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ON THE DOUBLE SUSPENSION HOMOMORPHISM

AT ODD PRIMES

BY

J. R. HARPER AND H. R. MILLER1

Abstract. We work with the £|-term for spheres and the stable Moore space, given

by the A-algebra at odd primes. Writing W(n) = A(2n + 1)/A(2n - 1) and M(0)

= H (S° Up e'), we construct compatible maps/„ ■ W(n) -» M(0) <8> A and prove

the Metastability Theorem: in homology /„ induces an isomorphism for o <

2(p2 — \)(s — 2) + pqn — 2p — 2 where a = stem degree, s = homological degree

resulting from the bigrading of A and q = 2p — 2. There is an operator vx

corresponding to the Adams stable self-map of the Moore space and vx extends to

W(n). A corollary of the Metastability Theorem and the Localization Theorem of

the second author is that the map /„ induces an isomorphism on homology after

inverting o |.

In this paper we carry over to odd primes p certain ideas of Mark Mahowald [7],

Our goal is to establish a metastable range for the mod p unstable Adams 7s2-term

for an odd-dimensional sphere. To be more specific, visualize the £2-term displayed

in the (a, s)-plane, where a = stem degree and s = homological degree. Then we

show that above a line of slope l/2(p2 — 1) and a-intercept 2p(p — l)n minus a

constant independent of n, the obstructions to double suspension being an isomor-

phism lie in the stable £2-term for the mod p Moore space S° Upex.

As in [7], we work with the Ex-term for spheres and for the stable Moore space

given by the " lambda algebra" ([2], as corrected in [3]). This material is reviewed in

§1. Thus, we have complexes A(2« + 1) and inclusions A(2« — 1) C A(2n + 1),

such that H(I\(2n + 1)) is the E2-term for 52"+1 and the inclusion induces the

£2-level of a map of spectral sequences compatible at Ex with the double suspension

homomorphism. Also, if H^.(S° Up e1) = M(0), there is a differential bigraded

algebra M(0) ® A serving as a stable Adams £,-term for the Moore space. We shall

always index these complexes by homological degree s, written above, and stem

degree a, written below. Let W(n) = A(2w + l)/A(2/i — 1), indexed so that the

"lower left-hand corner" occurs at (s, a) = (0,0). Thus, there is a long exact

sequence (in which q — 2(p — 1))

■ • • - HiZ2qn + 2W(n) - W„h(2n - I) - H'aK(2n + I) - HlZxqn+xW(n) - • • • .

Our initial technical result (in §2) is an explicit and convenient form of the

differential in W(n). This shows immediately that W(n) includes into W(n + 1) and
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that they all map compatibly to M(0) <§> A. Our main result is then the

Metastability Theorem. The map in homology induced by W(n) -» M(0) ® A is

an isomorphism for

a<2(p2 - l)(s- 2) + pqn ~ 2p - 2

and an epimorphism for

a^2(p2- l)(s - 1) + pqn - 2p - 2.

This result should be seen in the light of the

Localization Theorem [8]. There is an algebra map

I: H(M(0) ® A) - P[vx] ® E[h,fl: i » 1] ® 7>[6(0: / » l]

w/zere | u, |= (1, q), \ h,0 \= (l,2(p' — 1) — 1), and | 6,0 |= (2,2p(p' — 1) — 2); a«i/

/ « a« isomorphism in bidegrees (s, a) for which a < (p2 — p — l)(s + I).

Thus one may say that at the Adams £2-level, the obstructions to double

suspension being an isomorphism are themselves stable invariants, for filtration

sufficiently high relative to stem degree; and that the groups in which these

obstructions occur have been computed in a somewhat smaller range.

The operator o, occurring in the Localization Theorem lifts to a self-map of

W(n); indeed, for n > l,vx carries W(n) into W(n — 1). The Metastability Theorem

then implies that, for all n 5* 1, H(W(n)) -» H(M(0) <§> A) is an isomorphism after

inverting t;, ; and the Localization Theorem computes the resulting groups.

