PRODUCTS OF k-SPACES AND SPACES OF COUNTABLE TIGHTNESS

RY

G. GRUENHAGE AND Y. TANAKA

ABSTRACT. In this paper, we obtain results of the following type: if $f: X \to Y$ is a closed map and X is some "nice" space, and Y^2 is a k-space or has countable tightness, then the boundary of the inverse image of each point of Y is "small" in some sense, e.g., Lindelöf or ω_1 -compact. We then apply these results to more special cases. Most of these applications combine the "smallness" of the boundaries of the point-inverses obtained from the earlier results with "nice" properties of the domain to yield "nice" properties on the range.

Introduction. Recall the following theorem due to Morita and Hanai [14] and Stone [17].

THEOREM. If $f: X \to Y$ is closed and X is metrizable, then the following are equivalent.

- (a) Y is first countable;
- (b) For each $y \in Y$, $\partial f^{-1}(y)$ is compact;
- (c) Y is metrizable.

The (c) \Rightarrow (b) part is due to Vaĭnšteĭn [22]. But even the (a) \Rightarrow (b) part holds under much more general conditions: Michael [7] showed (b) holds if X is paracompact, and Y is locally compact or first-countable.

Note that the assumptions on Y in Michael's theorem could not be weakened to "Y is a k-space" or "Y has countable tightness": the map identifying the limit points of a topological sum of κ convergent sequences is a closed map from a metrizable space X to a Fréchet space Y, and $|\partial f^{-1}(y)| = \kappa$ for some $Y \in Y$. In this paper, we show that the situation is different if we require Y^2 to be a k-space or have countable tightness. (Recall that the square of a k-space or a space of countable tightness need not have the same property.) We will usually not be able to show that the boundaries of point-inverses are compact, but we will often (depending upon conditions imposed on X or Y) be able to show that they are "small" in some sense, e.g., Lindelöf or ω_1 -compact. In the second section, we apply general results of this type to more special cases, often combining the "smallness" of the boundaries of point-inverses with "nice" properties of X to obtain "nice" properties of Y.

We mention the following earlier result of the second author [21] which is related to this topic.

Received by the editors February 11, 1980 and, in revised form, July 13, 1981. 1980 Mathematics Subject Classification. Primary 54D50; Secondary 54A25, 54C10, 54D55.

THEOREM. If $f: X \to Y$ is closed and X is metrizable, then the following are equivalent.

- (a) For each $y \in Y$, $\partial f^{-1}(y)$ is Lindelöf.
- (b) Y has a point-countable k-network [see §2, Definition 2.1].
- (c) Y has a σ-locally-countable k-network.

See [7] and [21] for other related results.

We will often make use of the following well-known property of closed maps (cf. [3, p. 52]): If $f: X \to Y$ is closed, then for each $y \in Y$ and open $U \subset X$ such that $f^{-1}(y) \subset U$, there is a neighborhood V of y such that $f^{-1}(V) \subset U$.

1. General results. All our spaces are assumed to be regular and T_1 . We consider cardinals to be initial ordinals. We now recall some basic definitions.

DEFINITION 1.1. A space X has the weak topology with respect to a collection \mathcal{C} of sets if a subset A of X is closed (resp., open) in X if and only if $A \cap C$ is closed (resp., open) in C for each $C \in \mathcal{C}$.

DEFINITION 1.2. A space X is a k-space (quasi-k-space) if X has the weak topology with respect to its compact (countably compact) subsets. X is sequential if X has the weak topology with respect to its compact metric subspaces (equivalently, with respect to its subspaces homeomorphic to $\omega + 1$, a sequence with its limit point). X has countable tightness (denoted by $t(X) \le \omega$) if it has the weak topology with respect to its countable subsets.

We will be using the following elementary facts about these concepts.

- (i) If X has the weak topology with respect to a collection \mathcal{C} , and $f: X \to Y$ is a quotient map, then Y has the weak topology with respect to $\{f(C): C \in \mathcal{C}\}$. Thus all properties named in Definition 1.2 are preserved by quotient maps.
- (ii) If X satisfies any of the properties in Definition 2.2 locally, then the whole space has the property.
- (iii) If X has a locally finite cover by a family \mathcal{C} of closed sets, then X has the weak topology with respect to \mathcal{C} .

DEFINITION 1.3. A space X is (strongly) collectionwise Hausdorff if whenever $\{x_{\alpha}: \alpha \in A\}$ is a closed discrete subset of X, there exists a (discrete) disjoint collection $\{U_{\alpha}: \alpha \in A\}$ of open sets such that $x_{\alpha} \in U_{\alpha}$ for each $\alpha \in A$.

Note that every normal collectionwise Hausdorff space is strongly collectionwise Hausdorff.

Let c denote the cardinality of the continuum.

THEOREM 1.4. Suppose $f: X \to Y$ is closed, with X strongly collectionwise Hausdorff. Then the boundary, $\partial f^{-1}(y)$, of $f^{-1}(y)$ is c-compact for each $y \in Y$ if either

- (a) Y^2 is quasi-k and $t(Y) \le \omega$ or
- (b) $t(Y^2) \leq \omega$.

PROOF. Suppose $\partial f^{-1}(y)$ is not c-compact. Then there is a closed discrete subset $D \subset \partial f^{-1}(y)$, with |D| = c. For each $d \in D$, let U'_d be an open set containing d such that $\{U'_d: d \in D\}$ is discrete.

