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WHEN IS THE NATURAL MAP A

A COFIBRATION?

BY

L. GAUNCE LEWIS, JR.

Abstract. It is shown that a map/: X — F(A, W) is a cofibration if its adjoint/:

X A A -» W is a cofibration and X and A are locally equiconnected (LEC) based

spaces with A compact and nontrivial. Thus, the suspension map r¡: X -» Ü1X is a

cofibration if X is LEC. Also included is a new, simpler proof that C.W. complexes

are LEC. Equivariant generalizations of these results are described.

In answer to our title question, asked many years ago by John Moore, we show

that 7j: X -> Í22A is a cofibration if A is locally equiconnected (LEC)—that is, the

inclusion of the diagonal in A X X is a cofibration [2,3]. An equivariant extension of

this result, applicable to actions by any compact Lie group and suspensions by an

arbitrary finite-dimensional representation, is also given. Both of these results have

important implications for stable homotopy theory where colimits over sequences of

maps derived from r¡ appear unbiquitously (e.g., [1]).

The force of our solution comes from the Dyer-Eilenberg adjunction theorem for

LEC spaces [3] which implies that C.W. complexes are LEC. Via Corollary 2.4(b)

below, this adjunction theorem also has some implications (exploited in [1]) for the

geometry of the total spaces of the universal spherical fibrations of May [6]. We give

a simpler, more conceptual proof of the Dyer-Eilenberg result which is equally

applicable in the equivariant context and therefore gives force to our equivariant

cofibration condition. The key to the simplified proof is Proposition 2.5, a result of

independent interest on cofibrations joining a pair of pushout diagrams.

Our definitions and conventions on spaces and cofibrations are contained in §1.

§2 contains the statements of our results and §3 is devoted to their proofs. §4

sketches the equivariant extensions of our theorems.

1. Preliminaries on spaces and cofibrations. We work in the category of compactly

generated weak Hausdorff spaces (see [4,7,8,11,13]). Products, smash products,

function spaces (written exponentially), and based function spaces (written F(A, A))

are given the topologies appropriate to this category. A map /: A -» Y is called a
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cofibration if it has the homotopy extension property with respect to unbased

homotopies and a fibration if it has the homotopy lifting property with respect to

unbased homotopies. Note that, while we work mainly with based spaces and based

maps, our results apply only to maps having the homotopy extension property with

respect to unbased homotopies. This limitation arises from our use of Lillig's union

theorem for cofibrations [5] and the NDR pair characterization of cofibrations

[3,7,9], both of which are available only for cofibrations defined in terms of

unbased homotopies. In practice, this is not really a limitation since any basepoint of

an LEC space is nondegenerate [3] and, if X and Y are both nondegenerately based,

then the based and unbased notions of a cofibration are equivalent [10].

2. The suspension map and adjunction theorem. Our principal result is

Theorem 2.1. Let A and X be LEC spaces with A compact and not the one point

space. If g: X A A -» W is a based map and a cofibration, then its adjoint g:

X -* F(A,W) is also a cofibration. In particular, the adjoint t¡: A -» F(A, X A A) of

the identity map of X A A is a cofibration.

Since the circle S[ is an LEC based space and the suspension map for X is the

adjoint of the identity map of 2A, our answer to Moore's question follows

immediately.

Corollary 2.2. If X is an LEC based space, then the suspension map rj: X — £22X

is a cofibration.

There is an obvious unbased analog of Theorem 2.1 (with a similar proof) giving a

cofibration condition for the adjoint /: Y -> ZB of an unbased map /: Y X B -» Z.

In §4, we give an equivariant version of Theorem 2.1.

The force of Theorem 2.1 comes from the fact that metric ANR's and C.W.

complexes are LEC [2,3], That C.W. complexes are LEC follows from the Dyer-

Eilenberg adjunction theorem for LEC spaces [3] restated below. Their proof is

unnecessarily complex, and unlike our new proof given in §3, does not obviously

generalize to the equivariant case.

Theorem 2.3 (see [3]). If Xand Yare LEC, i: A -» X is a cofibration andf: A -> Y

is any map, then the adjunction space Y U f X is LEC.

The following pair of results follow easily.

Corollary 2.4. (a) C.W. complexes are LEC (see [3]).

