
transactions of the
american mathematical society
Volume 273, Number I, September 1982

TOPOLOGICAL INVARIANT MEANS ON

THE VON NEUMANN ALGEBRA VN(G)

BY

CHING CHOU1

Abstract. Let VN(G) be the von Neumann algebra generated by the left regular

representation of a locally compact group G, A(G) the Fourier algebra of G and

TIM(G) the set of topological invariant means on VN(G). Let f, = (0 6 (/°°)*:

S>«, lieII = 1 and 6(/) = 0 if /e /°° and /(«) -> 0}. We show that if G is

nondiscrete then there exists a linear isometry A of (/°°)* into KA/(G)* such that

A(5\) C TIM(G). When G is further assumed to be second countable then ti1 can

be embedded into some predescribed subsets of TIM(G). To prove these embedding

theorems for second countable groups we need the existence of a sequence of means

[u„] in A(G) such that their supports in VN(G) are mutually orthogonal and

II uu„ - un || -» 0 if u is a mean in 4(G).

Let F(G) be the space of all T G KA/fG) such that m(T) is a constant as m runs

through TIM(G) and let H^G) be the space of weakly almost periodic elements in

VN(G). We show that the following conditions are equivalent: (i) G is discrete, (ii)

F(G) is an algebra and (iii) (A(G) ■ VN(G)) n F(G) C W(G).

I. Introduction. Let G be a locally compact group and VN(G) the von Neumann

algebra of G, i.e., the von Neumann algebra on L2(G) generated by the operators

X(f), f E L\G) where A(/)(«) = /* « if « G L2(G). The predual of VN(G) can be

realized as an algebra of continuous functions on G, namely, A(G), the Fourier

algebra of G. Indeed, each u G A(G) can be written as « * k where h, k E L2(G),

k(x) = k(x~x), x G G. For T G FA(G) and u = h*k~ E A(G), (T, ü) equals the

inner product of F(n) and k in L2(G) where ü G /1(G) is defined by ú(x) = w(x').

/1(G) with pointwise multiplication and the norm

Hull = inf{\\h\\2\\k\\2: u = h * k, h, k E L2(G)}

is a commutative Banach algebra. Furthermore, VN(G) is an A(G)-module where,

for u E A(G), T E VN(G), u ■ Tis defined by (u ■ T,u)= (T, uv), v E A(G). One

has \\u ■ F|| =£ Hull ||F||. For more details on the algebras VN(G) and A(G) see

Eymard [8].
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Let PX(G) = [u E A(G): u is positive definite and ||u|| = «(e) = 1}, or equiva-

lent^, the set of normal states of VN(G). m G VN(G)*, the conjugate Banach space

of VN(G), is said to be topological invariant if ra(w ■ F) = w(F) if F G VN(G) and

u E PX(G). m G VN(G)* is called a mean (or a state) if w > 0 and m(I) = 1 where

/ is the identity operator of L2(G). Let TIM(G) denote the set of all topological

invariant means of VN(G). It is known that TIM(G) is a nonempty w*-compact

convex subset of VN(G)* and it is a singleton if and only if G is discrete, cf. [23].

Topological invariant means on VN(G) were first studied by Dunkl and Ramirez

[5] for compact groups. They showed that if G is an infinite compact group then

card TIM(G) s* 2 (and hence > c where c is the cardinality of the continuum).

Renaud [23] proved that if G is any nondiscrete locally compact group then

card F/M( G ) 5= 2. In [13, Proposition 2 and Theorem 3], Granirer obtained a

stronger result: If G is a nondiscrete locally compact group then TIM(G) is not even

norm separable.

Letf, = {0 £(/")•: HO II = l,0»Oand0(/) = Oif/G/°° satisfies lim,,/(«)

= 0}. In §111 we will prove the following.

Theorem 1. Let G be a nondiscrete locally compact group. Then there exists a linear

isometry A o/(/°°)* into VN(G)* such that k(%) C TIM(G).

Consider ßN\N as a subset of ÜJ, and let E= A(ßN\N) C TIM(G). Then

card E — 2C and if ra,, ra2 G E, ra, ^ ra2, lira, — ra2ll = 2. In particular, if G is

nondiscrete, card TIM(G) > 2C. Hence, our Theorem 1 is stronger than Granirer's

result quoted above. If G is assumed to be second countable then the conclusions in

Theorem 1 can be strengthened.

Theorem 2. Let G be a second countable nondiscrete locally compact group, F a

convex subset of P,(G) and T„ E VN(G), « = 1,2,_LetJ       IV      I „ V      h

A = [w* cl F] n {m E TIM(G):m(T„) = 0, n = 1,2,...}.

If A is not empty then there exists a linear isometry A of(lx)* into VN(G)* such that

A(9i) C A. In particular, card A > 2C and A has no w*-exposedpoints.

The format of the above theorem is due to Granirer [13, Theorem 1] where he

proved that the set A is not norm separable and contains no n>*-exposed points when

G is further assumed to be separable.

A net {«„} in PX(G) is topological convergent to invariance if limjlw • ua — ua\\

— 0 for each u E PX(G). Renaud [23] proved that such nets always exist and when G

is second countable there exist sequences in PX(G) which are topological convergent

to invariance.

Since each u E PX(G) is a normal state of VN(G), one may define the support of u

in VN(G); see Sakai [25, p. 31]. The key fact we need for proving Theorems 1 and 2

is that if {«„} is a sequence in PX(G), convergent to topological invariance, then

there exist a subsequence {un } and another sequence {vk} in PX(G) such that

limjlu,, — vk\\ =0 and the supports of the vk's are mutually orthogonal projec-

tions. This fact is a consequence of the following result in §11.
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Theorem 3. Let <3,be a von Neumann algebra. Suppose {<pn} is a sequence of normal

states of â such that limn || <p — <p„ || = 2 for each normal state (p. Then there exist a

subsequence {qp„ } of {%} anda sequence of normal states {\pk} such that

lim II %  -*J|=0
It k

and the supports of the \pk's are mutually orthogonal.

If G is abelian and G is its dual group then A(G) can be identified with L[(G) (by

Fourier transform) and VN(G) with LX(G); each/ G LX(G) can be considered as a

multiplication operator on L2(G) which is isomorphic to L2(G) by Plancherel's

theorem. Under these identifications, the module action of LX(G) on LX(G) is just

the usual convolution. Therefore ra G VN(G)* belongs to TIM(G) if and only if the

corresponding mean on LX(G) is topological invariant as defined in Greenleaf

[15, p. 24]. Recall that /G LX(G) is called topological almost convergent if m(f)

equals a fixed constant as ra runs through the set of all topological invariant means

of LX(G), cf. Wong [26]. It is therefore natural to give the following.

Definition. Let G be a locally compact group F G VN(G) is said to be topologi-

cal almost convergent to d(T) if m(T) equals d(T) for each ra G TIM(G). The

space of all topological almost convergent elements in VN(G) will be denoted by

F(G).

If G is abelian then UC(G), the space of bounded uniformly continuous functions

on G, equals L'(G) * L°°(G) and it is pointed out in [6] that an /.""-function on G is

weakly almost periodic if and only if the operator <p i-» <p * /of L[(G) into LX(G) is

weakly compact. Therefore, for a general locally compact group G, Granirer [12]

denoted the norm closure of A(G) ■ VN(G) by UC(G) and called it the space of

uniformly continuous functionals of A(G) and Dunkl-Ramirez [6] called [T E

VN(G): an u • F is a weakly compact operator of A(G) into VN(G)} the space of

weakly almost periodic functionals of A(G) and denoted it by W(G). It is known

that UC(G) is a C*-subalgebra and a sub module of VN(G), see [14], and W(G) is a

selfadjoint closed submodule of VN(G), see [6].

Ifw,,ra2 G TIM(G) and ra, ^ra2thenra, | UC(G) ¥= m2\ UC( G ). Therefore, by

Theorem 1, if G is nondiscrete then the quotient Banach space UC(G)/F(G) D

UC(G) is not norm separable. In particular, since W(G) C F(G) (see [6]),

UC(G)/W(G) n UC(G) is not norm separable. Our Theorem 1 also implies Theo-

rem 12 of [12].

In §IV, we will study the space F(G). Characterizations of F(G) will be obtained.

When G is second countable we can describe all the multipliers of F(G).

Theorem 4.  Let G be a second countable nondiscrete locally compact group,

T G VN(G). Then the following two conditions are equivalent:

(a)F-F(G)CF(G).

(b) F G F(G) and d((T - d(T))(T - d(T))*) = 0.