Let $d \in U_d \subset \overline{U}_d \subset U'_d$, where U_d is open. Note that $\{U_d : d \in D\}$ is also discrete.

For each $d \in D$, $y \in \overline{f(U_d - f^{-1}(y))}$. Since $\underline{t(Y)} \leq \omega$, there is a countable set $\{y_{d,n}: n \in \omega\} \subset f(U_d - f^{-1}(y))$ such that $y \in \{\overline{y_{d,n}}: n \in \omega\}$.

Let $X_{d,n} = f^{-1}(y_{d,n}) \cap \overline{U}_d$, and let $X_d = f^{-1}(y) \cap \overline{U}_d$.

If O is open and contains X_d , then there is an open set O' such that $O' \cap \overline{U}_d = \emptyset$, and $f^{-1}(y) \subset O \cup O'$. Let W be the complement in Y of $f(X - (O \cup O'))$. Then $y \in W$, so there is $n \in \omega$ such that $y_{d,n} \in W$, and hence $f^{-1}(y_{d,n}) \subset O \cup O'$. Thus $X_{d,n} \subset (O \cup O') \cap \overline{U}_d = O \cap \overline{U}_d \subset O$. Choose $x_{d,n} \in X_{d,n}$, and let $A_d = \{x_{d,n}; n \in \omega\}$. By the above argument, every open set containing X_d contains infinitely many elements of A_d .

For $x \in A_d$, let $D_x = \{d' \in D : \text{ there exists } x' \in \overline{U}_{d'} \text{ with } f(x) = f(x') \}$. Let $B_d = \{x \in A_d : D_x \text{ is uncountable} \}$.

Claim 1. $X_d \cap \overline{B}_d = \emptyset$. To see this, let $B_d = \{x_0, x_1, \ldots\}$. Inductively choose a sequence d_0, d_1, \ldots of distinct elements of D, and points $x_n' \in \overline{U}_{d_n}$ such that $f(x_n') = f(x_n)$. Then $\{x_0', x_1', \ldots\}$ is a closed subset of X, so $f(\{x_0', x_1', \ldots\}) = f(B_d)$ is closed. Thus $y \notin f(B_d) = \overline{f(B_d)} = f(\overline{B}_d)$, so $X_d \cap \overline{B}_d = \emptyset$.

Let $C_d = A_d - B_d$. By Claim 1, $X_d \cap \overline{C}_d \neq \emptyset$. Pick $d(0) \in D$. Let $D(d(0)) = \bigcup \{D_x; x \in \overline{C}_{d(0)}\}$. Observe that D(d(0)) is countable. If $d(\beta)$ has been chosen for all $\beta < \alpha < c$, let $d(\alpha) \in D - \bigcup_{\beta < \alpha} D(d(\beta))$. Observe that if $x \in C_{d(\beta)}$ and $x' \in C_{d(\alpha)}$ with $\alpha \neq \beta$, then $f(x) \neq f(x')$.

Now let $\mathcal{E} = \{E_{\alpha}: \alpha < c\}$ index all subsets of $\bigcup_{n \in \omega} C_{d(n)}$ such that $|E_{\alpha} \cap C_{d(n)}| = 1$ for each $\alpha < c$ and $n \in \omega$. Let $E_{\alpha} = \{e_{\alpha n}; n \in \omega\}$ such that $e_{\alpha n} \in C_{d(n)}$. Let $C_{d(\alpha)} = \{c_{\alpha n}; n \in \omega\}$.

For $x \in X$, denote f(x) by x^* . Let $H_{\alpha} = \{(e_{\alpha n}^*, c_{\lambda_{\alpha} n}^*): n \in \omega\} \subset Y^2$, where λ_{α} is the α th limit ordinal, and let $H = \bigcup_{\alpha < c} H_{\alpha}$.

Claim 2. $(y, y) \in \overline{H} - H$. To see this, suppose $y \in O$, O open in Y. We know $X_{d(\alpha)} \cap \overline{C}_{d(\alpha)} \neq \emptyset$, so $y \in f(\overline{C}_{d(\alpha)}) = \overline{f(C_{d(\alpha)})}$. For each $n \in \omega$, choose $x_n \in C_{d(n)}$ such that $x_n^* \in O$. Then $\{x_n : n \in \omega\} = E_{\alpha}$ for some α , and $e_{\alpha n} = x_n$ for each n. There is $n \in \omega$ such that $c_{\lambda_n}^* \in O$. Thus $(e_{\alpha n}^*, c_{\lambda_n}^*) \in O^2 \cap H_{\alpha}$, which proves the claim.

The next claim completes the proof of part (a).

Claim 3. If $K \subset Y^2$ is countably compact, then $K \cap H$ is finite. To see this, suppose α_0 , α_1 ... are distinct ordinals such that for each $n \in \omega$, $K \cap H_{\alpha_n} \neq \emptyset$. Then we can find $(e^*_{\alpha_n k_n}, c^*_{\lambda_{\alpha_n} k_n}) \in K \cap H_{\alpha_n}$. But $\{c_{\lambda_{\alpha_n} k_n} : n \in \omega\}$ is a closed discrete subset of X, since $c_{\lambda_{\alpha_n} k_n} \in U_{d(\lambda_{\alpha_n})}$. Thus $\{(e^*_{\alpha_n k_n}, c^*_{\lambda_{\alpha_n} k_n}); n \in \omega\}$ is an infinite closed discrete subset of K, contradiction. Thus K meets only finitely many H_{α} 's. Now suppose that for fixed α , $K \cap H_{\alpha}$ is infinite. Then for each $n \in \omega$, we can find $(e^*_{\alpha k_n}, c^*_{\lambda_{\alpha} k_n}) \in K \cap H_{\alpha}$. But $\{e_{\alpha k_n} : n \in \omega\}$ is an infinite closed discrete subset of X and we get a contradiction as before. Thus each $K \cap H_{\alpha}$ is finite, and so $K \cap H$ is finite.