The proof of the Metastability Theorem is carried out in §§3 and 4. It follows

Mahowald's strategy, relying however on the mod p vanishing line of [9].

While no stem by stem calculations are performed here, nevertheless the differen-

tial structure of W(n) (stated as Proposition 2.10) is the basis for a convenient and

systematic inductive calculation of the unstable Adams /i2-terms for spheres. These

calculations find an application in [4], where they are used to evaluate obstructions

to //-structures on sphere bundles over spheres.

The authors are grateful to Mahowald for explaining his ideas to them. Their hope

is that this exposition of the simpler odd-primary case will make his work accessible

to a wider audience.

Finally, we note that F. R. Cohen [11] has constructed geometrical analogues of

certain parts of this work.

1. The lambda algebra for odd primes. In this section, we shall record certain

properties of the lambda algebra at an odd prime p. See [3 and 10] for further

description and techniques of calculation. The only new result in this section is

Proposition 1.18.

Here and throughout the paper, we index bigraded objects by (filtration or

homological degree, stem degree) = (s, a), and write A'* for a given bidegree. The

"complementary degree" / satisfies a = t — s. Signs are invariably controlled by

stem degree a.
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Fix an odd prime/?, and let q = 2(p — I). The lambda algebra A is the associative

bigraded ryalgebra generated by

(1.1) A,ofbidegree(l,<7i:- 1),     i>\,

( 1.2) ¡x, of bidegree ( 1, qi), /' s* 0,

subject to the following "Adem" relations. Define elements

o.) ^Hr^-'H*-;)-!),

(1-4) ^(-Of'-'f-')
of F , where the binomial coefficients are subject to the usual conventions. In

particular,

(1.5) ckj = 0     forpj>(p-l)k,

(1.6) dkj = 0    for pj>(p-\)k.

Then, for i > 0, k > 0 in (1.7) and (1.8), and i > 0, k > 0 in (1.9) and (1.10):

j

0-8) Kfipi+k = 2 (Ckj^i+k-jPpi+j + dkjrLi + k-jXpi+j)>
j

(1-9) M, *„/+*+! = lickJp, + k_JXp,+j+x,
j

(l  in) „ „ =\ r    n nU-1LV txiPpi + k + \        ¿Jtkjtii + k-jrlpi+j+\-

j

A monomial in the X's and ¡it's is called admissible if

(1.11) whenever X,Xj or A,u7 occurs, we have y < pi, and

(1.12) whenever ¡x,Xj or /^/i. occurs, we have j < />/'.

The relations (1.7)-( 1.10) show that the admissible monomials form a basis for A.

The algebra A has a differential d, defined by

(1.13) ¿** = 2<*A-A-
j

(1.14) ¿/¿¿ = SKcjt^*-^ + dkjpk_JXJ).
j

As a differential algebra, A respects a third grading, the Cartan degree, given by

the number of u's present.

The complex A is filtered by subcomplexes A(n), «2*0, where A(n) is the

submodule with basis given by the admissible monomials beginning with

(1.15) X, with / < m or ß, with i < m if n = 2m,

(1.16) X, with / < m or p, with i < m if « = 2m + 1.

These submodules have the important property that

(1.17) A(n),A(flTo)çA(fi).

In particular, A(n) is a subalgebra.
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As a first step in an analysis of the product in A, as it relates to these

subcomplexes, we have the following result. Recall that q = 2(p — 1).

Proposition 1.18. The subcomplexes A(n) satisfy

X,A(m) E A(m - qi)   for m> 2pi, i > 0,

p,A(2m + I) E A(2m - qi - 1)   form >pi, i > 0.

Proof. Define the moment of the monomial v, ■ ■ ■ v, (where v denotes either X or

u) to be the integer /, + 2i2+ ■ ■ ■ +sis. Then we observe

(1.19) the relations (1.7)-(1.10) express an inadmissible monomial as a sum of

admissible monomials of strictly smaller moment; and

(1.20) monomials of a fixed length are admissible for sufficiently small moment.

