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THE CATALAN EQUATION OVER FUNCTION FIELDS
BY
JOSEPH H. SILVERMAN

ABSTRACT. Let K be the function field of a projective variety. Fix a, b, c € K*. We
show that if max{m, n} is sufficiently large, then the Catalan equation ax™ + by" = ¢
has no nonconstant solutions x, y € K.

The Cassels-Catalan conjecture states that for fixed nonzero integers a, b, ¢, the
equation ax” + by” = ¢ has only finitely many solutions in integers x, y, m, n
satisfying m =3 and n, |x|, |y|= 2. At present, the only known case of this
conjecture is a = -b = ¢ = 1, due to Tijdeman [6]. In this paper we prove a
strengthened version of the Cassels-Catalan conjecture in the case that the number
field Q is replaced by an arbitrary function field. The proof uses only elementary
algebraic geometry, the principal tool being the Riemann-Hurwitz formula.

THEOREM. Let k be a field of characteristic p ( possibly with p = 0), and let K /k be
the function field of a nonsingular projective variety. Fix a, b, c € K*.

Then there are only finitely many pairs of integers m, n = 2 ( prime to p if p 7 0) for
which the Cassels-Catalan equation ax™ + by" = ¢ has even a single nonconstant
solutionx,y € K, x,y & k.

Further, for any particular pair m, n as above, there will be only finitely many
solutions x, y € K unless either:

(i) a/c is an mth power and b/c is an nth power in K, in which case there may be
infinitely many solutions (x, y) = (a(a/c)'/™, B(b/c)"/") with a, B € k satisfying
a”+ B"=1;or

(i) (m, n) € {(2,2), (2,3), (3,2), (2,4), (4,2), (3,3)}, in which case the Cassels-
Catalan equation defines a curve of genus 0 or 1 over K.

PrOOF. We first note that taking “generic” hyperplane sections of the variety
whose function field is K, we are reduced by Bertini’s theorem to the case that
K = k(C) is the function field of a nonsingular projective curve C. (See, e.g., [5] for
the details of this standard reduction.) Second, we may replace k by its algebraic
closure, since at worst this will create extra solutions. Third, dividing the equation by
c and replacing a and b by a/c and b /c, we may assume that our equation is

(*) ax™+ by" = 1.
Let D = max{deg(a),deg(b)}. (Note a and b are now functions on the curve C, so
have degrees.) By symmetry, we may assume that m = n.
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Consider the desingularization of the covering of C given by the equations
u™ = a, v" = b. Since this is a composition of cyclic coverings (note that k£ contains
both an mth and an nth root of unity), it will consist of a union of isomorphic
curves. Let C’ be any one of these curves, and f: C’ — C the natural map. We note
for future reference that the degree of f divides mn; in particular, deg( f) is prime to
pifp>0.

Let V/C be the projective surface given by the equation ax” + by"z™ ™" = z"™.
Let V"=V X_-C’ be base extension of V by C’. If V}, is the projective curve
X™+ Y"Z™™" = Z"™ then we have a natural map

V' -V,
[x,,z] - [ux, vy, z].
Further let V§ be the desingularization of ¥, and A: V§ — ¥, the natural map.

Now suppose that we are given functions x, y € k(C) which satisfy equation (x).
Then P = [s, y, 1] gives a section P: C — V. This extends to a section C' - V’, and
composed with the map ¥V’ - ¥, from above, gives a map of curves C’ —» V. But C’

is nonsingular, so it factors through the normalization map 4 to yield a map ¢:
C’ - V§. All of this is summarized in the following diagram.

a ———=-> =

Assume for now that ¢ is surjective. (The other case is dealt with later.) We apply
the Riemann-Hurwitz formula twice, once to ¢ and once to f. Note that since deg( f)
is prime to p = char(k), there is no wild ramification in f even if p > 0. (See, e.g.,
[3, Chapter IV. 2] for basic facts about the Riemann-Hurwitz formula.)