To complete the proof of part (b), we have the next claim.

Claim 4. No countable subset of H contains (y, y) in its closure. Suppose $C \subset H$, $|C| \leq \omega$. Then there exists a sequence $\alpha_0, \alpha_1, \ldots$ of distinct ordinals such that $C \subset \bigcup_{n \in \omega} H_{\alpha_n}$. For each n, let $U_n \subset U'_d$ be an open set in X containing $X_{d(n)}$ such that $e_{\alpha_k n} \notin U_n$ if $k \leq n$. Note $U_n \cap \overline{U}_d = \emptyset$ if $d \neq d(n)$. Let V_n be an open set in X

containing $X_{d(\lambda_{\alpha_n})}$ such that $c_{\lambda_{\alpha_n}k} \notin V_n$ if $k \leq n$, and $V_n \cap \overline{U}_d = \emptyset$ if $d \neq d(\lambda_{\alpha_n})$. If $x \in f^{-1}(y) - \bigcup_{n \in \omega} (U_n \cup V_n)$, then there is an open set O_x containing x such that $O_x \cap \overline{U}_d = \emptyset$ if $d \in \{d(n): n \in \omega\} \cup \{d(\lambda_{\alpha_n}): n \in \omega\}$. Let

$$O = \bigcup \left\{ O_x : x \in f^{-1}(y) - \bigcup_{n \in \omega} (U_n \cup V_n) \right\} \cup \left(\bigcup_{n \in \omega} (U_n \cup V_n) \right)$$

There is an open set W containing y such that $f^{-1}(W) \subset O$. Suppose $W^2 \cap C \neq \emptyset$. Then there exists m such that $W^2 \cap H_{\alpha_m} \neq \emptyset$. Choose $n \in \omega$ such that $(e^*_{\alpha_m n}, c^*_{\lambda_{\alpha_m n}}) \in W^2 \cap H_{\alpha_m}$. Then $(e_{\alpha_m n}, c_{\lambda_{\alpha_m n}}) \in O^2$. Recall $e_{\alpha_m} \in C_{d(n)} \subset \overline{U}_{d(n)}$. Thus $e_{\alpha_m n} \in U_n$, and so m > n. Also recall $c_{\lambda_{\alpha_m n}} \in C_{d(\lambda_{\alpha_m})} \subset \overline{U}_{d(\lambda_{\alpha_m})}$. Thus $c_{\lambda_{\alpha_m n}} \in V_m$, which means n > m, a contradiction. This proves Claim 4. Hence Y^2 does not have countable tightness, a contradiction which proves the theorem. \square

Assuming the continuum hypothesis (CH), we have the following corollary.

COROLLARY 1.5 (CH). Suppose $f: X \to Y$ is closed, with X paracompact. Then each $\partial f^{-1}(y)$ is Lindelöf if either Y^2 is a k-space with $t(Y) \le \omega$, or $t(Y^2) \le \omega$.

PROOF. Immediate from Theorem 1.4 and the fact that ω_1 -compact paracompact spaces are Lindelöf [1].

REMARK. By the proof below, if Y^2 is a k-space with $t(Y) \le \omega$, then $t(Y^2) \le \omega$. Thus the two conditions are not independent.

PROOF. Since Y^2 is a k-space, it has the weak topology with respect to the collection of compact subsets of Y^2 ; that is $A \subset Y^2$ is closed whenever $A \subset C$ is closed in C for every compact subset of C of Y^2 . Each compact subset C of Y^2 is contained in $\pi(C)^2$, where π is the projection from Y^2 onto Y. Then Y^2 has the weak topology with respect to $\{\pi(C)^2; C \text{ is compact in } Y^2\}$. Since each $\pi(C)$ is a compact space of countable tightness, by a result of V. I. Malyhin [5, Theorem 4], so is each $\pi(C)^2$. Then $\pi(Y^2) \leq \omega$. \square

We do not know if Corollary 1.5 is true without CH. The problem seems to hinge on strengthening the conclusion of Theorems 1.3 and 1.4 by replacing "c-compact" with " ω_1 -compact". It turns out if we add the condition "Y is sequential" to the hypotheses of these theorems, then we can do it.

THEOREM 1.6. Suppose $f: X \to Y$ is closed with X strongly collectionwise Hausdorff and Y sequential. Then each $\partial f^{-1}(y)$ is ω_1 -compact if either Y^2 is a quasi-k-space or $t(Y^2) \leq \omega$.