Ifx G G, À(x) will denote the operator on L2(G) defined by X(x)(h)(y) — h(x~]y)

where « G L2(G), y E G, i.e., X is the left regular representation of G. The above

theorem has the following consequence.
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Theorem 5. Let G be a locally compact group. Then the following five conditions are

equivalent:

(a) G is discrete.

(h)F(G)= VN(G).

(c) F(G) is an algebra.

(d) There exists x E G, x ¥= e such that X(x)F(G) C F(G).

(e) F(G) n ÍAC(G) C W(G).

For abelian G, the above two theorems are equivalent to our results in §3 of [3].

In §V we will outline how Theorem 3 can also be applied to obtain embeddings of

^T, into the set of topological invariant means on L°°(G) when G is a noncompact

a-compact locally compact amenable group and into the set of left invariant means

on l°°(S) when S is a countable left amenable semigroup without finite left ideals.

Some of the results will be stated in a format similar to that of Granirer [11].

Notations. If F is a Banach space its conjugate Banach space will always be

denoted by E*. If x G E and 0 G E*, the evaluation of 0 at x depending on the

situation, will be denoted by one of the following: 0(x), x(0), (x, 0), (0, x). The

a(E*, £)-topology on E* will be referred as the u>*-topology and the a(E, £*)-

topology on E as w-topology. Whenever convenient we will consider F as a subspace

of its second dual F**.

In this paper G will always denote a Hausdorff locally compact group with a fixed

left Haar measure ¡x = pG. Integration with respect to ju will be written as / ■ ■ ■ dx.

The identity of G will be denoted by e. Whenever we are simultaneously considering

more than one group the left regular representation X of G will be denoted by XG. If

/ is a function on G and x G G then the functions xf and fx are defined by

J{y) =f(xy),fx(y) = f(yx),y g G.
Further notations will be introduced in the text of the paper.

II. Orthogonal sequences of normal states of a von Neumann algebra. Let 6£ be a

von Neumann algebra and d^ its predual, i.e., the space of normal linear functionals

on 6B, see [25]. If tp G (£„ and <p > 0 then there exists a smallest projection F G 6?

such that <p(P) = (p(I) — ll<pll- (/ denotes the identity of (S.) P is called the support

of tp and will be denoted by S(<p). If tp, and <p2 are positive normal linear functionals

of & then we say tp, is orthogonal to <p2 if their supports are orthogonal, or

equivalently, ||<p, — cp2|| = ||<p,|| + ||<p2||. If <p G #„ is hermitian, then it can be

written as the difference of two positive elements <p+ , tp~ in &M with tp + orthogonal

to cp". Such a decomposition is unique and will be called the orthogonal decomposi-

tion of cp, cf. [25, p. 31]. As usual, if <p G (£,, <p > 0 and (p(/) = 1 then <p is called a

normal state of fcE.

Lemma 2.1. Let (Î be a von Neumann algebra. Assume that <p = <px — <p2 where

<p,, <p2 are normal states of (3 and Htp, — cp21| > 2 — e, e > 0. // rp = rp+ —<p" is the

orthogonal decomposition of y then ||<p, — <p+ || *£ fie and ||<p2 — <p"|| < fie .

Proof. Note that since <p(/) = <p,(/) - y2(I) =1-1=0, ||<p+ || = <p+(l) =

<p"(l) = II <p"11. On the other hand,

2 - e «= llcpll = l|(p+ II + Hgrll = 2||<p+ || = 2||<p1|.
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Therefore, ||tp+ Il = ||<p"|| s* 1 - t/2. Now

II<p + || = <p+ (S(<p+ )) = <p(S(<p+ )) = <p,(S(<p+ )) - <p2(S(<p+ )).

Hence 1 - <p,(S'(<p+ )) + y2(S(<p+ )) < t/2. Since, 1 - <p,(S(<p + )) 2* 0, <p2(S(<p+ ))

> 0, we conclude that

(1) <p,(/-S(<p+)) = l-9,(<>(V))<:e/2,

(2) <p2(S(<P+)) <e/2.

Therefore, if F G S, we have

(3) |«p,((5((p+)-5((p,))F)| = |<p,((S((p+)-/)F)|

« <p,(F*F)1/2(p|(/ - 5(<p+ ))'/2 < {7/2 liril,

by (1), and

(4) |«p2(5(<p+)F)|<m2(S(<p+))'/2<p2(F*r)l/2</¡72||F||,    by (2).

Hence,

|<p+(T)-<p,(F)| = |m+(S(<p+)F)-«p,(F)|

= |<p,(5(<p+)F)-92(5(<p+)F)-<pI(F)|

<|m,(S(<p+)F)-<p,(S(<p,)F)|+|<p2(S(<p+)F)|

< /e72||F|| + ^/e/2 liril = \¡2¡\\T\\,

by (3) and (4). So, II tp, — tp+ II < f2t, as we wanted. Similarly, ||tp2 — tp"|| '< f2s .

Our proof of the above lemma is motivated by the proof of the uniqueness of the

orthogonal decomposition as given in Sakai [25, p. 32].

If <p G 6E* and F G &, let Ftp G 6E„ be defined by (T<p)(S) = <p(TS), S G &. Note

that ||Ftp|| < ||F|| ||tp||. If <p G 6E* is positive then <p = S(<p)<p. If F G é£ is a

projection then S(P(p) < F.

Let <p = tp, — <p2 = <p+— <p~, ||<pl|>2 —e, be as in Lemma 2.1. Let ip, =

S((p1)<p+/||S'(<p,)<p+ II. Then ip, is a normal state of & and 5(t//,) < S(cpx). We claim

that ||tp, -i//,|| < 2v/27. Indeed, let c = ||5((p,)<p+ ||. Then 1 - c = <px(S(<px)) -

tp+ (S(<p,)) ̂  fit. Therefore,

Hq>i ->ill'< H<Pi - s(<p,)<p+ II + lis(tp,)<p+ 4fr, II

^\\S(<px)\\\\<px-y+\\ + (l-e)

<{H + V^I = 2v/27,

as claimed. Hence, Lemma 2.1 implies the following.

Lemma 2.2. Let <p, %, « = l,2,...,be normal states of a von Neumann algebra 3

such that limn || tp — <p„ || = 2. Then for each e > 0 there exists «0 and normal states xp

and \p„ such that

(a)||<p-ip|| <e, \\<Pno-*P„0\\ <fc,

(b) t// /s orthogonal to xpn ,

(c) S(*) < S(9), S(.p„„) < S(<p„ ).
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Lemma 2.3. Let {tp„} be a sequence of normal states of a von Neumann algebra &

such that lim,, || <p — <p„ II =2 for each normal state tp of 6E. Then for each t > 0 there

exist positive integers 1 = «, < «2 < • • • and normal states \¡/x, \¡>2,... such that

(a)\\<p„t-tk\\^t/2k,k=l,2,...,

(h)S(tx)-S(*k) = 0,k = 2,3,...,

(c)5(^)<5(<p„t),/c=l,2,...,

Proof. Let «, = 1 and <p,, = tp,. Since limjltp, — <p„|| = 2, by Lemma 2.2 there

exist «, > 1 and normal states <p,2, \p2 such that IItp, — <p,2ll <¡ e/22, ||<p„ — \p2\\ <

e/22; S(<pX2) ■ S(¡p2) = 0 and S(<px2) < S(cp,), S(ip2) « S(fB?). Suppose that we

have chosen «2 < «3 < ■ ■ • and normal states tp, 2, tp, 3,.. .,9lfc; ip2, ip3,.. ,^k such

that

(1) \\<Pi,j-i-ViJ*e/2/,      j = 2,3,...,k,

l^-^l^t/V,       j = 2,3,...,k,

(3)

(2) S(q>Uj)-S(^)=0,       j = 2,...,k,

S(«p,)>5(9li2)> •••>5(<p,/t),

S(tp,HS(<pnj),       y = 2,3,...,*.

Since limjltp, k — %\\ =2, by Lemma 2.2, there exist nk+x > nk, normal states

*i.*+i.'+*+l such that »«Pi.* -<Pi.*+ill <c/2*+1, ll<p„i+l -^+,H «e/2/i+l;

5(tp,, + 1).S(tp,+ ,) = 0 and S(<P..*+i) < S(«Pi.*), %+,) < S(g>Bt+1). Therefore,

by induction, we have positive integers «, < «2 < • ■ • ; normal states tp, 2, <p, 3,... ;

\p2, \p3,... to satisfy (1), (2), and (3) for all k.

