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OPERATOR-SELF-SIMILAR PROCESSES IN

A FINITE-DIMENSIONAL SPACE

BY

WILLIAM N. HUDSON AND J. DAVID MASON

Abstract. A general representation for an operator-self-similar process is obtained

and its class of exponents is characterized. It is shown that such a process is the limit

in a certain sense of an operator-normed process and any limit of an operator-normed

process is operator-self-similar.

1. Introduction. In 1962 Lamperti [8] introduced the notion of a self-similar

process, {X(t): t s* 0), taking values in a real finite-dimensional inner product space

T. A stochastic process {X(t)} is called self-similar (s.s.) if it is continuous in

probability at each t > 0 and if for every a > 0 there exist a positive number B(a)

and a vector b(a) in Tsuch that the process {X(at)} and {B(a)X(t) + b(a)} have

the same finite-dimensional distributions. Lamperti actually called such processes

" semi-stable" but currently this term is being used in another sense. These processes

arise in diverse areas (see Taqqu [14]). Self-similar processes are also obtained by

various limiting procedures (e.g., see Gorodetskii [4], Kesten and Spitzer [6], Sinai

[12], Taqqu [13] and [14], and Weissman [15]).

The definition of "self-similar" was extended by Laha and Rohatgi in [7] to allow

scaling by a class of operators on 'Y. This class was the set of nonsingular

positive-definite selfadjoint linear operators on T. However, the resulting family of

processes is not closed under general affine transformations. Properties of positive-

definite selfadjoint linear operators played an important role in their work. In this

work we allow scaling by any nonsingular linear operator on T, but we restrict

ourselves to the index set [0, oo). (Laha and Rohatgi allowed (0, oo) to be an index

set also.)

A stochastic process {X(t): t > 0} is called operator-self-similar (o.s.s.) if it is

continuous in law at each / > 0 and if for every a > 0 there exist a linear operator

B(a) on Tand a vector b(a) in Tsuch that the processes {X(at)] and {B(a)X(t) +

b(a)} have the same finite-dimensional distributions. We say that a process (A(f):

/ » 0} is proper if for each t > 0 the distribution of X(t) is full; that is, the

distribution is not contained in a proper hyperplane. All processes considered here

are assumed to be proper. Note that for a proper process to be o.s.s., the operators

B(a) must be nonsingular.

Received by the editors April 2, 1981.

AMS(MOS) subject classifications (1970). Primary 60G99; Secondary 60F99.

Key words and phrases. Self-similar processes, semistable processes, operator-stable distributions,

multivariate stable.

©1982 American Mathematical Society

0002-9947/82/0000-0727/S05.75

281



282 W. N. HUDSON AND J. D. MASON

2. Results and notation. Our first result describes the scaling operators for a proper

o.s.s. process. If D is a linear operator on T, then rD will denote the linear operator

exp((ln r)D) = 2g>(ln r)JD'/jl for r > 0.

Theorem 1. Let ( A(/): t > 0} be a proper o.s.s. process. Then there exist a linear

operator D and a unique continuous function d: [0, oo) -» Y such that for each r > 0,

the processes {X(rt): t > 0} and {rDX(t) + d(r): t > 0} have the same finite-dimen-

sional distributions. Furthermore, if 0 is not an eigenvalue of D, then for some x0 E °V,

d(r) = (I-rD)x0.

Theorem 2 and its corollaries involve certain subsets of the general linear group,

GL(T). (GL(T) is the set of all nonsingular linear operators on °Y.) For each t > 0,

G, will denote the subset consisting of all operators A in GL(T) such that for some

vector a E LT, {X(ts)} and {AX(s) + a] have the same finite-dimensional distribu-

tions. If (A(/)}  is proper and o.s.s., then for each r > 0, B(r) E Gr so Gr is

nonempty. (To see that B(r) is invertible, note that X(r) = B(r)X(l) + b(r), and

use the fact that the distribution of X(r) is full.) Set G = U(>0Gr The set G, will be

called the symmetry group of the process and will also be denoted by S(A{r)). A

linear operator D satisfying Theorem 1 will be referred to as an exponent for the

process. In Theorem 2 we describe the set of all exponents for a given process in

terms of the tangent space of its symmetry group. The tangent space T(H) of a

closed subgroup H of GL(°Y) is the set of all linear operators A on T such that

A — limn^x d~\Dn — I) for some sequences {/)„} in 7/ and {dn} in (0, oo) where

d„ -> 0 as n -» oo, and 7 is the identity map on T.

Theorem 2. Let {X(t): t > 0} be a proper o.s.s. process and let &(X(t)) be the set

of all exponents for {X(t)}. Then for any D in &(X(t))

&(X(t))=D+T(%(X(t))).

This result has the following corollaries.

Corollary 1. A proper o.s.s. process has a unique exponent if and only if its

symmetry group is finite.

An operator Q on Tis skew-symmetric if Q + Q* = 0 where Q* is the adjoint of

Q-

Corollary 2. If D is an exponent for [X(t)}, then ë(X(t)) = D + W%W~l for

some subspace S0 of skew-symmetric operators on °V and some positive-definite

selfadjoint linear operator W on T.

The next theorem characterizes those linear operators D on Twhich are exponents

for some o.s.s. process. The restrictions on D are a consequence of the requirement

that an o.s.s. process be continuous in law at / = 0. This is illustrated by the

following simple example. For / > 0 set X(t) = tDX where Ais any random variable

taking values in Tand having a full distribution. Then in order for (X(t)} to be

o.s.s., it is necessary and sufficient that tDX converges in law to A(0). This condition
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restricts the minimal polynomial of D. (Recall that the minimal polynomial of D is

the polynomial of smallest degree which annihilates D and its roots are the

eigenvalues of D.)

Theorem 3. A linear operator D on Y is an exponent for some proper o.s.s. process

if and only if
(a) every eigenvalue of D has nonnegative real part, and

(b) every eigenvalue of D having real part equal to zero is a simple root of the

minimal polynomial of D.

The following corollary to Theorem 3 gives the general form for the centering

function. This form was obtained in Theorem 1 under the restriction that 0 is not an

eigenvalue of the exponent. This restriction can now be removed.