PROOF. Suppose Y^2 is a quasi-k-space. Since Y is sequential, by [18, Theorem 2.2] Y^2 is sequential, hence $t(Y^2) \le \omega$. Thus we can assume that $t(Y^2) \le \omega$. Suppose $\partial f^{-1}(y)$ is not ω_1 -compact. Then there is a closed discrete set $D \subset \partial f^{-1}(y)$ with $|D| = \omega_1$. Let $\{U_d; d \in D\}$ be a discrete collection of open sets in X with $d \in U_d$. Then $f(\overline{U}_d)$ is a closed subset of the sequential space Y, and is therefore sequential. Since Y is not isolated in $f(\overline{U}_d)$, there exists a sequence $Y_{d,n} \to Y$, with $Y_{d,n} \in f(\overline{U}_d) - \{y\}$ for each $n \in \omega$. Choose $X_{d,n} \in \overline{U}_d \cap f^{-1}(Y_{d,n})$. As in the proof of Theorem 1.3, we can construct $\{d(\alpha); \alpha < \omega_1\} \subset D$ and an infinite set $C_{d(\alpha)} \subset \{X_{d(\alpha),n}; n \in \omega\}$ such that f is 1-1 on $\bigcup_{\alpha < \omega_1} C_{d(\alpha)}$. Let $X_{d(\alpha)} = \overline{U}_{d(\alpha)} \cap f^{-1}(Y)$. Observe that every open set containing $X_{d(\alpha)}$ contains all but finitely many elements fo $C_{d(\alpha)}$, and that

 $f^{-1}(y) \cup (\bigcup_{\alpha < \omega_1} C_{d(\alpha)})$ is closed. Thus Y contains a closed copy of the space obtained by identifying the limit points of ω_1 convergent sequences. In [4], this space is denoted by S_{ω_1} , and it is proved there that $S_{\omega_1}^2$ is not a k-space.

To complete the proof, it is sufficient to show that $S_{\omega_1}^2$ does not have countable tightness. For each $\alpha < \omega_1$, let $S_{\alpha} \subset S_{\omega_1}$ be the union of the first α sequences (with limit point). The closure of a countable subset of $S_{\omega_1}^2$ is contained in some S_{α}^2 . Thus if $S_{\omega_1}^2$ had countable tightness, then it would have the weak topology with respect to $\{S_{\alpha}^2; \alpha < \omega_1\}$. But each S_{α}^2 is a k-space (cf. [9, (7.5)]), so then $S_{\omega_1}^2$ would be a k-space, contradiction. \square

COROLLARY 1.7. Suppose $f: X \to Y$ is closed with X paracompact and Y sequential. Then each $\partial f^{-1}(y)$ is Lindelöf if either Y^2 is a k-space or $t(Y^2) \le \omega$.

The following example shows that the assumption " Y^2 is a k-space" is not sufficient to obtain " $\partial f^{-1}(y)$ Lindelöf" in Corollary 1.5.

EXAMPLE 1.8. There exists $f: X \to Y$ closed with X locally compact and paracompact, such that Y^2 is a k-space, but $\partial f^{-1}(y)$ is not Lindelöf for some $y \in Y$.

PROOF. For each $\alpha < \omega_1$, let $S(\alpha)$ be a copy of ordinal space $\omega_1 + 1$. Let X be the free union of $\{S(\alpha): \alpha < \omega_1\}$. Let Y be the space obtained from X by identifying the point ω_1 in each copy to a single point ∞ . Let $f: X \to Y$ be the quotient map. Then X is paracompact and locally compact, f is closed, and $\partial f^{-1}(\infty)$ is not Lindelöf. X is a k-space (being locally compact), hence so is Y.

It remains to prove that Y^2 is a k-space. First we introduce some notation. For each $\alpha, \beta \leq \omega_1$, let $\beta(\alpha)$ be the image under f of the element of $S(\alpha)$ corresponding to the ordinal number β . If $\beta < \beta' \leq \omega_1$, let $[\beta(\alpha), \beta'(\alpha)] = {\gamma(\alpha): \beta \leq \gamma \leq \beta'}$, and let $[\beta(\alpha), \infty] = [\beta(\alpha), \omega_1(\alpha)]$.

Suppose $A \subset Y^2$, with A k-closed, but not closed. Since for each $\alpha, \beta < \omega_1$, $[O(\alpha), \beta(\alpha)] \times Y$ and $Y \times [O(\alpha), \beta(\alpha)]$ are clopen k-subspaces of Y^2 , it must be true that $(\infty, \infty) \in \overline{A} - A$.

Since $[f(S(O))]^2 \cap A$ is closed, there exists $\gamma_0 < \omega_1$ such that $[\gamma_0(O), \infty]^2 \cap A = \emptyset$. Now suppose γ_α has been defined for all $\alpha < \beta$, where $\beta < \omega_1$, in such a way that the following property P_α holds.

$$P_{\alpha}$$
: $(\beta_1(\alpha_1), \beta_2(\alpha_2)) \in A$ and $\alpha_1, \alpha_2 \le \alpha$ implies $\beta_1 < \gamma_{\alpha_1}$ or $\beta_2 < \gamma_{\alpha_2}$.

It is easy to check that P_0 holds from the way γ_0 has been defined. We will show how to define γ_B in such a way that P_B holds.

For each $\alpha \leq \beta$, $f(S(\alpha) \times S(\beta)) \cap A$ and $f(S(\beta) \times S(\alpha)) \cap A$ are closed, so there exists $\delta_{\alpha,\beta} < \omega_1$ such that

- (i) $\gamma_{\alpha} \leq \delta_{\alpha,\beta}$;
- (ii) $([\delta_{\alpha,\beta}(\alpha),\infty] \times [\delta_{\alpha,\beta}(\beta),\infty]) \cap A = \emptyset$; and
- (iii) $([\delta_{\alpha,\beta}(\beta),\infty] \times [\delta_{\alpha,\beta}(\alpha),\infty]) \cap A = \emptyset$.