The proof is now by a double induction on the length and moment of the product.

The induction starts since the result is true for the length 1 products A, • 1, p, ■ I,

and is true for any sum of monomials v for which X,v or p,v is admissible.

Take, for example, a product X,v with v an admissible monomial in A(w). We

must consider two cases, depending on the leading letter in v. Suppose, for example,

that v — \ip,jrka, with a E A(2p(pi + k) + 1). We may as well suppose m =

2(pi + k) + 1. If k — 0, the statement holds, since X,pp, = 0; so suppose k > 0.

Then we claim that

(1.21) X,vEA(2(i + k)+l).

Now

(1.22) ^iPpi+k« = 2 (ckjX, + k~jVPi+ja + dkjpl+k-jXp,+Ja).

j

If each monomial on the right is admissible, the proof in this case is complete (and

we see from this that the inclusion relations cannot be improved). If not, take an

inadmissible term, say !%,+,«• Since (1.5) shows that y < k, our inductive hypothesis

on shorter products implies that

ppi+Ja E A(2p(pi + k)~ q(pi + j) - 1) C A(2p(i + k - j) + 2j + I).

Next, expanding iip,+Ja into a sum 2>/ of admissible monomials results in terms of

smaller moment, so the moment of each term Xi+k_jV, is less than that of X,v. Since

2p(i + k—j) + 2i+l> 2p(i + k —j), our inductive hypothesis on smaller mo-

ment implies that

Xl+k_^pl+ja E A(2p(i + k -j) + 2j - q(i + k - j) + I)

= A(2(i + k)+l),

as desired.

The other terms in (1.22), and the other cases of the Adem relations, are handled

by four other similar computations.    □

Remark 1.23. The relations (1.17) can be proved by inductions on length in A(n)„

using Proposition 1.18.

Remark 1.24. The case i = 0 of the inclusion relations asserts that, for n s* 1,

p0A(2n + 1) E A(2n — 1). This is an /¿^-version of the Cohen-Moore-Neisendorfer

theorem asserting that pir*(S2p)+x) is contained in the image of the double suspen-

sion homomorphism. It is tempting to try to find geometric analogues of the other
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relations. For example, ifm^p and y E -nkS2m+x, is y° ax E wkS2m~q+2 a suspen-

sion? (We thank the referee for pointing out the absurdity of an earlier geometric

formulation, and for leading us to the following interesting case of this question.

Take/? = 3 and y = ¿32 €E 7r35(59). Then ß2° ax E 7r35(56) is indeed a suspension.)

2. The "fiber of double suspension". In this section, we study the complexes

W(n) = A(2n + 1)/A(2« — 1) representing the fibers of the double suspension

maps S2"~" -» Q2S2n+l. We analyze their differential and show that they filter the

stable lambda Ex-term for a mod p Moore space. Finally, we indicate how the

Adams self-map of the Moore space appears in this context.

We will often use the notation aX to denote the tensor product of the one-dimen-

sional F^-module (a) generated by a (in a given bidegree) with the bigraded complex

X. This has the usual sign-changing effect on the differential in X.

Note that

(2.1) A(2n) = A(2n-l)®XnA(2pn- I),

(2.2) A(2« +1) = A(2«)©ju„A(2/7«+ 1).

Together with the observation that dXn E A(2n — 1) and dpn E A(2n), this implies

that we have short exact sequences of complexes

(2.3) 0 ■-* A(2n - 1) -» A(2n) ^XnA(2pn - 1) - 0,
-

(2.4) 0 -» A(2«) -» A(2n + 1) ̂ ß„A(2pn + I) - 0.

Here |X„|=(0,0), |/Z„|=(0,1), and the "Hopf invariants" h, h have bidegree

(-1, -an + 1) and are defined on admissible monomials by

(2.5) h(v) = 0     unless v = Xna, when h(v) = \„a,
_ _ _

(2.6) h(v)=0    unless v = pna, when h (v) — pna.

