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GLOBAL SOLVABILITY ON COMPACT HEISENBERG MANIFOLDS

BY

LEONARD F. RICHARDSON1

Abstract. We apply the methods of primary and irreducible Fourier series on

compact nilmanifolds to determine the ranges of all first order invariant operators

on the compact Heisenberg manifolds. We show that the sums of primary solutions

behave better on these manifolds than on any multidimensional torus.

1. Introduction. In this paper we will investigate the global solvability of first order

linear partial differential equations on compact Heisenberg manifolds. Let N denote

the three-dimensional Heisenberg group and T any cocompact discrete subgroup. If

D E 9lc, the complexified Lie algebra of TV, then we will calculate the precise range

of D acting by right differentiation on C°° (T \N), the space of smooth left-r-peri-

odic functions on N.

If g E CX(T \N), then it is well known that each of the primary components of g

in the Fourier decomposition of L2(T \N) is again smooth [1], In Theorem (3.1) we

show that, if g E C°°(T\N) is such that Dfx = gx can be solved for smooth fx for

each primary component gx of g, then /x can be chosen so that 2/x converges

uniformly to a smooth, global solution of Df — g. As discussed in connection with

Theorem (3.11), this theorem would be false on any multidimensional torus. We

believe that this greater regularity of T \ N with respect to solution of first order

equations reflects the nontrivial polynomial nature of the multiplication in the

Heisenberg group. In Theorem (4.2) we classify the finite-dimensional primary

ranges of all D E 9lc, thereby completing the solution of the problem. In Corollary

(4.4) we observe that the codimensions of the primary ranges of D determine F

uniquely up to isomorphism as a discrete group which is cocompact in N. Note that

Theorem (4.2) together with Rockland's theorem [9] implies that many D E 9lc are

not hypoelliptic.

Some discussion of our choice of method is in order. Some D E 9lc could have

been treated in the proof of Theorem (3.1) by multiplying by a formal adjoint,

finding a commuting elliptic operator, and determining an L2-bound on the primary

inverses. When that method fails, it is possible to use fundamental solutions instead.

Although our strictly Fourier methods are somewhat longer, we have chosen to use

them for two reasons. First, essentially the same technique is applicable to all

D E 9lc. Second, these methods can be extended to much more general compact

nilmanifolds, on which the two methods mentioned above would be inadequate.
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2. Preliminaries. We will denote elements of the 3-dimensional Heisenberg group

N as triplets (x, y, z) of real numbers, where (x, y, z)(x', y', z') = (x + x', y +

y', z + z' + xy'). Let T be the cocompact discrete subgroup generated by (1,0,0),

(0, 1,0), and (0,0, j), where k E Z+ is some fixed positive integer. (Every cocom-

pact, discrete subgroup of N is isomorphic to such a T for one and only one value of

k E Z+ [2].) Denote (1,0,0) = exp A, (0,1,0) = exp F, and Z = [A, F] E 2, the

center of the Lie algebra ?fl of N.

Let (T \N) denote the set of equivalence classes of irreducible unitary representa-

tions of N occurring in the discrete sum decomposition of L2(T\N), where L2 is

formed with respect to the unique invariant probability measure on T \N. The

infinite-dimensional Ylx E (T \N) are indexed by A E kZ ~ {0}, where Ux is

induced by any of the characters Xx,y(0> J' z) = exp27n'(Az + jy), j = 0,1,... ,| À |

-1, of the subgroup M = {(0, y, z)] C N. Let Û(X\j î fix) - {/: N -> C |

f(x, y, z) = XxJO, y, z)f(x,0,0) where /(•,0,0) E L2(R)}, the Mackey induced

representation space for X\ j inducing Ilv For each such (A,/), denote Tx :

tf(XA./înx)-L2(r\A') by (TKj)(Tg) = lTnM,rf(yg). Then TXJ is (up to'a

constant factor) a unitary intertwining operator for Ylx. If we denote Hx =

T\,jH(X\,j T Hx) and let CKX be the (orthogonal) direct sum 2''jKL~0xHXj, then %x is

the nA-primary subspace of L2(T \N) [11].