For each $\alpha < \beta$, and each $\beta' \in [\gamma_{\alpha}, \delta_{\alpha, \beta})$, we have by P_{α} that $(\beta'(\alpha), \infty) \notin A$ and $(\infty, \beta'(\alpha)) \notin A$ and $(\infty, \beta'(\alpha)) \notin A$. Thus there exists $\delta_{\beta', \beta}^{\alpha} < \omega_1$ such that

- (a) $([\delta^{\alpha}_{\beta',\beta}(\beta),\infty] \times \{\beta'(\alpha)\}) \cap A = \emptyset$ and
- (b) $(\{\beta'(\alpha)\} \times [\delta^{\alpha}_{\beta',\beta}(\beta),\infty]) \cap A = \emptyset$.

Let $\gamma_{\beta} = \sup\{\delta_{\alpha,\beta}: \alpha \leq \beta\} + \sup\{\delta_{\beta',\beta}^{\alpha}: \alpha < \beta, \gamma_{\alpha} \leq \beta' < \delta_{\alpha,\beta}\}$. Then $\gamma_{\beta} < \omega_{1}$. To show that P_{β} holds, we can suppose $(\beta_{1}(\alpha), \beta_{2}(\beta)) \in A$, with $\alpha \leq \beta$. If $\alpha = \beta$, then either $\beta_{1} < \delta_{\beta,\beta} \leq \gamma_{\beta}$ or $\beta_{2} < \delta_{\beta,\beta} \leq \gamma_{\beta}$, so P_{β} holds. If $\alpha < \beta$, we can suppose $\beta_{2} \geq \gamma_{\beta}$. Then it must be true that $\beta_{1} < \delta_{\alpha,\beta}$ (by (ii) above). If $\gamma_{\alpha} \leq \beta_{1} < \delta_{\alpha,\beta}$, then since $\gamma_{\beta} \geq \delta_{\beta_{1},\beta}^{\alpha}$, we have $(\beta_{1}(\alpha), \beta_{2}(\beta)) \in (\{\beta_{1}(\alpha)\} \times [\delta_{\beta_{1},\beta}^{\alpha}(\beta), \infty]) \cap A$, a contradiction. Thus $\beta_{1} < \gamma_{\alpha}$, so P_{β} holds.

Thus we can define $\{\gamma_{\alpha}: \alpha < \omega_1\}$ in such a way that P_{α} holds for each $\alpha < \omega_1$. Let $U = \{\beta(\alpha): \beta > \gamma_{\alpha}, \alpha < \omega_1\}$. Then U is an open set in Y containing ∞ . Since $(\infty, \infty) \in \overline{A}$, there exists $(\beta_1(\alpha_1)\beta_2(\alpha_2)) \in U^2 \cap A$. Since $P_{\alpha_1+\alpha_2}$ holds, either $\beta_1 < \gamma_{\alpha_1}$ or $\beta_2 < \gamma_{\alpha_2}$. But then either $\beta_1(\alpha_1) \notin U$ or $\beta_2(\alpha_2) \notin U$, contradiction. Thus Y^2 is a k-space.

2. Applications. As applications of results in $\S1$, we shall consider the products of k-spaces and spaces of countable tightness in more special cases.

DEFINITION 2.1 [8, 16]. A collection \mathfrak{P} of (not necessarily open) subsets of a space X is a k-network for X if, whenever $C \subset U$ with C compact and $C \subset U$ open, then $C \subset U$ for some finite subcollection \mathfrak{F} of \mathfrak{P} . An \mathfrak{S} -space is a space with a σ -locally finite k-network, and an \mathfrak{S} ₀-space is a space with a countable k-network.

Note that metrizable spaces are \aleph -spaces, and separable metrizable spaces are \aleph_0 -spaces.

We say that X is a *locally* \aleph_0 -space if each point of X has a neighborhood which is an \aleph_0 -space.

THEOREM 2.2 (CH) Let $f: X \to Y$ be a closed map. Let X be a paracompact, locally \aleph_0 -space. Then the following are equivalent.

- (a) $t(Y^2) \leq \omega$;
- (b) each $\partial f^{-1}(y)$ is Lindelöf;
- (c) Y is a locally \aleph_0 -space; and
- (d) Y is locally separable.

Furthermore, if Y is sequential, then the CH assumption can be omitted.

PROOF. (a) \Rightarrow (b): This is Corollary 1.5.

- (b) \Rightarrow (c): Since each subset of a locally \aleph_0 -space is locally \aleph_0 , as in the proof of [7, Corollary 1.2], we can assume that each $f^{-1}(y)$ is Lindelöf. Thus, f is a closed map with each $f^{-1}(y)$ Lindelöf. Then, for each $y \in Y$, there is a closed neighborhood W of y in Y, and open subsets V_i of X which are \aleph_0 -spaces such that $f^{-1}(W) \subset \bigcup_{i=1}^{\infty} V_i$. Since $\bigcup_{i=1}^{\infty} V_i$ is an \aleph_0 -space, so is $f^{-1}(W)$. Since the closed image of an \aleph_0 -space is also \aleph_0 by [8, G], W is an \aleph_0 -space. This implies (c).
- (c) \Rightarrow (a) and (c) \Rightarrow (d): By [8, F], Y^2 is a locally \aleph_0 -space. Then, by [8, D, E] Y^2 is locally a hereditarily separable space. Hence $t(Y^2) \leq \omega$.
- (d) \Rightarrow (b): This follows from [21, Proposition 1], because Y is paracompact, hence is locally Lindelöf by (d).