Remark 2.7. These exact sequences, together with the "initial conditions"

A(0) = <1>,       A(/i)i = 0   fors<0

determine the vector space A(«) for all n 5» 0 by induction on n and s.

These sequences fit into a diagram

0 0 0
1 I i

0     -*     A(2/i - 1)     -» A(2n) ^     XnA(2pn - 1)     -     0

I I I

(2 8) Î.
{     '    0     -     A(2«-l)     -        A(2«+l) - W(n) -     0

I lh I

0 -     P„A(2pn +1)      -     P„A{2pn + 1)     -     0

I 1

0 0



324 J. R. HARPER AND H. R. MILLER

in which W(n) is defined by the middle row, and \hx |= (-1, -qn + 1). We have

adjusted bidegrees so that W(n) begins in (0,0) with Xn; the second index might be

called the metastable stem. We have a natural additive splitting

(2.9) W(n) =XnA(2pn - l)@p„A(2pn+ 1)

and our next result determines the differential in these terms.

Proposition 2.10. Let n>0, a E A(2pn - 1), and v E A(2pn + 1). 77ze« in

W(n),

d(X„a + finv) = X„(da + n0v) - pn dv.

Proof. For this we must show that

d(Xna + pnv) = -Xn(da + p0v) + ¡xn dvmod A(2n — 1).

The sign reversal occurs because A(2n + 1) -» W(n) has odd degree. From (1.14) we

have, for example

(2.11) d(p„v) = -X„p0V +   2   {Cn)K-)V>f + ¿„jPn-jXjV) + jtt„ dv.
y>0

Since pn>pj, Proposition 1.18 implies that pjV E A(2pn — 1 — qj) and since

2pn — 1 — qj = 2p(n — j) + 2j — 1 > 2p(n — j) for y > 0, Proposition 1.18 gives

K-jW G A(2P(" 'J) + 27 - ! - ?(" -/')) f K(-2n - ])"

Similarly, we find that the terms nn_jXjV in (2.11) lie in A(2n — 1); and analogous

calculations for d(Xna) give the result.    D

Corollary 2.12. The map W(n) -» W(n + 1) given by
_ _

of bidegree (0,0) respects differentials and is an isomorphism for metastable stem

degree a < pqn — 1.    D

Let A* denote the mod p Steenrod algebra, graded nonpositively. For any

spectrum X, H^X) is naturally a right /l*-module with the property that any

element lies in a finite submodule. For such an yl*-module N, Bousfield and Kan [3]

define a twisted differential on N ® A by

(2.13) d(x 2>v) = (-1)W 2 xP' 9 X,i> + 2 xßP' 9 p,v + (-l)Mx 9 dv.
i>0 is*0

Write N 9 A for the resulting complex. Then, for a spectrum X, H^(X) ® A is an

£]-term for the Adams spectral sequence abutting to 77„/ X).

Let M(0) = (x, y) denote the homology of the mod p Moore spectrum K(0) = 5°

Upex, withyß = x. Then (omitting "®") in M(0) 9 A,

(2.14) d(xa + yv) — x(da + Pqv) — ydv.

Comparing with Proposition 2.10, we see that the inclusions W(n) -> Af(0) 9 A by

(2.15) Xna + ¡inv \-> xa + yv

provide us with a differential filtration of M(0) 9 A. The map (2.15) is clearly an

isomorphism for a < pqn — 1; so M(0) 9 A — Un^xW(n).
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An important feature of the mod p Moore space is the presence of a self-map $:

E?F(0) -» F(0) inducing an isomorphism in K-theory. This map was studied by

Adams [1] and is intimately connected with the image of the ./-homomorphism. It is

characterized by the homology of its mapping cone F(l) as an ,4*-module. Writing x

and y for the pullback of 2?+ xx and 29+ xy, we have yß = -x, xPx = y, and yß = x.

By the Geometric Boundary Lemma [5], <¡> is represented by the algebraic boundary

homomorphism associated to the short exact sequence

0 f H*V(0) -* HmV(l) r* H^"+xV(0) -> 0.