Corollary 3. // {X(t)} is proper and o.s.s. with exponent D, then for some vector

x in T, d(r) — (I — rD)x. Consequently, the stochastic process {X(t) — x} is proper

and o.s.s. with exponent D and identically zero centering function.

Our next result connects the initial value A(0) of a proper o.s.s. process with the

minimal polynomial of D. Let / = gh be the minimal polynomial of D where the

roots of g have zero real parts and the real parts of the roots of h are positive. (This

factorization is permissible by Theorem 3.) Put T, = kernel g( D) and % =

kernel h(D). Then °V = T, © %. (This follows from the facts that f(D) = 0 and

that g and h are relatively prime. The latter implies that for some polynomials, p(x)

and q(x), p(x)g(x) + q(x)h(x) = 1 and hence p(D)g(D) + q(D)h(D) = /.)

Clearly T, and % are invariant under D so we may consider the restrictions of D to

% and to %.

Theorem 4. Let {X(t): t > 0} be a proper o.s.s. process which is continuous in

probability, and let D be an exponent for {X(t)}. Then there exist proper o.s.s.

processes {Xx(t)} and {X2(t)] taking values in T, andQ\2 respectively such that

(a) {A,(0 + X2(t)] is a version of{X(t)},

(h) D, = D\% is an exponent for {X,(t)}, i = 1,2,

(c) {A,(i)} has constant sample paths, and

(d) A2(0) is constant a.s.

The next theorem says that o.s.s. processes arise as limits in certain situations. It is

an extension of Theorem 3 of Lamperti [8] to the o.s.s. case.

Theorem 5. Let {X(t): t > 0} be a proper stochastic process which is continuous in

law. If there is a stochastic process {Y(t): t > 0}, and if for each s > 0 there exist a

linear operator A(s) on T and a vector a(s) in "{such that the finite-dimensional

distributions of the stochastic process {A(s)Y(st) + a(s): t > 0} converge to those of

{X(t)} as s -> oo, then {X(t)} is o.s.s. Conversely, if {X(t)} is o.s.s., then {X(t)} is

such a limit.

Under some mild assumptions it can be shown that the linear operators A(s) in

Theorem 5 vary regularly.
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We next consider the case in which the o.s.s. process has as much symmetry as

possible. We say that a process (A(i)} is elliptically symmetric if S(A(r)) = G, is

conjugate to the full orthogonal group 0; i.e. S(A(r)) = WQW~] where IF is a

positive-definite selfadjoint linear operator on T. (If <Y= R2 and if S(A(f)) =

W6W"1, then the orbits of nonzero vector's under the action of the group are

ellipses.)

Theorem 6. Let {X(t): t 2* 0} be a proper o.s.s. process which is continuous in

probability. If {X(t)} is elliptically symmetric, then {X(t)} is s.s. That is, there is a

real number c such that ci is an exponent for {X(t)}.

Our last theorem concerns o.s.s. processes with stationary independent increments.

Such processes have operator-stable distributions. In [11], Sharpe defined a probabil-

ity measure p on T to be operator-stable if there exist sequences of independent

identically distributed T-valued random variables {A^}, of linear operators {An} on

L\, and of vectors {a„} in T such that An1"Xk + an -» p. He proved that full

operator-stable laws are infinitely divisible. Thus for all / > 0, the powers, ß(y)', of

the characteristic function, p(y), of ju are characteristic functions of infinitely

divisible distributions p'. He showed that if Y(t) is a T-valued random variable with

distribution /i', then there exist a nonsingular linear operator B on T and a vector

b(t) in Tsuch that Y(t) = tBX(l) + b(t). We will use Sharpe's notation below; that

is, if A is a linear operator on Y and F is a ^-valued random variable with

distribution ju, then AY has distribution Ap = fiA~]. Thus Sharpe's theorem says

that u' = tBn * 8(b(t)) where * denotes convolution and S(b(t)) is the probability

measure on 'V assigning mass one to b(t). Following Sharpe, we refer to B as an

(operator-stable) exponent for ju. (However, B~] would be the usual exponent for a

one-dimensional stable law.)

Theorem 7. Let {X(t): t > 0} be a proper stochastic process which is continuous in

probability and has stationary independent increments with A(0) = 0. Then {X(t)} is

o.s.s. if and only if X(l) has a full operator-stable distribution with centering function

identically equal to zero. In this case the o.s.s. exponent is the same as the operator-sta-

ble exponent.

There are certain remarks that should be made. First, there is an association

between a proper operator-self-similar process and a stationary process. If {X(t):

t > 0} is proper and o.s.s. with an exponent D and centering term d(t) = 0, and if

Y(t) = e"'DA(e'), -oo < t < oo, then {Y(t)] is a stationary process. Conversely, let

{Y(t): -oo < t < oo} be a proper stationary process and let D be a nonsingular

linear operator on Tsuch that tDY(ln t) converges in law to, say, v as t -* 0. For

/ > 0, define X(t) to be /DT(ln t), and for t = 0, let A(0) be a random variable with

distribution v. Then (A(f): t s* 0} is proper and o.s.s. with exponent D and

centering function d(t) = 0. These statements are easy to establish.

Next suppose that (A(/): t *= 0} is proper, o.s.s., and Gaussian. Let lY= RN and

let p(s, t) be the covariance operator of X(s) and X(t). Assume EX(t) = 0. When

N = 1 and a > 0 is an exponent for {X(t)}, Lamperti [8] showed that for positive
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numbers r, s, t, p(rs, rt) — r2ap(s, t). In fact, he showed that this condition is

necessary and sufficient for a Gaussian process to be s.s. This can be extended to the

o.s.s. case. If the linear operator D is an exponent for a proper Gaussian o.s.s. process

(A(í): t > 0} with mean function identically equal to zero, then for all positive

numbers, r, s, and t,

p(rs,rt) = rDp(s,t)rD\

Conversely if a mean zero Gaussian process has a covariance operator satisfying the

above equality for some linear operator D on RN, then it is o.s.s. with exponent D.

This, too, is easy to establish.