From Theorem 2.2 and some results in [21], we have

COROLLARY 2.3. Let $f: X \to Y$ be a closed map with X locally separable metric. Then the following are equivalent.

- (a) $t(Y^2) \leq \omega$;
- (b) each $\partial f^{-1}(y)$ is Lindelöf;
- (c) Y is locally separable;
- (d) Y is locally Lindelöf;
- (e) Y is an ℵ-space.

DEFINITION 2.4. A decreasing sequence (A_n) in a space X is a k-sequence [10], if it is an outer network at a compact subset K of X; that is, $K = \bigcap_{n=1}^{\infty} A_n$ and every neighborhood of K contains some A_n . By regularity, if a compact subset K has an outer network, it has one in which each A_n is closed in X.

Let Y be a space. Then Y satisfies condition $K(\aleph_0)$ [20] if, for any k-sequence (A_n) in Y, some A_n is countably compact.

It is shown that [20, Proposition 2.4] a space Y satisfies $K(\aleph_0)$ if and only if each closed subset of Y which is a paracompact M-space is locally compact.

DEFINITION 2.5 [10, Lemma 3.E.2]. A space Y is a bi-k-space if, whenever a filter base \mathcal{F} accumulates at y in Y, then there exists a k-sequence (A_n) in Y such that $y \in \overline{F \cap A_n}$ for all $n \in N$ and all $F \in \mathcal{F}$.

It is shown that [10, Theorem 3.E.3] Y is a bi-k-space if and only if Y is a bi-quotient image of a paracompact M-space X. Then by a result of H. Wicke [23], spaces of pointwise countable type [2] are bi-k.

DEFINITION 2.6. A space X is a k_{ω} -space [9] (K. Morita [13] called it a *space of class* \mathfrak{S}'), if it has the weak topology with respect to a countable covering of compact subsets of X.

For a space Y we shall say that Y is a *locally* k_{ω} -space, if each point of Y has a neighborhood whose closure is a k_{ω} -space.

It is implicit in a result of J. Milnor [12, Lemma 2.1] that the product of two k_{ω} -spaces is k_{ω} . This fact implies the following lemma.

Lemma 2.7. Let Y be a locally k_{ω} -space. Then Y^2 is a locally k_{ω} -space, hence, a k-space.

LEMMA 2.8. Let $f: X \to Y$ be a closed map with each $\partial f^{-1}(y)$ Lindelöf. If X is bi-k and Y satisfies $K(\aleph_0)$, then Y is a locally k_ω -space.

PROOF. Since each closed subset of X is a bi-k, as in the proof of [7, Corollary 1.2], we can assume that each $f^{-1}(y)$ is Lindelöf. Let $y \in Y$. Then we will prove that each point of $f^{-1}(y)$ has a neighborhood contained in the inverse image of some compact subset of Y. To see this, suppose not. Then there is a point a_0 of $f^{-1}(y)$ such that for every neighborhood V of a_0 and for every compact subset K of Y, $V \not\subseteq f^{-1}(K)$.

Let $\mathfrak{F} = \{X - f^{-1}(K); K \text{ is compact in } Y\}$. Then \mathfrak{F} is a filter base accumulating at the point a_0 . Since X is bi-k, there exists a k-sequence (A_n) in X such that $a_0 \in \overline{F \cap A_n}$ for all $n \in \omega$ and all $F \in \mathfrak{F}$. Obviously, $(f(A_n))$ is a k-sequence in Y. Thus, by condition $K(\aleph_0)$, some $f(A_{n_0})$ is compact. Let $K_0 = f(A_{n_0})$. Then, $a_0 \in \overline{(X - f^{-1}(K_0)) \cap A_{n_0}} \subset \overline{(X - f^{-1}(K_0)) \cap f^{-1}(K_0)} = \emptyset$. This is a contradiction.

Thus, each point x of $f^{-1}(y)$ has a neighborhood V_x which is contained in the inverse image of some compact subset of Y. Since $f^{-1}(y)$ is Lindelöf, $\{V_x : x \in f^{-1}(y)\}$ contains a countable subcover $\{V_n\}_{n \in \omega}$ of $f^{-1}(y)$. For each n, let K_n be a compact subset of Y such that $V_n \subset f^{-1}(K_n)$. Since f is closed and Y is regular there exists a neighborhood W of Y such that $f^{-1}(\overline{W}) \subset \bigcup_{n \in \omega} V_n$. Let $F = f^{-1}(\overline{W})$ and $\mathbb{V} = \{F \cap V_i : i \in \omega\}$. Then, since \mathbb{V} is an open covering of F, F has the weak topology with respect to \mathbb{V} . Since $F \cap V_i \subseteq F \cap f^{-1}(K_i)$ for each $i \in \omega$, F has the weak topology with respect to $\{F \cap f^{-1}(K_i); i \in \omega\}$. Since $f \mid F$ is closed, hence quotient, $f(F) = \overline{W}$ has the weak topology with respect to $\{\overline{W} \cap K_i : i \in \omega\}$. Thus \overline{W} is a k_{ω} -space, and so Y is a locally k_{ω} -space. \square

LEMMA 2.9. Let $f: X \to Y$ be a closed map with X normal and $t(Y) \le \omega$. If Y^2 is a k-space, then either Y satisfies condition $K(\aleph_0)$ or each $\partial f^{-1}(y)$ is countably compact.

