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RESOLVENT OPERATORS FOR

INTEGRAL EQUATIONS IN A BANACH SPACE

BY

R. C. GRIMMER

Abstract. Conditions are given which ensure the existence of a resolvent operator

for an integrodifferential equation in a Banach space. The resolvent operator is

similar to an evolution operator for nonautonomous differential equations in a

Banach space. As in the finite dimensional case, this operator is used to obtain a

variation of parameters formula which can be used to obtain results concerning the

asymptotic behaviour of solutions and weak solutions.

1. Introduction. In this paper we shall be concerned with the integrodifferential

equation

x'(t) =A(t)x(t) + flB(t,s)x(s)ds+f(t),
(VE) •'o

x(0) =xQEX,       t>0,

in a Banach space X. A(t) and B(t, s) are closed linear operators on X with fixed

domain which we will denote D(A) while the function/: R+ -> X is continuous. In

the convolution case where A(t) = A and B(t, s) = B(t — s) this equation has been

studied by numerous authors under various hypotheses concerning A and B. Of

interest to us here are the papers by Chen and Grimmer [2], Hannsgen [10,11],

Miller [14,15], and Miller and Wheeler [17,18]. For the nonconvolution case, the

papers by Chen and Grimmer [3] and Friedman and Shinbrot [4] are of particular

importance to the problem studied here. If X is finite dimensional the work of

Grossman and Miller [8] is of significance to us as they develop perturbation theory

for (VE) using the resolvent operator for (VE). It is this theory which shall be

developed for (VE) when X is not finite dimensional.

The resolvent operator will satisfy an equation like equation (A) of Grossman and

Miller pointwise on D(A). It will also resemble an evolution operator for a

nonautonomous linear differential equation in a Banach space (cf. e.g. Tanabe [21]).

It will not, however, be an evolution operator because it will not satisfy an evolution

or semigroup property. Because a number of results follow directly from the

definition of the resolvent operator we shall first hypothesize the existence of a

resolvent and  obtain the variation of parameters formula along with proving
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334 R. C. GRIMMER

uniqueness of such an operator. In §3, the existence of a resolvent operator will be

proved under fairly general circumstances. In particular, the conditions which

yielded well-posedness for (VE) in [3] will be sufficient to prove the existence of a

resolvent operator. This resolvent operator will be the resolvent operator obtained by

Miller [14] in the convolution case where it was assumed B mapped the domain of A2

into the domain on A. It is also the resolvent operator obtained by Friedman and

Shinbrot [4] in the case when A(t) is parabolic and B(t, s) = -h'(t — s)A(s). The

results obtained here require a bit more smoothness than required by Friedman and

Shinbrot. Here h'(t) and A(t)x, x E D(A), are required to be strongly continuously

differentiable, while in [4], «' is absolutely continuous and A(t) satisfies a Holder

condition on D(A). However, the results obtained here allow more general forms of

B(t, s) and include the hyperbolic case, cf. [3, §6].

In §4 asymptotic results and perturbations are considered. A result is obtained for

the convolution case which guarantees that the resolvent operator R(t) satisfies

II R(t)\\ < Me~°" for some constants M > 1 and a > 0. This result is then applied to

an equation which arises in a number of areas and in which x' = Ax is a damped

wave equation.

Finally, in §5 we show that we may use our earlier work to obtain a resolvent

operator for the integral equation

(IE) x(t) = f'a(t,s)x(s)ds+f(t).

It is shown that under certain conditions the variation of parameters equation is

valid here also. The results obtained here are not as satisfactory as the results

obtained for (VE), however, because in general the resolvent for (IE) is not a

bounded operator. For related work cf. Friedman and Shinbrot [4] and also

Grimmer and Miller [5,6].

2. Resolvent operators. We shall assume for each t E [0, T], T > 0, that A(t) is a

closed linear operator with dense domain D(A) which is independent of t, 0 «£ t =£ T.

Also, for 0 «s s =£ / «s T, B(t, s) is a closed linear operator with domain at least

D(A). Suppose Y is the Banach space formed from D(A) with the graph norm

Il y II y = Il ̂ (O)^ Il + Il y || where II II is the norm on X. As A(t) and B(t, s) are closed

operators it follows that A(t) and B(t, s) are in the set of bounded operators from Y

to X, %(Y, X), for 0 < t *£ T and 0 =s s « t < T, respectively. Assume further that

A(t) and B(t, s) are continuous on 0 < t < T and 0 *s s =£ t =£ T, respectively, into
<$>(Y, X).

As we shall be interested primarily in strong solutions, we shall restrict the initial

condition for (VE) to x0 E D(A).