[28(VE) — 2]deg(9) < 25(C") — 2
=[2g(C) — 2]deg(f) + X [e(f) — 1],

teC
where e,(f) = deg(f) — #f7'(t) + 1. Now e,(f) < deg(f), and the only points
t € C at which f can possibly ramify are zeros and poles of @ and b. Thus e,( f) = 1
except possibly at 4D points of C, hence

2 [ef) — 1] <4D deg(f).

teC

(*x)

It is an elementary exercise to resolve the singularity of ¥} at [0, 1,0] (which is
singular if and only if m — n > 1) and compute the Euler characteristic of V. One
finds

26(Vf)—2=mn—m—n— (m,n),

where (m, n) is the greatest common divisor of m and n.
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Next we express deg(¢) in terms of x and y. Consider the following commutative
diagram.

deg;ee 1 v, degree mn pl

[X, ¥, Z] —— [X™, Z™]
¢ [ax™, 1]

Ve

! C
¢ 7
From this we read off

deg(ax™)deg(f) _, (deg(x™) — D)deg(f)

mn mn

deg(¢) =

Using a similar diagram we obtain

deg(by")deg(f) , (deg(y") — D)deg(f)

deg(¢) =

Now putting all of these computations into the inequality (**) and dividing by
deg( f), we obtain

(5—m" —n'=[m,n]")D +2g(C) -2
= (1 —m'—n'—[m, n]")max{deg(x'"),deg(y")},

where [m, n] is the least common multiple of m and n. In particular we obtain the
fundamental inequality

(+) 5D +2g(C) =2 (1—m™ = n' = [m, n]™") max{deg(x™), deg(y")}.

We now check the case that ¢ is a constant map. This will mean that ux and vy are
constant functions on C’, so raising to the mth (respectively nth) power we find that
ax™ and by" are in the constant field k. Hence, since ab # 0, deg(x™) < deg(a) < D
and deg(y") < deg(b) < D. These are stronger than the inequality (+) except in the
one trivial case D = g(C) = 0, in which case they imply that deg(x) = deg(y) =0,
while (+) would yield the impossibility -2 = 0. In any case, (+) holds whenever x
and y are not constant functions.

It is easy to check that if m, n = 2 are integers other than the six pairs listed in (ii)
of the theorem, then

1=-1/m—=1/n—1/[m,n]=1/6
(attaining this minumum for (m, n) = (6, 2)). Now since our solution x, y € k(C) to

(*) was assumed to be nonconstant, we have deg(x), deg(y) = 1, so the inequality
(+) yields

5D + 2g(C) — 2 = {max{m, n}.
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This bounds the possibilities for m and n. Then, for any particular m and n,
5D + 2g(C) — 2 = tmax{mdeg(x), ndeg(y)}

bounds deg(x) and deg(y). But a curve of genus at least 2 over a function field K
can have only finitely many points of bounded degree unless the curve is birational,
over K, to a curve defined over the field of constants k. Further, all but finitely
many of thoses points will come from k-valued points on the new curve. (See
[5, Corollary on p. 42]. Note that the result is true also for char(k) = p > 0, since we
have taken k to be algebraically closed. In general, one must take a purely
inseparable extension of k.) One easily checks that the only way for the Cassels-
Catalan equation (*) to reduce to an equation over k is for a to be a mth power and
b to be an nth power, which is the case covered by (i) of the theorem.

The inequality (+) derived in the course of proving the above theorem is of
independent interest, since it gives effective bounds for m, n, deg(x), deg(y) in the
case that K is the function field of a curve. We therefore state it separately.

THEOREM. Let k be a field and C /k a nonsingular projective curve with function field
k(C). Fix two functions a, b € k(C)*. Suppose m, n =2 are integers | prime to
char(k) if char(k) # 0] and x, y € k(C) are functions satisfying ax™ + by" = 1.
Then

Smax{deg(a),deg(b)} +2g(C) —2
>(1-m' =n'~[m, n]™')max{deg(x™), deg(y")}.

(except in the trivial case g = deg(x) = deg(y) = deg(a) = deg(b) = 0).

It is likely that the coefficient 5 in the left-hand side of this inequality can be
improved, and one might ask what the best possible result is. In the special case that
g = 0 (so k(C) = k(¢) is a rational function field), if one restricts x and y to be
polynomials, then Davenport has used very different arguments to obtain a similar
inequality [1]. If g = 0, a = b = 1, and m = n (i.e. the Fermat equation over k(t)),
one can show the nonexistence of nonconstant solutions in k(¢) by an easy descent
argument [2]. Both of these proofs, however, use the unique factorization of k[¢], so
do not readily generalize to other functions fields.

Returning to the case of number fields, one is tempted to conjecture that an
inequality of this sort should hold (with 2g(C) — 2 replaced by some function
involving the degree of the number field over Q). From this the strengthened version
of the Cassels-Catalan conjecture would follow formally as in the above proof.
(Notice a corollary would be Fermat’s last theorem for sufficiently large exponents!)
A similar inequality, but only for integral rather than rational solutions, has been
proposed by Lang and Waldschmidt [4, p. 213]. They also show how it would follow
from a certain Baker-style diophantine inequality, but this unfortunately seems well
beyond current techniques.
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