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ALGEBRAIC AND GEOMETRIC MODELS FOR 770 SPACES

BY

J. AGUADÉ AND A. ZABRODSKY

Abstract. For every //0-space (i.e. a space whose rationalization is an //-space) we

construct a space J depending only on H*( X; Z) and a rational homotopy equiva-

lence J -» X (i.e. / is a universal space to the left of all //0-spaces having the same

integral cohomology ring as X). J is constructed generalizing the James reduced

product. We study also the integral cohomology of //¡¡-spaces and we prove that

under certain conditions it contains an algebra with divided powers.

0. Introduction. A space X is called an 7T0-space if its rationalization X0 is

an TT-space. This is equivalent to saying that X has the rational homotopy type

of a product of Eilenberg-Mac Lane spaces and is also equivalent to saying that

H*(X; Q) is the tensor product of a polynomial algebra on even-dimensional

generators and an exterior algebra on odd-dimensional generators. Therefore, if X is

an T70-space, there is a space K = Ü, K(Z,2«,) X T\jK(Z,2mj+ 1) and a map

X -» K which is a rational homotopy equivalence. We may say that K is a model " to

the right" for the TT0-space A. In this paper we construct models " to the left" for

TT0-spaces in the following sense: For every algebra A with A ® Q free and finitely

generated, there is a space J(A) so that for every X with H*(X; Z) = A, there exists

a rational equivalence J(A) -» X. The space J(A) is a universal space to the left of all

spaces X having the same cohomology ring H*(X; Z) s A and is constructed

generalizing the James reduced product [3]. We also prove that in general there is no

universal space to the left of all spaces with the same rational cohomology ring.

In the second part of the paper we study " models" for the integral cohomology of

an T70-space. Of course, we are far from a complete classification of all possibilities

for H*(X; Z), but we obtain results which are valid "in the general case" and for

infinitely many primes.

All spaces are assumed to be of the homotopy type of pointed, simply connected,

CW complexes with finitely many cells in each dimension. We always denote by *

the base point and sometimes we identify a map with its homotopy class.

We are grateful to the Forschungsinstitut für Mathematik of the Eidgenössische

Technische Hochschule Zürich for its hospitality during the preparation of this

paper.

1. A generalized James construction. The tool for studying the models considered

in the introduction will be a certain space of the rational homotopy type of
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K(Q,2n), explicitly constructed from a family of integral parameters. The James

reduced product JS2" ~ Í252"+I appears as a special case of the construction we are

going to develop.

Let A' be a space and let F = {//}/s»2 be a sequence of self-maps f¡: X -» X. We

construct a space JFX depending on A and F in the following way: Let us consider

in Xr the identifications

(xx,... ,x,_x, *, x,+ x, x,+2,... ,xr) ~ (xx,... ,x,_x, f,+ xx,+ x, * , x,+2,... ,xr)

and let us denote by (JFX)r the quotient space. The map from Xr to Xr+l given by

(xl,...,xr)t-*(xl,...,xr,*) gives an inclusion (JFX)r — (JFX)r+x and we can

define JFX as the inductive union of all these spaces. It is clear that JFX generalizes

the James construction, which is obtained by taking/ = lx,i>2. Moreover there is

a map <t>: JFX -* JX given by $(xx,... ,xr) = (xx, f2x2, f2f3x3,.. . ,/2 • • ■ frxr). One

sees easily that this definition is compatible with the identifications we have in JFX.

One can also define maps

0>r: (JX)r^(JFX)r

by 0>r(xx,...,xr) = (/2 •••/>„/3 ■■■frx2,...,frxr_x,xr) so that <E><J>r = f2 ■■ ■ fr

X ••• Xf2 •••fr and ^r(xi,...,xr) = (>:..,ff+i ■ ■ ■ fj2-■ ■ fx„...). Moreover the

composition

( JFX), X (JFX)S   -   (JX)rX(JX)s^(JX)r+s ->(JFX)r+s,

where m is the product of the standard James construction, yields a "partial"

product on JFX, i.e. if the endomorphisms f, are O-equivalences then this is a partial

rational product.

