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THE CATALAN EQUATION OVER FUNCTION FIELDS

BY

JOSEPH H. SILVERMAN

Abstract. Let K be the function field of a projective variety. Fix a, b, c E K*. We

show that if max {m, n} is sufficiently large, then the Catalan equation axm + by" = c

has no nonconstant solutions x, y €E K.

The Cassels-Catalan conjecture states that for fixed nonzero integers a, b, c, the

equation axm + by" — c has only finitely many solutions in integers x, y, m, «

satisfying m > 3 and n, |x| , | v|s= 2. At present, the only known case of this

conjecture is a = -b = c = 1, due to Tijdeman [6], In this paper we prove a

strengthened version of the Cassels-Catalan conjecture in the case that the number

field Q is replaced by an arbitrary function field. The proof uses only elementary

algebraic geometry, the principal tool being the Riemann-Hurwitz formula.

Theorem. Let k be a field of characteristic p ( possibly with p = 0), and let K/k be

the function field of a nonsingular projective variety. Fix a, b,c E K*.

Then there are only finitely many pairs of integers m, « > 2 (prime to p if p ¥= 0)for

which the Cassels-Catalan equation axm + by" = c has even a single nonconstant

solution x, y E K, x, y & k.

Further, for any particular pair m, « as above, there will be only finitely many

solutions x,y E K unless either:

(i) a/c is an mth power and b/c is an nth power in K, in which case there may be

infinitely many solutions (x, y) = (a(a/cy/m, ß(b/cy/n) with a, ß E k satisfying

oJ" + ß" — 1* or

(ii) (m, n) E {(2,2), (2,3), (3,2), (2,4), (4,2), (3,3)}, in which case the Cassels-

Catalan equation defines a curve of genus 0 or 1 over K.

Proof. We first note that taking "generic" hyperplane sections of the variety

whose function field is K, we are reduced by Bertini's theorem to the case that

K = k(C) is the function field of a nonsingular projective curve C. (See, e.g., [5] for

the details of this standard reduction.) Second, we may replace k by its algebraic

closure, since at worst this will create extra solutions. Third, dividing the equation by

c and replacing a and b by a/c and b/c, we may assume that our equation is

(*) axm + by"=l.

Let D — max{deg(a),deg(¿>)}. (Note a and b are now functions on the curve C, so

have degrees.) By symmetry, we may assume that m s* n.
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Consider the desingularization of the covering of C given by the equations

um = a, v" = b. Since this is a composition of cyclic coverings (note that k contains

both an wth and an «th root of unity), it will consist of a union of isomorphic

curves. Let C be any one of these curves, and /: C" -* C the natural map. We note

for future reference that the degree of /divides mn; in particular, deg(/) is prime to

p ifp > 0.

Let V/C he the projective surface given by the equation axm + by"zm~" = zm.

Let V = V X c C he base extension of V by C. If V0 is the projective curve

Xm + Y"Zm~" = Zm then we have a natural map

V -* V0,

[x, y, z] -» [ux, vy, z].

Further let V¡f he the desingularization of V0 and «: K0* -» V0 the natural map.

Now suppose that we are given functions x, y E k(C) which satisfy equation (*).

Then P'— [s, y, 1] gives a section P: C -» V. This extends to a section C -» V, and

composed with the map V ~* V0 from above, gives a map of curves C -> V0. But C

is nonsingular, so it factors through the normalization map n to yield a map (j>:

C -* F0*. All of this is summarized in the following diagram.

■> V
.

i
i P
l

.,i

*■ C

Assume for now that <}> is surjective. (The other case is dealt with later.) We apply

the Riemann-Hurwitz formula twice, once to (¡> and once to/. Note that since deg(/)

is prime to p — char(£), there is no wild ramification in / even if p > 0. (See, e.g.,

[3, Chapter IV. 2] for basic facts about the Riemann-Hurwitz formula.)

[2g(^)-2]deg(*)«2*(C')-2

M =[2g(C)-2]deg(/)+  2 k(/)-l],
tec

where e,(f) = deg(f) — #/"'(/) + 1. Now e,(f) «C deg(/), and the only points

/ G C at which /can possibly ramify are zeros and poles of a and b. Thus e,(f)— 1

except possibly at 4D points of C, hence

2 [e,(f)-l]<4Ddeg(f).
tec

It is an elementary exercise to resolve the singularity of V0 at [0,1,0] (which is

singular if and only if m — « > 1) and compute the Euler characteristic of F0*. One

finds

2g(V£) — 2 = mn — m — « — (m, n),

where (m, n) is the greatest common divisor of m and «.
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Next we express deg(<f>) in terms of x and y. Consider the following commutative

diagram.

