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PRODUCTS OF ¿-SPACES AND

SPACES OF COUNTABLE TIGHTNESS

G. GRUENHAGE AND Y. TANAKA

Abstract. In this paper, we obtain results of the following type: if /: X -» Y is a

closed map and X is some "nice" space, and Y2 is a &-space or has countable

tightness, then the boundary of the inverse image of each point of Y is "small" in

some sense, e.g., Lindelöf or «¿¡-compact. We then apply these results to more

special cases. Most of these applications combine the "smallness" of the boundaries

of the point-inverses obtained from the earlier results with "nice" properties of the

domain to yield "nice" properties on the range.

Introduction. Recall the following theorem due to Morita and Hanai [14] and

Stone [17].

Theorem. // /: A -» Y is closed and X is metrizable, then the following are

equivalent.

(a) Y is first countable;

(b) For each y E Y,df~x(y) is compact;

(c) Y is metrizable.

The (c) =» (b) part is due to Vaïnsteïn [22]. But even the (a) => (b) part holds under

much more general conditions: Michael [7] showed (b) holds if A is paracompact,

and Y is locally compact or first-countable.

Note that the assumptions on Y in Michael's theorem could not be weakened to

"Fis a ¿-space" or "F has countable tightness": the map identifying the limit points

of a topological sum of k convergent sequences is a closed map from a metrizable

space A to a Fréchet space Y, and | d/"'( y) | = k for some y E Y. In this paper, we

show that the situation is different if we require Y2 to be a ¿-space or have

countable tightness. (Recall that the square of a ¿-space or a space of countable

tightness need not have the same property.) We will usually not be able to show that

the boundaries of point-inverses are compact, but we will often (depending upon

conditions imposed on A or Y) he able to show that they are "small" in some sense,

e.g., Lindelöf or u,-compact. In the second section, we apply general results of this

type to more special cases, often combining the "smallness" of the boundaries of

point-inverses with "nice" properties of A to obtain "nice" properties of Y.

We mention the following earlier result of the second author [21] which is related

to this topic.
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Theorem. // /: A -» Y is closed and X is metrizable, then the following are

equivalent.

(a) For each y E Y, df'x(y) is Lindelöf.

(b) Y has a point-countable k-network [see §2, Definition 2.1].

(c) Y has a a-locally-countable k-network.

See [7] and [21] for other related results.

We will often make use of the following well-known property of closed maps (cf.

[3, p. 52]): If /: X ^ Y is closed, then for each y E Y and open U E X such that

/"'(y) E U, there is a neighborhood V of y such thatf~x(V) E U.

1. General results. All our spaces are assumed to be regular and Tx. We consider

cardinals to be initial ordinals. We now recall some basic definitions.

Definition 1.1. A space A has the weak topology with respect to a collection G of

sets if a subset A of A is closed (resp., open) in A if and only if A D C is closed

(resp., open) in C for each C E G.

Definition 1.2. A space Ais a k-space (quasi-k-space) if A has the weak topology

with respect to its compact (countably compact) subsets. A is sequential if A has the

weak topology with respect to its compact metric subspaces (equivalently, with

respect to its subspaces homeomorphic to co + 1, a sequence with its limit point). A

has countable tightness (denoted by f(A)^w) if it has the weak topology with

respect to its countable subsets.

We will be using the following elementary facts about these concepts.

(i) If A has the weak topology with respect to a collection G, and /: A -> Y is a

quotient map, then Y has the weak topology with respect to {/(C): C E Q). Thus

all properties named in Definition 1.2 are preserved by quotient maps.

(ii) If A satisfies any of the properties in Definition 2.2 locally, then the whole

space has the property.

(iii) If A has a locally finite cover by a family G of closed sets, then A has the weak

topology with respect to Q.

Definition 1.3. A space A is (strongly) collectionwise Hausdorff if whenever {xa:

a E A} is a closed discrete subset of A, there exists a (discrete) disjoint collection

{Ua: a E A) of open sets such that xa E Ua for each a E A.

Note that every normal collectionwise Hausdorff space is strongly collectionwise

Hausdorff.