PROOF. According to [20, Theorem 4.2], if the product of two spaces is quasi-k, and one factor is not an inner-one A-space in the sense of E. Michael, R. C. Olson and F. Siwiec [11], then the other factor satisfies $K(\alpha)$, where α is its tightness. Y satisfies condition $K(\aleph_0)$, or Y is an inner-one A-space. If Y is inner-one A, by [10, Theorem 9.9] each $\partial f^{-1}(y)$ is countably compact.

LEMMA 2.10 [10]. Bi-k-spaces are preserved by perfect images and countable products.

By invoking Corollary 1.5, and Lemmas 2.7, 2.8, 2.9 and 2.10, we obtain the following theorem.

THEOREM 2.11 (CH). Let $f: X \to Y$ be a closed map with X paracompact bi-k. If $t(Y) \le \omega$, then the following are equivalent. When Y is sequential, the CH assumption can be omitted.

- (a) Y^2 is a k-space.
- (b) Y is locally k_{ω} , or each $\partial f^{-1}(y)$ is compact.
- (c) Y is locally k_{ω} , or bi-k.

COROLLARY 2.12. Let $f: X \to Y$ be a closed map with X or Y sequential. Let X be a paracompact space of pointwise countable type. Then Y^2 is a sequential space (equivalently, a k-space by [18, Theorem 2.2]) if and only if Y is locally k_{ω} or bi-k.

Before proceeding with the next lemma, we remind the reader that the perfect image of an \(\mathbb{8}\)-space is an \(\mathbb{8}\)-space, but the closed image of a locally compact metric space need not be \(\mathbb{8}\)-space (cf. [21, Theorem 7]).

LEMMA 2.13. Let $f: X \to Y$ be a closed map with each $\partial f^{-1}(y)$ Lindelöf. If X is an \aleph -space, and Y satisfies condition $K(\aleph_0)$, then Y is also an \aleph -space.

PROOF. Let $\mathfrak{P} = \bigcup_{i=1}^{\infty} \mathfrak{P}_i$ be a σ -locally finite k-network for X satisfying the following conditions: Each element of P is closed, $\mathfrak{P}_i \subseteq \mathfrak{P}_{i+1}$ and \mathfrak{P}_i is closed with respect to finite intersections. Let K be an arbitrary compact subset of Y. Since each subset of an \mathbb{R} -space is an \mathbb{R} -space, as in the proof of [7, Corollary 1.2], we can assume that each $f^{-1}(y)$ is Lindelöf and that there exists a compact subset C of X with f(C) = K.

Let $\mathfrak{P}' = \{P \in \mathfrak{P}: \mathfrak{P} \cap C \neq \emptyset\}$, and let \mathfrak{C} be the collection of finite unions of elements of \mathfrak{P}' which contain the compact subset C. Then \mathfrak{C} is a nonempty, countable collection in X.

Let $\mathcal{C} = \{P_i : i \in \omega\}$ and $C_n = \bigcap_{i=1}^n P_i$ for each n. Then (C_n) is a k-sequence for C. Since $(f(C_n))$ is a k-sequence for K, by $K(\aleph_0)$ there exists a compact subset $f(C_{n_0})$ of Y. On the other hand, by the conditions of the collection \mathfrak{P} , each C_n can be expressed as a union of finitely many elements of \mathfrak{P} . So, the compact subset $f(C_{n_0})$ containing K can be expressed as a union of finitely many elements of $f(\mathfrak{P})$. Let $\mathfrak{K}_i = \{f(P) : P \in \mathfrak{P} \text{ and } f(P) \text{ is compact in } Y\}$, and let \mathfrak{K}_i^* be the union of all elements of \mathfrak{K}_i . Then, since $f(\mathfrak{P}_i) \subset f(\mathfrak{P}_{i+1})$, by the above, each compact subset of Y is contained in some \mathfrak{K}_i^* .

We will now prove that Y is an \$-space. Each \Re_i is a hereditarily closure-preserving collection of compact subsets of Y, that is, whenever a subset K' of K is chosen for each $K \in \mathcal{K}_i$, the collection $\{K': K \in \mathcal{K}_i\}$ is closure-preserving. This is because \mathfrak{K}_i is the image of a locally finite, hence hereditarily closure-preserving, collection under a closed map. Then by a result of Michael [6, Theorem 1], each \mathcal{K}_i^* is paracompact. Next, to see each \mathfrak{R}_i^* is locally \aleph_0 , let $\mathfrak{R}_i = \{P \in \mathfrak{P}_i : f(P) \in \mathfrak{K}_i\}$ and let $\mathfrak{N}_i^* = \bigcup \mathfrak{N}_i$. Then \mathfrak{N}_i^* has the weak topology with respect to the locally finite closed collection \mathfrak{N}_i . Also, $f \mid \mathfrak{N}_i^*$ is closed, hence quotient. Thus $\mathfrak{K}_i^* = f(\mathfrak{N}_i^*)$ has the weak topology with respect to \mathcal{K}_i . Since f is closed and each $f^{-1}(y)$ is Lindelöf, \mathfrak{R}_i is locally countable. Hence each \mathfrak{R}_i^* is a locally k_{ω} -space. Since each compact subset of X is an \aleph_0 -space, by [8, G] each compact subset of Y is also \aleph_0 because it is the image of a compact subset of X. Then each \mathcal{K}_i^* is a locally \aleph_0 -space, since each point has a neighborhood which has the weak topology with respect to a countable collection of compact \aleph_0 -spaces (see [8]). So, each \mathcal{K}_i^* is a paracompact, locally \aleph_0 -space. It follows that each \mathcal{K}_i^* is also an \aleph -space. As is seen, each compact subset of Y is contained in some \mathcal{K}_i^* . Since each \mathcal{K}_i^* is an \aleph -space, it follows that Y is also an 8-space. This completes the proof of the lemma.