V*yo

C

degree 1

h
■*■ v„

degree mn

[X, Y, Z] h -*[Xm, Zm]

[axm, 1]

/
-»•  C

From this we read off

de U) = àeg(axm)deg(f)     (deg(x-) - F>)deg(/)
™" mnmn

Using a similar diagram we obtain

deg(A) = deg(fc>-")deg(/) > (deg(y") - D)deg(f)
mn mn

Now putting all of these computations into the inequality (**) and dividing by

deg(/), we obtain

(5 - «T1 - n"1 - [m, «]"')/) + 2g(C) - 2

>(l- «j"' - «"' - [m, n]"')max{deg(xm),deg( v")},

where [m, n] is the least common multiple of m and «. In particular we obtain the

fundamental inequality

( + )    5D + 2g(C)-2>(l -m~] - «"' - [m, n]]) max{deg(xm), deg(y")}.

We now check the case that d> is a constant map. This will mean that ux and vy are

constant functions on C, so raising to the rath (respectively «th) power we find that

axm and by" are in the constant field k. Hence, since ab =£ 0, deg(xm) *£ deg(a) « D

and deg(y") <i deg(b) < D. These are stronger than the inequality ( +) except in the

one trivial case D = g(C) = 0, in which case they imply that deg(x) = deg(y) = 0,

while ( + ) would yield the impossibility -2 > 0. In any case, ( + ) holds whenever x

and y are not constant functions.

It is easy to check that if m, n > 2 are integers other than the six pairs listed in (ii)

of the theorem, then

1 - \/m - 1/« - l/[m,n]> 1/6

(attaining this minumum for (m, n) - (6,2)). Now since our solution x, y E k(C) to

(*) was assumed to be nonconstant, we have deg(x), deg( v) > 1, so the inequality

( + ) yields

5D + 2g(C)-2»imax{m,n}.
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This bounds the possibilities for ra and «. Then, for any particular ra and «,

5D + 2g(C) - 2>imax{radeg(x),«deg(v)}

bounds deg(x) and deg(y). But a curve of genus at least 2 over a function field K

can have only finitely many points of bounded degree unless the curve is birational,

over K, to a curve defined over the field of constants k. Further, all but finitely

many of thoses points will come from ^-valued points on the new curve. (See

[5, Corollary on p. 42]. Note that the result is true also for char(A:) = p > 0, since we

have taken k to be algebraically closed. In general, one must take a purely

inseparable extension of k.) One easily checks that the only way for the Cassels-

Catalan equation (*) to reduce to an equation over k is for a to be a rath power and

b to be an « th power, which is the case covered by (i) of the theorem.

The inequality ( + ) derived in the course of proving the above theorem is of

independent interest, since it gives effective bounds for ra, «, deg(x), deg(y) in the

case that K is the function field of a curve. We therefore state it separately.

Theorem. Let k be a field and C/k a nonsingular projective curve with function field

k(C). Fix two functions a, b E k(C)*. Suppose ra, n > 2 are integers [prime to

char(/c) // char(A:) ¥= 0] and x, y E k(C) are functions satisfying axm + by" — 1.

Then

5max{deg(a),deg(ci)} + 2g(C) - 2

3»(l - ra"1 - n"1 - [ra, «]~,)max{deg(xm),deg(y")}.

(except in the trivial case g = deg(x) — deg(y) = deg(a) = deg(Z>) = 0).

It is likely that the coefficient 5 in the left-hand side of this inequality can be

improved, and one might ask what the best possible result is. In the special case that

g = 0 (so k(C) — k(t) is a rational function field), if one restricts x and y to be

polynomials, then Davenport has used very different arguments to obtain a similar

inequality [1], If g — 0, a — b = 1, and ra = n (i.e. the Fermât equation over k(t)),

one can show the nonexistence of nonconstant solutions in k(t) by an easy descent

argument [2]. Both of these proofs, however, use the unique factorization of k[t], so

do not readily generalize to other functions fields.

Returning to the case of number fields, one is tempted to conjecture that an

inequality of this sort should hold (with 2g(C) — 2 replaced by some function

involving the degree of the number field over Q). From this the strengthened version

of the Cassels-Catalan conjecture would follow formally as in the above proof.

(Notice a corollary would be Fermat's last theorem for sufficiently large exponents!)

A similar inequality, but only for integral rather than rational solutions, has been

proposed by Lang and Waldschmidt [4, p. 213]. They also show how it would follow

from a certain Baker-style diophantine inequality, but this unfortunately seems well

beyond current techniques.
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