Let c denote the cardinality of the continuum.

Theorem 1.4. Suppose f: X -> Y is closed, with X strongly collectionwise Hausdorff.

Then the boundary, df'x(y), off~x(y) is c-compact for each y E Y if either

(a) Y2 is quasi-k and t(Y) *z u or

(h) t(Y2)< w.

Proof. Suppose 3/"'( v) is not c-compact. Then there is a closed discrete subset

D E df~x(y), with | D | = c. For each d ED, let U'd be an open set containing d such

that {U'd: d E D) is discrete.

Let d E Ud E Ud E U'd, where Ud is open. Note that {Ud: d E D) is also discrete.
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For each d E D, y Ef(Ud — f x(y)). Since t(Y) « co, there is a countable set

{ydn: n E co} Ef(Ud~f-\y)) such that y E {ydn: n_E co}.

Let A,„ = /-'(^,„) n t/„, and let A„ = /"'(y) n £/„.

If O is open and contains Xd, then there is an open set O' such that O' n t/¿ = 0,

and /_,(>>) COUO'. Let W be the complement in Y of /( A - (O U O')). Then

V E W, so there is n E « such that yd „ E W, and hence f~x(ydn) COUO'. Thus

A¿ „ C(OU 0')nÜd= OH ÜdCO. Choose xd „ E A^„, and letyl^ = {xd„; n E

co}. By the above argument, every open set containing Xd contains infinitely many

elements of A d.

For x E Ad, let Dx = {d' E D: there exists x' E Ud, with f(x) =f(x')}. Let

Bd — {x E Ad: Dxis uncountable}.

Claim 1. Xd n Bd — 0. To see this, let Bd = [x0, xx,...}. Inductively choose a

sequence d0, dx,... of distinct elements of D, and points x'n E Ud such that

f(x'„) =f(x„). Then {x'0, x\,...} is a closed subset of A, so f({x'0, x\,...}) = f(Bd)

is closed. Thusy £ /(/>J =f(Bd) = /(//¿),_so A¿ n Bd = 0.

Let Cd = A_d- Bd. By Claim 1, XdnCd¥= 0. Pick ¿(0) E D. Let 7)(c/(0)) =

U {Dx; x E Cd(0j}. Observe that D(d(0)) is countable. If d(ß) has been chosen for

all ß < a < c, let d(a) ED- Uß<aD(d(ß)). Observe that if x E Cdm and x' E

Cd(a) with a # ß, then/(x) ¥= f(x').

Now let S = {Ea: a < c) index all subsets of UnewQ(n) such that | £„ fl Q(n) | = 1

for each a < c and n E w. Let Ea = {ean; n E w} such that eQ„ E Cd(n). Let Cd(a) =

{ca„; n E w}.

For x E X, denote/(x) by x*. Let Ha = {(e*n, c*^„): « E co} C Y2, where Aa is

the ath limit ordinal, and let H = Ua<c//a.

Claim 2. (y, y) E H —H. To see this, suppose y E O, O open in Y. We know

*</(«> n Q(a) ^ 0, so v E/(Q(a)) = /(Cd(a)). For each n E co, choose x„ E Q(n)

such that xj E O. Then {x„: /!£«}=£„ for some a, and ea„ = xn for each «.

There is n E co such that c\ „ E O. Thus (e*„, c* n) E O2 fl 7/a, which proves the

claim.

The next claim completes the proof of part (a).

Claim 3. If K E Y2 is countably compact, then K n H is finite. To see this,

suppose a0, a,... are distinct ordinals such that for each n E to, K n Ha ¥= 0.

Then we can find (e*nkn, c*a k ) E K n // . But (cx ^ : n E co} is a closed discrete

subset of A, since cx k E {/¿^ ,. Thus {(e* ft , c*o k ); n E co} is an infinite closed

discrete subset of K, contradiction. Thus K meets only finitely many //a's. Now

suppose that for fixed a, K n Ha is infinite. Then for each n E co, we can find

(e*k ,c*k)EKn Ha. But [eak : n E co} is an infinite closed discrete subset of A

and we get a contradiction as before. Thus each K n Ha is finite, and so K n H is

finite.