For each /E H(xKj Î Ux), define (//) E L2(R) by (//)(/) =/(/,0,0). Then 7

carries the space of C°°-vectors for nA one-to-one and onto S(R), the space of

Schwartz functions on the line [13], But 7*x carries the space of C°°-vectors for Ylx

one-to-one and onto Hx - D CX(T\N) = HXJ, and TXJ ° /"' is a uniformly con-

vergent infinite series when restricted to ?(R) [5]. Now define ta ¡ = I ° Tx'j, a

unitary intertwining operator of nx between Hx ■ and L2(R).

Let PXJ denote the orthogonal projection of L2(T\N) onto HXj, and let

fx.) = P)ij(f)' f°r an / G L2(T \ A'). Let 9C¿ denote the sum of all the one-dimen-

sional irreducible invariant subspaces of L2(T \N), and let/0 be the 5C0-component

of /. If g E CX(T\N), then gx f and g0 are all C°° too, and Hgx j converges

uniformly tog [1],

Let D E 9tc, the complexification of 91, viewed as a left-invariant differential

operator on N, and acting by right-differentiation on CX(T\N), the space of

left-r-periodic functions in CX(N). In order to be able to solve Df = g E CX(Y \N),

it will be necessary both to be able to solve DfXj = gx : for fx , E C°°(r \/V) for

each (A, y) a«i/then to show that the sum of the/x 's is in C00. Denotetx fx ■ — fx ,,

and note that/A ■ and gx ¡ would both have to lie in ?(R). Thus solving Dfx = gx

for some fXj E CX(T \N) is equivalent to solving DXjfXj = gx . for /x , E S(R),

for some ordinary differential operator /3A j. Iff E H(xx , î F1A), then

A/(x, y, z) = 9/(x, v, z)/3x,        Yf(x, y, z) = (d/dy + 2wi\x)f(x, y, z),
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and Zf(x, y, z) = 2tri\f(x, y, z). Since Tx    and I both commute with D, these

actions correspond in §(R) to Xf= df/dt, Yf = 2tri(\t + j)f, and Zf — 2-ni\f.

3. Regularity theorem. Let g E C°°(T\N) and D E 9lc. Suppose we can solve

Dfx • = gx ■ for fXj E C°° for all (A, /). Then we will show in the following theorem

that the functions fXj can be chosen (if necessary) so that 2/x converges uniformly

to a function /E C°°(r\7Y) which solves Df = g globally. We will see later in this

section that the corresponding statement for a multidimensional torus is false, so

that compact Heisenberg manifolds are "more regular" than multidimensional tori

with respect to solving first order invariant partial differential equations. It seems

that the reason for this striking phenomenon is that the multiplication in N involves

polynomials of second degree, which assist greatly in dealing with functions fx • and

Ëxj in S(R).

(3.1) Theorem. Let D E 9lc and let g = 2gXJ E CX(T\N) be such that the

equations DfXj = gx ■ can be solved for fXj E CX(F \N) for all A E kZ,j = 0.

| A | — 1 ( / = 0 //A = 0). Then these solutions/x ■ can always be chosen so that 2/x ;

converges uniformly to a solution f E Cx(T \N) of Df = g.

Proof. We will need the following two lemmas and corollaries, written in the

terminology of §2.

(3.2) Lemma. Let T£j be the adjoint of TXj. For each f E C(T\N), T£ ¡f(n) =

/rnA/NwXA,/w)/(wn) dm. This is Lemma 2.1 of [4].

(3.3) Corollary. For each f E C(Y\N) n HXj, H/lli-w< II / II ¿-(rxwv

Proof. / is a restriction and Tx* 71 HXj = Tx).

(3.4) Lemma. /// and all its distributional derivatives Uf of order | t/|< 3 are in

L2(Y\N), then f is equal almost everywhere to a continuous function and ll/ll^, <c •

2|t/|«3 IIUf II2 for some constant c. (This is a simple case of Theorem 3 in [1].)

Lemma (3.4) has the following immediate consequence.