Definition 2.1. By a solution x(t) of (VE) on [0, T] with x(0) = x0 E D(A) we

mean a function x E C([0, T], Y) n C'([0, T], X) such that (VE) is satisfied for

t e [0, T].
We remark that this is a slight change from the definition given in [3]. It follows,

however, that A(t)x(t) E C([0, T], X) which was what was required earlier. The

solutions obtained in [3] do satisfy the above definition.
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Definition 2.2. A resolvent operator for (VE) is a bounded operator valued

function R(t, s) E %(X) with 0 «£ s < t < T, having the following properties:

(a) R(t, s) is strongly continuous in 5 and t, R(s, s) — I, 0 < s.*£ T, II R(t, s)\\ *£

Me&"~s) for some constants M and ¿3.

(b) R(t, s)Y C Y, R(t, s) is strongly continuous in 5 and / on Y.

(c) For each x E D(A), R(t, s)x is strongly continuously differentiable in t and s

and

aR
-~-(t,s)x = A(t)R(t,s)x + j'ß(t,r)R(r,s)xdr,

Y~(l> s)x = -Ä(i, s)A(s)x - j!R(t, r)B(r, s)x dr

with (dR/dt)(t, s)x and (dR/ds)(t, s)x strongly continuous on 0 < s < t < T.

We remark that if A(t) and B(t, s) are defined for 0 =£ t < oo respectively then

the above definition is easily extended by writing 0 < t < oo and 0 < s < / < oo at

the appropriate places instead of 0 < t *£ T and 0 < 5 < t < T, respectively.

We first note that there can be at most one resolvent operator.

Theorem 2.3. There exists at most one resolvent operator.

Proof. Suppose R(t, s) and Rx(t, s) are resolvent operators. Let x E D(A). Then

from (c)

Rx(t,s)x - R(t,s)x = f'^-[R(t,r)Rx(r,s)x] dr
Js or

- (' Í'r(í, u)B(u, r)Rx(r, s)xdudr
J s Jr

+ (' f R(t, r)B(r, u)Rx(u, s)x du dr.

As x E D(A), R(t, r)B(r, u)Rx(u, s)x is continuous in r and u. It follows then from

Fubini's theorem that Rx(t, s)x - R(t, s)x = 0, 0 < s < t < T, for all x E D(A). As

D(A) is dense in X and Rx(t, s) — R(t, s) is a bounded operator, the result follows.

Theorem 2.4. If A(t)= A and B(t, s) = B(t — s) and there exists a resolvent

operator R(t, s), then R(t, s) = R(t — s).

Proof. Let t be fixed with 0 < r < T. Consider Q(t, s) = R(t + t, s + r) on

0=£i<?<r-T. Clearly Q(t,s) satisfies (a) and (b) of Definition 2.1. Also, if

x E D(A), Q(t, s)x is strongly continuously differentiable in t and s, 0 < s < ; < T

— t. Further

^ß-(t, s)x= AR(t + t, s + t)x + f' + TB(t + t - r)R(r, s + t)x dr
at Js+T

= AQ(t,s)x + f B(t — u)Q(u, s)xdu.

Similarly, the second equation in (c) is also valid for Q. Thus, on 0 < í < / < T — t

we must have Q(t, s) — R(t, s) by uniqueness of the resolvent on [0, T — t]. Now if
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t = s, R(t, s) = R(t - s, 0) is clear and if t > s > 0 we have R(t, s) = R(t - .s,0)by

taking 5 = t.

Theorem 2.5. Suppose a resolvent operator exists for (VE). If x(t) is a solution of

(VE) then

(VP) x(t) = R(t,0)x0 + f'R(t, s)f(s) ds.

Proof. Consider

x(t) - R(t,0)x0 - f'R(t, s)f(s) ds

o os

R(t,s)f(s)ds

['■j¡- [R(t, s)x(s)] ds - i!R(t, s)f(s) ds.
Jr,   OS Jr.

Using the fact that x(t) is a solution of (VE) and part (c) it follows that the above

can be written

(' ( R(t, s)B(s, v)x(v) dv ds - [' (lR(t, u)B(u, s)x(s) duds.
J0 J0 J0 Js

It follows from the definition of a solution of (VE) that R(t, u)B(u, s)x(s) is

continuous. Hence, by Fubini's theorem the result follows.

This result is the standard Variation of Parameters formula for (VE). Because X is

infinite dimensional (VP) need not actually be a solution, just as in the case of

differential equations. In general, even if x0 E D(A), (VP) will not necessarily yield

a solution. Accordingly, we make the following definition.

Definition 2.6. Forx0 E Zand continuous/: [0, T] -» Xwe say that

*(/) = R(t,0)xo+ f'R(t,s)f(s)ds

is a weak solution of (VE) on [0, T].

An obvious problem is to determine when weak solutions are strong solutions. A

partial answer is given by the following theorem. We shall consider this problem

again in the next section.

Theorem 2.7. Suppose a resolvent operator exists for (VE). /// E C([0, T],Y) then

v(t) = J R(t,s)f(s)ds

is a solution of (VE).

