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PRODUCTS OF k-SPACES AND
SPACES OF COUNTABLE TIGHTNESS
BY
G. GRUENHAGE AND Y. TANAKA

ABSTRACT. In this paper, we obtain results of the following type: if f: X - Y is a
closed map and X is some “nice” space, and Y2 is a k-space or has countable
tightness, then the boundary of the inverse image of each point of Y is “small” in
some sense, e.g., Lindelof or w,-compact. We then apply these results to more
special cases. Most of these applications combine the “smallness” of the boundaries
of the point-inverses obtained from the earlier results with “nice” properties of the
domain to yield “nice” properties on the range.

Introduction. Recall the following theorem due to Morita and Hanai [14] and
Stone [17].

THEOREM. If f: X - Y is closed and X is metrizable, then the following are
equivalent.

(a) Y is first countable;

(b) For eachy € Y, df ~'(y) is compact,

(c) Y is metrizable.

The (c) = (b) part is due to VainStein [22]. But even the (a) = (b) part holds under
much more general conditions: Michael [7] showed (b) holds if X is paracompact,
and Y is locally compact or first-countable.

Note that the assumptions on Y in Michael’s theorem could not be weakened to
“Y is a k-space” or “Y has countable tightness”: the map identifying the limit points
of a topological sum of k convergent sequences is a closed map from a metrizable
space X to a Fréchet space Y, and | 3f ~!(y) |= « for some y € Y. In this paper, we
show that the situation is different if we require Y2 to be a k-space or have
countable tightness. (Recall that the square of a k-space or a space of countable
tightness need not have the same property.) We will usually not be able to show that
the boundaries of point-inverses are compact, but we will often (depending upon
conditions imposed on X or Y) be able to show that they are “small” in some sense,
e.g., Lindeldf or w,-compact. In the second section, we apply general results of this
type to more special cases, often combining the “smallness” of the boundaries of
point-inverses with “nice” properties of X to obtain “nice” properties of Y.

We mention the following earlier result of the second author [21] which is related
to this topic.
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THEOREM. If f: X - Y is closed and X is metrizable, then the following are
equivalent.

(a) For eachy € Y, d3f "\(y) is Lindelof.

(b) Y has a point-countable k-network [see §2, Definition 2.1].

(c) Y has a o-locally-countable k-network.

See [7] and [21] for other related results.

We will often make use of the following well-known property of closed maps (cf.
[3,p. 52]): If f: X = Y is closed, then for each y € Y and open U C X such that
f~!(y) C U, there is a neighborhood ¥V of y such that f (V') C U.

1. General results. All our spaces are assumed to be regular and 7,. We consider
cardinals to be initial ordinals. We now recall some basic definitions.

DEFINITION 1.1. A space X has the weak topology with respect to a collection C of
sets if a subset A of X is closed (resp., open) in X if and only if 4 N C is closed
(resp., open) in C for each C € C.

DEFINITION 1.2. A space X is a k-space (quasi-k-space) if X has the weak topology
with respect to its compact (countably compact) subsets. X is sequential if X has the
weak topology with respect to its compact metric subspaces (equivalently, with
respect to its subspaces homeomorphic to w + 1, a sequence with its limit point). X
has countable tightness (denoted by #(X) < w) if it has the weak topology with
respect to its countable subsets.

We will be using the following elementary facts about these concepts.

(i) If X has the weak topology with respect to a collection C, and f: X > Y is a
quotient map, then Y has the weak topology with respect to { f(C): C € C}. Thus
all properties named in Definition 1.2 are preserved by quotient maps.

(ii) If X satisfies any of the properties in Definition 2.2 locally, then the whole
space has the property.

(iii) If X has a locally finite cover by a family € of closed sets, then X has the weak
topology with respect to C.

DEFINITION 1.3. A space X is (strongly) collectionwise Hausdorff if whenever {x:
a € A} is a closed discrete subset of X, there exists a (discrete) disjoint collection
{U,: a € A} of open sets such that x, € U, for each a € A4.