Let us denote by V rX the subspace of Xr consisting of those points (xx,...,xr)

such that at least one component is equal to the base point. We can define a map

cp: vx-(;fi)H
r

in the following way: let (xx,.. .,xr) E V r X and let us assume that x¡— * . Then

we put y(xx,...,xr) = (xx,... ,x,_x, f,+ xx,+ x, f,+2x,+2,... ,frxr) and one can check

that this definition does not depend on the choice of the index i such that xt— * .

Now we can form the push-out:

VA -     Xr

!
<p i i

(JFX)r_x-> Y

and a straightforward analysis shows that Y coincides with (JFX)r. In this way we

could obtain a cell decomposition for JFX if we had a cell decomposition for A.

Let us consider the case X = S", « > 1. This case is specially interesting because

the spaces JFS" will be used to construct the models mentioned in the introduction.
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The sequence F of self-maps of Ais given by a sequence of integers {X,}i7s2. We have

a push-out:

v sn      -*     (s"Y

'vi i

(JFS")r_x     -     (JFS")r

Since the top map is a cofibration with cofibre S"r, we see that (JFS")r is obtained

from (JFS")r_x by attaching a cell e"r of dimension nr. Hence, JFS" has a cell

structure given by

JFS" = S"Ua2e2n UQ3e3" U ••• Liaern U •••

where ar depends only on A,,...,Ar. This 'dependence does not admit an easy

description but we can prove

Proposition 1. ar is divisible by Xr.

Proof. Let us consider the map «: (S")r -» (S")r with degree Xr on the last

component and degree one on all other components. We obtain a commutative

diagram of cofibration sequences:

s„r-\     ^      V5"     ^     (S")r     -»     S"r

r

fl l ih J,Z/

¡s»'-i   -♦    y s"   —   (s")r   —   snr
r

and by passing to cohomology we see that degree/= degree 2/= Xr. We have a

commutative diagram

S«r-1        ^ NV/sn        _^        (JFS")r_x

^ n r — 1 W  e n

where ^ is defined in the obvious way. Since tpr = ar, we get that Ar divides ar.    D

Notice that, since the suspensions of the attaching maps a, are homotopically

trivial, we have a homotopy equivalence 1JFS" - V °°=1 S"'+ '.

As a consequence, we obtain the additive structure of the cohomology of the space

JFS":

Z     if i = nt,t = 0,1,...,
H'(JFS"; Z)

[ 0     otherwise.

We are interested in computing the multiplicative structure of H*(JFS"; Z).

Proposition 2.  There are generators x, E H2"'(JFS2"; Z) such that x\ = ¡x,x,

where p, = JlXC'X'r2 • ■ • À2    A,,
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Proof. The canonical projection^: (S2"/ -4 (JFS2")r induces a map in cohomol-

ogy:

p*: H*((jFSln)r; Z) - H*((S2")r; z) a AU,,...,;,),

(where A means exterior algebra). The commutative diagram

VS2"        <-*      (S2n)r      -    52"r

I II

(jFS2")r_x     -*     (JFS2")r     -    S2"

shows that we can choose the generators xr G H2nr(JFS2"; Z) in such a way that

p*(xr) = f, • ■ ■ fr. Then there are integers jur such that x\ = p.rxr and sincep*(xx)r

= firp*(xr) = urf, • • • fr, it suffices to prove that

J^(jc,), = riX71X72.vXrfl>...J',.

Let us consider the commutative diagram:

S " -*      (S ")

r, 4 il»,

s2" = (/Fs2"),    -    (yFs2")r

where w; is the inclusion of the z'th component and degree v, = X, • ■ -X2, i > 1,

degree r, = 1. Passing to cohomology we find that the coefficient of f, in p*(xx) is

equal to A, • • • A2. Hence p*(xx) = f, + A2f2 + A2A3f3 + • • • +A2 • • • Arfr and so

p*(xxy has the desired value.    D

As a consequence we find that if all X,¥= 0 then JFS2" has the rational homotopy

type of A(Q,2«). Moreover, we see that the map JFS2n -> JS2n = ßS12"4"1 is a

rational homotopy equivalence.