By (1) {<p, k} is a Cauchy sequence in £„. Let tp, = lim^ tp, k. Then, by (1),

OO 00 ,

Ítf>i-+iir< 2 II9ij->u+iH<¿2 ^7TT = e/2-
7=i y=i 2

Finally, note that ip,(/ - ,S((p, ¿.)) = lim^tp, y(7 — S(tp, ¿.)) = 0, since S(<pXJ) <

S(cpXk) ifj > k. Therefore, S(\px) < S(<pXk) for all *. In particular, S(\px) < ¿(tp,)

and, by (2) 5(tp,) ■ ¿»(ip^) = 0 if k > 2. This completes the proof of the lemma.

Theorem 2.4. Let {<p„} be a sequence of normal states of a von Neumann algebra &

such that limn || tp — <pn || = 2 for each normal state tp. Then there exist positive integers

«, < «2 < ■ • • and normal states \px, \p2,... such that

(a)\\%j-^\\^l/y-\j=l,2,...,

(b)S(tJ)-S(tk) = Oifj^k.

Proof. By Lemma 2.3, there exist a sequence of positive integers 1 = «(1,1) <

«(1,2) < • ■ •, and a sequence of normal states tp,¡(, t), tp„'(, 2),... such that II <p„(, k) —

^(,,,,11 * V2*+\ S«r,»)) • S(*W = 0 for k> 2, and S(^k)) ^ S(<pn(hk)),
k = 1,2,....

Now since limjltp^,^ — <p„(1>/fe)ll = 0, it is easily checked that limjltp — 4i}(i,jt)H

= 2 for each normal state tp. Applying Lemma 2.3 to the sequence {$Litk)}k»2> we

have a subsequence «(1,2) = «(2,2) < «(2,3) < • • •, of {«(1, k)}; a sequence of
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normal states i//„222), <p„2(23), • • • such that ||#afc) - tfak)|| ^ l/2k + 2, k = 2,3,...;

S(tf(2#) ■ S(*«2,t)) = 0 if A: > 2, and S(tf{Xk)) ̂  S«2,„), k = 2,3,.... Continue
this process. It is not hard to see that we may construct:

(1) positive integers {n(j, k)}x=J,j = 1,2,..., such that

n(j,j+ l) = n(j+ l,j+ 1),       j= 1,2,...,

each {n(j + 1, k)}k°=j+x is a subsequence of {n(j, k)}x=j, and n(j, k) < n(j, k + 1)

for ally, k,j < k;

(2) normal states t/^^, y = 1,2,. ..,k>j, such that for/ = 1,2,... andk>j,

S(%Usj})• S($Utk}) = Ó    and    ${f¿av,k))>s(M+ll,k)).

Let tp7 = M(JJ), nj = n(/, /). Then, by (2), we have

(3)

|| rn    - tp-|| =S ||<p ,-  -, - llA-  -,|| + || tp1,-  -, - \b2 .   J| + •• • +||«K~'„ - \bJ,      J|
11 ™y T/" "™0.7) Y"(j,j).V"(j,j) Tn(j.j)" "Tn(y,y) Tn(j.j)"

1 »    + -+4:<-^      /-1.2,...,

m-

27+i      2J+2 21'     2j

since   n(j, j) — n(j — 1, kx) — n(j — 2, k2) = • • • = n(l, *■_,)   for   positive

tegers kx, k2,.. .,kj_, where/ = kx < k2 < • ■ ■ < kj_v Furthermore, if k > j,

(4)      S(*j) ■ $(*k) = S(^0,y)) • S(^ktk)) < sfej,) ■ S(u(k,k)) = 0,

since n(k, k) equals n(j, s) for some s > k, S(\¡<kikk)) < S(^ikk)) and S{^aj)) ■

S(\\i^j s)) = 0. By (3) and (4), the sequences {«y} and {tp7} satisfy (a) and (b) in the

statement of the theorem.

Remark. Our construction also implies that S(\pj) < 5(tp„ ). But this fact will not

be needed in the sequel.

III. Embeddings of (5X into TIM(G). Let G be a locally compact group. Recall

that a net {ua} in PX(G) is said to be convergent to topological invariance if

limjl« • ua — ua\\ = 0 for each u G PX(G). For short, we will call such a net a

F/-net. Let {Va} he a net of neighborhood basis at e, directed by inclusion. For each

a, choose ua E PX(G) such that the support of ua (as a function) is contained in Va.

Then {ua} is a F/-net, see Renaud [23]. For example, for each a, choose a compact

symmetric neighborhood Wa of e such that Wa ■ WaE Va. Then ua can be taken to

be ua — (pc(Wa))~xXw * Xw where Xw is the characteristic function of Wa. In

particular, when G is second countable, namely, G has a countable neighborhood

basis at e, or equivalently, when G is metrizable (see [16, p. 70]), then there exist

FZ-sequences in PX(G). If we consider A(G) as a subset of VN(G)*, then it is not

hard to see that each w*-limit points of a TI-net belongs to TIM(G), cf. [23].

Let Q(G) be the C*-algebra on L2(G) generated by A(/), / G L\G). The dual

Banach space of C*(G) can be realized as BX(G), the algebra of matrix coefficients

of unitary representations of G which are weakly contained in the left regular

representation, see [8], Clearly, A(G) C BX(G).
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Lemma 3.1. Let G be a nondiscrete locally compact group. Then

(a) if TE C.$(G) and m G TIM(G) then m(T) = 0,

(h) ifu E PX(G) and m E TIM(G) then \\u - rail = 2, and

(c) // {ua} is a TI-net in PX(G) and u E PX(G) then lima||w — ua\\ = 2.

Proof, (a) is contained in [23], For completeness, we include a proof here. Let

e >0 be given. There exists / G Ü(G) such that ||F - X(/)|| < e. Since G is

nondiscrete, there exists a neighborhood V of e such that II/• Xv\\x < e. Let

v E PX(G) such that the support of v is contained in V. Then ||u ■ F|| <

\\v(T- X(f))\\ + ||X(c-/)|| <e + e = 2e. So, | m(T) | = | m(v ■ T) |< ||v • F||

< 2e, if w G TIM(G). Since t > 0 is arbitrary, ra(F) = 0.

(b) Let u E PX(G) C BX(G). Then u can be considered as a positive linear

functional on C*(G). Since C*(G) has approximate identity, there exists S E C£(G)

such that 0 =£ S *£ / and (u, S)> \\u\\ - t = 1 - t. Let T = 2S - I E VN(G).

Then ||F|| s* 1. Now, for ra G TIM(G),

(u - m,T)= 2(u - w, S)    (since (it, /)= (w, />= l)

3*2(1 - e) - 2<ra,S>= 2- 2e,    by part (a).

Since e > 0 is arbitrary and Il F || =£ 1, || m — ra II = 2.

(c) If \\u — ua\\ does not converge to 2 for some u G PX(G), then, by taking a

subnet if necessary, we may assume that there exists e > 0 such that IIu — ua\\ < 2

— e for all a. Let ra be a w*-limit point of {«„}. Then ra G TIM(G) and || u — m || <

2 — e. This contradicts (b).

Theorem 3.2. Let G be a second countable nondiscrete locally compact group. Let

{vn} be a Tl-sequence in PX(G). Then there exist positive integers «, < «2 < " " " und

Uj G Px(G),j = 1,2,..., such that

(a)limy.||on - u}\\ = 0,

(b) the u/s are mutually orthogonal,

(c) {m;} is a Tl-sequence.

Proof. By Lemma 3.1, limjlw — t?B|| =2 for each u E PX(G). Therefore, apply-

ing Theorem 2.4 to the von Neumann algebra VN(G), we get a sequence of positive

integers n, < «2 < ■ • • and a sequence {Uj} in PX(G) to satisfy (a) and (b). (c)

follows directly from (a) and the fact that {vn } is a FFsequence.

From now on we will call a FZ-sequence {«,} in PX(G) with the w 's mutually

orthogonal an orthogonal Tl-sequence. The above theorem implies, in particular, that

orthogonal FZ-sequences exist in any second countable nondiscrete group.

Let 9=f {0 G (F0)*: 0(/) = 0, if/G /°° and lim„/(«) = 0} and f, = {0 G (3:

0 s* 0 and || 01| = 1}. If N denoted the set of positive integers with discrete topology

and ßN its Stone-Cech compactification then ßN \ N can be considered as a subset

of "ñF, and consequently card ?F, = 2'. (In fact, the w*-closed convex hull of ßN \ N is

£.)



TOPOLOGICAL INVARIANT MEANS 215

Theorem 3.3. Let G be a second countable nondiscrete locally compact group, {un}

an orthogonal Tl-sequence in PX(G). Let tr: VN(G) -* lx be defined by nr(T)(n) =

(T, u„), T G VN(G), « G N. Then tr is a positive linear mapping of VN(G) onto lx

and IIit || = 1. Its conjugate tr* is a linear isometry of (lx)* into VN(G)* such that

w*(0) is topological invariant if S E $ and tt*(0) G TIM(G) if 6 E f¿.