To complete the proof of part (b), we have the next claim.

Claim 4. No countable subset of H contains (y, y) in its closure. Suppose C E H,

|C|<co. Then there exists a sequence a0, «„.., of distinct ordinals such that

C C Unew//an. For each «, let t/„ C t/j be an open set in A containing Xd(n) such

that e     g t/„"if ¿ < n. Note U„ n C/rf = 0 if d ^ d(n). Let F¿ be an open set in A



302 G. GRUENHAGE AND Y. TANAKA

containing Xd{K , such that cXj¡ 4 g K„ if ¿ < «, and VnnUd=0ifd¥- d(Xa).

If x Ef~x(y)— Uneu(l/n U Vn), then there is an open set Ox containing x such

that Ox n Üd = 0 if d E [d(n)\ n E co} U {d(Xa ): n E co}. Let

O = U f Ox: x e/-'(*) - U (U„ U F„)} U ( LJ  (U„ U Kj)
I new •* \»E» /

There is an open set W containing y such that f~x(W) E O. Suppose W2 ilCf^

0. Then there exists m such that W2 n 7/ # 0. Choose « E co such that

(<„. <t„n) elf2n /i„m. Then (eam„, cKJ E O2. Recall j^ E Cd(n) E Ud(n).

Thus ea^n E U„, and so m > n. Also recall cx^ E Cd(X ) E Ud(Xa y Thus cXa n E

Vm, which means n > m, a contradiction. This proves Claim 4. Hence Y2 does not

have countable tightness, a contradiction which proves the theorem.    D

Assuming the continuum hypothesis (CH), we have the following corollary.

Corollary 1.5 (CH). Suppose f: X -» Y is closed, with X paracompact. Then each

df~x(y) is Lindelöf if either Y2 is a k-space with t(Y) < co, or t(Y2) «£ co.

Proof. Immediate from Theorem 1.4 and the fact that co,-compact paracompact

spaces are Lindelöf [1].

Remark. By the proof below, if Y2 is a ¿-space with t(Y) « co, then t(Y2) < co.

Thus the two conditions are not independent.

Proof. Since Y2 is a ¿-space, it has the weak topology with respect to the

collection of compact subsets of Y2; that is A E Y2 is closed whenever A E C is

closed in C for every compact subset of C of Y2. Each compact subset C of Y2 is

contained in ir(C)2, where it is the projection from Y2 onto Y. Then Y2 has the

weak topology with respect to {tr(C)2; C is compact in Y2}. Since each w(C) is a

compact space of countable tightness, by a result of V. I. Malyhin [5, Theorem 4], so

is each 77(C)2. Then i(y2)< co.    D

We do not know if Corollary 1.5 is true without CH. The problem seems to hinge

on strengthening the conclusion of Theorems 1.3 and 1.4 by replacing "c-compact"

with "co,-compact". It turns out if we add the condition "Y is sequential" to the

hypotheses of these theorems, then we can do it.

Theorem 1.6. Suppose f: X -» Y is closed with X strongly collectionwise Hausdorff

and Y sequential. Then each df~x(y) is ux-compact if either Y2 is a quasi-k-space or

t(Y ) =£ co.

Proof. Suppose Y2 is a quasi-¿-space. Since Fis sequential, by [18,Theorem 2.2]

Y2 is sequential, hence t(Y2) < co. Thus we can assume that t(Y2) < co. Suppose

3/ '(j) is n°t <o,-compact. Then there is a closed discrete set D E df~x(y) with

| D |= co,. Let {Ud; d E D] be a discrete collection of open sets in A with d E Ud.

Then/(I//) is a closed subset of the sequential space Y, and is therefore sequential.