Using the relations p0Xx = 0, u0u, = 0, dXx = 0, dpx = -Xx¡jl0 we find that this

boundary homomorphism is represented by the degree q + 1 chain map v, : M(0)

9 A — M(0) 9 A given by vx: xa + yv \-> -y(Xxa + pxv).

The algebraic content of these remarks forms the first part of the next proposition,

in which we write p0: W(n + 1) -* W(n), n > I, for left-multiplication by p0 (see

Remark 1.23), and e: W(n) -» W(n + 1) for the inclusion.

Proposition 2.16. (i) The map vx is a chain-map of degree q + 1. (ii) For n > 1, it

carries W(n) into W(n — 1), and vxW(l) E W(l). (iii) For n 3* 1, jü0e = vx: W(n) ->

W(n).

Proof. For (u) note for n = 1 that

XxA(2p - I) + pxA(2p + 1) E A(3) E A(2p + 1)

by admissibility; while, for n > 1,

XxA(2pn - 1) + pxA(2pn + 1) Ç A(2p(n - 1) + l)

by Proposition 1.18. For (iii), we note that, for «5*1, u0A„+, = —¿u.„Aj and

Mo/^+i - -/»„Mitnod A(2n - 1).    D

It would be interesting to have a geometric analogue of this result.

3. The Metastability Theorem. In this section, we prove our central result modulo

several lemmas whose proofs are deferred to §4.

Theorem 3.1 (Metastability Theorem). For 1 =s n =s k < oo, the map induced in

homology Hi by W(n) -» W(k) is an isomorphism for

<j<2(/>2 - l)(s- 2) + pqn- 2p -2

and an epimorphism for

a < 2(p2 - l)(s - I) + pqn - 2p - 2.

From the Localization Theorem stated in the Introduction (or from [6]), we see

that Hsa(M(0) 9 A) = 0 for a < qs - 1, and so obtain from Theorem 3.1 the

Corollary 3.2 (Stability Theorem). For 1 < n < k < oo the map induced in

homology Hsa by A(2n — 1) -» A(2k — I) is an isomorphism for

a<2(p - \)(s- 2) + qn- 3

and an epimorphism for

a^2(p- l)(s- l) + qn-3.    D
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Since ü,-multiplication acts along a line eventually entering the "metastable

range" described in Theorem 3.1, we have

Corollary 3.3. For 1 < n < k < oo the map induced in homology by W(n) ->

W(k) is an isomorphism after inverting vx.    D

The proof of the Metastability Theorem closely parallels Mahowald's proof of the

analogous result at p — 2. To begin, consider the short exact sequence

(3.4) 0^ W(n)e-*W(n + \)-1 F(n + 1) -* 0

in which we normalize the quotient so that | h2 \= (-l,-pqn + 1). Thus, F(n + 1)

has lower left corner at (0,0); and the Metastability Theorem is equivalent to

Theorem 3.5. HsaF(n + 1) = Ofor a < 2(p2 - l)s - 2p

Now, F(n + 1) can be written canonically but not differentially as

_

(3.6) F(n +l) = X„+x 0 WW(pn +j)®iln+] © VJW(pn + j)
7=o y=i

where, as in (2.3) and (2.4), \Xn+x | = (0,0) and \p„+x |= (0,1). The injections ej:

W(pn) -> W(pn + j) then define a submodule

(3.7) F(n + 1) = Xn+1 0 ^W(pn) © pn+x 0 2«W(pn).
7=0 7-1

Lemma 3.8. F(n + 1) C F(n + 1) is a subcomplex.