Proof. Clearly it is linear, n(l) is the constant one sequence, and tr(T) > 0 if

F 3*0. If TE VN(G) and nEN then | ir(T)(n) | = | (T, h„)|«è \\T\\ \\un\\ = ||F||.

Therefore, ||ir|| = 1. To see that v is onto and tt* is an isometry we only have to

show that for each / G /°° there exists F G VN(G) such that ir(T) = f and II F || =

ll/Hoo-
Note that, by assumption, the projections S(un), the support of un in VN(G), are

mutually orthogonal. Therefore, if /G lx, the series ^x=xf(n)S(un) converges in

weak operator topology (or equivalently, the a(VN(G), /4(G))-topology) to an opera-

tor F G VN(G). Since u„ G VN(G), = A(G),

00

v(T)(n) = (T, un)=  2 f(k)(S(uk), un) = /(«),        « G N,
k= l

or, it(T) = f. It is clear that II F || = II /1| 00.

To finish the proof it remains to show that if 0 G 'S then 77*0 is topological

invariant. Let 0 G f, T E VN(G) and u G PX(G). Then

*(u • T- F)(«) = (u-T-T, un)= (T, u ■ «„)- (T, u„)

= (T, u ■ un — «„> — 0,    as «^oo,

since {«„} is a FZ-sequence. By the definition of f,

(tr*e,u- T- F>= (&,ir(u- T- F)>=0.

Hence <w*0, u ■ F)= (ir*6, F>, or tt*0 is topological invariant.

If G is abelian then G is second countable and nondiscrete if and only if its dual G

is a-compact but noncompact, cf. [16, p. 397]. Therefore, when G is abelian the above

theorem is the same as Theorem 4.2 of [1].

The above theorem together with known functorial results for VN(G) will yield

the following.

Theorem 3.4. Let G be a nondiscrete locally compact group. Then there exists a

linear isometry A of (lx)* into VN(G)* such that A(#,) C TIM(G).

Proof. Let H be a compactly generated open subgroup of G. Then, by Granirer

[13,Theorem 3], there exists a linear isometry A, of VN(H)* into VN(G)* such that

A,(F/M(//))= TIM(G).

Since H is compactly generated, it has a compact normal subgroup K such that the

quotient group H/K is second countable and ¡¿„(K) = 0 (and hence H/K is

nondiscrete), see [16, p. 71]. By Renaud [23, p. 288], we have a linear isometry A2 of

VN(H/K)* into VN(H)* such that A2(TIM(H/K)) is contained in TIM(H).
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Finally, by Theorem 3.3, there exists a linear isometry A3 of (lx)* into VN(H/K)*

such that AjCiF,) is contained in TIM(H/K)). Let A = A,A2A3. Then A is a linear

isometry of (/°°)* into VN(G)* such that A(f,) C TIM(G).

In the above theorem, if wx,w2 G ßN\N C (/°°)* • wx ¥^ w2; then || wx — w21| = 2.

Hence II A(wx) — A(w2)|| = 2. Therefore we have the following.

Corollary 3.5. If G is a nondiscrete locally compact group then TIM(G) contains a

subset E such that card E = 2C and if ra,, ra2 G E, ra, ¥= m2, then lira, — ra2ll = 2.

In [13], Granirer proved that when G is second countable and nondiscrete then

TIM(G) has no w*-Gs points. He then pointed out this fact together with the

continuum hypothesis implies that card TIM(G) > 2C. He conjectured that the

continuum hypothesis is not needed for proving this fact. The above corollary

confirms his conjecture. That TIM(G) has no w*-Gs points does not seem to follow

from the above corollary. But we will refine the arguments in the proof of Theorem

3.3 later on to obtain a proof of this fact. But right now we will state two more

consequences of Theorem 3.4.

Corollary 3.6. Let G be a nondiscrete locally compact group. Then the quotient

Banach space VN(G)/F(G) and UC(G)/F(G) n UC(G) are not norm separable.

Proof. VN(G)/F(G) is not norm separable since F/M(G)|F(G) is a singleton

and card TIM(G) > 2e. UC(G)/F(G) n UC(G) is not norm separable, since if

ra,, ra2 G TIM(G), ra, ^= ra2, then ra, | UC(G) ¥= m2 \ UC(G).

If uE PX(G), let u± = {T G F7V(G): u ■ T = 0}. If T E u±, m E TIM(G) then

w(F) = m(u ■ T) = ra(0) = 0. Hence u± C F(G). Recall also that W(G) C F(G).

Therefore, we have the following.

Corollary 3.7 (Granirer [12, Theorem 12]). If G is a locally compact group such

that there exist u E PX(G) and X, a norm separable subspace of VN(G), such that

UC(G) is contained in the norm closure of W(G) + u   + X then G is discrete.

We will now consider the nonexistence of w*-exposed points and w*-Gs points in

certain w*-compact convex subsets of TIM(G). The format of the following theorem

is due to Granirer [13],

Theorem 3.8. Let G be a second countable nondiscrete locally compact group, F a

convex subset of PX(G) and Tn E VN(G), « = 1,2,_Suppose that the set

A = [w*clF] n (ra G TIM(G): m(Tn) = 0, n = 1,2,...}

is not empty. Then there exists a linear isometry A of (lx)* into VN(G)* such that

A(<S.) CA.V      17

Proof.  For convenience, we will assume that  ||F|| < 1, /= 1,2,_  Fix an
7 J

m E A. Then there exists a net {wß} in F such that {wß} converges to ra in

w*-topology. Since ra G TIM(G), w*-\iniß(u ■ wß — wß) = 0 for each u E PX(G). By

the corollary to Lemma 1 of Granirer [11, p. 18] which is a nice adoption of a now

well-known proof in Namioka [22, p. 18], there exists a net {va} such that

(1) each va is a convex combination of the wß's, in particular, va E F,
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(2) {va} is a FFnet in PX(G), and

(3) iv*-limaüa = ra.

Let Wx D W2 D ■ ■ ■ be a neighborhood basis at e. Choose, for each/, w¡ G PX(G)

such that the support of w- (as a function) is contained in ¡V-. By (2) and (3) we may

choose a sequence {va } from {t>a} such that

(4) Wwk-vat-v„t\\<i,

(5) l<V^>l<i.      J = l,2,...,k.

Let u, = wk • va . Then vk E PX(G) and the support of vk is contained in Wk. Hence

{vk} is a FF-sequence, see [23, Proposition 3], By (4), (5), and the fact that || F/. || *£ 1,

| (vk, 7}>|<| <râ - V 7}>| +| (vak, 7}>|< \\vk - % || ||r}« + | <%, 7}>|

K

So,

(6) lim<X,F,>=0,       /=1,2,....
k

We now apply Theorem 3.2 to the FFsequence {vk} to conclude that there exist a

subsequence {vk } of {vk} and a sequence {w„} in PX(G) such that

(7) lim Ik,   -uj =0

and {un} is an orthogonal FZ-sequence. Let tr: VN(G) -» /°° be defined by tr(T)(n)

= (F, m„). By Theorem 3.3, it* is a linear isometry of (/°°)* into VN(G)* and

tt*(<Sx) C TIM(G). To see that 7r*(f,) C ^ it remains to show that (i) tt*(°Jx) C

w*clFand(ii)<77*(0), 7;>=Oif0 E #, and/= 1,2,....

Assume that (i) fails, i.e., there exists 6EÎ, such that ?r*(0) $ w*cl F. Since

w* cl F is a H>*-compact convex set, by Hahn-Banach theorem, there exist a hermi-

tian F G VN(G) and e > 0 such that

(T,u)+ t<(T,tT*6),        uEF.

Since, by (4) and (7), lim„ || «„ - vak II = 0 and, by (1), uaj   G F, there exists «0 such

that if n 3* n0, <F, «„>+ e/2 < <F,V©>, or, w(rXn) ="<F, «„>< (F, w*6>- e/2

if n>n0. Since 6ËÎ,,  <t7*(0), F>= (0, tt(F)>< <F, tt*0>-e/2. So we have

reached a contradiction.

For (ii), note that

v(Tj)(n) = (Tj, M„>= <aj, un - vki)+ (Tj, vk>)-* 0,   by (6) and (7).

Since© GÍF,, <tt*(0), 7J.>= 0,/ = 1,2,....

Corollary 3.9. Keep the assumptions of the above theorem. Then A is not norm

separable and it contains no w*-exposed points.