Since v is not isolated in f(Ud), there exists a sequenceydn -*y, withr^„ E f(Ud) —

{y] for each n E co. Choose xd n E Ud D f~\yd,„)• As in the proof of Theorem 1.3,

we can construct {d(a); a < co,} C D and an infinite set Cd(a) C {xd(a) n; n E co}

such that/is 1-1 on Ua<.aCd(a). Let Ad(a) = Ud{a} nf~x(y). Observe that every

open set containing Xd,a) contains all but finitely many elements fo Cd(a), and that
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/"'( v) U (Ua<uQ(a)) is closed. Thus Y contains a closed copy of the space

obtained by identifying the limit points of co, convergent sequences. In [4], this space

is denoted by Su , and it is proved there that S2 is not a ¿-space.

To complete the proof, it is sufficient to show that S2 does not have countable

tightness. For each a < co,, let Sa E Sa he the union of the first a sequences (with

limit point). The closure of a countable subset of S2 is contained in some S2. Thus if

S2 had countable tightness, then it would have the weak topology with respect to

{S2; a < co,}. But each S2 is a ¿-space (cf. [9,(7.5)]), so then S2t would be a ¿-space,

contradiction.    D

Corollary 1.7. Suppose f: X -» Y is closed with X paracompact and Y sequential.

Then each df~x(y) is Lindelöf if either Y2 is a k-space or t(Y2) < co.

The following example shows that the assumption "T2 is a ¿-space" is not

sufficient to obtain "3f ~'( v) Lindelöf" in Corollary 1.5.

Example 1.8. There exists/: A -> Y closed with A locally compact and paracom-

pact, such that Y2 is a ¿-space, but 3/~'( v) is not Lindelöf for some^ E Y.

Proof. For each a < co,, let S(a) he a copy of ordinal space co, + 1. Let A be the

free union of (S(a): a < co,}. Let T be the space obtained from A by identifying the

point co, in each copy to a single point oo. Let/: A -> Y he the quotient map. Then

Ais paracompact and locally compact,/is closed, and 3/"'(oo) is not Lindelöf. Ais

a ¿-space (being locally compact), hence so is Y.

It remains to prove that Y2 is a ¿-space. First we introduce some notation. For

each a, ß «s co,, let ß(a) be the image under/of the element of S(a) corresponding

to the ordinal number ß. If ß < ß' < co,, let [ß(a), ß'(a)] = {y(a): ß < y « /?'},

and let [ß(a), oo] = [¿8(a), co,(a)].

Suppose A E Y2, with A ¿-closed, but not closed. Since for each a, ¿8 < co,,

[0(a), ¿8(a)] X Y and YX [0(a), ¿3(a)] are clopen ¿-subspaces of Y2, it must be

true that (oo, oo) E A — A.

Since [f(S(0))]2 n A is closed, there exists y0 < co, such that [y0(O), oo]2 n A =

0. Now suppose ya has been defined for all a < ¿8, where ¿8 < co,, in such a way that

the following property Pa holds.

Pa- (0i(a,),&(«2)) EA    and    «i. <*2 ̂  « implies /?, < ya, or ß2<ya2.

It is easy to check that P0 holds from the way y0 has been defined. We will show

how to define yß in such a way that Pß holds.

For each a < ß, f(S(a) X S(ß)) n A and /(S(¿8) X S(a)) n A are closed, so

there exists ôa ß < co, such that

(ii) ([fi„ 0(a), oo] X [ôa ,(¿8), oo]) n A = 0 ; and

(iii)([8a.ß(ß),oo] X [8a,ß(a), oo]) n A = 0.

For each a < ß, and each ß' E [ya, 8a ß), we have by Pa that (¿8'(a), oo) E /I and

(oo, ß'(a)) E ^ and (oo, ß'(a)) E /4. Thus there exists ô^". ̂ < co, such that

(a) ([5;, ß(ß), oo] X (¿8'(a)}) n A = 0 and

(b)({j8'(a)} X[5^(j8),oo])n^= 0.
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Let yß = sup{ôa/}: a < ß] + sup{8ß\ß: a < ß, ya < ¿8' < 8aJi]. Then y^ < co,. To

show that Pß holds, we can suppose (ßx(a), ß2(ß)) E A, with a =£ ¿8. If a = ¿8, then

either ¿8, < 8ß ß < yß or ¿82 < 8ß ß < y^, so Pß holds. If a < ß, we can suppose

¿82 > yß. Then it must be true that ¿8, < 8a ß (by (ii) above). If ya < ßx < 8aß, then

since yß > ôfo, we have (¿8,(a), ß2(ß)) E ({ßx(a)} X [8^ß(ß), oo]) n A, a con-

tradiction. Thus ¿8, < ya, so Pß holds.