Note that every normal collectionwise Hausdorff space is strongly collectionwise
Hausdorff.

Let ¢ denote the cardinality of the continuum.

THEOREM 1.4. Suppose f: X — Y is closed, with X strongly collectionwise Hausdorff.
Then the boundary, 3f ~'( ), of f ~'(y) is c-compact for each y € Y if either

(a) Y2 is quasi-k and (Y ) < w or

(b) (Y?) < w.

PROOF. Suppose df ~'(y) is not c-compact. Then there is a closed discrete subset
D C 3f (), with | D|= c. For each d € D, let U, be an open set containing d such
that {U;: d € D} is discrete.

Letd € U, C U, C Uy, where U, is open. Note that {U,: d € D} is also discrete.
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For each dE€ D, y Ef(U f"(y)) Since #(Y) < w, there is a countable set
{(Vunin € @) Cf(U;— f7(y)) such thaty € {y, ,: n € w}.

Let X, , = f~(y,) 0 Upand let X, = f~'(y) N U,

If O is open and contains X, then there is an open set O’ such that 0’ N U= 2,
and f7'(y) C O U O'. Let W be the complement in Y of f(X — (O U 0")). Then
y € W, so there is n € w such that y,,, € W, and hence f~'(y,,) C O U O’. Thus
X,,C(Ouo)n u=0nu.Co. Choose x, , € X, ,,and let 4, = {x, ,; n €
w}. By the above argument, every open set containing X, contains infinitely many
elements of 4.

For x € Ay, let D, = {d’' € D: there exists x’ € U, with f(x) = f(x)}. Let

= {x € A, D, is uncountable}.

Clatm 1. X,N B, = @. To see this, let B, = {x,, x,...}. Inductively choose a
sequence d,, d,,... of distinct elements of D, and points x, € l7d” such that
f(x;) = f(x,). Then {xg, x1,...} is a closed subset of X, so f({xg, x{,...}) = f(B,)
is closed. Thus y & f(B,) = f(B,) = f(B,),s0 X,N B, = &

Let C,= A, — B,. By Claim 1, X, N C, # @. Pick d(0) € D. Let D(d(0)) =
U{D,;x € C—'d(o)}. Observe that D(d(0)) is countable. If d(B) has been chosen for
all B<a<c, letd(a) € D~ Ug_,D(d(B)). Observe that if x € Cyp) and x’ €
Cyay With @ # B, then f(x) # f(x').

Now let & = {E,: @ < c} index all subsetsof U, _ C,, suchthat|E, N C,,, |=1
foreacha <cand n € w. Let E, = {e,,; n € w} such thate,, € Cy,y. Let Cyy =
{Coms N € w}.

For x € X, denote f(x) by x*. Let H, = {(e3,,cX ,): n € w} C Y?, where A is
the ath limit ordinal, and let H = U ___H,.

Claim 2. (y, y) € H—H. To see this, suppose y € O, O open in Y. We know
Xy N Cd(a) # 2, 50 y € f(Cyay) = f(Cya)- For each n € w, choose x, € Cy,,,
such that x¥ € O. Then {x,: n € w} = E, for some a, and e,, = x, for each n.
There is n € w such that ¢ , € O. Thus (e3,, cX ,) € 0% N H,, which proves the
claim.

The next claim completes the proof of part (a).

Claim 3. If K C Y? is countably compact, then K N H is finite. To see this,
suppose a,, a;... are distinct ordinals such that for each n € w, KN H, # .
Then we can find (e3 ., cX ) € KN H, . But {c, ,:n € w}isa closed discrete
subset of X, since Crokn € I_Z,()\a"). Thus {(e3 & cia"k:); n € w} is an infinite closed
discrete subset of K, contradiction. Thus K meets only finitely many H,’s. Now
suppose that for fixed a, K N H, is infinite. Then for each n € w, we can find
(exe,» X.x,) € KN H,. But {e,, : n € w} is an infinite closed discrete subset of X
and we get a contradiction as before. Thus each K N H,, is finite, and so K N H is
finite.