However, not every 770-space of the rational homotopy type of 7C(Q, 2«) has the

homotopy type of some/FS2". The obvious counterexample is T<"(Z, 2) but there are

also counterexamples for every value of «. Following [5] there is a space X = S2"

Uae4" Upe6" such that H*(X; Z) has generators x, y, z in dimensions 2«, 4« and

6«, respectively, such that x2 = 4 v, xy = 3z. It is possible [2, Theorem 3] to attach

cells of dimension > 8« to X, obtaining a space Y which is an TT0-space of the

rational homotopy type of Ti(Q, 2«), This space cannot be of the homotopy type of

any JFS2" because the cohomology of Y does not satisfy the relations stated in

Proposition 2.

2. Geometric models for TT0-spaces. In this section we will prove

Theorem 3. Let X be an H0-space such that
r s

*o = II K(Q,2n,) X I] TC(Q,2my + l).
i=i i=i

Then there exist sequences Fx,...,Fr depending only on the ring H*( X; Z), and a map

JFS2"' X ■■■ XJFS2"' X s2m' + 1 X ■ • • XS2m'+i - A

which is a rational homotopy equivalence.
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Thus, the space JFS2"' X ■■■ XJFS2"' X S2m> + 1 X ■■■ XS2m'+l is a universal

space to the left of all spaces X having the same cohomology ring 77*( X; Z).

Proof. Let us denote by K the space W,= xK(Z,2nl) X W'J=i K(fL,2m¡ + I). We

have a map h: X -» K which is a rational homotopy equivalence. Let us denote by X

the fibre of h. Clearly, the homotopy groups of X are finite. Notice that we have

maps S2m'+i -> X, j: = l,...,s, such that the compositions S2m>+] -* X^K^

K(Z,2mj + 1) are rational homotopy equivalences. We want to construct a map

S2mt + i x ... xs2m-+l -* A such that the composition

, s

(1) s2m*+í X •■• XS2m-+l -* X-*K^  I] K(Z,2mj+ l)

7=1

is a rational homotopy equivalence. We do this by induction. Let us consider the

diagram (where we put S" = S2m' + l X ■•• XS2m'-' + l)

S'VS2m;+1       -»       5'V52V     _     x

S'X S2m'+i       -+      S'XS2m'+i     [-*     K

I I

S'AS2m' + l        ^       S"AS2"V+1

where /c is an integer. In order to construct the dotted map it suffices to check that

the obstructions vanish. They lie in <p*H*(S' A S2m'+X; tr^X) and so, since cp* is

multiplication by k and the groups tr^X are finite, the obstructions vanish for some

k and the lifting problem has a solution. In this way we get a map g: S -> X, where

S = S2m, + l X • ■ ■ X52m^+I, such that the composition in (1) is a rational homotopy

equivalence. Repeating the same kind of construction, we can obtain a map /,:

S X S2"' X • • • XS2"' -» X such that if x, E H2n(X; Z) denote the generators

corresponding to the map X -> K — Tí (Z, 2«,), then f*(x¡) = /,f, with /, ^ 0 and f,

the generator corresponding to S2"'. Then we have

f
SX S2"' X ■■■ XS2"- 4        A

i ^"/'

S X JFS2"' X ■■■ XJFS2"- '

and the theorem is proved if we construct a map fx extending/,. We shall do it by

constructing the sequences Fx,...,Fr and the map fx inductively. Let us assume we

have an extension of/, to

/„.,,: 5 x {jFS2"<)ti x ■ ■ ■ x {jFS2"-)ir - X

where Fx,...,Fr are finite sequences of length t,,...,tr, respectively. Then we will

prove that it is possible to add a new term to the sequence Fr and extend f     , to
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First of all, let us consider the extension problem:

I In   \
\JKS "r)tr -*.   SX

Since (JFS2n')t+x = (JFS2n'),r Uae2"Á''+]), the attaching map ar is divisible by

Ar+I and the homotopy groups of X are finite, we have that the dotted map exists if

we choose Ar+, conveniently. Now we have the following extension problem (where

we write Y = S X (/^S2"'),, X • • • X(JFr   S2"' '),,_,):

[y x (jFs2"-),] u[. x (jF.s2"')l+] -    [yx (JfS2"'),] u [ * X (jFS2"')] -     x

I_--'f* I h

Yx(jF,S2"')tr+] -                       Yx(jFS2"')l+l -      K

I I

KAS2"*,+ D 1 YAS2nÁ,r+\)

where F'r is the sequence obtained from Fr by multiplying the last term by the integer

k. The obstructions to construct the dotted map vanish for k big enough; this proves

the existence of fx.

It remains only to show that we can choose Fx,... ,Fr in such a way that they only

depend on H*(X; Z). During the proof above we have seen that Fx,...,Fr depend

only on the orders of the homotopy groups of X. But, for a fixed TT*( X; Z), there are

only finitely many possibilities for each (cf. [1]) and so if we write T^(| 7r*A|) for the

sequence constructed above, we can take Ft■ = l.c.w.{F;-(| tr^Y \), Y such that

H*(Y; Z) s H*(X; Z)) and these new sequences satisfy the conclusion of the

theorem for all TT0-spaces Y with the same integral cohomology ring as A.    D

While K = n,r=1 K(Z,2n,) X II}=1 K(Z,2mj + 1) is a universal space to the right

of all spaces having the same rational cohomology ring TT*(X; Q) = Q[xx,. ..,xr] ®

A(yx,...,ys), the universal space to the left we have constructed depends on the

integral cohomology ring. It is not possible, in general, to construct a universal space

to the left of all spaces having the same rational cohomology. To prove this we need

an algebraic lemma. The word algebra means "graded connected finite type com-

mutative associative algebra".

Lemma 4. Given an algebra A over Z such that A ® Q is free, for every « > 0 there

exists a torsion free algebra B over Z such that B ® Q = Q[w], dim u = 2«, and such

that for every algebra homomorphism <p: B -> A, (q> <S> Q)(u) is decomposable in

A ® Q.

Proof. For every / let P, he the set of all primes for which A ® Z is a free algebra

through dimension /. Then P, contains all but finitely many primes. Define B by

B = ®fLQB2rn, B2rn = Z with generator ur. Let {p,; t> 2} be a set of distinct

primes so that p, E P2n!. Define uk = U^=2 p,, n, = Q^z"* an<3 give B a ring

structure by urus = (pr+s/prps)ur+s. Then u[ = ptur Given any algebra homomor-

phism <p: B -> A, let us suppose tp <8> Q is not zero on the indécomposables. Then for
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almost all primes/?, <p <8> Z is nonzero on the indécomposables. Let t be the smallest

index such that <p <S> Z is nonzero on the indécomposables. We get a contradiction

because u\ — 0 in Ti ® Zp¡ while A ® Z^ is a free algebra through dimension 2«/.

Hence, (tp ® Q)( « ) is decomposable.    D

It is easy to see that if 7? is a torsion free algebra over Z such that B ® Q s Q[w],

dim u = 2u, there is a sequence of integers F and an algebra homomorphism

Ti — H*(JFS2"; Z) which is a rational isomorphism. If B has a basis {wr}, dim ur =

2nr, and the product is given by u\ = (i,u,, we consider F = {p,2, jtt3_} and define

<p: B^ H*(JFS2n; Z) by <p(u¡) = k,x, where *,. = ilp'f'^f2 ■ • • /i2_,.

Proposition 5. Le/ ^40 be a finitely generated free algebra over Q with at least

one even-dimensional generator. There is no universal space to the left of all X with

H*(X;Q)^A0.