It is possible to modify some of the above theorems so that they are concerned

only with the ^-dimensional distributions of the process (A(/)}. One might define a

stochastic process {A(/): t > 0} taking values in °V to be k-operator-self-similar if

{X(t)} is continuous in law and if for any r > 0 there exist a linear operator B(r) on

Y and a vector b(r) in °Ysuch that for any positive numbers tx,...,tk

(X(rtx),...,X(rtk)) = (b(r)X(tx) + b(r),...,B(r)X(tk) + b(r)).

If, for example in Theorem 1, one only assumes that {X(t): t > 0} is k-o.s.s., then

the process still has an exponent. That is, there is a linear operator D on °V such that

B(r) may be chosen to be rD. Analogues exist for the other theorems.

Finally, it is easy to see that in the definition of an o.s.s. process it is only

necessary to assume continuity at a single nonzero point.

We now state as propositions three facts used several times in the sequel.

Proposition 1. A probability measure u on "(is not full (i.e. is concentrated in a

proper hyperplane) if and only if there exists a nonzero vector y in "{such that for all

real numbers c, | p(cy) \ = 1.

This is Proposition 1 of Sharpe [11].

Proposition 2. Let % be a compact subgroup of GL(T). Then there exist a

positive-definite selfadjoint linear operator W and a closed subgroup 0O of the orthogo-

nal group 0 such that % = weoW~l.

This is a classical result and is contained in Theorem 5 of Billingsley [1].

Proposition 3. 77ie tangent space of the orthogonal group 6 is the vector-space 2 of

skew-symmetric linear operators.

To see this, note that Q E 7T0) implies that exp(sQ)exp(sQ*) = / for all s, so by

differentiation and evaluation at s = 0 we see that Q is skew-symmetric. For the

converse, since any Q E S commutes with Q*, we have exp(sö)exp(.yG;*) = / for all

j, i.e. Q E 7X6).

3. Proof of Theorem 1. Since many of our lemmas concern equality of the

finite-dimensional distributions of two processes, we use the following notation.

If T=(tx,...,tk)E[0,oo)k and r E R\ then rT = (rtx,...,rtk) and X(T) =

(X(tx),.. .,X(tk)). Also, for A a linear operator on %AX(T) = (AX(tx),... ,AX(tk)),
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and for c £ Y, c = (c,...,c) E Y*. Other notation is as in §2. Throughout this

section we assume that (A(í): t > 0} is a proper o.s.s.

Lemma 3.1. If there are two distinct positive numbers r and s such that Gr n Gs ¥= 0,

then

(a) there is a vector c E "{such that {X(rt)} and {X(st) + c) have the same

finite-dimensional distributions, and

(b) Gr = Gs.

Proof. Since (b) is immediate from (a) and the definition of the G('s, we need

only prove (a). Let A E G, n Gc. Then there are vectors ar and aç in Y such that
e e e

X(rT) = AX(T) + qr and X(sT) = AX(T) + qs. Hence, X(rT) = X(sT) + c where

c = ar - as.    Q.E.D.

Lemma 3.2. (a) If An E Gr with rn^0 and if An^ A E GL( Y), then X(T) = X(0)

for all T.
£

(b) If for some pair of distinct positive numbers r and s, Gr— Gs, then X(T) — A(0)

for all T.

£
Proof. Since A„ E Gr, there are a„ E Ysuch that X(rnT) = AnX(T) + a„. Since

X(t) is continuous in law and An -» A G GL(Y), there is a G Ysuch that an -» a.
£

Hence, by continuity in law, A(0) = AX(T) + a. Therefore, for all T,

X(T) = A~l(X(0) -a).

Thus, we have A(0) = limT^0X(T) = A~\ A(0) - g) = A(T), i.e. X(T) = A(0). This

proves (a).

Now assume G,. = Gs with r < s. We start by showing that for any t > 0,

Glr — Gts. It follows from Lemma 3.1 that there is a vector c E Ysuch that for all

F= (tx,...,tk),  X(rT) = X(sT) + c.  Replacing  T by tT we obtain  for all   T,

£
X(trT) — X(tsT) + c. This implies Gn = Gls. Now replace ? by l/s to obtain Gr,  =

G,. Since r/s < 1, the above argument implies that for any t > 0, Gtr/s = G,. So, if

t = r"/s", we obtain G{r,^\/^+\) — G(rys^ for n — 1,2,..., and these equalities

combine to yield G(r„/s,,) = Gx, n= 1,2,.... Note that r"/sn-*0. Since 7 is

obviously in Gx, put An = / and use part (a) to finish the proof.    Q.E.D.

Lemma 3.3 77ie set G = U,>0G, is a subgroup of GL( Y). In particular,

(a)/EG,,

(h)A E G\ implies A'1 E Gx/r,and

(c) A E Grand B E Gs imply AB E G„.

Proof. Conclusion (a) is obvious.

In order to prove (b), let A E Gr. Then there is a G Ysuch that for all T, X(rT)

= AX(T) + a.  Replace  T by   (l/r)T   and   solve   for   X((l/r)T)   to   obtain

X((l/r)T) = A']X(T) - A~xa which implies A~l E Gx/r and proves (b).
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For (c), let A G Gr and B E Gs. Then X(rT) = AX(T) + a and X(sT) = BX(T)

+ b for some a, b E Y. In the first equality, replace T by sT and then use the second
£

equality to obtain X(rsT) — ABX(T) + Ab + a which implies AB E Grs and proves

(c).    Q.E.D.

Lemma 3.4. The subgroup G is closed in GL(Y). In particular, if An E G,n and

An -> A G GL( Y), then

(a) A G G, and G = G,, or

(h) there is a number r > 0 such that rn -» /* ¿znJ ,4 G Gr. (These two conclusions are

not mutually exclusive.)

Proof. We first consider the case when liminf r = 0. Then by Lemma 3.2(a),
£

X(T) — A(0). It follows immediately that for all s > 0, Gs = G, and hence G = Gx.