Thus we can define {ya: a < co,} in such a way that Pa holds for each a < co,. Let

U= {¿8(a): ß > ya, a < co,}. Then U is an open set in Y containing oo. Since

(oo, oo) E A, there exists (¿8,(a,)¿82(a2)) E U2 D A. Since Pa +a holds, either ßx <

ya or ¿82 < ya . But then either ßx(ax) E U or ß2(a2) E Í7, contradiction. Thus F2 is

a ¿-space.

2. Applications. As applications of results in §1, we shall consider the products of

¿-spaces and spaces of countable tightness in more special cases.

Definition 2.1 [8,16]. A collection 9 of (not necessarily open) subsets of a space

A is a k-network for A if, whenever CEU with C compact and U open, then

C C U f C U for some finite subcollection § of 9. An espace is a space with a

a-locally finite ¿-network, and an X0-space is a space with a countable ¿-network.

Note that metrizable spaces are X-spaces, and separable metrizable spaces are

N0-spaces.

We say that A is a locally tf0-space if each point of A has a neighborhood which is

an S „-space.

Theorem 2.2 (CH) Let f: X -» Y be a closed map. Let X be a paracompact, locally

KQ-space. Then the following are equivalent.

(a)t(Y2) ^ co;

(b) each df'x(y) is Lindelöf;

(c) Y is a locally K0-space; and

(d) Y is locally separable.

Furthermore, if Y is sequential, then the CH assumption can be omitted.

Proof, (a) => (b): This is Corollary 1.5.

(b) => (c): Since each subset of a locally K0-space is locally S0, as in the proof of

[7, Corollary 1.2], we can assume that each/"'(>>) is Lindelöf. Thus,/is a closed map

with eachf~x(y) Lindelöf. Then, for each y E Y, there is a closed neighborhood W

of y in Y, and open subsets V: of A which are S0-spaces such that f~x(W) E U^LXV,.

Since U°l,Pj is an N0-space, so is f~x(W). Since the closed image of an S0-space is

also S0 by [8, G], M^ is an N0-space. This implies (c).

(c) =» (a) and (c) =» (d): By [8, F], F2 is a locally S0-space. Then, by [8, D, E] F2 is

locally a hereditarily separable space. Hence t(Y2) < co.

(d) =» (b): This follows from [21, Proposition 1], because F is paracompact, hence

is locally Lindelöf by (d).

From Theorem 2.2 and some results in [21], we have

Corollary 2.3. Let f: A — Y be a closed map with X locally separable metric. Then

the following are equivalent.
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(a)r(F2)<co;

(b) each df~x(y)is Lindelöf;

(c) Y is locally separable;

(d) Y is locally Lindelöf;

(e) F is an espace.

Definition 2.4. A decreasing sequence (An) in a space A is a k-sequence [10], if it

is an outer network at a compact subset K of A; that is, K — C\^=xAn and every

neighborhood of K contains some An. By regularity, if a compact subset K has an

outer network, it has one in which each An is closed in A.

Let F be a space. Then Y satisfies condition /i(S0) [20] if, for any ¿-sequence (An)

in Y, some /1„ is countably compact.

It is shown that [20, Proposition 2.4] a space Y satisfies A^(S0) if and only if each

closed subset of F which is a paracompact A/-space is locally compact.

Definition 2.5 [10, Lemma 3.E.2]. A space F is a bi-k-space if, whenever a filter

base <$ accumulates at v in F, then there exists a ¿-sequence (An) in F such that y

EF~ñ~Anfor allnENand all F E 9:

It is shown that [10, Theorem 3.E.3] F is a bi-¿-space if and only if F is a

bi-quotient image of a paracompact M-space A. Then by a result of H. Wicke [23],

spaces of pointwise countable type [2] are bi-¿.