To complete the proof of part (b), we have the next claim.

Claim 4. No countable subset of H contains ( y, y) in its closure. Suppose C C H,
| C|< w. Then there exists a sequence ay, «a,,... of distinct ordinals such that
ccU,c,H,.For each n, let U, C U; be an open set in X containing X, such
thate, , & U, "if k < n. Note U,N U,= @ if d # d(n). Let V, be an open set in X
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containing X, )such thatey, € V,ifk<n,and ¥, N U= @ifd#d(, D)
Ifxef” ‘( »)— U, U, U V ), then there is an open set O, containing x such
that O, N U, = @ ifd € {d(n): n € w} U {d(A,): n € w}. Let

0=U{osxer'y)- U @umu(ywur)

There is an open set W containing y such that f "}(W) C O. Suppose W2 N C #
@. Then there exists m such that W>N H, # @. Choose n € w such_that
(er ek, ) EW*NH, . Then (e, ¢y, ) € 0. Recall ¢, € Catmy C Uyiny-
Thus e, » € U, and so m > n. Also recall c;\ E G, 5 C Ud(,\ ) Thus ¢, €

wh1ch means n > m, a contradiction. This proves Claim 4. Hence Y2 does not
have countable tightness, a contradiction which proves the theorem. [

Assuming the continuum hypothesis (CH), we have the following corollary.

COROLLARY 1.5 (CH). Suppose f: X — Y is closed, with X paracompact. Then each
of “\(y) is Lindeldf if either Y? is a k-space with {(Y) < w, or t(Y?) < w.

PrOOF. Immediate from Theorem 1.4 and the fact that w,-compact paracompact
spaces are Lindelof [1].

REMARK. By the proof below, if Y? is a k-space with #(Y) < w, then #(Y?) <
Thus the two conditions are not independent.

PROOF. Since Y? is a k-space, it has the weak topology with respect to the
collection of compact subsets of Y?; that is A C Y? is closed whenever 4 C C is
closed in C for every compact subset of C of Y2 Each compact subset C of Y2 is
contained in 7(C)?, where 7 is the projection from Y? onto Y. Then Y? has the
weak topology with respect to {m(C)? C is compact in Y?}. Since each #(C) is a
compact space of countable tightness, by a result of V. I. Malyhin [§, Theorem 4], so
iseach m(C)%. Then #(Y?) < w. 0O

We do not know if Corollary 1.5 is true without CH. The problem seems to hinge
on strengthening the conclusion of Theorems 1.3 and 1.4 by replacing “c-compact”
with “w,-compact”. It turns out if we add the condition “Y is sequential” to the
hypotheses of these theorems, then we can do it.

THEOREM 1.6. Suppose f: X — Y is closed with X strongly collectionwise Hausdorff
and Y sequential. Then each 3f ~\(y) is w,-compact if either Y? is a quasi-k-space or
(Y <o

PROOF. Suppose Y2 is a quasi-k-space. Since Y is sequential, by [18, Theorem 2.2]
Y? is sequential, hence #(Y?) < w. Thus we can assume that #(Y?) < w. Suppose
df~'(y) is not w,-compact. Then there is a closed discrete set D C 3f ~!(y) with
| D|= w,. Let {U,; d € D} be a discrete collection of open sets in X with 4 € U,.
Then f(U,) is a closed subset of the sequential space Y, and is therefore sequential.
Since y is not isolated in f(U,), there exists a sequence y, , = y, with y, , € ) —
{») for each n € w. Choose x, ,, € U, N f~ '(¥4.n)- As in the proof of Theorem 1.3,
we can construct {d(a); a < w,;} C D and an infinite set Cy,y C {X a0 7 € @}
such that fis 1-1 on U, _, Cy,y. Let Xy = Ud(a) N f7'(y). Observe that every
open set containing X, contains all but finitely many elements fo C,,), and that
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f'(»u (Ua<w,Cd(a)) is closed. Thus Y contains a closed copy of the space
obtained by identifying the limit points of w, convergent sequences. In [4], this space
is denoted by S,, , and it is proved there that Sjl is not a k-space.