Let {/•„.} be a subsequence of [rn] which converges to 0. Then for some an, E Y,

X(r„,T) = A„.X(T) + a„.. Since X(rn,T) -* A(0), it follows that A(0) = AX(T) + a

£
for some a G Y. Hence, X(T) = AX(T) + a which implies A E Gx. Now consider

the case limsupr,, = oo. Then A~l E Gx,r, A~x '<■+ A~x and liminf \/rn = 0, so the

result follows from the previous case. Finally, when 0 < liminf rn < lim sup/-,, < oo,

let {/■„.} denote an arbitrary convergent subsequence of {/•„} with limit /. Then again

for some a„. E Y, X(rn,T) = An,X(T) + an,. Hence, X(tT) = AX(T) + a for some

a E Y and soi 6 G,. Now if t^ = lim inf rn < lim sup rn = t*, we see that A E G,,

n G,. and so by Lemmas 3.1 and 3.2, X(T) = A(0). Again, this implies that G = Gx

and (a) holds. If t„, = t*, then rn -» í and we have proved (b).    Q.E.D.

Definition. When G ^ G,, define tj: G -> Rx by T)(i) = In s whenever A E Gs.

Lemma 3.5. When G ¥= Gx, the function r¡ is a continuous homomorphism between

the group G and the additive group Rx.

Proof. The lemma follows from Lemmas 3.3 and 3.4 once we show that r\ is well

defined. To do this, it suffices to show that if r and s are distinct positive numbers,
£

then Gr n Gs - 0. If this is not so, then X(T) = A(0) and hence G= Gx contrary to

hypothesis. Therefore, -q is well defined.    Q.E.D.

Lemma 3.6. 7/ G ¥= Gx, then G, is not a neighborhood of I in G.

Proof. Let r„ = 1 + 1/», n = 1,2,3,... . We will show that there exists a

sequence [An] in G\GX which converges to /. Since Gr ¥= 0, select An G Gr and

an E Ysuch that X(rJ) = AnX(T) + an. Now X(rnT) '< X(T), so by the conver-

gence of types theorem (see Sharpe [11] or Billingsley [1]) {An} is precompact in

GL(Y). Hence, there exists a subsequence {An,} of {An} which converges to some

A G GL(Y). By Lemma 3.4, A E Gx. Set In = A„.A^. Then J„ ->1 and An G G,,

by Lemma 3.3. It remains to show that for all n, An G G,. But, An E G, implies

Gr. n G, ¥= 0 and hence G = Gx contrary to hypothesis.    Q.E.D.



288 W. N. HUDSON AND J. D. MASON

Now we prove Theorem 1. Assume G = Gx. Then by Lemmas 3.1  and 3.2,
£

X(rT) =X(T) for all r>0 and for all T = (tx,.. .,tk). Thus in this case we may take

D = 0 and d(r) = 0.

Now assume G ¥= Gx. Let T(G) denote the tangent space to G at the identity I.

For A E T(G), the exponential eA of A is defined by eA = 2%(j\ylAJ. It is well

known (see, e.g. Cohn [2]) that the image of T(G) under the exponential map is a

neighborhood of the identity in G. Thus by Lemma 3.6, the image is not a subset of

G, and so there exists an operator A G T(G) such that eA £ G,. Consider the map

s -» t](eSÁ). It is a continuous homomorphism from (Rx, +) into (Rx, +) and hence

■q(esA) — as for some a E Rx. If a = 0, esA G G, for s — 1 contrary to the choice of

i. Thus a =h 0. Set 7) = (l/«)i. Then for all s, r\(esD) = s, i.e. T](rD) = In r for all

r > 0. This implies that rD E Gr for every r > 0. Hence, there exists d(r) E Ysuch

that X(rt) = rDX(T) + d(r). Therefore the processes {X(rt): t > 0} and {rDX(t)

+ d(r): t > 0} have the same finite-dimensional distributions. From the equality
£   n

X(rt) — r X(t) + d(r) and the continuity in law, we see that the function d is

unique and continuous.

Finally, we show that d(r) = (I — rD)x0 for some x0 E Y whenever 0 is not a

eigenvalue of D. For all s, r, t positve numbers,

(sr)DX(t) + d(sr) = X(srt) =sDX(rt) +d(s) = sDrDX(t) + sDd(r) + d(s).

Hence, d(sr) - sDd(r) + d(s). By symmetry, d(sr) = rDd(s) + d(r). Therefore,

sDd(r) + d(s) = rDd(s) + d(r), i.e. (/ - rD)d(s) = (/ - sD)d(r). For r and j

such that (I — rD) and (/ — sD) are nonsingular, we have (I — rD)~xd(r) =

(I - sDYxd(s), i.e. (I - rD)'xd(r) = x0 for some x0 E Y, for all r G & where $ is a

dense subset of [0, oo). Hence, d(r) = (I — rD)x0 for all r E (£. Since d is continu-

ous, d(r) = (I - rD)x0 for all r > 0.    Q.E.D.

4. Proof of Theorem 2 and its corollaries. The tangent space of a closed subgroup

H of GL( Y) is the set of all linear operators A on Ysuch that A — lim d~x(Dn — I)

for some sequence {/>„} in H and 0 < dn -> 0.

Throughout this section (A(i)} is assumed to be a proper o.s.s. process.

Lemma 4.1. S(A(0) C T(G).

Proof. For D E S( A(i)), tD E G, for all / > 0. Hence, e'D E G for all / G Rx.

Since D = lim,j0 rx(e'D - I), D E T(G).    Q.E.D.

Lemma 4.2. 7/G = Gx, then &(X(t)) = T(G).

Proof. Let D E T(G). Since T(G) is a vector space, (In r)D E T(G) for all r > 0.

Hence, rD G G = G, for r > 0. Therefore for some d(r) E Y, X(r) = rDX(l) + d(r).

But G=GX implies A(T) = A(0). Thus X(rt) = /-ÖA(/) + d(r), so D E &(X(t)).

Q.E.D.
Since G = Gx implies that 0 G 5(X(t)), this lemma proves Theorem 2 in this case.

In §3 the function tj: G -> /?' was defined when G ¥= Gx and it was showed that rj is
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a continuous homomorphism between the group G and the additive group Rx. Now

for G¥-Gx define L: T(G) -» Rx by L(A) = t](eA).

Lemma 4.3. The function L: T(G) -* Rx defined whenever G ¥= Gx is a linear

functional.

