phism t: RLx -» (RL2)G, such that Imr is an essential RG-submodule of (RE)G.

We proceed by a series of reductions.

Lemma 2.3. Let ex,e2 E EG with ex + e2 — 1, and let R, — Re, G RE, for i = 1,2.

If Proposition 2.2 is true for each R,, then it is true for R.

Proof. We use Lemma 1.1. For, E(R,) = E(R)e„ and as e, G EG, it is also true

that E0(R¡) Ç E0(R). Thus if we have t,: R,L(p -» (RtL^)G, i = 1,2, where Lf E

E0(R¡), let L, = (L(,n, L(,2)), the subset of E0 generated by (lJp\, and L2 =

(L2l\L22)). Then RLX = RxL\l) ® R2L(X2), as the elements of L\l) and L(x2) are

orthogonal to each other. Thus we define r = t, © t2 on RLX; clearly r(RLx) Ç

(RL2)G. Now E = Eex © Ee2; since t^T^TJ,0) is essential in R,(Ee,), for i = 1,2, by

assumption, it follows that ImT is essential in RE — Rx(Eex) © R2(Ee2).

Corollary 2.4. It suffices to prove Proposition 2.2 under the assumption that

pR = 0, where p is a prime such that p divides \G\ .

Proof. Assume that | G | = p"' ■ ■ ■ p"r, where the p¡ are distinct primes. For each

i— l,...,r, let Rp — [r E R \p\r — 0, for some /}. Since R has no nilpotent

elements, p\' = 0 gives (p,r)' = 0, so p,r = 0; that is, Rp = {r G 7? |p,r = 0}. Now

each Rp is a G-stable ideal of R; thus I = AnnÄ(T?, © • • • ©7?r) is also a G-stable

ideal, and K = Rx © • • • ®Rr © I is essential in T?. We define <?,,... ,<?r, e0 G Tsc as

follows: for i= \,...,r, e,: K -> R via e,(ax,...,ar, b) — a,, and e0: K -> R via

e0(ax,.. .,ar, b) = b. It is not difficult to check that the e, G EG, and moreover

ex + ■■■ +er + e0= 1. As the e, are orthogonal, the set L = (e,,...,er, e0} is

contained in 7ï0(T<). Let R, = Re¡, i = 0,...,r; it is not difficult to see that

p,R, = (0), i — \,...,r, and that T?0 is | G| -torsion-free. By Lemma 2.3 (iterated), it

suffices to prove Proposition 2.2 for each R,, i — 0,... ,r. But by Lemma 2.1, since

T?0 has no | G| -torsion, the proposition is true for 7?0: fc(T?0) is essential in RG.

Thus it suffices to prove the the proposition for R¡, i' — I,.. .,r; this proves the

corollary.
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Lemma 2.5. Proposition 2.2 is true if \ G \ = p, a prime.

Proof. By Corollary 2.4, we may assume that pR — (0). We claim it suffices to

prove the proposition under the assumption that RG contains no nonzero ideals of

7?. For, say that such ideals exist, and let 7 be an ideal of 7? maximal with respect to

the property that 7 ç 7?G. Letting J = AnnR(7), / is a G-stable ideal of R and

K = I © J is essential in R. As in the proof of Corollary 2.4, we have ex,e2 E EG

given by e,: K -* R, where ex(a, b) — a and e2(a, b) = b. Let Rx = Rex and T\2 =

Re2. Now Rex is fixed by G, since T is an essential ideal of Rex and T is fixed. Thus,

letting t, be the identity function on Äe„ we see that Proposition 2.2 is true for Rex.

Now Re2 has the property that (Re2)G contains no nonzero ideals W of Re2. For if

such a W existed, W n J ¥= 0, as / is essential in Re2, and then I® W C\J GRG,

which contradicts our choice of I. By Lemma 2.3, it suffices to show that Proposition

2.2 is true for Re2, proving the claim.