Proof. Assume that A has a w*-exposed point ra0, i.e., there exists a hermitian

F0 G VN(G) such that <ra0, F0>> (ra, F0> if m E A, m ¥= w0. Then the set A0 =

[w* cl F] n {w G TIM(G):   w(F^) = 0, / = 1,2,...;   w(F0 - ra0(F0)7) = 0}   is  a
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singleton. But the above theorem implies that A0 contains a copy of <S:X. Thus a

contradiction has been reached.

Remarks. (1) When G is, in addition, separable, then the above corollary is

Theorem 1 of Granirer [13]. Using the same reasoning as in [13], we can also

conclude that the set A has no w*-Gs points.

(2) The above theorem implies that if w0 G TIM(G) and T„ E VN(G), « =

1,2,...,then there exists a linear isometry A of (/°°)* into VN(G)* such that

A(?7,) C {ra G TIM(G): m(Tn) = ra0(F„), «=1,2,...}.

(3) Let G be a second countable and nondiscrete. The existence of orthogonal

FFsequences in PX(G) can be applied to show that TIM(G) has many extreme

points. Indeed, let {un} he orthogonal FZ-sequence in PX(G). It is not hard to see

that there exist c many infinite subsets Iy of A, y G T, card T = c, such that I n Iy,

is finite if y ¥* y'. Let P„ be the support of w„ in VN(G), Py = 2{F„: n G Iy) and

My= (ra G TIM(G): m(Py) = 1, m(Pn) = 0, n = 1,2,...}.

It is easily checked that (i) M is w*-compact and convex, (ii) My is nonempty since

each w*-cluster point of {un: « G Iy] belongs my, (iii) M n M , — 0 if y ¥= y' and

(iv) each extreme point of M is also extreme in TIM(G). Therefore we have

constructed c many extreme points of TIM(G).

IV. Topological almost convergent elements in VN(G). Let G be a locally compact

group. Recall that F(G) is the space of all F G VN(G) such that ra(F) equals a fixed

constant, denoted by d(T), as ra runs through TIM(G). It is easily checked that

F(G) is a norm closed selfadjoint /l(G)-submodule of VN(G). To study F(G) we will

need the notion of Aren's product. The Aren's product on the second dual of the

Banach algebra A(G) is defined as follows: If a, ß E A(G)** = VN(G)* then

a o ß e VN(G)* is defined by (a ° ß,T)= (a, ß ° F> where ß ° F G VN(G) is

given by (ß ° F, u)= (ß, u ■ F), u G A(G), cf. [23], For convenience, we like to

collect a few known properties of Aren's product on VN(G)* as a lemma.

Lemma 4.1. Let a, ß E VN(G)*.

(a) If a, ß are means on VN(G) then a ° ß is also a mean.

(h) If a is topological invariant then so is a ° ß.

(c) If a is a mean and ß is topological invariant then a ° ß = ß.

Proof, (a) is trivial and (b) is proved in [23]. For completeness we will include a

proof of (c) here. Let a, ß he as in the statement of (c) and let F G VN(G). Since a is

a mean, to see (a ° ß, F> = (ß, F> it suffices to show that ß°T= (ß,T)I. Since ß

is topological invariant, if w G PX(G), then </3 °T,u)= (ß, u ■ F>= (/?, F>. Hence

ß ° T and (ß, T)I are equal on PX(G). Since the linear span of PX(G) is A(G),

ß°T= (ß, T)I as wanted.

Lemma 4.2. Let a E VN(G)* be topological invariant. Then a can be written as

a = cxax — c2a2 + i(c3a3 — c4a4) where ak E TIM(G) and ck are nonnegative reals,

k= 1,2,3,4.
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Proof. Note that a can be written as a = cxßx — c2ß2 + i(c3ß3 — c4/34) where ck

are nonnegative reals and ßk are means on VN(G). Choose w G TIM(G). Then by

Lemma 4.1(c),

a = ra ° a = c,(ra <>/$,)— c2(m ° ß2) + i{c3(m ° ß3) — c4(m ° ßA)).

By (a) and (b) of Lemma 4.1, each ra ° ßk is a topological invariant mean.

The above proof is taken from the footnotes on p. 55 of Granirer [9].

Lemma 4.3. Let {ua} be a TI-net in A(G) and T G VN(G). Ifw*-lima ua ■ T exists

then the limit belongs to C • I.

Proof. Assume that w*-lima ua ■ T = S. Let u E PX(G). Then it is easy to see that

w*-lima(u • ua) ■ T = u ■ S. Since {ua} is a FFnet, w*-lima(u ■ ua — ua) ■ T = 0.

Hence u • S — S. Therefore, the support of S (as defined in Eymard [8, p. 224]) is

contained in the support of u (as a function on G), see [8, Proposition 4.8.1°]. Since

u E PX(G) is arbitrary, the support of S is {e}. Hence by a Beuling-Helson type

theorem of Eymard [8, Théorème 4.9], SECT

Theorem 4.4. IfTE VN(G) then the following conditions are equivalent.

(a) F G F(G),

(b) T E closed linear span of {S - u ■ S: S G VN(G), u E PX(G)} U (/}.

(c) There exists a TI-net {ua} such that limawa • F exists in a(VN(G), VN(G)*)-

topology.

(d) There exists a constant a such that for each TI-net {ua}, lima ua ■ T = a ■ I, in

norm.

Proof, (a) => (b). Suppose that F is topological almost convergent to d(T). We

claim that F— d(T)I is contained in the closed linear span of {S — u ■ S: SE

VN(G), u E F,(G)}. If not, then by the Hahn-Banach theorem, there exists a E

VN(G)* such that a(T - d(T)I) ¥= 0, but a(S - u ■ S) = 0 for each S E VN(G)

and u G PX(G), or a is topological invariant. By Lemma 4.2, there exists ra G TIM(G)

such that ra(F — d(T)I) ¥= 0, or ra(F) ¥= d(T). We have thus reached a contradic-

tion.

(b) =» (d). Let {ua} be a FFnet in PX(G), S E VN(G) and u E PX(G). Then

||iia • (S - u ■ S)\\ = ||(Ma - u ■ ua) ■ S\\ *z \\ua - u ■ uj \\S\\ - 0.

This fact clearly shows that (b) implies (d).

(c) => (a). Suppose that limQ«a ■ T — S in w-topology for a certain FFnet {ua}.

By Lemma 4.3, S = ai for some a E C. Let w G TIM(G). Then m(T) = m(ua ■ T)

-> m(a ■ I) = a. Hence, F G F(G).

Remarks. (1) The above theorem is parallel to results of Day [4, p. 539], Granirer

[10, p. 71] and Wong [26, p. 360], Our proof is similar to theirs. In particular, when G

is abelian, our theorem is equivalent to Wong's result. The term "almost convergent"

was introduced by Lorentz [21] for the sequence space lx.

(2) It follows from the above theorem that for F G VN(G), T G F(G) if and only

if the norm closure of {« • F: u E PX(G)} contains a (necessarily unique) constant

multiple of I.
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(3) It is known that W(G) has a unique topological invariant mean, or equiva-

lent^ W(G) C F(G), see [6] and [12]. This fact also follows from the above theorem.

Indeed, let F G W(G) and let {ua} he a FFnet in PX(G). Then {ua • F} has a

o(VN(G),VN(G)*)-convergent subnet [ua, ■ T). Since {ua,} is also a FFnet, by

(c) =» (a) of the above theorem, TE F(G).

So far in our consideration of topological invariant means on VN(G), the

multiplicative structure of VN(G) has not played any explicit role. A natural

question to ask in this direction is whether F(G) is closed under multiplication. It

turns out that F(G) is closed under multiplication only when G is discrete; in this

case F(G) = VN(G). Before proving this fact in Theorem 4.7 we will first study

multipliers for second countable groups.

Definition. F G VN(G) is called a left (right) multiplier of F(G) if F ■ F(G) C

F(G) (F(G) • TE F(G)). The norm closed algebra of all left (right) multipliers of

F(G) will be denoted by ̂ ¡(F^)) (9Hr(F(G))).

Note that since F(G) is selfadjoint, F G 91t,(F(G)) if and only if T* E 91tr(F(G)).

Therefore the space of two-sided multipliers of F(G), 91(F(G)) = 911,(F(G)) D

91Lr(F(G)) is a C*-subalgebra of VN(G).

Let F0(G), = {TE VN(G): m(TT*) = 0 for each ra G TIM(G)}. Clearly, F0(G),

+ C • / C F(G). By examining the case G = T, the circle group, the readers will

realize that F^T), © C • / is a very small subspace of F(T), see [2]. The following

characterization of 91t7( F(G)) is equivalent to [3, Theorem 3.1] if G is abelian.