Proof. We first show that for A E T(G) and t E Rx, L(tA) = tL(A). We showed

in the proof of Theorem 1 that for A fixed, the map s -> t\(esA) is a continuous

homomorphism, so there is an a G Rx such that r](esA) = as for all s. Then

L(tA) = ta = tL(A).

Next, we show that for A, B E T(G), L(A + B) = L(A) + L(B). It is well

known (e.g., Cohn [2,p. Ill]) that as t -> 0, e'Ae'B = e'(A + s>+°('2>. Thus, if Z(A, B)

= E~x(eAeB), where E~x denotes the inverse of the exponential map which is defined

in some neighborhood of / in G, Um,^0t~xZ(tA, tB) — A + B. Hence,

L(A +B) = l( limrxZ(tA, tB)) = UmrxL(Z(tA, tB))
V i^O ' f-0

= Ximrx(L(tA) + L(tB)) = L(A) + L(B).    Q.E.D.

Lemma 4.4. When G # G,, kerL = T(GX).

Proof. For A E T(GX), eA E G„ so L(A) = 0. Conversely, for A such that

L(A) = 0,L(tA) = 0 for allí ERX. Hence e'A E G, for all t E Rx. Thus A E T(GX)

since A = lim^0 t~x(e'A -I).    Q.E.D.

Lemma 4.5. If G ¥= Gx, then

&(X(t))={AET(G):L(A)=l}.

Proof. Since A E &(X(t)) if and only if tA E G, for all / > 0, we have eA E Ge,

so L(A) = 1. Conversely, for A E T(G) with L(A) = I, L((ln t)A) = In / for t > 0.

Hence, tA EG, for all t > 0, so A E S( A(?)).    Q.E.D.

Lemma 4.6. When G ^ Gx, if Dx and D2 are in S(A(/)), then Dx - D2 E T(GX).

Proof. Since D, E &(X(t)), i = 1,2, L(DX) = L(D2). Hence L(DX - D2) = 0, so

Dx - D2 E kerL. But kerL = T(GX).    Q.E.D.

Lemma 4.7. When G ¥= Gx, if D G &(X(t))andA G T(GX), then D + A E &(X(t)).

Proof. We have L(D) = 1 and L(A) = 0, so L(t(A + D)) = t for all t E Rx. As

before, this implies A + D E &(X(t)).    Q.E.D.

Now to complete the proof of Theorem 2, note that G, = %(X(t)) and let D he an

exponent for (A(?)}. Lemma 4.6 implies that S(A(?)) E D + T(%(X(t))), while

Lemma 4.7 yields the reverse inclusion. This proves Theorem 2.

For the proof of Corollary 1, note that from Theorem 2 we have [X(t)} has a

unique exponent if and only if T(%(X(t))) = {0}. Now the image of the tangent

space of a closed subgroup of GL(Y) under the exponential map contains a

neighborhood of the identity. Also the tangent space is a vector space and the

exponential map is continuous. Hence {/} is open in S(A(/)) if and only if

T(S(A(?))) = {0}. Since S(A(i)) is always compact, {/} is open in S(A(0) if and

only if %(X(t)) is a finite set.
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Finally, we prove Corollary 2. We have $(X(t)) = D + T(S(X(t))) for any

D E &(X(t)). Since the group S(A(f)) is compact, there is a positive-definite

selfadjoint linear operator IF on Ysuch that S(A(i)) = W<S0W~X where 0O is a

closed subgroup of the full orthogonal subgroup of GL( Y). Then §(^"^(0) = 0O-

By Proposition 3, 7T0O) = 2-0 where 2-0 is a subspace of skew-symmetric linear

operators on Y. Hence T(S(A(0) = W%W'X.   Q.E.D.

5. Proof of Theorem 3. Let D be an exponent for a proper o.s.s. process {X(t)}.

First, we show that D satisfies conditions (a) and (b).

Let p, denote the distribution of X(t). We may assume that the distributions p,

have been symmetrized if necessary to ensure that for all s > 0 and all r > 0

(5.1) ps, = t ns.

Suppose (a) is false. Then D, and hence its adjoint D*, have an eigenvalue with

negative real part. This implies that there is a nonzero vector x in Y such that

lim,^xtD*x = 0. Put s = l/t in 5.1 to obtain the equation

(5.2) px = tDpx/l,       t>0.

Then for any real number c, the characteristic functions of px and ¡xx/, satisfy the

equality

(5.3) ßx(cx)= ßx/,(ctD'x).

Since {A(í)} is continuous in law fix/l -» fi0 as t -» oo and hence by 5.3

(5.4) ßx(cx) = ß0(0) = ^

But according to Proposition 1, (5.4) implies that /x, is not full. This contradicts the

hypothesis that {X(t)] is proper. This proves (a).

Now let f(x) = g(x)h(x) he the minimal polyinomial of D and D* where g(x)

and h(x) are polynomials, the roots of g(x) have real parts equal to zero, and the

roots of h(x) have positive real parts. Put S = kernel of g(D*) and % = kernel of

h(D*). Then Y= Q © % and both ?, and % are invariant under D*. The minimal

polynomial of the restriction of D* to § is g(x); g(x) has a factorization of the form

g(x) - xm<>(x2 + ß2)m' ■ ■ ■ (x2 + ß2)m- where ßx,.. .,ßn are distinct positive num-

bers, mx,...,mn are positive integers and m0 is a nonnegative integer. In order to

prove (b), we have to show that m, < 1 for all /'. Fory 3= 1 put

sHSJ = kernel((D*)2 + ßf)mj

and for 7 = 0 put % = kemel(D*)m«; then S = % © • • • ©<¥„ and each %} is

invariant under D*. Let D* = D* \ %j. Fix j in {0,...,«} and set D* = S* + N*

where S* is semisimple, N* is nilpotent and S* and N* commute (see [5, Theorem

13, p. 267]). In order to show that m¡ «S 1, it suffices to show that N* = 0

[5, Theorem 11, p. 264]. We know that the minimal polynomial of S* is x2 + ß2 for