(3.5) Corollary. // Uf E L2 for all distributional derivatives of all orders, then

/E CX(T\N).

We wish to show that /= 2fXj E L2(T\N) and that (the distributions) Uf =

lUfXJ E L2(T \N) for all U. Equivalently, we wish to show that 2llt//x y II2 < oo.

If D happens to be central, then Dfx ■ = 2triXcfx y for some c E C. Then

2\\ÜfXj\\2 < oo follows from the corresponding fact for g E CX(T\N). So we

assume without loss of generality that D is not central. Since A and Y are

"interchangeable" via an automorphism of 91, we may assume that D = X + aY +

ßZ, (a, ß) E C2, since if the theorem is true for such a D then it is true also for any

constant multiple of D.

Next we observe that

(3-6)     KAM) =Kj(x) + 2wi[a(\x + j) + ß\]fXj(x) = gxJx),
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(3.7)   ;x.7(*)exp m\a[x + { + f ]2 = fgxJt)exp viXa[t + { + § ]2 dt + C.
o

(3.8) Lemma. To show that 2llt//x>||2< oo for all U, it will suffice to prove

2X ,- II xkfx -|| 2 < oo, for each fixed k = 0,1,2,_

Proof. Suppose we have proved 2^ ,l|jc*/wlf2 < oo for each fixed k = 0,1,2.

Since DZfx . = Zgx ] and g E Cx, the case k = 0 implies 2X ¡ II A'/x . || 2 < oo for all

fixed / E Z+ . And'||F/x,,||2 = ||<Ax + j)fKj\\2 <\ A | (IU/XJ||2 + \\fxJ2) implies

ZxJY'fxj2< oo too. Finally, XfXj(x) = -2m\a(x + ß/a +j/\)fXj + fx,,(x),

and higher powers of Xfx ■ can be expanded similarly in terms of xkfx and

derivatives of gx .. This proves the lemma.

Before proving that z^x_J\\xkfXj\\ 2 < oo, we need the following lemma, phrased in

the notation of §2. We make the convention that (/• g)(x) = f(gx).

(3.9) Lemma. rK0(fXj ■ (~j/\,0,0))(x) = (rKjfXJ)(x - j/X), for each fXj E HKj.

Proof. As shown in [12], left translation by (-j/X, 0,0) is a well-defined intertwin-

ing operator between Hx ■ and Hxo. (In general, if j E Z and/ E %x, f ■ (j/X, 0,0)

will still be left T-periodic, where we regard/ E %x as being one of these special left

T-periodic functions on N.) Now,

i,0,o)\(x)v,0   f\.j

f Xa(0, y, z)fxM-jr,0,o)(0, y, z)(x,0,0)) dydz

ÍTlMx/W
Xxj(0, y, z)fx,j\(0, y, z)[-{,0,0)(x,0,0)) dm

= (T    f    \tx -j/X),

since Haar measure on M is invariant under inner automorphism by (-j/X,0,0).

This proves the lemma.

It remains only to show that 2X,; II**/*,;II2 < °°- ^e wiu break up the work into

three cases.

Case I. lm(a) = 0 = lm(ß). Now the fact is that/x . E S determines the constant

in (3.7) uniquely, so that

IÄ,/*)t; fx,y(0exp
X

f   lx,y(0exp

77/Aa  / + —
\        a

+
J

triXal t +
ß
î + iï

dl

dt

Now let B*J ;i + x2)k+xgxJx, so 2XJBXJ < 00, since g E Cx. And |gx,/i)|

ißÄJ/(l+!2),   for   all   t.   Thus   \fXj(x)xk\*zBXjj_xx(l + t2yxdt,    so   that

2xJfx.J-xk\\00<oo.
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If we denote M£-J'= \\x"fXj \\x, 1M^J < oo for each fixed n > 0. Now, if

0 < k < n, we have \xkfXJ(xj\*i Min{MkK-J,M^J/x"~k}. Thus 211 jc*/x^.||2 < oo,

for all k>0.