To complete the proof, it is sufficient to show that Sjl does not have countable
tightness. For each a < w,, let S, C S, be the union of the first a sequences (with
limit point). The closure of a countable subset of Sjl is contained in some S?. Thus if
S,fl had countable tightness, then it would have the weak topology with respect to
{S2; @ < w,}. But each S7 is a k-space (cf. [9, (7.5)]), so then S2 would be a k-space,
contradiction. O

COROLLARY 1.7. Suppose f: X — Y is closed with X paracompact and Y sequential.
Then each 3f ~'(y) is Lindelof if either Y? is a k-space or t(Y?) < w.

The following example shows that the assumption “Y? is a k-space” is not
sufficient to obtain “df ~'( y) Lindeldf” in Corollary 1.5.

ExaMpLE 1.8. There exists f: X — Y closed with X locally compact and paracom-
pact, such that Y2 is a k-space, but df ~'( y) is not Lindeldf for some y € Y.

PRrOOF. For each a < w, let S(a) be a copy of ordinal space w, + 1. Let X be the
free union of {S(a): a < w,}. Let Y be the space obtained from X by identifying the
point w, in each copy to a single point oo. Let f: X — Y be the quotient map. Then
X is paracompact and locally compact, f is closed, and 9f ~'(00) is not Lindeldf. X is
a k-space (being locally compact), hence so is Y.

It remains to prove that Y? is a k-space. First we introduce some notation. For
each a, 8 < w,, let B(«) be the image under f of the element of S(«) corresponding
to the ordinal number B. If B < B’ < w,, let [B(a), B'(a)] = {y(a): B<7y =< B},
and let [ B(a), 00] = [B(a), w\(a)].

Suppose A C Y2, with A k-closed, but not closed. Since for each a, 8 < w,,
[O(@), B(a)] X Y and Y X [O(a), B(a)] are clopen k-subspaces of Y2, it must be
true that (00, ) € 4 — A.

Since [ f(S(0))]> N 4 is closed, there exists v, < w, such that [y,(0), ©0]* N 4 =
@ . Now suppose v, has been defined for all « < 8, where 8 < w, in such a way that
the following property P, holds.

P (Bi(a)), By(a;)) EA and a;,a, < aimplies B, <7, or B, <7y,,.

It is easy to check that Pj holds from the way v, has been defined. We will show
how to define v, in such a way that P, holds.

For each a < B, f(S(a) X S(B)) N A and f(S(B) X S(a)) N A are closed, so
there exists §, s < w, such that

1) v, < 801‘/3;

(i) ([8, (@), 0] X [8, g(B), 0]) N 4 = @ and

(iii) ([8, g(B), 0] X [8, g(@), 00) N A = &

For each a < 8, and each B8’ € [y, 8‘,‘3), we have by P, that (8'(a), ) & 4 and
(0, B'(a)) & A and (0, B'(a)) & A. Thus there exists 8’ s < w; such that

(a) (85 4(B), 0] X {B(@)})) N 4= & and

(b) ({B'(@)} X [0 4(Broo) N A= 2.
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Let v; = sup{8, p: @« < B} + sup{dg p: « < B, v, < B’ <98, ). Then y4 < w,. To
show that P, holds, we can suppose (8,(a), By(B)) € 4, with a < B. If a = B, then
either B, <8 g <7y or B, <8 <175, s0 P holds. If a <pB, we can suppose
B, = vg. Then it must be true that 8, < §, 4 (by (ii) above). If vy, < B, < §, 4, then
since vz = 85 5, we have (By(a), B,(B)) € ({Bi(a@)} X [ z(B),©]) N4, a con-
tradiction. Thus 8, < y,, so P, holds.