;> 1 or x if/ = 0 (see the proof of Theorem 13 on p. 268 of [5]). This fact together

with the Cyclic Decomposition Theorem [5, p. 233] can be used to show that for
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j > l S* has a matrix representation of the form S* = diag.(5,... ,B) where

/ 0      — Ñ \
B =     „ ]

\ßj      0  /

with   respect   to   some   basis.   The   corresponding   representation   for   ts*   is

diag.(iß,. ..,tB) and the power series expansion can be used to obtain

cos(ßjln t)     -sin(/3,-ln t)

sin(/jvinr)      cos(ßjlnt)
tB = I       /  ' ,   \■

It is clear from this that we can select a sequence of positive numbers tn converging

to zero such that if" = /, the identity on %j. When y = 0, S* = 0 so Ts* = I for all

t. Now suppose N* ¥=0.Letk>0 be such that tN'y = 2f=0(ln t)'(i\yx(N*)'y where

(N*)ky i- 0 for some fixed y in Y. Define a(t) = (A:!)/(ln t)k. Then for any c G R

(setting 5 = 1 in (5.1)),

(5-5) p¿a(tn)cy)=px(a(tn)ctD'y).

Now as n -» oo, a(tn) -> 0 and so

(5.6) lim A,(a(tn)cy) = ju0(0) = 1.

On the other hand, tD'y = tft**y = O so lim^^cc^ »„).;?> = c(N*)ky. Thus

for every real number c, jä1(c(N*)*.y) = 1 which again implies that px is not full and

we obtain the same contradiction as before. This proves (b).

We now prove the converse. Let D be any linear operator on Y which satisfies

conditions (a) and (b) of Theorem 3. As in the first part of the proof let / = gh be

the minimal polynomial of D and D* where the roots of g have zero real parts and

those of h have positive real parts. Put Y, = kernel g(D) and Y2 = kernel h(D) so

that Y= Y, © Y2. Let Dx he the restriction of D to Y,. The minimal polynomial of

Dx is g and every root of g is simple so /), is semisimple. Since every eigenvalue of

/), has real part zero, {tD]: t > 0}~ is a compact group of linear operators on Y,.

Now let A, and A2 be independent random vectors which are full on and take values

in Y, and Y2 respectively and such that the distribution of A, is invariant under the

group  {tD>:  r>0F.  For t > 0,  define X(t) = tD(Xx + X2),  and for t = 0  set
£

A(0) = A,. To see that X(t) is continuous in law we need only check that X(t) -> A,

£
as í -> 0. But t DX2 -» 0 since the eigenvalues of D \ Y2 are positive. Since t DXX = A,

£
for all t and A, and A2 are independent, it easily follows that X(t) -> A(0). To see

that X(t) is proper and o.s.s. with exponent D is now trivial.    Q.E.D.

We remark that A, above may be chosen to be normally distributed with mean

zero and an appropriate covariance operator.

Proof of Corollary 3. We need only prove Corollary 3 in the case that zero is

an eigenvalue of the exponent D. According to Theorem 3, zero is a simple root of

the minimal polynomial f(x) of D, so f(x) = xg(x) where g(0) ¥^ 0. Let %Q —

kernel D and % = kernel g(D) so that Y= <¥0 © <¥,. Let F0 denote the projection
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of Y onto GÙSQ having kernel %x. Denote by D0 the restriction of D to %,, Similarly

let Fx he the projection of Y onto eM", having kernel ^IÍq and denote by Dx the

restriction of D to 6tiSl. Then F0 and F, commute with D (this is easy to see since %0

and <¥, are invariant under D) so {F0X(t): t > 0} and (F,A(/): t 3* 0} are o.s.s.

and proper in %0 and 6lSSx respectively. Furthermore, {F0A(i)} and {FxX(t)} have

exponents D0 and Dx and centering functions F0d(r) and Fxd(r) respectively. Now

according to Theorem 1, there is a vector xx in eüT] such that Fxd(r) = (/ — r£,,)Jci-
£

On the other hand, D0 = 0, so F0X(rt) = F0X(t) + F0d(r). Let t -» 0 to see that

£
F0A(0) = F0X(0) + F0d(r). This last equality implies that F0d(r) = 0 for all r. But

d(r) = F0d(r) + Fxd(r) = (I - rD')xx. Put x = xx. Since x E <¥,, i/(r) =

(/ - rD)x.    Q.E.D.

6. Proof of Theorem 4. We will use the same notation as in §3 and as explained

immediately before the statement of Theorem 4. The proof involves three lemmas.

Lemma 6.1. Let {X(t): t > 0} be a proper o.s.s. process which is continuous in

probability. If the distribution of A(0) is full in V, then there is a version {Y(t): t > 0}

of {X(t)} which has constant sample paths. In other words, there is a random vector U

taking values in "{such that for all t > 0, Y(t) = U.

Proof. Assume that the distribution of A(0) is full in Y. We begin by showing

that if D is an exponent for (A(/)}, then every eigenvalue of D has zero real part.

Suppose not. Then by Theorem 3, there is an eigenvalue of D and hence of D* which

has positive real part. It follows that there is a nonzero vector y in Y such that

lim(^0 tD*y = 0. For all t > 0, let p, denote the distribution of X(t). Since for r > 0,

X(rt) = rDX(t) + d(r),

(6.1) \ßr,(x)\ = \fir(tD*x)\ ,       xGY.

Let c be any real number and replace x by cy to obtain

(6-2) \pr,(cy)\ = \pr(ctD"y)\ .

Now let t - 0; since X(t) - A(0), p, -> u0 and

(6-3) |Mo(cy) | = | A,(0) |=1-

According to Proposition 1, (6.3) implies that u0 is not full contrary to our

hypothesis. Thus every eigenvalue of D must have real part equal to zero. But by

Theorem 3, this implies that the eigenvalues of D are simple roots of the minimal

polynomial of D and thus D is semisimple. Hence, the closure in GL(Y) of {tD:

t > 0} is a compact group of linear operators on Y Thus there is a sequence of

positive numbers rn converging to zero such that {r^} converges to somey4 G GL( Y).

But rf E Gr so by part (a) of Lemma 3.2,

(6.4) A(T) = A(0),        TE [0, oo)*, A: = 1,2,....