We now use another result of Bergman and Isaacs [3, Proposition 3.3] which says

that if | G | = p, G acts faithfully on R, and pR = 0, then tG(R) ¥= 0. We will show

that, under our assumption, tG(R) is actually essential in RG. For, say that for some

a E RG, 0 = atG(R) — tG(aR). By the result just mentioned, G must act trivially on

aR; that is, aR Ç RG. But then ta(RaR) = tG(R)aR = (0). Thus RaR C RG. As we

are assuming that RG contains no nonzero ideals of RG, we must have RaR = 0, and

so a — 0. Thus tc(R) is essential in RG, proving the lemma.

Lemma 2.6. Assume that pR = 0, for some prime p, and that G is a simple group of

automorphisms which become genuinely inner on Q0(R). Then Proposition 2.2 is true

for G acting on R.

Proof. We apply a theorem of Faith-Kharchenko [16, Theorem Jl] which says

that under the hypotheses of the lemma, p does not divide the order of G', the

commutator subgroup. As G is simple, either G = G' (in which case we may use tc,

by Lemma 2.1), or G' = (1). In the second case, as G is simple and abelian,

| G | — q, for a prime q. We are now done by applying Lemma 2.5.

The next lemma is needed in order to do induction.

Lemma 2.7. Assume that Proposition 2.2 is true for all groups 77 such that \ H |< n,

for some n, where 77 may act on any ring without nilpotent elements. If G is a group

with | G | = n which has a proper normal subgroup M, then Proposition 2.2 is also true

for any action of G.

Proof. Let G act on a given ring 7? with no nilpotent elements. Since | M | < n, by

our assumption there exist Lx, L2 G E0(R) and an T\M-bimodule homomorphism

T,: RLX -» (RL2)M such that Imr, is essential in (RE)M. Now let L'2 = (eg\e E

L2, g G G), the G-stable subset of E0(R) generated by L2. Since (RL'2)M is a

G/M-stahle subring of RE, and | G/M\<\G\ , by our assumption there exist

L3, L4 G E0((RL'2)M) and an ((T?L2)M)G/A/-bimodule homomorphism t2: (RL'2)mL3

- ((RL'2)ML4)G/M such that Im t2 is essential in ((RL'2)ME((RL'2)M))G/M.
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We first simplify some of the above expressions. By Corollary 1.7 and Lemma 1.1,

E((RL'2)M) = (E(RL'2))M = E(R)M. Also, for any G-stable subset S, (SM)G/M =

SG. Thus, in the above, L3 and LA are in E0(R)M and t2 is an (T\L2)G-bimodule

homomorphism such that Imr2 is essential in ((RL2)ME(R)M)G. It is therefore clear

at least that t = t2 ° t, is an T\G-bimodule homomorphism. We will show that

Im t2 o t, is an essential T?G-submodule of (RE)G.

Now 7?G is an essential T?G-submodule of (RE)G by Lemma 1.8 (if aRG — 0, for

a E (Re)G, then aR = 0, and so a = 0 in RE). Thus ((T?L2)a/Tí;(Tí)m)g is an

essential T\G-submodule of (RE)G, as it contains 7\G, and thus ImT2 is an essential

7\G-submodule of (RE)G. As Imr, is essential in (RE)M, (\vmx)G is essential

in (RE)G, by Lemma 1.8 again using G/M as the group. It follows that W =

(Im t,)g n T?G is essential in RG.

Let L = (Lx, L'2, L3, 7_4) Q E0(R). As L is a finite set, there exists an ideal

I E 'S(R) such that IL C R. Again by Lemma 1.8, 7G is essential in 7vG. Letting

U = WIG(lmT2), it follows from the above remarks that U is an essential T?c-sub-

module of (RE)G. Moreover,

U= WIGr2((RL'2)ML3) = T2(\VIG(RL'2)ML3) Çr2(rVIG(RL)M)

C T2(W{IRL)M) Ç t2(WRm) C T2((ImT,)T?M) Ç ^(Imr,) = Imr2 ° T,.

This shows that Im t2 ° tx is an essential T?G-submodule of (RE)G.

Finally,

r2 o T,(TcL.) Ç r2(RL2f Ç ((RL'2)ML4)G/M C ((RL)M)G/M Ç (RL)G.