LEMMA 2.14 [19, THEOREM 3.1]. Let Y be a k- and \aleph -space. Then Y^2 is a k- and \aleph -space if and only if Y is metrizable, or Y has the weak topology with respect to a countable covering of closed and locally compact subsets of Y.

Let a k-space Y be the closed image of an \aleph -space. Since each closed subset of an \aleph -space is easily seen to be a G_{δ} -set, each point of Y is a G_{δ} -set. Thus by [10, Theorem 7.3], Y is sequential. Therefore, by Corollary 1.7, and Lemmas 2.13 and 2.14, we have

THEOREM 2.15. Let $f: X \to Y$ be a closed map with X a paracompact \aleph -space. Then Y^2 is a k-space if and only if Y is metrizable, or Y is an \aleph -space having the weak topology with respect to a countable covering of closed and locally compact subsets of Y.

REMARK. Let X be an \aleph -space each of whose countable (resp. uncountable) subset has an accumulation point. Then X is an \aleph_0 -space, and so X is compact (resp. Lindelöf). Thus, by Theorem 1.6, we have the following.

If an \aleph -space X is more generally strongly collectionwise Hausdorff, then the statement of Theorem 2.15 is also valid.

REFERENCES

- 1. G. Aquaro, *Point-countable open coverings in countably compact spaces*, General Topology and Its Relations to Modern Analysis and Algebra. II, Academia, Prague, 1966, pp. 39-41.
- 2. A. V. Arhangel'skii, Bicompact sets and the topology of spaces, Trans. Moscow Math. Soc. 13 (1965), 1-65.
 - 3. R. Engelking, General topology, PWN, Warsaw, 1977.
- 4. G. Gruenhage, k-spaces and products of closed images of metric spaces, Proc. Amer. Math. Soc. 80 (1980), 478-482.
- 5. V. I. Malyhin, On tightness and suslin number in exp X and in a product of spaces, Soviet Math. Dokl. 13 (1972), 496-499.
 - 6. E. Michael, Another note on paracompact spaces, Proc. Amer. Math. Soc. 8 (1957), 822-828.
 - 7. _____, A note on closed maps and compact sets, Israel J. Math. 2 (1965), 173-176.
 - 8. _____, \$\mathbf{N}_0\text{-spaces}, J. Math. Mech. 15 (1966), 983-1002.
- 9. _____, Bi-quotient maps and cartesian products of quotient maps, Ann. Inst. Fourier (Grenoble) 18 (1968), 287-302.
 - 10. _____, A quintuple quotient quest, General Topology Appl. 2 (1972), 91-138.
- 11. E. Michael, R. C. Olson and F. Siwiec, A-spaces and countably bi-quotient maps, Dissertationes Math. 133 (1976), 4-43.
 - 12. J. Milnor, Construction of universal bundles. I, Ann. of Math. 63 (1956), 272-284.
- 13. K. Morita, On decomposition spaces of locally compact spaces, Proc. Japan Acad. Ser. A Math. Sci. 32 (1956), 544-548.
- 14. K. Morita and S. Hanai, Closed mappings and metric spaces, Proc. Japan Acad. Ser. A Math. Sci. 32 (1956), 10-14.
- 15. J. Nagata, Quotient and bi-quotient spaces of M-spaces, Proc. Japan Acad. Ser. A Math. Sci. 45 (1969), 25-29.
- 16. P. O'Meara, On paracompactness in function spaces with the compact-open topology, Proc. Amer. Math. Soc. 29 (1971), 183-189.
 - 17. A. H. Stone, Metrizability of decomposition spaces, Duke Math. J. 17 (1950), 317-327.
 - 18. Y. Tanaka, On quasi-k-spaces, Proc. Japan Acad. Ser. A Math. Sci. 46 (1970), 1974-1979.
- 19. _____, A characterization for the products of k- and \aleph_0 -spaces and related results, Proc. Amer. Math. Soc. 59 (1976), 149–154.
- 20. _____, Some necessary conditions for products of k-spaces, Bull. Tokyo Gakugei Univ. (4) 30 (1978), 1-16.
 - 21. _____, Closed maps on metric spaces, Topology Appl. 11 (1979), 87-92.
- 22. I. A. Vainstein, On closed mappings of metric spaces, Dokl. Akad. Nauk SSSR 57 (1947), 319-321. (Russian)
- 23. H. Wicke, On the Hausdorff open continuous images of Hausdorff paracompact p-spaces, Proc. Amer. Math. Soc. 22 (1969), 136-140.

DEPARTMENT OF MATHEMATICS, AUBURN UNIVERSITY, AUBURN, ALABAMA 36830

DEPARTMENT OF MATHEMATICS, TOKYO GAKUGEI UNIVERSITY, TOKYO, JAPAN