Thus we can define {v,: @ < w,} in such a way that P, holds for each @ < w,. Let
U={B(a): B>7v, a<w}. Then U is an open set in Y containing oo. Since
(00, ) € A, there exists (B,(a;) By(a,)) € U? N A. Since P, ., holds, either 8, <
Yo, OF B, < ¥,,- But then either B,(a;) & U or B,(a,) & U, contradiction. Thus Y2is
a k-space.

2. Applications. As applications of results in §1, we shall consider the products of
k-spaces and spaces of countable tightness in more special cases.

DEFINITION 2.1 [8, 16]. A collection & of (not necessarily open) subsets of a space
X is a k-network for X if, whenever C C U with C compact and U open, then
C C U% C U for some finite subcollection ¥ of . An R-space is a space with a
o-locally finite k-network, and an 8 -space is a space with a countable k-network.

Note that metrizable spaces are N¥-spaces, and separable metrizable spaces are
N -spaces.

We say that X is a locally 8 j-space if each point of X has a neighborhood which is
an N ,-space.

THEOREM 2.2 (CH) Let f: X — Y be a closed map. Let X be a paracompact, locally
N ,-space. Then the following are equivalent.

(@) 1(Y?) < w;

(b) each 0f ~\(y) is Lindeldf,

(c) Yis a locally ¥ \-space; and

(d) Y is locally separable.

Furthermore, if Y is sequential, then the CH assumption can be omitted.

PROOF. (a) = (b): This is Corollary 1.5.

(b) = (c): Since each subset of a locally R -space is locally 8, as in the proof of
[7, Corollary 1.2}, we can assume that each f ~!( y) is Lindelof. Thus, f is a closed map
with each f ~!(y) Lindeldf. Then, for each y € Y, there is a closed neighborhood W
of y in Y, and open subsets ¥, of X which are & j-spaces such that f (W) C U2 V..
Since U2 V; is an 8 -space, so is f ~'(W). Since the closed image of an ¥ -space is
also ¥, by [8, G}, W is an 8 ;-space. This implies (c).

(c) = (a) and (c) = (d): By [8, F], Y2 is a locally 8 ,-space. Then, by [8, D, E] Y?is
locally a hereditarily separable space. Hence #(Y?) < w.

(d) = (b): This follows from [21, Proposition 1], because Y is paracompact, hence
is locally Lindelof by (d).

From Theorem 2.2 and some results in [21], we have

COROLLARY 2.3. Let f: X — Y be a closed map with X locally separable metric. Then
the following are equivalent.
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(@) ((Y?) < w;

(b) each 0f ~\( ) is Lindeldf,
(c) Y is locally separable;

(d) Y is locally Lindelif;,

(e) Y is an N-space.

DEFINITION 2.4. A decreasing sequence (A,,) in a space X is a k-sequence [10], if it
is an outer network at a compact subset K of X; that is, K = M’_, 4, and every
neighborhood of K contains some A4,. By regularity, if a compact subset K has an
outer network, it has one in which each A4,, is closed in X.

Let Y be a space. Then Y satisfies condition K(¥ ) [20] if, for any k-sequence (A4,,)
in Y, some A4, is countably compact.

It is shown that [20, Proposition 2.4] a space Y satisfies K(N) if and only if each
closed subset of Y which is a paracompact M-space is locally compact.

DEFINITION 2.5 [10, Lemma 3.E.2]. A space Y is a bi-k-space if, whenever a filter
base ¥ accumulates at y in Y, then there exists a k-sequence (4,) in Y such that y
€FNAyforalln € Nandall F € %.

It is shown that [10, Theorem 3.E.3] Y is a bi-k-space if and only if Y is a
bi-quotient image of a paracompact M-space X. Then by a result of H. Wicke [23],
spaces of pointwise countable type [2] are bi-k.

DEFINITION 2.6. A space X is a k -space [9] (K. Morita [13] called it a space of
class &), if it has the weak topology with respect to a countable covering of compact
subsets of X.