Case 2. Im(¿3) = b * 0 = \m(a). We will show that \\fxJx < UA^lMkJ«,-
By Lemma (3.9), we can assume that y = 0. So we apply (3.7) for y = 0, and since/X()

must be Schwartz, we have

A,o(*) =

-/   lx,o(Oexp(w/Aa

/   lx,o(OexpU/Aa

t2-x2 + ^-(t-x)
a

2-x2 + ^-(t-x)

dt,     ifXb>0,

dt,      ifXb<0.

We will apply the first integral when Xb > 0 and the second integral when Xb < 0.

Thus

Hx.olloo-l/x,ol l&,;l
/OU

exp(-A¿>(/ — x)) dt     or
X

/x exp(-Xb(t - x)) dt

1

AM

The rest of the proof is as in Case 1, except induction on k shows 211 xkfx y II œ < oo,

since DXj(xfXj) = xgXj + fXj, by (3.6).

Case 3. Im(a) = 2a ^ 0. If J E Z, then, as remarked in the proof of Lemma (3.9),

f ^ f ■ (J/X,0,0) intertwines //(Xx,/Î nx) with //(xx.0+./)mod|X|î nA) and also

intertwines the maps TXj and Txo+y)mod|X|. Now, if FXj E H(%Xj Î IIX), then

Y(FXj-(J/X,0,0))(x,y,z)

= 2viX(x + (j + J)/X)(FXj ■ (J/X,0,0))(x, y, z).

Thus, iffKj=TKj(FKj), we have

Y(fXj-(J/X,0,0))'(x,0,0)

= 2triX(x+(j + J)/X)(fXj-(J/X,0,0))~(x,0,0)

and thus, letting f = (j + J) mod | A | ,

K,(fx,-({,0,0))(x)

= (/x,y-((,0,o)) (x) + 2m\a

= (sx.y(Í,0,o)(x)

yields the solution

( A.; ■ ( X'0'0)) (*) = exP ̂ A«(^ + =4^ + £

[/;(.x.-(f0,0))"(Oexp

x +
j + j ; /3f](Mf«»)H

77/Aa  í 4-
J+J ^ß dt + c
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Let b = Im(a(y + J)/X + ß). By making a suitable choice of /, we can be sure

| b | < | a/X | . Thus we have, for aX > 0, for example,

J + J^ß
UxJoc^HxJoo-SUp exp tri Xa tl - x1 + 2 a   +SK'-*>

/ou / n

exp -A«\t2-x2 + -(t- x)
x     x \ L "

llx / II oo ' exp b2X/4a f exp(-Xau2) du

I        a \ c,        c „ '.
l^.yHooiexp-xJ-^^-^llg,,,!!.

A

í/í

for all A and suitable c (with aX > 0). For aX < 0, the constant in (3.7) can be

selected so that the integral is from -b/2a to x. Now a reduction just like that done

above for aX > 0 shows that ||/XJ||^ < (c/ JX)\\g"Xj||00. Then the rest of the proof

in Case 2 applies. This completes the proof of Theorem (3.1).

Now we turn to the analogous statement for multidimensional tori, which we will

see by easy classical arguments to be false. Since dim(F\7V) = 3, we will consider

the torus T3, although essentially the same reasoning would apply to T" whenever

n > 2. Let g E CX(T3), so that g(m, n, p) — 0 rapidly at infinity [7]. To solve, for

example, (9/3a: + ad/dy + ßd/dz)f = g, we must set f(m, n, p) =

g(m, n, p)/2tri(m + na + pß). Thus the (smooth) "primary" solutions exist if and

only if g(m, n, p) = 0 whenever m + na + pß = 0. However, / E CX(T3) if and

only if f(m, n, p) vanishes rapidly at oo. If ß/a is a transcendental number with

infinite order of rational approximability [8], then | na + pß \~x can grow faster than

any power of p for an infinite number of values of p. Thus it is possible for g -> 0

rapidly while/fails to approach zero at all. That is, the sum of the smooth, primary

solutions fails to converge to a smooth function. The author suspects that the

irregularity of the torus in this regard is a result of the fact that the group operations

on the torus involve only polynomials of the first degree. One may speculate, then,

whether it is the polynomials used to define the concept of algebraic numbers which

substitute for the Heisenberg group's innate polynomials in making the following

theorem true.