It follows that {X(t): t > 0} has the same finite-dimensional distributions as does

the stochastic process {Z(t): t > 0} defined by the equation Z(t) = A(0) for every
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t > 0. Obviously {Z(t)] has constant sample paths. Let Q denote the rationals in

[0, oo ) and let

(6.5) Z>0=; M (/GYto-->:/(,)=/(0)}.

Then P[{X(t)} G D0] = P[{Z(t)} E D0] = 1. For w G [{X(t)} E D0] define

Y(t)(u) = A(0)(w) for every t 5* 0. If to £ [(X(t)} E D0], put Y(t)(u) = 0 for every

t > 0. Then (F(7)} has constant sample paths. Furthermore, since P[{X(t)} G D0]

= 1, and since (X(t)} is continuous in probability, it follows that

(6.6) Y(t) = X(t)    a.s.,        t>0.

That is, {Y(t)} is a version of (A(i)}.    Q.E.D.

Lemma 6.2. Let [X(t): t > 0} be a proper o.s.s. process.

(a) ///or «wie exponent D of {X(t)}, every eigenvalue of D has real part equal to

zero, then the distribution of X(0) is full in Y.

(b) Conversely, if the distribution of A(0) is full in Y, then every eigenvalue of every

exponent has zero real part.

Proof. The proof of (b) is contained in the first part of the proof of Lemma 6.1

and so we only need to prove (a). Let D he an exponent for {X(t)} and let d:

[0, oo) ^ Ybe a map such that for every r > 0 {X(rt): t > 0} and {rDX(t) + d(r):

t > 0} have the same finite-dimensional distributions. Then if p., denotes the

distribution of X(t),

(6.7) p, = tDni*S(d(t)),       t>0.

Now suppose that n0 is not full. Then there exists a nonzero vector v in Ysuch that

for every real number c

(6.8) |A0(cy)|=l.

Since {A(0} is continuous in law,

(6.9) lim \ßx{ctD*y)\= 1.
t ÍO

But according to Theorem 3, the eigenvalues of D are simple roots of the minimal

polynomial of D and D*. It follows that {tD*: t > 0} has a compact closure in

GL( Y). Hence there exists a sequence {tn} of positive numbers tending to zero such

that lim„_00i,f*y exists and is not zero. Let z = limn^o0tD*y. Then for every real

number c, we obtain from (6.9)

(6.10) |M,(cz)|=l

which implies that px is not full contrary to our hypothesis. Thus jn0 is full.    Q.E.D.

Lemma 6.3. Let {X(t): t > 0} be proper, continuous in probability and o.s.s. Let D

be an exponent for (A(i)} and let Y, and Y2 be D-invariant subspaces such that

Y= Y, © "Y2. If F denotes the projection onto Y, with kernel Y2, and if Dx denotes the

restriction of D to Yp then {FX(t): 7 s* 0} is an o.s.s. process which takes values in

Y,, which is proper in Y,, which is continuous in probability, and which has exponent

Dx.



294 W. N. HUDSON AND J. D. MASON

Proof. First, note that F commutes with D. (Indeed, if x E Y, then x = xx + x2

where xx G Y, and x2 E Y2. So Dxx E Y, and Dx2 E Y2 and hence FDx = Dxx. On

the other hand, Fx = xx so DFx = Dxx = FDx.) It follows that for every t > 0, F

commutes with tD. Now according to Theorem 1, there is a map d: [0, oo) -» Ysuch

that for every r > 0 {X(rt): t > 0} and [rDX(t) + d(r): t > 0} have the same

finite-dimensional distributions. Consequently, {FX(rt): t > 0} and {rD,FX(t) +

Fd(r): t s* 0} have the same finite-dimensional distributions. It is now clear that

{FX(t)} is o.s.s. with exponent />,. The continuity in probability of (A(?)} implies

that of {FX(t)} since F is a bounded linear operator. It is easy to see that {FX(t)} is

proper with respect to Y, since ( A(i)} is proper.    Q.E.D.

Proof of Theorem 4. Let Fx denote the projection onto Y, = kernel g(D) with

kernel Y2. Then according to Lemma 6.3 {Fx X(t)} is o.s.s. and proper with exponent

Dx relative to Y,. Since every eigenvalue of /), has real part zero, it follows from

Lemma 6.2 that F, A(0) is full in Y,. Hence according to Lemma 6.1, there is a

version [Xx(t)} of [FxX(t)} which has constant sample paths. Now F2 = / — Fx is

the projection of Yonto Y2 with kernel Y, so (A2(i)} = {F2A(i)} is o.s.s., continu-

ous in probability, proper with respect to %, and has exponent D2 = D\"{2.

Conclusions (a), (b), and (c) are established and it remains to check (d). Let y, denote

the distribution of A2(i), / s* 0. Since A2(?) = i°2A2(l) + d(t),

(6.11) \y<(y)\ = \y\{tDi y)\,     y^%-

Since every eigenvalue of D2 has positive real part, it follows that lim;^0rD*>> = 0

for ally E Y2. Thus letting / -» 0 in (6.11), we obtain

(6-12) |Yo(j)l = |fi(0)|= 1,

which implies that y0 is degenerate.   Q.E.D.

7. Proof of Theorem 5. Let (A(7): t > 0} be a proper stochastic process which is

continuous in law. Suppose that there exist a process {Y(t)}, linear operators {A(s):

s > 0}, and vectors {a(s): s > 0} such that the finite-dimensional distributions of

{A(s)Y(st) + a(s): t > 0} converge to those of (A(7)} as s -» oo. The proof that

(A(7)} is o.s.s. will be divided into several lemmas. For each positive integer k and

for each r > 0, define %k to be the set of all linear operators H on Ysuch that for

some vector h E Yand for all T E [0, oo)*

£
(7.1) X(rT) = HX(T) + h.

Lemma 7.1. For all k and r, %k is not empty.