Thus t2 ° T,: RLX -* (RL)G. Using t = t2 ° t,, Proposition 2.2 is true for G, proving

the lemma.

Proof of Proposition 2.2. We proceed by induction on | G | . By Lemma 2.7, we

may assume that G is simple. If G is A-outer on R, we are done by Lemma 2.1, so we

may assume that Ginn =£ (1). We consider two cases.

Case (1). There exists 1 ¥= w E Ginn with/, G EG (notation as in §1). By Lemmas

1.2 and 1.3, 77, is normal in G and its elements become genuinely inner in (RN)fw.

Since w ^ 1, 77, ¥= 1 (this is easy to verify) and thus 77, = G as G is simple. Write

e =/, for simplicity. Now as QQ(Re) — Q0(R)e, the elements of G are inner on

Q0(Re). We may thus apply Lemma 2.6 and conclude that Proposition 2.2 is true on

Re. If e = 1, we are done.

Case (2). For all 1 ¥= w E Ginn,/, G T;G. We choose w to be a maximal element of

Ginn. Let T7, /, S, X, and e he related to w as in §1. As S is the stabilizer of/, £ EG,

| 5 |<| G | . Apply induction to the ring T?/and S to find Lx, L2 E E0(Rf) = E0(R)f

and an T?s-bimodule homomorphism T.(Rf)Lx -» ((Rf)L2)s such that Ihit is

essential in (REf)s. We next apply Lemma 1.4: tx: (REf)s -» (RE)Ge is an (TcE)G-

bimodule isomorphism, where tx(yf) = 2gex(yf)g and e = tx(f). Let L'2 =

(Li, fg\gE X). Since fge = fg, all g G A (by Lemma 1.4), E0(Rfg) = E0(R)fg ç
E0(R)e = E0(Re), all g E X, and thus L'2 E E0(Re). It is not difficult to see that



140 M. COHEN AND SUSAN MONTGOMERY

tx((RL2f)s)C(RL'2)e. As tx((RL2f)s) Q(RE)Ge, it follows that tx((RL2f)s)

ÇZ (RL'2)Ge, and so u, = txr:(Rf)Lx -> (RL'ffe. Moreover, Imu, is essential in

(RE)Ge, since Idit is essential in (REf)s and tx is an (7?7s)G-bimodule isomor-

phism.

Now for any g ¥= 1 in A, let v — g']wg. Then fv = fg and tx(fg) — e by Lemma

1.5. Repeating the previous argument, there exist LXg G E0(Rfg) and L2g G E0(Re)

and an 7\G-bimodule homomorphism /xg: (Rfg)LXg -> (RL'2g)Ge such that Im ¡ug is

essential in (RE)Ge. Let L3 = (Llg|gGA)Ç. E0(R), and note that since the {/g)

are orthogonal, (Re)L3 - lgeX ®(Rfg)LXg. Letting L4 =* <L2 g | g G A> G E0(Re),

we define ju on (Re)L3 by ¡u = 2gec ®JLtg an^ see that u: (7?e)L3 -» (RL4)Ge is an

T?c-bimodule homomorphism such that Im p is essential in (RE)Ge. If e = 1, we are

done.

We may therefore assume that e ¥= 1 in both Cases (1) and (2). Consider 1 — e

and R(l — e). By Lemma 2.3, it would suffice to prove Proposition 2.2 on the ring

7?(1 — e). We therefore repeat the argument from the beginning on R(l — e). If G is

A-outer on R(l — e) we would be done, so Ginn ¥= 1 on R(l — e). Therefore,

repeating Case (1) or (2), in either case we have 1 ¥^ wx G Ginn and TT, as before.

We get ex ¥= 0 (ex — /, in Case (1), and ex = tx(fw ) in Case (2)) and Proposition

2.2 is true on Rex. The crucial point is that 77,^ ¥= 77,. For, 0 ¥= fW) — l\heHwèh,

where ëh = eh(l - e), the "restriction" to T?(l - e). If T7,( = T7„ then /,| =

nÄe///ft = L = W - e) = °. a contradiction. Thus T7Wi ¥• 77,.