Definition 2.6. A space A is a ¿„-space [9] (K. Morita [13] called it a space of

class <3 '), if it has the weak topology with respect to a countable covering of compact

subsets of A.

For a space F we shall say that F is a locally k^-space, if each point of F has a

neighborhood whose closure is a ¿„-space.

It is implicit in a result of J. Milnor [12, Lemma 2.1] that the product of two

¿„-spaces is ¿„. This fact implies the following lemma.

Lemma 2.7. Let Y be a locally ku-space. Then Y2 is a locally ku-space, hence, a

k-space.

Lemma 2.8. Let f: X -> Y be a closed map with each 3/~x(y) Lindelöf. If X is bi-k

and Y satisfies /i(S0), then Y is a locally ku-space.

Proof. Since each closed subset of A is a bi-¿, as in the proof of [7, Corollary 1.2],

we can assume that each f~\y) is Lindelöf. Let .y E F. Then we will prove that each

point of f~x(y) has a neighborhood contained in the inverse image of some compact

subset of F. To see this, suppose not. Then there is a point a0 of f~x(y) such that for

every neighborhood F of a0 and for every compact subset K of F, V GL fx(K).

Let %= {A - f~x(K); Kis compact in Y). Then °Jis a filter base accumulating at

the point a0. Since A is bi-¿, there exists a ¿-sequence (A„) in A such that a0

EFnAJor all n E co and all F E §. Obviously, (f(A„)) is a ¿-sequence in Y.

Thus, by condition K(K0), some f(A„n) is compact. Let Ka= f(An/). Then, a0

E(X - f~x(K0)) n A„a E (A - r'Uo)) n f-x(K0) = 0. This is "a contradic-
tion.
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Thus, each point x of fx(y) has a neighborhood Vx which is contained in the

inverse image of some compact subset of F. Since/"'(.y) is Lindelöf, {Vx: x E f~x(y)}

contains a countable subcover {F„}„e„ of f~x(y). For each n, let Kn be a compact

subset of F such that Vn E f~x(Kn). Since/is closed and F is regular there exists a

neighborhood W of Y such that/"'(W) E Un(EuV„. Let F = f~x(W) and T= {fn

Fj-: / E co}. Then, since Tis an open covering of F, F has the weak topology with

respect to °V. Since Fn V, Q 'F ñ f~l(K¡) for each / E co, F has the weak topology

with respect to {F D f~\Ktf, i E co}. Since/| Fis closed, hence quotient,/(F) = W

has the weak topology with respect to {W nK,: i E co}. Thus IF is a ¿„-space, and

so F is a locally ¿„-space.    D

Lemma 2.9. Let f: X -» Y be a closed map with X normal and t(Y) < co. // Y2 is a

k-space, then either Y satisfies condition AT(K0) or each 3/~'(y) is countably compact.

Proof. According to [20, Theorem 4.2], if the product of two spaces is quasi-¿,

and one factor is not an inner-one A -space in the sense of E. Michael, R. C. Olson

and F. Siwiec [11], then the other factor satisfies K(a), where a is its tightness. F

satisfies condition /£(N0), or F is an inner-one /I-space. If F is inner-one A, by

[10, Theorem 9.9] each 3f ~x(y) is countably compact.

Lemma 2.10 [10]. Bi-k-spaces are preserved by perfect images and countable

products.

By invoking Corollary 1.5, and Lemmas 2.7, 2.8, 2.9 and 2.10, we obtain the

following theorem.

Theorem 2.11 (CH). Let f: X — Y be a closed map with X paracompact bi-k. If

t(Y) < co, then the following are equivalent. When Y is sequential, the CH assumption

can be omitted.

(a) Y2 is a k-space.

(b) Y is locally ¿„, or each df'x(y) is compact.

(c) F is locally ¿„, or bi-k.

Corollary 2.12. Let f: X -» Y be a closed map with X or Y sequential. Let X be a

paracompact space of pointwise countable type. Then Y2 is a sequential space (equiva-

lently, a k-space by [18, Theorem 2.2]) if and only if Y is locally ¿„ or bi-k.