Theorem 4.5. Let G be a second countable nondiscrete locally compact group. Then

91t,(F(G)) = F0(G)/eC-F

Before proving the above theorem we first introduce some notations. If n is a

function on G, the function h on G is defined by h(x) = h(x~x). If F G VN(G),

F G VN(G) is defined by (F, u) = (T, ü), u G A(G). To conform with our notation

in §11, for F G VN(G) and u G A(G), Tu E A(G) is defined by (S, Tu)= (TS, u),

S E VN(G). Our Tu is denoted by Tu in Eymard [8, p. 213].

Proof of Theorem 4.5. Let F = F0 + a ■ I, T0 E F0(G)„ a E C. Then for each

S E F(G) and ra G TIM(G), m(TS) = w(F0S) + am(S). Note that

|ra(F05)|<ra(F0F0*)ra(5*S)=0.

Thus, w(FS) = am(S) = ad(S) for each ra G TIM(G), i.e., TS E F(G). There-

fore, F G 91t/(F(G)).

Conversely, assume that F G 9H7(F(G)). Let {{/„} be a neighborhood basis at e,

with Ux D U2 D • • • and with each Un compact. Choose un E PX(G) such that the

support of un is contained in i/„. Then {un} is a FFsequence. For S E VN(G) and

u G F,(G), since S - u ■ S E F(G), by assumption, T(S - u ■ S) E F(G). In par-

ticular,

(1) d(T(S- u- S)) = lim(T(S-u- S),u„)
n
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exists. But

(T(S - « • S),un)= (S-u- S, TuH)

= (S,Tun)-{S,u-(Tun))

= (S,Tu„-u-(TUn)).

Therefore Tun — u ■ (Tun) is a weak Cauchy sequence in A(G). Since, by a theorem

of Sakai [24], A(G) is weak sequentially complete, there exists u E A(G) such that

(2) (S,v)=lim(S,Tu„-u-(Tu„)),       S E VN(G).
n

We claim that v = 0.

Since unEA(G) and un has compact support, by Proposition 3.17.3° of [8],

Tun = f(un) where f(un) denotes the evaluation of the bounded operator F on

L2(G) at un. Note that, since ||w„II^ < \\u„\\ = 1, the support of un is contained in

Un and the l/'s form a neighborhood basis at e of the nondiscrete group G, we

conclude that limJ|«J|2 = 0. Therefore limJ|FwJ|2 = lim,J|F(w„)||2 = 0. Since

II«II„ = Il"II = 1, \\u-(Tu„)W2< IITW.il2! Hence lim„||u-(Tun)\\2 = 0 too. Now,

iff E L\G) nL2(G)then

(\(f),Tun-u-Tun)\ (see [8])[ f(x)((Tun)(x) - u(x)(Tu„)(x)) dx
JG

\\f\\2WTun-u-(Tun)\\2^0,    asn^co.

By (2), (X(f), v)= 0. Since, X(L\G) D L2(G)) is o(VN(G), A(G))-dense in VN(G),

we conclude that v = 0, as claimed. Then, by (1), we have

(3) d(T(S-u- S))=0,       S EVN(G),uEPx(G).

Let Z EF(G). Then, for e > 0, by Theorem 4.4, there exist Sk E VN(G) and

vk E F,(G), k = 1,2,...,«, such that

Z-d(Z)I-  i(Sk-vk-Sk)\<t.

Hence, IIT(Z - d(Z)I) - T ■ 2"k = x(Sk - vk ■ Sk)\\ < ||F||e. Therefore, by (3),

\\d(TZ) - d(T)d(Z)\\ < ||rile. Since e > 0 is arbitrary, d(TZ) = d(T)d(Z). In

particular, d(T - d(T)I)(T - d(T)I)*) = 0. Thus, by definition, F - d(T)I E

F0(G)„ orTEF0(G),®C-I. This completes the proof of the theorem.

Remarks. (1) The basic ideas of the above proof is similar to that of Theorem 3.1

of [3].

(2) If we set FQ(G)r = {F G VN(G): m(T*T) = 0 for each ra G TIM(G)} =

{T E VN(G): T* E F0(G),} then 91Lr(F(G)) = F0(G)r © C ■ / and 91t(F(G)) =

(F0(G),nF0(G)v)©CF

(3) We may also consider the algebra of left multipliers of F(G) n UC(G) in

<7C(G). The above proof can be modified to show that, for F G UC(G), T ■ (F(G)

n UC(G)) C F(G) n UC(G) if and only if F G (F0(G), n UC(G)) © C • F
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Let G be a general locally compact group. Then X(e) = F and hence d(X(e)) = 1.

If x G G, x ¥= e then there exists u E PX(G) with u(x) = 0. Then u ■ X(x) =

u(x)X(x) = 0. Therefore, m(A(x)) = m(u ■ X(x)) = 0, for ra G TIM(G), or X(x) is

topological almost convergent to 0. Assume that G is, in addition, nondiscrete and

second countable. Then if X(x) were in 91t(F(G))/ then by the above theorem,

«(A(x)A(x)*) = 0. But X(x)X(x)* = A(x)A(x"') = X(e) = / and we would then

reach a contradiction. Therefore A(x) £ 9H(F(G)),. In particular, F(G) is not an

algebra. We will soon show that this fact holds true for any nondiscrete group. But

first we have to provide some additional technical considerations.

Let G be a locally compact group and K a compact normal subgroup of G. Denote

the canonical homomorphism of G onto G/K by a. As usual, we may choose the left

Haar measures of G, A' and G/K so that pK is of mass 1 and for a continuous

function/on G with compact support.

f     ff(xt) dnK(t) dpG/K(x) = (f{x) dnc(x).
JG/KJK JC

Let/: L2(G/K) - L2(G) be defined by j(h') = «' ° a, h' G L2(G/K). Then/ is a

linear isometry. We will also denote u' ° a by j(u') if u'EA(G/K). Denote

j(L2(G/K)) by L2K(G), the space ofF2-functions on G which are constants on the

cosets, and denote j(A(G/K)) by AK(G). If T G KA(G/A), let t(F') be the

bounded operator on L2(G) defined by t(F')(/(«')) =j(T'(h')) if /(«') G LJ^G)

and t(F')(A:) = 0 if k E L2(G) and Â: is orthogonal to F^G) (it £ ¿^(G)1).

Renaud [23,p. 288] noted that t is an isometric embedding of VN(G/K) into

VN(G). We will need the following technical lemma.

Lemma 4.6. IfT E VN(G/K), u' G A(G/K) andu = u' ° o = j(u') then u ■ t(T')

= t(u' ■ T').

Proof. Since t is clearly continuous with respect to the weak operator topology,

to prove this lemma, it suffices to show that

(1) u ■ r(\(x)) = r(u'■ X(x))

where x = xk E G/K and A(x) = XG/K(x).

Note that L2(G/K) D A(G/K) is dense in L2(G/K) and consequently L2K(G) n

AK(G) is dense in L2K(G). We claim that L2K(G)X HA(G) is dense in L2K(G)±.

Indeed, let n G L^G)"- C L2(G) and e > 0. Then there exists v E A(G) (1 L2(G)

such that II« — u||2 < e. Now, v = v * ¡iK + (v — v * ¡xK) where pK is considered as

a bounded Borel measure on G. It is not hard to check that v * pK E AK(G) and

v — v * pK E L2K(G)± . Therefore \\h — u||2 = \\h — (v — v * pK)\\l + Il v * pK\\\

and consequently, \\h — (v — v * pK)\\2< t. Since v — v * pK E L2i(G)± C\A(G)

and e > 0 is arbitrary, Lj<(G)± (~)A(G) is dense in L2K(G), as claimed. Therefore to

show that the two operators in (1) are equal we only have to show that their

evaluations at v G L2K(G) fl A(G) and at w G L2K(G)X HA(G) are equal.
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Let v =/(«') G L2K(G) n A(G). Then, if y G G, by Eymard [8, p. 224 and p. 213],

[u-r(X(x))](v)(y) = T(X(x))(v(ü)^)(y)

= j{X(x){v'((u'y)rl))(y)    (sincey(t/((W')V') = •>(*)/- G LKG))

= A(x)(u'((m')")v-')(^) = t?(*nly )«(*)•

Similarly,

r(u' ■ X(x))(v)(y) =j((u' ■ X(x))(v'))(y)

= u'(x)v'(x~iy) = u(x)v(x~iy).

So (u • t(A(x)))(u) = t(h' • A(x))(u).