(b) If X= {A„}n5s0 is a simplicial space such that each Xn is LEC, then the

geometric realization \X\ of X is LEC.

The key to our simpler proof of Theorem 2.3 is the following result on cofibra-

tions joining a pair of pushout diagrams.



THE NATURAL MAP X -> Í22.Y 149

Proposition 2.5. If, in the commuting diagram

D-* D
5

the right and left faces are pushouts, i, t!, a, ß, y are cofibrations, and the top is a

pullback (that is, A is A' H B when the three are regarded as subspaces of B'), then 8 is

a cofibration.

Note. The assumption in 2.5 that the left face is a pushout can be weakened to the

assumption that the map TJuC -» D, derived from / and ¿, is an epimorphism.

However, in our applications, the very existence of the map S is obtained from the

pushout hypothesis.

The assumption that the top is a pullback cannot be discarded. To see this, let A

be a nondegenerately based space other than a point, and take B = C = A' = B' =

C = D' = X, A = * , and D = X V A. Take the maps from A' to AT in the diagram

to be the identity, the maps from * to A to be the inclusion of the basepoint, and the

map d: X V A -» X to be the folding map. Clearly, all the hypotheses of the

proposition, except the pullback condition, are satisfied; but the folding map is not a

cofibration.

3. Proofs. We repeatedly use the following obvious corollary of Theorem II.7 of [3]

which characterizes a halo retract of an LEC space as an LEC subspace whose

inclusion is a cofibration.

Lemma 3.1. (a) If X is LEC and i: A -> X is the inclusion of a retract, then i is a

cofibration and A is LEC.

(b) If X is LEC and i: A -> X is a cofibration, then A is LEC.

For 3.1(a), the halo about A needed to apply Theorem II.7 of [3] can be obtained

from the retraction and LEC data for X. For 3.1(b), a halo retraction for A can be

constructed from NDR pair data for (X, A).

Now we begin our proofs.

Proof of 2.1. First we show that r¡: X -* F(A, X A A) is a cofibration. Select a

point a0 in A other than the basepoint (we denote basepoints generically by *). Let Z

be the subspace of F(A, X A A) given by

Z= {fEF(A,XAA)\f(a0)EXA{a0,*} C X A A}.
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Clearly, the map tj: X ^ F(A, X A A) factors through Z and evaluation at a0

provides a right inverse to tj regarded as a map into Z. If we can show that

F(A, X A A) is LEC and that the inclusion of Z into F(A, X A A) is a cofibration,

then it follows from Lemma 3.1 that Z is LEC and that t/: X -» Z is a cofibration.

The second part of the theorem follows since the composite

tj: A^Z- F(A, X AA)

must now be a cofibration. To see that F(A, X A A) is LEC, note that X X A is

clearly LEC and the pair (X X A,{*} X A U AX {*})isan NDR pair since A and

A are nondegenerately based [9]. Therefore, A A A is LEC by Theorem 2.3 and

F(A, X A A) is LEC by Theorem II.6 of [3] which states that the space of based

functions from a compact space to an LEC space is LEC. To see that the inclusion

of Z into F(A, X A A) is a cofibration, note that the pair (A, {a0, *}) is an NDR

pair and therefore, the restriction map

(XAA)A -^(XAA){ao-']

is a fibration (since ( A A A)1 converts cofibrations to fibrations). Pulling back along

the inclusion of F({a0,*}, X A A) in (A A A)(a<"*\ we obtain that the restriction

map

r:F(A, X AA) ^ F({a0,*}, XAA) =X AA

is a fibration. The pair (F(A, X A A), Z) is the inverse image under r of the NDR

pair ( A A A, X A {a0, *}) and is therefore an NDR pair by Theorem 12 of [9].

For the first part of Theorem 2.1, note that the adjoint of a map g: X A A -* W is

the composite

g:X^F(A, XAA)^F(A,W).

If g is a cofibration, then so is g„. by Lemma 4 of [10]. By the work above, tj is a

cofibration and we are done.