For a space Y we shall say that Y is a locally k -space, if each point of Y has a
neighborhood whose closure is a k -space.

It is implicit in a result of J. Milnor [12, Lemma 2.1] that the product of two
k ,-spaces is k. This fact implies the following lemma.

LEMMA 2.7. Let Y be a locally k -space. Then Y? is a locally k -space, hence, a
k-space.

LEMMA 2.8. Let f: X — Y be a closed map with each df ~'(y) Lindelof. If X is bi-k
and Y satisfies K(W), then Y is a locally k -space.

PROOF. Since each closed subset of X is a bi-k, as in the proof of [7, Corollary 1.2],
we can assume that each f ~'( ) is Lindelof. Let y € Y. Then we will prove that each
point of f ~'( ) has a neighborhood contained in the inverse image of some compact
subset of Y. To see this, suppose not. Then there is a point ay of f~'(y) such that for
every neighborhood V of a, and for every compact subset K of Y, V' Zf\(K).

Let ¥ = {X — f~/(K); K is compact in Y}. Then F is a filter base accumulating at
the point a,. Since X is bi-k, there exists a k-sequence (A4,) in X such that a,
EFNA,for all n € w and all F € ¥. Obviously, (f(4,)) is a k-sequence in Y.
Thus, by condition K(X,), some f(4,,) is compact. Let K, = f(4,,)). Then, a,
g(x—f-'(Ko)) N4, C(X—f"(K,)Nf(K,) = @. This is a contradic-
tion.
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Thus, each point x of f~!(y) has a neighborhood ¥, which is contained in the
inverse image of some compact subset of Y. Since f ~'(y) is Lindeldf, {V,: x € f~(»)}
contains a countable subcover {V,},c., of f~'(»). For each n, let K, be a compact
subset of Y such that ¥, C f~(K,). Since f is closed and Y is regular there exists a
neighborhood W of Y such that f\(W) C U, V,. Let F=f~'(W)and V= (F N
V;: i € w}. Then, since Vis an open covering of F, F has the weak topology with
respect to V. Since F N V, C F N f7(K;) for each i € w, F has the weak topology
with respect to {F N f"Y(K,); i € w}. Since f| F is closed, hence quotient, f(F) = w
has the weak topology with respect to {W NK,: i € w}. Thus W is a k-space, and

so Y is a locally k -space. O

LEMMA 2.9. Let f: X — Y be a closed map with X normal and (Y) < w. If Y? is a
k-space, then either Y satisfies condition K(8 ) or each 3f ~'(y) is countably compact.

PROOF. According to [20, Theorem 4.2], if the product of two spaces is quasi-k,
and one factor is not an inner-one A-space in the sense of E. Michael, R. C. Olson
and F. Siwiec [11], then the other factor satisfies K(a), where « is its tightness. Y
satisfies condition K(N,), or Y is an inner-one A-space. If Y is inner-one A, by
[10, Theorem 9.9] each 9f ~!( y) is countably compact.

LemMMA 2.10 [10). Bi-k-spaces are preserved by perfect images and countable
products.

By invoking Corollary 1.5, and Lemmas 2.7, 2.8, 2.9 and 2.10, we obtain the
following theorem.

THEOREM 2.11 (CH). Let f: X - Y be a closed map with X paracompact bi-k. If
1Y) < w, then the following are equivalent. When Y is sequential, the CH assumption
can be omitted.

(a) Y2 is a k-space.

(b) Y is locally k ,, or each df ~'(y) is compact.

(c) Y is locally k ,, or bi-k.

COROLLARY 2.12. Let f: X — Y be a closed map with X or Y sequential. Let X be a
paracompact space of pointwise countable type. Then Y? is a sequential space (equiva-
lently, a k-space by (18, Theorem 2.2)) if and only if Y is locally k , or bi-k.

Before proceeding with the next lemma, we remind the reader that the perfect
image of an N-space is an N-space, but the closed image of a locally compact metric
space need not be 8-space (cf. [21, Theorem 7)).