Before proceeding with the next lemma, we remind the reader that the perfect

image of an K-space is an N-space, but the closed image of a locally compact metric

space need not be S-space (cf. [21, Theorem 7]).

Lemma 2.13. Let f: X -> Y be a closed map with each dfx(y) Lindelöf. If X is an

espace, and Y satisfies condition K(K0), then Y is also an espace.

Proof. Let 9= U°l,iP, be a a-locally finite ¿-network for A satisfying the

following conditions: Each element of P is closed, 9, E ÍP + , and 9, is closed with

respect to finite intersections. Let K be an arbitrary compact subset of Y. Since each

subset of an S-space is an K-space, as in the proof of [7, Corollary 1.2], we can

assume that each /"'( y) is Lindelöf and that there exists a compact subset C of A

with/(C) = K.
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Let 9' = {P E 9: 9 D C ¥= 0}, and let G he the collection of finite unions of

elements of 9' which contain the compact subset C. Then G is a nonempty,

countable collection in A.

Let G = {P¡: i E co} and C„ — T= i-P,-Ior eacn "• Then (C„) is a ¿-sequence for C.

Since (f(Cn)) is a ¿-sequence for K, by 7i(K0) there exists a compact subset f(C„ ) of

F. On the other hand, by the conditions of the collection 9, each Cn can be

expressed as a union of finitely many elements of 9. So, the compact subset f(C„)

containing K can be expressed as a union of finitely many elements of /( 9 ). Let

% = {/(P)'- P £ ^ and f(P) is compact in F}, and let %* he the union of all

elements of %,. Then, since f(9,) Ef(9,+ X), by the above, each compact subset of F

is contained in some %*.

We will now prove that F is an K-space. Each %, is a hereditarily closure-preserv-

ing collection of compact subsets of Y, that is, whenever a subset K' of K is chosen

for each K E 9C(-, the collection {/C: it E 5C,} is closure-preserving. This is because

%, is the image of a locally finite, hence hereditarily closure-preserving, collection

under a closed map. Then by a result of Michael [6, Theorem 1], each %* is

paracompact. Next, to see each %* is locally K0, let 91,- = {P E 9,: f(P) E%,} and

let 91* = U 91,. Then 91* has the weak topology with respect to the locally finite

closed collection %,. Also, f\ 91* is closed, hence quotient. Thus %* =/(9l*) has

the weak topology with respect to %,. Since/is closed and each f~x(y) is Lindelöf,

%, is locally countable. Hence each %* is a locally ¿„-space. Since each compact

subset of Ais an K0-space, by [8, G] each compact subset of Fis also K0 because it is

the image of a compact subset of X. Then each %* is a locally K0-space, since each

point has a neighborhood which has the weak topology with respect to a countable

collection of compact K „-spaces (see [8]). So, each %* is a paracompact, locally

K „-space. It follows that each %* is also an K-space. As is seen, each compact subset

of F is contained in some %*. Since each 9C* is an K-space, it follows that F is also

an K-space. This completes the proof of the lemma.

Lemma 2.14 [19, Theorem 3.1]. Let Y be a k- and X-space. Then Y2 is a k- and

espace if and only if Y is metrizable, or Y has the weak topology with respect to a

countable covering of closed and locally compact subsets of Y.

Let a ¿-space F be the closed image of an K-space. Since each closed subset of an

K-space is easily seen to be a G8-set, each point of F is a Gs-set. Thus by

[10,Theorem 7.3], Fis sequential. Therefore, by Corollary 1.7, and Lemmas 2.13 and

2.14, we have

Theorem 2.15. Let f: X -» Y be a closed map with X a paracompact espace. Then

Y2 is a k-space if and only if Y is metrizable, or Y is an espace having the weak

topology with respect to a countable covering of closed and locally compact subsets of Y.

Remark. Let A be an K-space each of whose countable (resp. uncountable) subset

has an accumulation point. Then A is an K0-space, and so A is compact (resp.

Lindelöf). Thus, by Theorem 1.6, we have the following.

If an K-space A is more generally strongly collectionwise Hausdorff, then the

statement of Theorem 2.15 is also valid.
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