We postpone the proof of this lemma. Note that an analogue of (2.8) gives rise to

a short exact sequence

(3 9)    o-X      A(2j,(» + 1) - 1) , , A(2p(n+l)+l)
(3-9)   0^A„+1      A{2pn_l)       -F(«+l)-i.„+1      A{2pn+l)       -0

of chain complexes. We filter F(n + 1) by defining Fj(n + 1) as the image of

Xn+xA(2pn + 2j - l)/A(2pn - I) for 0^j<p, and as the pullback of

pn+xX(2pn + 2(y - p)+ l)/A(2pn + 1) forp «Sy < 2/7. Then

F2p(n + 1) = F(n + I),

and

(3.10) EJ°F(n+l)=X„+x^-xW(pn+j- I),       0<j<p,

(3.11) EJ°F(n+l)=ßn+x^J-^W(pn+j-p),       p<f<2p.

Furthermore, the filtration restricts to a filtration of F(n + 1), and the inclusion/:

F(n + I) -> F(n + 1) induces the natural injections e1: W(pn) -* W(pn + j) on the

£°-level.

This "artificial" subcomplex F(n + 1) was introduced because its differential is

"simple"; it can be analyzed completely by means of the inclusion relations (1.18).

To describe the result of the analysis, let ^*(1) denote the subalgebra of the Steenrod
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algebra generated by ß and Px. It has a basis

(3.12) {P',ßP', Pi+Xß, ßP'+xß: 0*Zi<p}.

We may extend the multiplication A*(l) <8> A*(l) -» ^4*(1) to an ^4*-action • : A* 9

A*(l) -* A*(l) by requiring

(3.13) P"-ß = PPß.

Let M(l) be the dual right /i*-module, and let

(3.14) {*,/, **+i. >*+i)+i. yq(i+x)+2- 0 < i </»}

be the basis dual to (3.12). Explicitly, the /l*-action is determined by

xqj+ \ß = xqj'    yqJ+iß = yqJ+1 »

*9y^     =JX(&j-l)> Xqj+\P      - (J'~   U*4l/-1+.1)»
VJ-lj) pi — _l_ ■

^oi+l"     ~~ •Xö(/-1)+1   "r"/JVfllW'+l1 *«ü-l>+I    ' ^?(y-l)+l'

%+2^'= (J ~~ l)y<Kj-»+2>    y<tP+\pp = x\-

Map g: F(n + 1) -> M(\) 9 A by

(3.16)
Pn+\*pn+jt' -"  -%H?> M„+!/>,,„+/ ^•>'e/+2ï'-

Lemma 3.17. 77ie wop g: F(« + 1) -» M(l) ® Aúa chain-map, an injection, and

an isomorphism in bidegrees (s, a) for which a < /»2çk — 1.

We defer the proof of this lemma also.

For a = p2qn — I, we have x0 9 Xpin £ Im(g) since the corresponding element

X„+\XpnXp2n is inadmissible.

They4*-module M(l) is naturally filtered by defining Ai-(l) by

(3.18) MJ(l) = (xq„xqi+x:i<j)    forO «/</>,

(3.19) MJ(l) = Mp(l)®(yq,+ x,yqi+2:i^j-p)    forp<j^2p.

If Ai(l) 9 A is filtered accordingly, then g is filtration-preserving and, for each y,

Efis) is a suspension of the injection e°°: W(qn) -» M(0) 9 A.

The final component of the proof is the following stable result, which follows from

the proofs in [9].

Theorem 3.20. Hsa(M(l) <§> A) = 0fora< 2(p2 - l)s - 2p.    D

The obstruction to lowering the intercept here is the element hxxh20.

The proof of Theorem 3.5 proceeds by induction on a. The assertion is obvious for

a < 0, so we pass to the inductive step: suppose (3.5) holds for all n > 1, s > 0, and

a > 0 with a < N. Then:

(3.21) For any y > 0, HsaW(pn) -> HsaW(pn + j) is an isomorphism for

a<2(p2- l)(s - 2) + p2qn - 2/7 - 2

and an epimorphism for a < 2(p2 — l)(s — I) + p2qn — 2p — 2 provided a < N.
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We show that (3.5) is true for o < N + q — 1 by showing that the maps

H'aF(n + 1)

H'cF(n+\) Hi(M(l)9A)

are isomorphisms for s, a such that a <2(p2 — l)s — 2/7 and a < N + q — 1, and

then appealing to Theorem 3.20 to see that Hsa(M(\) 9 A) is then trivial. The maps

/„. and g* are seen to be isomorphisms by induction on the filtrations. We deal with

/„ and leave g* to the reader.