LEMMA 2.13. Let f: X — Y be a closed map with each 3f ~\(y) Lindelof. If X is an
N-space, and Y satisfies condition K(N ), then Y is also an N-space.

PrOOF. Let ¥ = U2 9. be a o-locally finite k-network for X satisfying the
following conditions: Each element of P is closed, . C 9., and ¥, is closed with
respect to finite intersections. Let K be an arbitrary compact subset of Y. Since each
subset of an N-space is an N-space, as in the proof of [7, Corollary 1.2], we can
assume that each f~!(y) is Lindelof and that there exists a compact subset C of X
with f(C) = K.
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Let ' ={(P€P PN C+# @}, and let C be the collection of finite unions of
elements of %’ which contain the compact subset C. Then € is a nonempty,
countable collection in X.

Let C= {P:i € w} and C, = N_, P, for each n. Then (C,) is a k-sequence for C.
Since ( f(C,)) is a k-sequence for K, by K(N ) there exists a compact subset f(C, ) of
Y. On the other hand, by the conditions of the collection ®, each C, can be
expressed as a union of finitely many elements of &. So, the compact subset f(C, )
containing K can be expressed as a union of finitely many elements of f(%). Let
K, = {f(P): P€P and f(P) is compact in Y}, and let H* be the union of all
elements of ¥,. Then, since f(%,) C f(¥...,), by the above, each compact subset of Y
is contained in some J*.

We will now prove that Y is an 8-space. Each K, is a hereditarily closure-preserv-
ing collection of compact subsets of Y, that is, whenever a subset K’ of K is chosen
for each K € K, the collection {K’: K € K} is closure-preserving. This is because
K, is the image of a locally finite, hence hereditarily closure-preserving, collection
under a closed map. Then by a result of Michael [6, Theorem 1], each H* is
paracompact. Next, to see each H* is locally 8, let 0, = {P € &P: f(P) € K,} and
let ¥ = UIN,. Then ¥ has the weak topology with respect to the locally finite
closed collection 9. Also, f| ¥ is closed, hence quotient. Thus K} = f(9¥) has
the weak topology with respect to K. Since f is closed and each f~'(y) is Lindelof,
X, is locally countable. Hence each K?* is a locally k -space. Since each compact
subset of X is an N ;-space, by [8, G] each compact subset of Y is also 8, because it is
the image of a compact subset of X. Then each K?* is a locally N ,-space, since each
point has a neighborhood which has the weak topology with respect to a countable
collection of compact R -spaces (see [8]). So, each H* is a paracompact, locally
8 ,-space. It follows that each J* is also an ¥-space. As is seen, each compact subset
of Y is contained in some K *. Since each ‘JC;“ is an N-space, it follows that Y is also
an N-space. This completes the proof of the lemma.

LEMMA 2.14 [19, THEOREM 3.1]. Let Y be a k- and W-space. Then Y? is a k- and
N-space if and only if Y is metrizable, or Y has the weak topology with respect to a
countable covering of closed and locally compact subsets of Y.

Let a k-space Y be the closed image of an N-space. Since each closed subset of an
N-space is easily seen to be a Ggset, each point of Y is a Gs-set. Thus by
[10, Theorem 7.3], Y is sequential. Therefore, by Corollary 1.7, and Lemmas 2.13 and
2.14, we have

THEOREM 2.15. Let f: X — Y be a closed map with X a paracompact ¥-space. Then
Y2 is a k-space if and only if Y is metrizable, or Y is an W-space having the weak
topology with respect to a countable covering of closed and locally compact subsets of Y.

REMARK. Let X be an R-space each of whose countable (resp. uncountable) subset
has an accumulation point. Then X is an N -space, and so X is compact (resp.
Lindelof). Thus, by Theorem 1.6, we have the following.

If an N-space X is more generally strongly collectionwise Hausdorff, then the
statement of Theorem 2.15 is also valid.
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