Let r and k be arbitrarily chosen and fixed. Then for any T E [0, oo)* as s -> oo

(7.2) A(sr)Y(srT)+a(sr)^X(T),

and

(7.3) A(s)Y(srT) + a(s)^X(rT).
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Since (A(7)} is proper, it follows that for sufficiently large s, A(sr) and A(s) are

invertible. If a(s)x = A(s)x + a(s), then according to Theorem 2.3 of Weissman

[15] {a(n)a(nr)~x}^=x is precompact considered as affine transformations on Y(look

at the one-dimensional marginals). It follows that they are precompact considered as

affine transformations on Y*. Thus if yx = Hx + h is a limit point, then

(7.4) X(rT)=HX(T) + h.

Thus H E %f.    Q.E.D.

Lemma 7.2. For all r and k, %k is closed in the set of linear operators on "{under the

topology induced by the operator norm.

Let {//„} be a sequence in %k and suppose that //„ -» H. Then for all T E [0, oo)*

and some vectors [hn] in Y

(7.5) X(rT) = H„X(T) + h„ .

£
Since H„X(T)-> HX(T), it follows that for some h E Y, h„ -> h, and

(7.6) X(rT) = HX(T) + h.

Thus H G 9C*.    Q.E.D.

Lemma 7.3. For all r and k, %k D %k+x.

This is obvious.

Lemma 7.4. For all r > 0, %j. is compact in the set of linear operators on Y.

Since according to Lemma 7.2 %xr is closed, we need only show that %x is

bounded. Suppose not. Then there is a sequence of linear operators {//„} in %x such

that II //„ II -» oo. Thus for some sequence {//„} of vectors in Yand for all t 3* 0

(7.7) X(rt) = HnX(t) + hn.

Then for ally- G Y

(7.8) \ßrl(y)\ = \ß,(H;y)\.

Select unit vectors y„ such that \\H*y„\\ = \\H*\\. Put xn = H*y„/\\H*yJ. Then

\\(H*)~xxn II -» 0. (Since ( A(i)} is proper, (7.7) implies that each Hn is invertible and

hence each H* is invertible.) Now let c be any real number, and replace y by

c(H*)~]xn in (7.8) to obtain the equality

(7-9) \ßr,{c(Htylxn)\ = \ß,(cx„)\.

Since HjcJI = 1 for all n, we may assume x„ -» (some)x. Now pass to the limit in

(7.9) as n -» oo to obtain

(7.10) |,U0)|=l=|,x,(^)|.

But (7.10) implies that p, is not full contrary to our assumption that (A(/)} is

proper. Thus, %xr is bounded and therefore compact.    Q.E.D.
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Lemma 7.5. For all r > 0, C\™=x%k is not empty.

Suppose not. Then for some r, C\^=x%k = 0 and so by the finite intersection

property there exist positive integers kx < k2< ■ ■ ■ < k, such that

(7.11) %ï>n%^n---n%^= 0.

But by Lemma 7.3, %k' = 3C*1 n DC*2 n • • • n%^, and hence %k' = 0 which

contradicts Lemma 7.1. Thus D^= ,0C* ¥= 0.   Q.E.D.

It is now easy to see that (A(7)} is o.s.s. Let r > 0 be arbitrarily chosen and fixed

and let H E D"= x%k. Then for some vector hr and arbitrary T G [0, 00)*,

(7.12) X(rT)=HX(T) + hr.

This proves that {X(t)} is o.s.s.

The converse is trivial.    Q.E.D.

8. Proof of Theorems 6 and 7. To prove Theorem 6, let L and Z be as defined just

before and in the proof of Lemma 4.3 respectively. First, assume that S(X(t)) = 0,

the full orthogonal group. Let 2, denote the set of all skew-symmetric linear

operators on Y, i.e. Q E 2- if and only if Q + Q* = 0. For x and y in T(G), set

[x, y] = xy — yx. For real numbers s and t sufficiently small Z(sx, ty) has a power

series expansion given by the Campbell-Baker-Hausdorff formula and the coefficient

of st in that expansion is a constant multiple of [x, y]. On the other hand,

L(Z(sx, ty)) = L(sx) + L(ty) = sL(x) + tL(y),

so L([x, y]) = 0. Thus for all x and y in T(G), [x, y] E T(S(X(t))) = T(6) = 2.

Now let D he an exponent for [X(t)} and let Q E 2. Then [D, Q] E 2 so

[D, Q] + [D, Q]* = 0. That is, DQ - QD + (-QD* + D*Q) = 0, or (D + D*)Q =

Q(D + D*).
Thus D + D* commutes with every Q G S and hence with every rotation, since

every rotation is of the form ee for some Q E S. (This latter fact is easy to see from

p. 274 of Curtice [3].) The only subspaces invariant under all rotations are {0} and

Y, so by Schur's Lemma (Lang [10, p. 173]), D + D* = ci for some number c.

Define QQ to be (c/2)/ - D and note that Q0 E S. By Theorem 2, (c/2)/ = D + Q0

is an exponent for (A(/)}.

Now assume S(A(r)) is conjugate to 0, i.e. for some positive-definite selfadjoint

IF, S(X(t)) = IF0IF"1. Then %(W~xX(t)) = 0. Hence, for some real number c, ci is

an exponent for IF"'A(7). Thus, W(cI)W~x is an exponent for (X(t)}. But,

IF(c/)IF-' = ci.    Q.E.D.

The above proof only required that (A(/)} be continuous in law, but the original

definition of self-similar requires continuity in probability.

Finally we prove Theorem 7. The assumptions on {A(i)} imply that for all t > 0,

ßt(y) = exp{t\p(y)} where \p arises from the infinitely divisible representation of ßx.

We first show that if (A(i)} is a proper o.s.s. process, then its centering function is

identically equal to zero. Since ps, = tDps * 8(d(t)), we have jti0 = tDp0 * 8(d(t)).

Since ju0 = ô(0), d(t) = 0. Now assume {A(i)} is a proper o.s.s. process and let v be

the distribution of A(l). Then v(y) = e\p{\p(y)} and hence v' = p, for all t > 0.
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Therefore v' — tDpx— tDv, i.e. A"(l) is operator-stable with exponent D and center-

ing function identically zero. Conversely, assume v = tDv for all t > 0. Hence

p, = tDv and we have ps, - vs' - sDtDv = sDp,.    Q.E.D.
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