Proof. Suppose Y is such a universal space and set A = H*(Y; Z). Suppose

A0 = A ® Q = Q[xx,...,xr] ® A(yx,...,ys), dim x, = 2«,, dim y, = 2mj. Let Ti be

the algebra given by Lemma 4 with respect to A and «,. We have a rational

equivalence B -» H*(JFS2"; Z) for some F. Let us consider the space A7 = JFS2"' X

2S2"2 X ••• X£2S2"'X S2"*, + 1 X ••• XS2m<+l. Since H*(X; Q) = A0 and since we

assume T universal, we have a rational equivalence Y -* X. This yields an algebra

homomorphism

B ^ H*(JFS2";Z) ® Y(X2,... ,Xr) ® A(YX.Yj) -* A

but this is not possible because every homomorphism from B to A is zero on the

indécomposables, after tensoring by Q.    D

3. Integral cohomology of 770-spaces. In this section we are concerned with

realizability of algebras as the integral cohomology of 770-spaces. Roughly speaking,

we will prove that if X0 = IIL ¡ K(Q, 2nf, X W)=, K(Q, 2n/ + 1), then under certain

conditions the algebra 7T*( A; Z) cannot be " too small" in the sense that it must

contain an algebra with divided powers T(XX,... ,Xr). Recall that T(XX,.. .,Xr) =

H*(Q,S2"' + i X ••• XS2S2"'+1; Z) is the graded Z-algebra which has a Z-basis

formed by monomials X(sx,...,sr) of dimension 2s,n, + ■•■ +2sr«r, and with

product defined by

X(sx,...,sr)X(t.,0=^+ '')•■■ (5'+r')AT(s,+/„...,sr+0.

It is clear that we should impose certain restrictions in order that the above result

can be true. First of all, there are polynomial algebras over Z which are realizable,

for example, Z[x2] = TT*(CP°°; Z). On the other hand it is known that for each «

there are infinitely many primes p such that the polynomial algebra on a generator in

dimension 2« is realizable over Z(p) (see [4]). This shows that our result can only be

true after localizing at a set of primes. Since T(xx,... ,xr) <E> Q = Q[xx.xr], the

result is trivially true after rationalization, that is, after localization at an empty set

of primes. We claim that it is actually true after localization at an infinite set of

primes.
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We use the following notation: given integers «,,... ,nr, we define a function \p by

where rp denotes the Euler function. If A is an TT0-space we denote by r, «,,... ,«r,

the integers such that A0 = Li;=1 7C(Q,2«,) X Hj=x K(Q,2mj + 1). We denote by

xx,...,xr even-dimensional generators of H*(X,Q) of dimension 2«,,...,2«r, re-

spectively, and we assume xx,... ,xr are integral classes.

Now we can state our result.

Theorem 6. Let X be an H0-space such that H*(X; Z) has torsion involving only

finitely many primes and assume r < \p(«,,... ,nr). Then there exist an infinite set of

primes P and a monomorphism

<p:T(xx,...,xr)^H*(X,Z{P)).

In the case r = 1 this result is contained implicitly in [21.

Lemma 7. Let nx,...,nrbe integers such that r < 4>(nx,.. .,nr). Then there exists an

integer q prime to «,,... ,«r such that q= I — rij («,), i, j = 1,... ,r.

Proof. Let N = nx ■ ■ ■ nr and let us consider an equation x = 1 — n, (n.). The

number of solutions of this equation in (0, N] is equal to N/n¡. If we consider now

the equationsx = 1 — n¿(nXi, j= I,... ,r, one sees easily that the set of x E (0, N]

that satisfy some of these equations has cardinality less than or equal to rN(2 1/«,-)•

But there are <p(A) integers in (0, N] which are prime to N. Since <p(A/) >

rN(2 1/«,), we conclude that there must be some x E (0, N] prime to N that does

not satisfy any equation x ä£ 1 — n¡ (n ).    D

Proposition 8. Let X be an H0-space such that r < »//(«,,... ,nr). Then the set P of

primes p such that xf = 0 (p), i = l,...,r, in H*(X; Z), is infinite.

Proof. Let q he an integer as in Lemma 7. A classical theorem of Dirichlet says

that the set 7" of primes/? such that/? = q («, • • • nr), /?>«,,.. .,nr, is infinite. To

prove the proposition we will show that P' C P.