To begin, Fx(n + 1) — Fx(n + 1) is an isomorphism. So let 1 <y < 2/? and

suppose HsaFj_x(n + I) -> H°Fj_x(n + 1) is an isomorphism for s,a such that

a < 2(/72 — l)s — 2/) and a < N + q — 1. We study the case/' «S/7 and leave the

rest to the reader. Form the map of long exact sequences associated to the diagram:

0  -*   Fj_x(n+l)     U     Fj(n+l)     -» W(pn) -0

I I i

0   -» Fj_x(n+ 1)     -»     /,(«+!)     t*     W(pn+j- 1)  ^0

The inductive assumption and (3.21) feed into the 5-lemma to complete the

induction in this case. The other cases are similar.    D

A computation through the 61-stem at/7 = 3 leads us to conclude that, in fact, a

much stronger theorem is true. We propose the following:

Conjecture 3.22 (tertiary stability). For 1 < n =£ k =£ oo there are compatible

maps

H'eF(n +1) -* H'aF(k + 1)

\ •

Hs(M(l) 9 A)

which are isomorphisms for

a<2(/73-l)(s-2)+/7>-2(/72+/7+l) + l

and epimorphisms for

a^2(p3 - l)(s- 1) +p2qn-2{p2+p+ l) + 1.

Does this pattern continue?

4. Deferred proofs. Lemmas 3.8 and 3.17 are proved together, by explicitly

exhibiting the boundary d of admissible generators in F(n + I).

For instance, take

(4.1) Mn+i\,„+/,        l^j^p,vEA(2p2n- 1).

In W(n + 1)

(4.2) d(pn+xXpn+jv) = il„+\d(Xpn+Jv) - X„+1/i0X/„,+^.
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In considering the first term here, we must compute d(Xpn+jv) mod A(2pn — 1).

By (1.13) and (1.5),

(4-3) dXpn+j = "2cpn+jkXpn+j_kXk

where

(4-4) cpn+M * 0 ~pk < (p - \)(pn +j).

Claim 4.5. If (i) k >j and (ii) pk < (p - l)(pn + j) then

\pn+J-k\kA(2p2n - 1) Ç A(2pn + 1).

By Proposition 1.18, (i) guarantees that

(4.6) Xpn+J_kA(2pn + q(pn +j - k)) E A(2pn),

so it will be sufficient to prove

(4.7) a*A(2/72k - i) ç A(2p2n - q(k - j) - l).

To see (4.7), we divide into two cases. If 2p2n — 1 < 2pk, then, by admissibility

(4.8) XkA(2p2n - i) Q A(2k).

But (4.5)(ii) implies in this case that qj > 2pn, so 2pk < q(pn + j) = 2p2n + qj —

2/7« < 2p2n — q(k — j). This establishes (4.7) in this case. If, on the other hand,

2/72« — 1 > 2pk, then, by Proposition 1.18 again,

(4.9) XkA(2p2n - l) Q A(2p2n - qk - l),

and, asy > 0, (4.7) is established in this case also. So Claim 4.5 is proved.

In considering the second term in (4.2), we must compute

^oXpn+j" ^odA(2 pn- 1).

By (1.9) and (1.5)

(4.10) Po^pn+j — ZlCpn+j-l,kilpn+j-k-\^k+\

where

(4.11) cpn+J_Xik^0^pk<(p-l)(pn+j-l).

An argument similar to the above then shows

Claim 4.12. If (i) k 3= y and (ii) pk < ( p - 1 )( pn + j - 1 ), then

rV,+y-*-iA*+iA(2/>2" - I) C A(2/7« - 1).