(3.10) Theorem. Let a and ß be algebraic (real) numbers, and D = 3/3x + ad/dy

+ ßd/dz. If

g(x,y,z)—   2   g(m, n, p)exp2tri(mx + ny + pz) E CX(T3)
m,n,p

and if Dfm g(m, n, p)exp2iri(mx + ny + pz)can be solved for fm n   .For each

(m, n, p) E Z\ then 2m _ „/„m,n,pJtn,n,p CX(T3).

Proof. Let K be the product of the algebraic degrees of a and ß. As shown on p.

84 of [10], (ma + nß)x is algebraic of degree < K, for all (m, n) E Z2. Also, if

Fm,n denotes the polynomial of degree < K, with integer coefficients, satisfied by

(ma + nß)~x, then it is implicit in Niven's argument in [10] that the coefficients of
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Fm n can be taken to grow no faster than polynomially in m and n. By Liouville's

theorem [8], | m + (na + pß) \> Cm „ \na + pß \/mk for all but finitely many val-

ues of m. As on p. 161 of [8], we can take C~)n to be the supremum of Ft't¡ n on

[l/(na + pß) -1,1 /(na + pß) + 1]. However, by Liouville again, \na + pß \rl «£

Cnk for almost all (n, p). Thus | m + na + pß \~x is polynomially bounded in m, n

and p for all but finitely many (m, n, p) E Z3. Yet g(m, n, p) -» 0 rapidly at

infinity. This proves the theorem.

4. Primary solutions. Theorem (3.1) shows that solving Df = g in CX(T\N) is

entirely a problem of solving Dfx = gx in the (infinite-dimensional) primary sum-

mands. In this section we will investigate the range of each D in every such

summand. In order to determine whether or not DfXJ = gx . E %x can be solved

for/x E %Xj, for each (X,j), it suffices to seek a solution for C°°-vectors in a

representation space of nx for each A. (A = 0 corresponds to a torus N/TZ, where

Z is the center of N.) We may write D = L, + iL2, where Lx and L2 lie in 9t. The

following list of cases is exhaustive.

(4.1) Cases. (I) [Lx,L2]^0.

(2A) L, and L2 lie in the center, % of 9t.

(2B) L, E 2 and L2 = cLx, for some c E R.

(2C) L, E 2 but L2 E %, L2 # 0.

(4.2) Theorem. For í/ie ca^eí farea" in (4.1), we Ziaue the following descriptions of the

range, D(%x).

Case (1). For A of one sign, D(%x) = %x, and for A of the opposite sign,

D(%x) is the orthogonal complement (in %x) of a | A | -dimensional subspace.

Case (2A). />(%") = %x for all A ̂  0, and ö(3Cn) = 0.

Case (2B). /^(OC") is a dense subspace of %x having codimension | A | in %x,

when A =£ 0.

Case (2C). Z>(9Cn = 30^ for all A ̂  0.
(When A = 0 in Cases (1), (2B), and (2C), the problem lives on a torus T1 = N/TZ,

and is subject to number-theoretic conditions, such as in Theorem (3.11).)

Proof. Case (1). We can apply an automorphism to 91 so that Lx becomes A and

L2 becomes -Y, and then we can recoordinate the center 2 so that [ A, Y] = Z. It is

true that this automorphism need not respect F. However, we are seeking only to

solve Dfx = gx in the C°°-vectors of 7/(Xx,o î nx), or equivalently, to solve Dfx = gx

in S(R), where fx = I(fx). In this discussion, there is no need to use the maps Tx . or

tx ,. So, without loss of generality, we let D = X — iY. It follows from (3.7) that

(4.3) fx(x) = exp(-Ax2/2)(/o,ígx(Oexp(A/2/2)í/í + c).