Let w G LJ^G)-1- n^l(G). Then, for y- G G,

[« • r(\(x))](W)(y) = T(X(x))(w(ü)y->)(y) = 0,

since it is easily checked that w(ü)y-\ J- L2K(G). It follows from the definition of t

thatT(w' • X(x))(w) = 0. Therefore, (u ■ t(X(x)))(w) = r(u' ■ X(x))(w).

The above two paragraphs imply that the two operators in (1) are equal and the

proof of the lemma is then completed.

Theorem 4.7. Let G be a nondiscrete group. If x ¥= e,x E GthenX(x) & 9H7(F(G)),

i.e., there exists T E F(G) such that X(x)T g F(G).

Proof. We have already proved this theorem if G is second countable. Now let us

first assume that G is compactly generated. Let x E G, x ¥= e. Then there exists a

compact normal subgroup A of G such that x G K, G/K is nondiscrete and second

countable, see [16, p. 71]. Therefore, we have the situation described prior to Lemma

4.6. We will keep the notations there.

Denote the adjoint of the mapping u h> u ° a of A(G/K) into A(G) by w. Then it

is a »-homomorphism of VN(G) into VN(G/K), see Eymard [8,p. 217]. For a fixed

ra G TIM(G), if a' E TIM((G/K)) then ra ° 77*«' G TIM(G), see Lemma 4.1. The

following formula is contained in the proof of Proposition 8 of [23] :

(1) (w o 77-*«', t(F')>= <«', F'),        T E VN((G/K)").

By tracing through the definitions, it can be shown that

(2) t(A(x)F')=A(x)t(F').

Since G/K is nondiscrete and second countable, by what we have proved before,

there exists T'EF((G/K)) such that X(x)T' $ F((G/KJ). We may and will

assume that V is topological almost convergent to zero.

Since A(x)F' £ F((G/K)\ there exist a', ß' E TIM({G/K)) such that

(a', A(x)F')^ (ß\ X(x)T'). Therefore, by (1) and (2),

<ra o w*«', A(x)t(F')>= <w o 77*a',T(A(x)F')>= (a', X(x)T')

* (ß', X(x)T')= (ra o m*ß\ A(x)t(F')>.

Since w o TT*a', m ° <rt*ß' E TIM(G), X(x)t(T') G F(G). To conclude that A(x) G

'DrTL/(F(G)) it remains to show that t(F') is topological almost convergent to zero.
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Since, by assumption, T E F((G/K)) and d(T') = 0, by Theorem 4.4, for e > 0,

there exists u' E PX(G/K) such that II u' ■ T'\\ < t. Let u = u' ° a. Then it belongs to

PX(G) and by Lemma 4.6, t(u' • T) = u • t(F'). Therefore, II« ■ t(7")II =

||t(6' • F')ll = II ii' • F'H < e. So t(F') G F(G) and d(T(T')) = 0, as claimed.

Now assume that G is a general nondiscrete group, x G G, x ¥= e. Choose a

compactly generated open subgroup H of G with x E H. Let r: A(G) -» A(H) he the

restriction mapping. Then r*: VN(H) -» F7V(G) and r**: FA(G)* -* VN(H)*.

Granirer [13, p. 118] proved that

(3) r**(TIM(G)) = TIM(H).

Let F G VN(H) and m G A(G). Then

<r*(A„(x)F),U>= <X„0)7\ r(M))= <F, A„(x)r(M)>

= <F,r(xM)>    (by [8, p. 214])

= <r*(F),:tM>=<AG(x)r*(F),«>.

Therefore, we have

(4) r*(XH(x)T) = XG(x)r*(T).

Since H is compactly generated, by what we have proved earlier, there exists

F G F(H) such that XH(x) ■ T <£ F(H), i.e., there exist a,, a2 G TIM(H) such that

(a,, AW(A) • T)¥= <a2, A„(x) • F). By (3) there exist w, G TIM(G) such that

r**(ra,) = a„ i = 1,2. Then, by (4)

(ra„ Ac(x)r*(F)>= (ra„ r*(A„(x)F)>

= (r**m„ A„(x)F> = (a,., A„(x)F>,        i = 1,2.

Therefore, Ac(x)r*(F) £ F(G).  Since r*(F) is clearly contained in  F(G),  we

conclude that AG(x) ^ 91L/(F(G)). This completes the proof of the theorem.

For a locally compact group G, W(G) is a norm closed, selfadjoint submodule of

VN(G). It is not yet known whether W(G) is an algebra in general. But we do have

the following.

Lemma 4.8. // F G W(G) and x E G then X(x)T G W(G).

Proof. Let F G VN(G), xEGandu,vE A(G). Then,

(u ■ (A(x)F), o>= (X(x)T, uv)= (T, X(x) ■ uv)= (T,xuxv)

= L« ' T,xv)= (xu ■ T, X(x)v)= (X(x)(xu ■ T), v).

Therefore, u ■ (X(x)T) = A(x)(xm ■ T).

Now assume that F G W(G). Let {i^} be a bounded sequence in A(G). Then

{x(vk)} is also a bounded sequence in A(G), see [8, p. 199]. Since F G W(G), there is

a subsequence [vk } such that x(vk) ■ T converges in weak topology. For a fixed

5 G VN(G), Z i-» SZ, Z G VN(G), is continuous with respect to the norm topology

and hence it is continuous with respect to the weak topology. Therefore, the

sequence X(x)(x(vk) ■ T) — vk ■ (X(x)T) converges weakly. So, X(x)T E W(G).

Remark. Since W(G) is selfadjoint and A(x)* = A(x"'), W(G)X(x) C W(G). If,

as  in  Lau  [20],  we  denote  the  C*-algebra generated  by  (A(x):   x G G}   by
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Q(G). Then Q(G) ■ W(G) = W(G)C¿(G) = W(G). Similarly, Q(G)AP(G) =
AP(G)Cg(G) = AP(G) where ^4F(G) is the space of all almost periodic functionals

of ¿(G), cf. [6].

As pointed out by Granirer [12] that for a nondiscrete G, since UC(G) has more

than one topological invariant mean, UC(G) f¿ W(G). It is natural to ask: If G is

nondiscrete can UC(G) n F(G) be a subset of W(G)1 The answer is no, as the

following theorem shows.

Theorem 4.9. Let G be a locally compact group. Then the following conditions are

equivalent.

(a) G is discrete.

(h) TIM(G) is a singleton, i.e., F(G) = VN(G).

(c) F(G) is an algebra.

(d) There exists x^einG such that X(x)F(G) C F(G).

(e) F(G) n UC(G) C W(G).

Proof. Renaud [23] proved that (a) => (b). (a) => (e) is contained in Proposition 2

of Granirer [12]. (b) => (c) and (c) => (d) are trivial, (d) => (a) is a direct consequence

of Theorem 4.7. It remains to prove (e) => (a).

If G is not discrete, pick any x G G, x ¥= e. Then by Theorem 4.7, there exists

F G F(G) such that A(x) • F g F(G). Choose any u E PX(G). Then u ■ (X(x)T) £

F(G). We claim that xu ■ Tg W(G). Indeed, if xu ■ T E W(G) then, by Lemma 4.7,

X(x)(xu • T) = w(A(x)F) G W(G) C F(G), a contradiction. On the other hand,

since F G F(G), xu ■ T E F(G) n UC(G). So F(G) D UC(G) ÇL W(G). Thus (e)

implies (a).

V. Topological invariant means on LX(G) and left invariant means on lx(S). In

this section we will outline how the technique in §§II and III can be applied to

obtain embeddings of f, into the set of topological invariant means on U°(G) when

G is a noncompact a-compact amenable group and into the set of left invariant

means on lx(S) when S is a countable left amenable semigroup without finite left

ideals.

Let G be a locally compact group, w G LX(G)* is called a mean if IIrail = 1 and

ra 3* 0. We will consider L\G) C LX(G)*. Therefore if tp G L](G), ||<p||, = 1 and

tp > 0 then <p will be called a mean, ra G LX(G)* is topological left (right) invariant

if ra(<p * /) = m(f) (m(f * tp) = m(f)) whenever / G LX(G) and <p is a mean in

Ll(G). m is topological invariant if it is both left and right topological invariant. The

set of all topological invariant means on LX(G) will be denoted by TIM(G). G is

said to be amenable if TIM(G) ¥= 0. See Greenleaf [15] for more information on

amenable groups and topological invariant means.