Iterating the procedure, at the /th-stage we get e, E R(l — e — ex — ■ ■ ■ —e,_x)

and 77, ¥= 77, for all j — Q,...,i — 1. Since the number of distinct subsets of G is

finite, the process must terminate. This proves Proposition 2.2.

Our main theorem follows almost immediately.

Theorem 2.8. Let R be a ring with no nilpotent elements and G a finite group acting

as automorphisms on R. Then there exists a finite subset L of E — E(R) and an

RG-bimodule homomorphism r: R -> (RL)G such that r(R) is essential in (RE)G.

Moreover, for some essential ideal K of R, t(K) C Rg and is essential in RG.

Proof. By Proposition 2.2 there exist Lx, L2 E E0(R) and t: RLx -> (RL2)G so

that Imr is essential in (RE)G. Now, since Lx and L2 are finite, there exists

I G f(T?) such that T(L, U L2) Ç R. Then 7G is essential in 7?G (by Lemma 1.8), so

t(IgRLx) = Igt(RLx) C T?g and is essential in T?G. By Proposition 1.6, part (c), TCT?

contains some K E 'S(R). t(K) C Rg since t(IgR) c Rg, and it is easy to see that

t( K ) is essential in T?G.

Corollary 2.9. T/7? is a ring with no nilpotent elements such that E(R) Ç R, then

for any G acting as automorphisms of R, there exists an RG-bimodule homomorphism

t: R -» RG such that r(R) is essential in RG.

We note that such "TJ-closed" rings can be constructed from R itself. For, by a

result of Martindale, the central closure RC of R is centrally closed (that is, the

extended center of RC is just C). Thus T?C is Ts-closed, and moreover, RE(R) is

£-closed since E(RE(R)) = E(R).
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Remark 2.10. Assume we are given a t as in Theorem 2.8, and let C0 be any

subring of CG. Then t may be extended to an (T?C0)G-bimodule homomorphism

t,:TvC0-(TîC0L)g

Proof. If x G T?C0, write x = 1,r,c,, r, ER, 0 ¥= c, E C0. Define tx(x) —

2, r(r,)c¡. t, will certainly have the desired properties; it suffices to show it is well

defined. That is, say that x — 0; we wish to show t,(x) = 0. Since c, G CG ç C(T?G)

and 7?G is semiprime, we may choose 7 G $F(T\C) such that 0 ^ c,T Q RG, all i. Thus

for any a E I, xa E R, and t is defined on xa. Thus 0 = xa = r(xa) = 2, T(r,c,a)

= 2, T(r,)c,a — Tx(x)a. Since t,(x)T = 0, it follows that t,(x) = 0.

As noted in the introduction, when R is a domain, we obtain the known result on

partial trace functions.

Corollary 2.11 [16]. Let R be a domain, and G a finite group acting as

automorphisms of R. Then there exists A C G so that 0 =£ tA(R) C RG.

Proof. Since E(R) = {0,1}, Lemma 2.3 is not needed, and Case (2) of the proof

of the Proposition 2.2 cannot arise as 1 G EG. Thus, we must only use induction

(noting that the composition of two partial trace functions is another partial trace

function) and note that for G simple, we either use t = tG or t = id, depending on

whether G acts faithfully or trivially (Lemmas 2.5 and 2.6). This is in fact the

argument given in [16].

Remark 2.12. The proof of Proposition 2.2 actually shows the following: let a

simple group G act on a ring R with no nilpotent elements. Then there exists a finite

set of orthogonal idempotents e,,... ,en E E°, with ex + ■ ■ ■ +e„ = I, such that G is

A-outer on Rex, every element of G becomes genuinely inner on Q0(Re2), and on

each of Re — Re3,.. .,Ren, we have the situation occurring in Case (2) of the proof

of Proposition 2.2. That is, for all 1#wë Ginn, /, £ T:G, so choosing iv to be a

maximal element of Ginn, S the stabilizer of /,, and A a set of right coset

representatives of S in G, e = 1geXfg. Moreover, if 77, is the 77, we get for G acting

on Re,, i = 3,...,n, then 77, ¥= Hj if i ¥=j.