Assume that there is a prime/? G 7", p Ç P. Then there exists x, such that xf = 0

(/?). In H*(X; Zp) we have 6y"'xl = xf ¥= 0, where 9 denotes the Steenrod powers.

Let I be the ideal of H*(X; Zp) generated by x,,j ¥= i. If (3']x, £ T then we obtain a

relation/? = 1 («,) and since/? = q(nx • ■ ■ nr), this implies q = 1 («,), a contradic-

tion. Hence, ':P'x, E I. But (9l)n'x, = n¡\x{ because /? > «, and so there must be a

generator Xj such that 6f[Xj £ I. This implies a relation/? si—«, (n,) and this is a

contradiction.    D

Proposition 9. Let X be an HQ-space and let P = {/? /?nwe | jcf = 0 (/?), » =

1,... ,r) n [p prime \ H*(X; Z) has nop-torsion). Then there exists a monomorphism

<p:T(Xx,...,Xr)^H*(X;Z(P)).
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Proof. We can find linearly independent elements x(sx,... ,sr) in 77*( A; Z) which

correspond to xsx',.. .,xs/ in H*(X; Q), up to some nonzero coefficient. Then

x, = x(0,..., 1,... ,0) with the one in the ith place. The product of these elements
■11   1. uwill be given by

x(sx,...,sr)x(tx,...,tr) = X(sx,...,sr\tx,...,tr)x(sx + f,,..., sr + tr)

where A(s,,. ..,sr\tx,...,tr) are integers. The class xf, i = I,. ..,r, is divisible by p

in H*(X; Z(P)) because we are localizing away from the primes that do not divide

xf. We apply now the corollary of [2, p. 253] and we obtain that xf is divisible by k\

for all k. Hence, x\y • • • xs/ is divisible by s,! • • • sr!. On the other hand, x\' • • • xs/ =

p(sx,...,sr)x(sx,.. .,sr), where ¡i(sx,...,sr) is a certain element of Z(P). We have

p(sx,.. .,sr) = s,! • • • sr!co(s,,.. .,sr). Let us define tp: T(XX,.. .,Xr) -> H*(X,Z(P))

by <p(A(s,,. .-,sr)) = w(s,,... ,sr)x(s,,.. .,sr). It is clear that <p is a monomorphism

of Z-modules. It remains only to show that <p is compatible with the multiplicative

structures.

f<Jt(*I.....OJf('|.-...'r))ss(*,Í'1)-   (Srt'r)

Xco(s, + /,,..., sr+ tr)x(sx + f,,..., sr + ;,.),

(•)
(P(A(s,,...,sf))<p(A(r1,...,ir)) =u(sx,...,sr)u(tx,...,tr)

XX(sx,...,sr\tx,...,tr)x(sx + {,,..., Sr + tr).

We have

xsx< ■■■xs/x[ ■■■x'/ = ii.(sx,...,sr)p(tx,...,tr)

XX(sx,...,sr\tx,...,tr)x(sx +tx,...,sr+ tr),

\-s\    .   .   .   \~sr\'h    .   .   .   Ylr   -    -vS\+t]    .   .   .   vsr+ir

= íi(í, + tx,...,sr + tr)x(sx + tx,...,sr + tr).

Hence,

p{sx,...,sr)n(tx,...,tr)X(sx,...,sr\tx,...,tr) = p(sx + /,,..., sr+ tr)

and so

s,! •••«,!*,! ■■■tr\u(sx,...,sr)u>(tx,...,tr)X(sx,...,sr\tx,...,tr)

= (s, + tx)\ ••• (sr+ ir)!w(j, + *„...,*, +/r).

From this equality we see that both expressions in (*) coincide.    D

Now Theorem 6 follows immediately from Propositions 8 and 9.    D

Note that in general the set P in Theorem 6 cannot be taken with  finite

complement because for every « the polynomial algebra over Z(p) on a generator in

dimension 2« is realizable for infinitely many primes [4]. Notice also that Theorem 6

implies that if Z[x] is realizable then dim x = 2,4.
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