We turn now to

Proof of 2.3. Let A, Y, i: A -> X and /: A -» Y he as in the statement of the

theorem. The idea of the proof is to describe (Y Uf A) X (Y Llf X) by a sequence of

pushouts in such a way that Proposition 2.5 can be applied. We do this in the

pushout diagrams below. Note that (Y Uy A) X (Y Uf X) is the pushout in the third

diagram because products preserve colimits in the category of compactly generated

weak Hausdorff spaces. Cofibrations in the diagrams below are denoted by arrows

of the form "=—> ". We repeatedly use the fact that the pushout of a cofibration is a

cofibration. The map

Ji'.XXA   U  AX A=^AX A
AXA

below is a cofibration by Lillig's union theorem [5].
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A xAU A xA A xA

A x YU Y x A
v

A x yii 7 x A

,4x7    U    Y x A
A XA

X x Y    U    Y x X
A XA

Y x Y

V

h

X x Y    U    Y x Y   U    7 x A
yl XA AXA

A x A UA x A
v

ix^U-1  x A

A x A
V

/a

X x A    VJ  A x X
A XA

X x A    U   A x X>-
A XA

|(1   xf)U(fx  1)

A x F   U     Y x X
A XA

X x Y    U     Y x Y    U    yxi>
A XA AXA

-* X x X

y

—-> (YUfX)x (Y Uf X)

Above, V denotes a folding map from a disjoint union and a is the obvious map

induced by the pair

fxf
AXA^YXY,

/xluix/ v
AXYUYXA      -*      YX Y u YX Y-*YX Y.

The pushout diagram

/I
Y Y U A

/

maps into the third diagram above by the maps

A^AX A^XXA   U   /IXA,
AXA

A>->AX X,
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y»yx/ixxyu 7x 7 u txa,
AXA AXA

7U xâ>lY\J x) X ¡Yo A
/ X     f     '       X     f

Proposition 2.5 clearly applies to give that this last map is a cofibration so that

7 U, A is LEC.

The key to proving Corollary 2.4 is the following lemma:

Lemma 3.2. (a) If {Xn: A„ -* A„+1}nS>0 and {yn: Yn -* 7„+1}„a0 are sequences of

spaces joined by cofibrations and {/„: Xn -> Yn}n7s0 is a sequence of cofibrations such

that the diagram

*.

if,, i Sn + 1

y.

Yn      -      Yn+X

is a pullback for all n > 0, then the induced map f: X -> 7 on ?«e colimits

A=colimA„,        7=colim7„

is a cofibration.

(h) If {Xn: Xn -> Xn+X}n>0 is a sequence of LEC spaces joined by cofibrations, then

X = colim Xn is also LEC.

Proof. For 3.2(a), given a commuting diagram like the solid arrow diagram below,

we must construct a map 77 making the entire diagram commute.

A      i     F(I+,Z)

/I      If' le0

y/1        z

Here, 7+  denotes the unit interval with a disjoint basepoint and e0 denotes

evaluation at zero. We produce 77 by inductively defining maps

77„:7„-F(7+,Z)

such that Hn+Xyn = 77„ and the diagram

' h
X„     4      X     -.     F(I+,Z)

s

( 1 ) /„ I / h„ i eo

'u g
Yf    -*   i Y     -h. Z
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commutes where /„ andy„ are the inclusions into the colimit. The map 7T0 is obtained

by applying the homotopy extension property for/0 in diagram (1). Given Hn, T7„+1

is obtained from the diagram

H„U(h o i   ..)

Y„   U   A„+1 - ^F(I+,Z)

k I ^ -" J, e„

Y  ^ -> 7/n+l z-

by using Lillig's union theorem [5] to show that A: is a cofibration. The required map

77 is obtained from the 77„ by passage to colimits.

Lemma 3.2(b) follows immediately from 3.2(a) and the definition of LEC.

Corollary 2.4(a) follows directly from the lemma and Theorem 2.3 because any

C.W. complex is the colimit of its skeleta which are LEC by inductively applying the

theorem. The proof of Corollary 2.4(b) is more involved.

Proof of Corollary 2.4(b). The geometric realization | A | of a simplicial space

A is the colimit of a sequence of spaces Fn \ X | defined inductively by the equation

F0 | A | = A0 and the pushout diagrams

(A„+1X3An+1) U(o-A„XA„+1)     -     Xn+X X A„+l

i I

Fn\K\ -* Fn+\\K\

where An+, is the standard n + 1 simplex and aXn is the degeneracy subspace of

A„ + 1. Thus, the inclusion of Fn \ X\ in Fn+X \ X\ is a cofibration if the inclusion of

aA„ in Xn+X is a cofibration. Since it follows formally from the simplicial identities

that

s.