It is also clear from our construction of t, and the various reductions in the proof

of the theorem, that Case (2) in Proposition 2.2 is the most interesting (as in all other

cases, t comes from adding together traces or the identity function). We therefore

illustrate the procedure with an example.

Example 2.13. We use Example 1.1 of [7]; it is shown in [7] that tG(R) = 0 in this

example. Let G be any nonabelian simple group and let 77 be a proper subgroup. Say

[G : TT] = n and consider G as a group of permutations of the n right cosets of T7 in

G, say {H, Ha2,.. .,Han). Choose any prime p dividing | T7| , let F be a field of

characteristic/), and let R — 2"=1 ®(F)„ the direct sum of n copies of F. We let G

act on R by permuting the n summands as it permutes the cosets. Note that T7 itself

is the stabilizer of (F)x, the stabilizer of (F), is TT, = a~]Ha,, and so Ginn = U,T7,.

Let e, = (0,..., 1,,... ,0) G E(R), i = l,...,n; clearly E(R) consists of finite sums

of the {e,} and 0.

Choose any 1 =£ w E H G Ginn, and say that w lies in k of the TT,. By reordering

the cosets, we may assume that w E TT, D • • • C\Hk, and so ew = ex + ■ ■ ■ +ek. By
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definition, TT, is a subgroup of Ginn maximal with respect to the property that

ewWhfEH eh ¥= 0. We claim that TT, = TT,, for any i = l,...,k. For, given TT,, let

/, = nA€Ä/A; as e,/, =£ 0, e,fw ¥= 0 for some i, Ki<k. Then e,eh ¥= 0, all

h E TT,, and so e,eh — e,. It follows that h stabilizes e,, and so (F)¡; that is, h E TT,,

so TT, C TT,. But for all h G TT,, e,eh = e,; thus TT, = TT, by the maximality of TT,.

Given TT,, any i — l,...,k, clearly ewIlh<EHeh ¥= 0, so TT, C some TT,. By the above

argument, I TT„, I = I TT, I and so T7, = 77,. Thus we have k choices for 77,. For ease in

notation, we use 77, = 77, = TT.

Then e,/, = ex, so/, is a sum of {e,} including ex. Again renumbering the cosets,

assume that/, = e, + • • ■ +em, for some m. From §1, the stabilizer S of/, is also

equal to NG(H), the normalizer of TTin G. We claim that S = 77 U 77a, U • ■ ■ UHam.

For, as G is a union of {T7ay}, we only need to consider the coset representatives

{üj}. If üj E S, then aj'TTo, = TT, so every h E H stabilizes (F)-, so eAey = ey, all

/i G TT, so/,e, = et, using TT = TT,. As the {e,} are central orthogonal idempotents,

it follows that et E {ex,.. -,em}, so 1 *£/ < m. Conversely, if 1 <y < m, then

fwe} — e„ and ehe- — e¡, all h G TT = T7,. Thus h stabilizes (F)y, so h E H/. That is,

TT Ç T7/5 so 77 = TT, = ajlHaj. Thus ûy G 5. This proves the claim.

We now consider S acting on Rfw = 2J=, ©(F),, where 5 acts (as did G) by

permuting the summands as if they were the cosets {TT, T7a2,... ,Ham). Now 77 is

normal in S, so acts as the identity permutation; S acts as right multiplication by

S/H. But S/H = (Ï, ä2,...,äm), so this is just the regular representation of S/77

on itself, and m = \ S/H | . It is not difficult to see that the trace function ts/H: Rfw

-^(Rfw)s is given by ts/H(cx,... ,cm) = (2J=X cp... ,27=1 c,). Thus ts/H is onto

(Rfw)s, and we may use t = ts/H. (In the proof of Proposition 2.2, we used

induction at this point since | S \ < | G | .)