Combining the two claims, we find that in F(n + 1)

7-1

d{Pn+\^pn+jv) =  2 cpn+jikp„+x\pn+j_kXkp -pn+\Xpn+Jdv
k=\

(4.13) 7-1

—   Zi   cpn+j~\,k^n+\lipn+j-k-yik+\v-
k = 0
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Note that, by (4.7), each term in the first sum lies in F(n + 1). Similarly, one sees

that each term in the last term lies in F(n + 1); and since dv E A(2p2n — I), the

remaining term does also. This proves Lemma 3.8 in this instance, and the others are

similar. This completes the proof of Lemma 3.8.

For Lemma 3.17, an easy computation with binomial coefficients shows that

(4.14) Cpn+j,k = -[Jk} for k^j<p,

(4.15) V/.*-=(/fc1)     ^rk<j<p.

This simplifies (4.13) and its analogues.

A series of similar arguments may now be summarized as follows:

Proposition 4.16. In F(n + 1),

(4.17) d(Xn+xXpn+Jv)=   2   lJkj\+lKn+j-kK*+*H+i%pn+j¿'',

j   I ■ \ _

d{K+iï,n+]v)= 2 \{ )Xn+xXpn+J_knkv
(4 18) k=0

j~' / ■ -    \ -
_    2    y    k      j^H+lßpn+j-k^kV-^n+^pn+jdv,

k=\

]-)

d{rlr,+ \Xpn+jV)=    2    V     .        )X„+\V pn+j-k-\* k+lV

(4.19)

2    ^jßn+^pn+j-k^k" - ßn+^pn+jdv.
k = 0

d(p„+llípn+jv) =    2   y    k      jK+lfipn+j-k-lPk+t''
k = 0

1    I j \ -
(4.20) -    2    [AVn+X^pn+j-kPk*

k=0XK'

7-1

+    2    y    k       ]Vn+\ripn+j-kXk'' + Vn+xVpn+jdV-
k=\

Lemma 3.17 now follows from this by combining (3.15) with (2.13).    D

References

1. J. F. Adams, On the groups J(X). IV, Topology 5 (1966), 21-71.
2. A. K. Bousfield et al., The mod-/; lower central series and the Adams spectral sequence, Topology 5

(1966), 331-342.
3. A. K. Bousfield and D. M. Kan, The homotopy spectral sequence of a space with coefficients in a ring.

Topology 11 (1977), 79-106.
4. J. Harper, Rank 2 mod 3 H-spaces, Canad. Math. Soc. Conf. Proc, Current Trends in Algebraic

Topology, Western Ontario, 1981.



THE DOUBLE SUSPENSION HOMOMORPHISM 331

5. D. C. Johnson, H. R. Miller, W. S. Wilson and R. S. Zahler, Boundary homomorphisms in the

generalized Adams spectral sequence and the nontriviality of infinitely many y, in stable homotopy. Notas de

Mat. y Symp., No. 1: Reunion Sobre Teoría de Homotopia, Northwestern Univ., Soc. Mat. Mex., 1975,

pp. 47-59.
6. A. Liulevicius, Zeroes of the cohomology of the Steenrod algebra, Proc. Amer. Math. Soc. 14 (1963),

972-976.
7. M. Mahowald, On the double suspension homomorphism. Trans. Amer. Math. Soc. 214 (1975),

169-178.
8. H. R. Miller, A localization theorem in homological algebra. Math. Proc. Cambridge Philos. Soc. 84

(1978), 73-84.
9. H. R. Miller and C. Wilkerson, Vanishing lines for modules over the Steenrod algebra, J. Pure Appl.

Algebra 22 (1981), 293-308.
10. M. C. Tangora, Some remarks on the lambda algebra, Geometric Applications of Homotopy Theory.

II, (Proceedings, Evanston 1977), Lecture Notes in Math., vol. 658, Springer-Verlag, Berlin and New

York, 1978, pp. 476-487.
11. F. R. Cohen, The unstable decomposition of Ü2~S.2X and its applications (to appear).

Department of Mathematics, University of Rochester, Rochester, New York 14620

Department of Mathematics, University of Washington, Seattle, Washington 98195