X -»        An-l n

*/i ¿'*/+l

s,

X ->      X

is a pullback for n > 1 and 0 «S I <j < n — 1, Lillig's union theorem [5] may be

applied inductively to obtain that the inclusions

aAn^A„+„        n>0,

are cofibrations if the degeneracy maps s,: Xn -» A„+1 are cofibrations for n > 0 and

0 < i < n. If all of the A„ are LEC, then the s,, being inclusions of retracts, are

cofibrations by Lemma 3.1. Further, the F„ \ X\ are LEC by an inductive application

of Theorem 2.3. Thus, by Lemma 3.2(b), the geometric realization | A | is LEC.
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Finally, we have

Proof of Proposition 2.5. Given a commuting diagram like the solid arrow

diagram below, we must construct a map H such that the entire diagram commutes:

D      ^     F(I+,Z)
s

S i       Hs I ea

D'''l Z

To obtain TT, we first select a map K: C -» F(I+ , Z) using

*        h      ,    ,     '    -, í S
C^D^F(I+ ,Z),        C'^D'^Z

and the homotopy extension property for y: C -» C. Then, using the maps

A'^C'^F(I+ , Z),        B^D^F(I+ ,Z)

which agree on /I, we obtain a map

L: /I' u 5 -> FÍT+ ,Z)

which agrees with K ° f on /T. Applying the homotopy extension property for

A' UA B -* 7?' (which is a cofibration by Lillig's union theorem [5]) to the maps

L: A'(jB^F(l+ ,Z),       B'-D'^Z,
A

we obtain a map J: B' -» F(T+ ,Z) which agrees with K ° f on A' and therefore

determines TT. Note that

H°V = K:C ^ F(I+ ,Z)

so that we can always pick our homotopy extension to agree with a preselected

extension on C.

4. Equivariant generalizations. If we switch from compactly generated weak

Hausdorff spaces to compactly generated weak Hausdorff left G-spaces where G is a

compact Lie group, then there are natural analogs of Theorem 2.3, Corollary 2.4 and

Proposition 2.5. In these, we replace cofibrations by G-cofibrations and the LEC

condition by the G-LEC condition (that the diagonal be a G-cofibration). The analog

of a C.W. complex is a G-C.W. complex constructed from G-spheres of the form

G/T7 X 5" for n 3s 0 and TT a (closed) subgroup of G (see [12]). It is easy to see that

Lillig's original proof of his union theorem [5] extends to the equivariant context.

Thus, our proofs in §3 of 2.3, 2.4 and 2.5 extend to the equivariant context because,

except for the use of Lillig's theorem and the fact that spheres are LEC, they are

purely formal.

The equivariant extension of Theorem 2.1 and its corollary involves two minor

technical points. First, by a based G-space, we mean a left G-space with a basepoint

on which G acts trivially. Second, in the proof of Theorem 2.3, we had to select a
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nonbasepoint a0 in A. It is easy to see that our proof extends to the equivariant

context if we can select aQ to be a G-fixed point. Thus, the equivariant analogs of

Theorem 2.1 and its corollary are

Theorem 4.1. Let A and X be G-LEC based G-spaces with A compact and having a

G-fixed point other than the basepoint. If g: X A A -» W is a based G-map and a

G-cofibration, then its adjoint g: X -» F(A,W) is also a G-cofibration. In particular,

the adjoint tj: A -> F(A, X A A) of the identity map of X A A is a G-cofibration.

Corollary 4.2. Let X be a G-LEC based G-space and V be a finite dimensional

G-representation. If g: 2KA^ W is a based G-map and a G-cofibration, then its

adjoint g: X -» QfW is also a G-cofibration. In particular, the adjoint tj: A -> Qf*2,vX

of the identity map of"2yX is a G-cofibration.

In the corollary, we define üv and 2^ by

üvX=F(tV, A),        2l/A=AA,K

where tV is the one-point compactification of Kwith basepoint at infinity. Theorem

4.1 applies to give the corollary because 0 is a G-fixed point in tV.

There is an unbased analog of Theorem 4.1 giving a cofibration condition for the

adjoint /: 7 -» ZB of an unbased G-map /: 7 X Ti -» Z. As in the based case, we

must require the presence of a G-fixed point in B.
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