It is known that if G is amenable then there exists a net {<pa} of means in V(G)

such that it is strongly convergent to topological left (right) invariance, i.e.,

limjlrp * tpa — <pQ||, = 0 (lima||<pa * tp — <pa||, =0), see Hulanicki [17] or Greenleaf

[15]. If {tpQ} is strongly convergent to topological left invariance then {<pa * <p*} is

strongly convergent to topological left and right invariance, see [17], where tp*(x) =

tp^x'^Aix"'), A the modular function of G. For short, we will call a net of means in
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L\G) which is strongly convergent to topological left and right invariance a FFnet.

When G is a-compact, FFsequences exist. This fact is known but we prefer to give a

short proof here. Indeed, if G is amenable then it satisfies Reiter's condition, i.e., if

e > 0 and a compact subset A of G are given then there exists a mean tp in L\G)

such that ll^tp — <p||, < e if x G A, see [17] or [15]. If G is a-compact then there

exist compact sets Kx C K2 C • • • such that Ux=xKn = G. For each n, let tp„ be a

mean in L'(G) such that ||x<p„ — tpjl, < 1/n if x G Kn. Then the sequence {<p„} is

strongly convergent to topological left invariance. Therefore (<P„ * <P*} is a Tl-

sequence in L\G), see [17],

From now on G will always denote a a-compact noncompact locally compact

amenable group. Let {tp„} be a FFsequence in L\G). It is not hard to see that for

each mean (p in Ll(G), limjlrp — <p„||, = 2. Therefore, Theorem 2.4 can be applied

to the abelian von Neumann algebra LX(G) with predual L\G). (Note that for

6E = LX(G) the proof of Theorem 2.4 can be shortened considerably.) The support

of <p G Ll(G), <p 3* 0, in the von Neumann algebra sense is the projection/; = XB E

LX(G) where B = {x G G: <p(x) > 0}. Therefore the support of <p in the von

Neumann algebra sense and the support of <p as a function can be identified.

Consequently, we may state the following.

Lemma 5.1. Let G be a a-compact noncompact locally compact amenable group. Let

{\pn} be a Tl-sequence of means in Ll(G) then there exist positive integers n, < n2 <

• ■ ■ and means <p,, tp2,... in L\G) such that

(a)lim>||^-^||l = 0,

(b) the (p/s have mutually disjoint supports, and

(c) {<pj} is a Tl-sequence.

Theorem 5.2. Let G be a a-compact noncompact locally compact amenable group,

{<pn} a Tl-sequence of means in L\G) such that their supports are mutually disjoint.

Let it: LX(G) - l°° be defined by Tt(f)(n) = <<p„, /), / G LX(G), « G A. Then it* is

a linear isometry of(lx)* into LX(G)* such that tt*(<5x) C TIM(G).

The proof of the above theorem is the same as that of Theorem 3.3. We omit the

details.

Remark. The above theorem shows that we do not have to assume that G is

unimodular in Theorem 4.3 of [1]. The proof outlined here does not use the existence

of symmetric F-sequences for unimodular groups which is a consequence of the

fairly deep result that an amenable group satisfies Folner's condition, see [1, Theo-

rem 4.4], It is known that symmetric F-sequences also exist for nonunimodular

groups, see Emerson [7].

Theorem 5.3. Let G be a a-compact noncompact locally compact amenable group.

Let F be a convex set of means in V(G) and fn E L°°(G), n— 1,2,_Assume that

the set

A = [w*clF] n {ra G TIM(G): m(/„) = 0, « = 1,2,...}

is not empty. Then we have

(a) there exists a linear isometry A of(lx)* into LX(G)* such that A(û7, ) C A and

(h) A is not norm separable and has no w*-exposed points.
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Proof. As noted in the proof of Corollary 3.9, (b) is a consequence of (a). Let

m E A. Choose a net of means {j]ß} in L[(G) such that w*-limß -qß = ra. By the

corollary of Lemma 1 of [11, p. 18], there exists a net {tpQ} such that

(1) each \pa is a convex combination of the tj^'s; in particular tpa G F,

(2) {>U is a FFnet, and

(3) w*-lima\}/a = ra.

Choose compact sets A, C A2 C • • • such that UJKj = G. Fix a mean £ G LX(G).

By (2) and (3) and a two-sided version of an argument due to Hulanicki [17, p. 96]

we conclude that it is possible to choose a sequence ip , \¡/tt ,.. '. from {ipa} such that

(4) \<**,fj>\<í,       j=l,2,...,k,

(5) IIÉ'^f^U,^,

(6) B»(f*^*e),-U*fci*f)lt,-'<í,      *,>e**-

Let ip£ = | * t^a * |. Then, by (6) it is not hard to see that {\pk} is a FFsequence, see

[17]. By Lemma 5.1, there exist positive integers kx < k2 < ■ ■ ■ and means tp,, <p2,...

in L\G) such that

(7) lim„ || tp,n-<p„ ||, =0,

(8) the supports of the <p„'s are mutually disjoint, and

(9) {<p„} is a FFsequence.

Let tt: Lx(G) -» /°° be defined by rr(f)(n) = <<p„, />, « G A. Then A = tt* is the

linear isometry we are looking for. We will omit the proof for this fact since it is

similar to the corresponding part in the proof of Theorem 3.8.

Remark. The format of the above theorem is due to Granirer [11]. In fact, part (b)

of the above theorem is Theorem 5 of [11]. We may also state the above theorem for

topological left invariant means; the corresponding proof will be somewhat shorter.

We now turn our attention to discrete semigroups. Let S be a (discrete) semi-

group, ra G lx(S)* is called a left invariant mean if w is a mean (i.e., ||ra|| = 1,

ra 3* 0) and m(!J) = m(f) iff E lx(S) and s G S where IJ G l°°(S) is defined, as

usual, by (l5f)(t) — f(st). Denote the set of all left invariant means on lx(S) by

LIM(S). If S is left amenable, i.e., LIM(S) ¥= 0, then there exists a net of means

{<pa} in ll(S) such that it is strongly convergent to left invariance: limj|/*(pa — <pa||,

= 0 for each s G S, see Day [4], Such a net will be called an FFnet. If S is in

addition countable then FFsequences exist; see Granirer [9, p. 42],

Let S be a left amenable semigroup without finite left ideals, i.e., Sa is infinite for

each a E S. As pointed out in [9, p. 37] that if ra G LIM(S), a E S and b G Sa then

m(oh)> m(oa) where for any / G S, ô, is the function on 5 which takes 1 at t and 0

otherwise. Since Sa is infinite, m(oa) = 0. Therefore, if g G l°°(S) and g has finite

support then m(g) = 0. Using this fact it is not hard to see that if w G LIM(S) and

<p is a mean in f(S) then || tp — ra || = 2. It implies that if {tpa} is a FFnet and <p is a

mean in f(S) then lima||(p — <pj|, — 2. Hence Theorem 2.4 can be applied to the

abelian von Neumann algebra lx(S). (In fact, for lx(S), Theorem 2.4 is more or less

trivial.) Therefore we have the following.
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Lemma 5.4. Let S be a countable left amenable semigroup without finite left ideals. If

{tpfc} is an Li-sequence in f(S) then there exist an Li-sequence {<p„} and positive

integers kx < k2< ■ ■ ■ such that lim „ 11 tp„ — tpA II, = 0 and the <pn's have mutually

disjoint supports.

Theorem 5.5. Let S be a countable left amenable semifinite without finite left ideals.

Let F be a convex set of means in ll(S) and/„ G lx(S), « = 1,2,_Assume that the

set

A = [w*clF] n (ra ELIM(S):m(fn) = 0, « = 1,2,...}

is not empty. Then there exists a linear isometry A of (lx)* into lx(S)* such that

A(<$x) EA.

Remarks. (1) The above theorem implies that A has no w*-exposed points. Let

E = A(ßN\N) C A. If ra,, w2 G E, w, ¥^ ra2 then lira, — w2|| = 2. Since card E

= 2C. The set A is far from being norm separable. In particular, if we take F to be

the set of all means in f(S) and /, = 0, n = 1,2,..., we get that LIM(S) has no

w*-exposed points and it contains a linear isometric copy of ?F, and consequently

dim LIM(S) = 2C. Stronger results concerning the dimension of LIM(S) for general

left amenable semigroups are known, see Granirer [9], Klawe [18,19].

(2) Members of lx(S)* can be considered as Borel measures on ßS. Let us keep

the notations of the above theorem and let A be a subset of ßS. In §11 of [11],

Granirer proved, among other things, the following interesting result: If B =

[w* cl F] n {w G LIM(S): suppwCA, w(/„) = 0, n=l,2,...} is not empty

then it has no w*-exposed points. It would be interesting to know whether it is

always possible to find an affine embedding of <§x into B if it is nonempty.
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