Now let X— {I, b2,...,bq} be a set of coset representatives of S in G; we may

assume {br} Q {a,}. Then e = tx(fw) = £,/*' = 1, and tx: (RfJs -* T?G (an iso-

morphism) is just the mapping which takes the m-tuple (c,c,... ,c) G (Rfw)s to the

«-tuple (c,...,c) E RG. Then px — tx ° r: Rfw -» T?G is given by u,(c,_,cm) =

(27=1c/.,...,27=1c/.), an «-tuple.

Repeat this for vr = b;xwbr,fr = /j\ 5r = b;xHbr, to obtain /ir: Rf -> RG as above.

As R = J,?=x®Rfr, we get jti = 2?=, ©|Hr: 7? -. 7?G given by #i(é/,,. .. ,dn) =

(2"=1 i/„.. .,2?=] rf,) G 7?G, the desired function.

As computed in [7], tG(dx,.. .,dn) =| 771 p(dx,.. .,dn); thus when F has character-

istic /? and /; 11 TT | , tG(R) = 0.

3. Application to affine fixed rings. The main result of this section is Theorem 3.3,

stated in the introduction; in it we use the existence of the trace function constructed

in §2 to show that, under certain hypotheses, the fixed subring of an affine ring is

also affine. This result extends the result of [17, Theorem 2], where the analogous

result was proved for domains.

The proof of [17, Theorem 2] used the so-called "trace ring" for a prime PI ring

R, used in [20 and 2]. That is, consider 7? as an order in M (D), where D is a division
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ring with center Z; for K a maximal subfield of D, we have R =* Mn(D) ^ Mn(D)

®zTv s Mm(K). The trace ring T = 7T7?) is the subring of Mm(K) generated by the

coefficients of the characteristic polynomials of all r ® 1 G Mm(K), r E R. It is

known that T ç Mn(D); thus T Q Z so is a domain. If 7? is an algebra over a

commutative ring A, T is chosen to be the A -algebra generated by the above

elements.

In order to extend [17, Theorem 2], we first must extend the notion of trace ring to

the case of semiprime Noetherian TV rings. We wish to thank L. W. Small, who

suggested to us the appropriate definition in this case, and who also suggested the

arguments in Proposition 3.1 below.

Thus, let R he a semiprime Noetherian PI ring. R has a semisimple Artinian

classical quo tent ring Q(R) = Qx © ■ • • ®Qr, where the Q, are simple rings. Let

E — (ex,...,er) he the set of primitive central idempotents of Q(R), and let

R, = Re„ for each i. Note that Q(R,) = Q,. Let T, = T(R,), the trace ring of the

prime TV ring R, as above. We now define the trace ring of R to be f = 2-= | © T¡.

Note that e, E T„ all /', by construction, and so letting 7?' = 2, R, — 2, ©Tie,, we

have 77? = 77?', the subring of Q(R) generated by f and R. The rings f and 77?

behave very much like their counterparts in the prime case; all of the properties

listed in the next proposition are known to be true when 7? is prime [17, Proposition

3],

Proposition 3.1. Let R be a semiprime Noetherian PI ring, with trace ring f as

above. Then:

(1) 77? is integral aver T,

(2) fR is a finite R-module (and so is Noetherian),

(3) if R is also'an affine algebra over a commutative Noetherian ring A, then f is

affine over A, and TR is a finite T-module.

Proof. (1) Choose r E TR'; then r = 2 r,, where r, E R,T,. Now r, is integral over

T, by construction. Thus each r, is integral over T, and so r is integral over T as it is a

sum of commuting integral elements.

(2) By the result for prime rings (actually due to Schelter [20]), 7,7?, is finite over

R¡, for all i. Thus 7^7?, is finite over 7?', and so 77? = 2T, 7?, is finite over 7?'. Since

7?' is a finite T?-module, 77? is finite over 7?.

(3) As remarked earlier, when T? is an algebra, T is also an algebra. Now each T, is

affine over A, by the prime case, and so T = 2 T, is affine over A. Similarly 7^7?, is

finite over T¡, all /', by the prime case. Thus each T¡R¡, and so 77? = 77?' = 2 T,R¡, is

finite over T.