(We can drop the constant factor m from A, now that T is no longer under

consideration.) Suppose first that A > 0. We will show that since gx E S(R), fx is

also Schwartz. To this end, note that, in

■x/2.
exp(-Ax2/2) fx/ gx(t)exp{Xt2/2) dt + f   gx(t)exp{Xt2/2) dt

J0 Jx/2
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(éH(s-»*)=£-**2-*=s-s-

the first product is bounded in modulus by f llgJI^expi-SAx2/^), which is clearly

Schwartz. But the second integral is bounded by | jc | • ||gx|| L*>,x/2,x)> which is also

Schwartz.

Next, suppose that A < 0. We can modify the usual definitions of the Hermite

functions as follows. We let

*.&) = {-^f{-^/^)WA^p(-Xx2/2)£-ne^p(Xx2),

where n > 0. Hence

K.x-*2x2»n.x = M2n+l)hn.x,

and {hn x \ n 3* 0} is an orthonormal basis of Schwartz functions for L2(R). Now let

\/\_

dx2

But d/dx — Xx is onto S (from the positive X case above). Now LhnX — 2nXhn x, so

that Lhox = 0 for all A < 0, and L is not onto. Hence the range of d/dx + Xx has a

1-dimensional complement in &(R) generated by hox. [The functions in 7/x ■

corresponding to hox via an automorphism followed by Fx - ° /"' can be called a

(A, y)-nil-0-function, as in [3].] The only remaining question is whether d/dx + Xx

is onto all of S(R) D h^x. But (3.7) implies, for A < 0 and n 2* 1, that

(DxxhnX)(x) = -exp(-Ax2/2)/CC/!„,x(0exp(A/2/2)J/.
Jx

That is, the constant in (3.7) is determined uniquely since Dxhn x E S(R). Now let

gx = 2^=lc„,x/i„,x E S, so that c„,x^o rapidly as n - oo [7]. But then

£(*) = - 2 c)uXexp(-Xx2/2)rh„M)^v(^2/2)dt

= - 1 ^AÎ-i(jc),
H-I

so that A E & too.

Case (2A). Since Lx and L2 are both central, Dx = iXa for some a E C, and />,,

vanishes.

Case (2B). We may assume, without loss of generality, that L, and L2 are

multiples of F, so there is an a E C such that t3x/x = iXaxfx = gx, for all A 7e 0.

Then A G ^ if and only if gx E S0 = {g E S | g(0) = 0}. Clearly, S0 is a Schwartz

closed subspace of S having codimension 1. However, there exists / E § ~ S0 such

that /is in the L2-closure of S0. Thus S0 is L2-dense in L2(R), and so S0 is not the

intersection with S of the orthogonal complement of any subspace of L2(R). Since

tx . and automorphism of N are L2-isometries, the range of D in %x is an L2-dense

subspace of 0CX having codimension | A | in 9C".

Case (2C). Without loss of generality, let L, = cY and L2 = dZ where cd ¥= 0.

Then if A ¥- 0, Dxfx = iX(ct + di)fx = gx is solvable in S(R).

In %q, whether in Case (1), (2B), or (2C), the solvability of Df0 — g0 is a problem

in CX(T2), where F2 = N/TZ. Here there are inevitable number-theoretic condi-

tions, such as in Theorem (3.11).
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(4.4) Corollary. Let D E (9t~ %)c, and let Zr = [Dim(%x/D(%x)) \ m E

(T\N)}. Then

(1) Zr is independent of the choice of D as above.

(2) // T and Tx are cocompact discrete subgroups of N,T = TX as a discrete group if

and only ifZT = Zri.

Proof. By a theorem of Malcev, T is cocompact and discrete in N implies raTj,

for some k E Z+ , as described in §2 [2]. And UXE (Tk\N) if and only if A E kZ

[11]. Thus Zr = kZ U {0,1} by Theorem (4.2), which determines T up to isomor-

phism.

Note added in proof. We have learned recently of some overlap between our

remarks preceding Theorem (3.11) and the paper Global hypoellipticity and Liouville

numbers by S. J. Greenfield and N. R. Wallach, Proc. Amer. Math. Soc. 31 (1972),

112-114.
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