We now consider the action of a finite group G on 7?. G has a unique extension to

0(7?), and so permutes the set E of central idempotents. Thus for any g G G,

7?f = Rj for some j ; moreover Zf = Zj, where Z, is the center of Q(R,). It follows

that Tf — Tj, and thus the trace ring 71 = 2 7] is G-stable. Now if f is an affine

A -algebra, then fis a finite TG-module and fG is affine, by the classical results of E.

Noether for commutative rings.
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Finally, we are able to show the relationship of trace functions to affine algebras.

Proposition 3.2. Let R be a semiprime Noetherian PI ring which is an affine

algebra over a commutative Noetherian ring A. Let G be a finite group of A-automor-

phisms of 7? such that

(1) T?   is Noetherian, and

(2) there exist a TGRG-bimodule homomorphism t: Tg7? -> (TGR')G and an essential

G-stable ideal K of R such that t(K) Ç T?G and r(K) contains a regular element of
fClnG

Then RG is affine.

Proof. Our argument is based on the proof of [17, Theorem 2], using t instead of

the tA used there. We first remark that as TG7? Ç TR, a Noetherian 7?-module by

Proposition 3.2, part (2), fGR is also finite over T?, so we may write fGR = 2?LX Rs,,

s, EÎG.

Also, TGRG is affine over A. For, since 77? is finite over T (by Proposition 3.1,

part (3)), and f is finite over fG, we have 77? finite over fG. As fG is Noetherian

and fGT?G Ç 77?, it follows that fGRG is finite over fG. Thus fGRG is affine, since

TG is affine.

We now claim that fGRG is finite over T?G. By assumption, t(7C) contains an

element, say a, which is regular in TGRG. Thus TGRG = TGRGa as 77?G-modules.

But

(m \ m

2 Ks,\ = 2 t(K)s,.
¡=l        /        i=\

Since r(K) is an ideal of 7?G, which is assumed to be Noetherian, t(K) is a finite

T?G-module. It follows that fGR° is isomorphic to a submodule of a finite 7?c-

module; thus fGRG is finite over T?G.

In addition, we may assume that fGRG = 2-=1 7?Gr,, where the t, E fG and so

centralize 7?G. Thus we may apply a version of the Artin-Tate lemma [17, Proposi-

tion 2] to conclude that T?G is affine.

We now prove our second main theorem.

Theorem 3.3. Let R be a semiprime Noetherian PI ring, which is an affine algebra

over a commutative Noetherian ring A. Let G be a finite group of A-automorphisms of

R such that RG is Noetherian. Then RG is also affine over A, in any of the following

cases:

(1)7? has no\G\ -torsion, or

(2) G is X-outer on R, or

(3) 7? has no nilpotent elements.

Proof. In all three cases, it is known that 7?G is semiprime Goldie [10, 15, 11];

moreover Q(RG) = Q(R)G. Thus fG Ç Q(RG), so an element regular in T?G is

regular in fGRG. In addition, any essential ideal of RG contains a regular element.

Thus it suffices to show, by Proposition 3.2, that in each case there exists suitable t

and K so that t( K ) is essential in T?G.
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In cases (1) and (2), we may use t — t, the usual trace function, and K = 7? (by

Lemma 2.1). In case (3), we use the function t constructed in Theorem 2. Clearly

t(T?) Ç T?', and r(K) is essential in T?G for some essential ideal K of T?. It remains

only to show that t: fGR -» (fGR')G and is a T^^module homomorphism.

However, this follows from Remark 2.10, using C0 = fG, as the extended center of

T? is the center of Q(R).

In closing, we raise the question as to whether the hypothesis in Theorem 3.3 that

7?G is Noetherian is superfluous. We know of no examples in cases (1), (2) or (3) of a

semiprime, Noetherian, affine algebra 7? and a finite group G such that T?G is not

Noetherian. The examples [19 and 4] of non-Noetherian fixed rings are not affine; in

any event, a counterexample could not be commutative.
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