Proof. From Definition 2.2 we see that

dR
V'(0 = R(t,t)f(t)+f^(t,s)f(s) ds

= f(t) + ilA(t)R(t,s)f(s)ds+ f f'B(t,u)R(u,s)f(s)duds.
J0 J0 Js

As A(t) and B(t, s) are closed operators,

v'(t) = f(t) + A(t)v(l) + f'B(t,u)v(u)du.
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3. Existence of resolvent operators. In this section it is shown that under fairly

general conditions (VE) has a resolvent operator as defined by Definition 2.2. It

should be noted that it will not be assumed that A(t) generates an analytic

semigroup.

To obtain the existence of a resolvent operator, (VE) shall be reformulated as a

differential equation. This differential equation will then be shown to have an

evolution operator U(t, s). From U(t, s) we shall extract the resolvent operator.

To facilitate our analysis, it shall be assumed that the function space Ly is a

subspace of the set of bounded uniformly continuous fuctions on R+ into X, BU. It

is assumed that ff is a Banach space with a norm stronger than the sup norm on BU.

Further, it is required that, for each t 3» 0, B(t + -, t)x E <3 for every x E D(A)

where (B(t + ■, t)x)(s) = B(t + s, t)x for s > 0. This then defines an operator B(t)

from X to ÍFwhich has domain D(A). It is further assumed that {77/)},s0 defined by

T(t)f(s) = f(t + s) is a C0 semigroup on ffwith generator Ds on domain D(Ds).

Let Z = X X ffwith the norm \\(x, y)\\ = ||x|| + [\y\\9. We will write elements of

Z as (x, y)* where * indicates transpose. On the Banach space Z the differential

equation

(DE) z'(t) = C(t)z(t),       z(0) = zoED(C),

is of importance in the study of (VE). Here D(C) — D(A) X D(DS) is the domain of

C(t) for 0 < / < oo and C(t) is given by

'A(t)     V
B(t)     Ds

where ô0: bJ -* X is defined by 80f = f(0). To obtain an evolution operator for (DE)

it will be necessary to assume that for each fixed t, t>0, A(t) generates a C0

semigroup. The concept of a stable family of generators will also be needed.

Definition 3.1 [21,p. 93], If {A(t)}, 0 < t =£ T, is a family of generators of C()

semigroups, {A(t)} is called stable if there are real constants M > 1 and ß so that

C(t)

k

n(A(tj)-\iy M(X - ß)~k

for all X > ß, 0 « tx < t2 =£ • • • « tk < T, k = 1,2..., where the product is taken to

mean
"1/    „/ \ •>   r\-l

(A(tk) - Xiy\A(tk_x) - XI)" ■ • ■ (A(,x) - A)"'.

If A(t) is constant or if A(t) generates a semigroup {5,(5)} with II 5,(5)11 *£ eßs for

each t > 0 then {^4(0} is stable. Other examples also exist.

To obtain the existence of a resolvent operator we shall need a number of

hypotheses.

(HO). (A(t)}, 0 =s / < T, is a stable family of generators such that A(t)x is

strongly continuously differentiable on [0, T] for x E D(A). In addition, B(t)x is

strongly continuously differentiable on [0, T]for x E D(A).

Note that (HO) guarantees that A(t) and B(t) are continuous on [0, T] into

%(Y, X) and ®(F, f) respectively. In fact, A(t) is Lipschitzian in / as A'(t) is in
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%(Y, X) and an application of the Uniform Boundedness Principle yields that A'(t)

is bounded uniformly in / as an element of %(Y, X). Similar remarks are valid for

B(t).

(HI). fi(i) is continuous on [0, oo) into %(Y, ff).

(H2). B(t): Y ~* D(DS) for all t > 0.

(H3). DsB(t) is continuous on [0, oo) into %(Y, ff ).

It should be noted that in the convolution case when A(t) = A and B(t, s) =

B(t - s), the operator B(t) E <$>(¥, <5) is constant. Thus, (HO) and (HI) are

automatically satisfied if A generates a semigroup. If (H2) is valid, (H3) will follow

automatically as Ds is closed. Also we note that (H1)-(H3) are somewhat simplified

versions of the conditions (H1)-(H3) of [3]. The conditions are simpler here because

"Jconsists of continuous functions only. We also remark that in [3] the operator C(t)

had the form

0    A(t)     0

0    A(t)     S0

0    B(t)     Ds

This has been reduced to the form that is given here because the problem has been

slightly reformulated. The arguments in [3] are valid in this case also. Further

remarks on this will be made when necessary.

Definition 3.2. Let Z, = D(A) X D(DS) be normed with ||(jc, y)\\x = II*Il y +

llj>llD where II • llfl is the graph norm of Ds. By a solution of (DE) we mean a

function Z E C([0, T], Z,) n C'([0, T], Z) such that z(0) = z0, and (DE) is satis-

fied on [0, T].

As B(0) and S0 are bounded operators Y -» X and f, respectively, repeated

application of the triangle inequality shows that II • ||, is equivalent to the graph

norm of C(0) on D(C). Also, C(t) is continuous on [0, T] into <$(Z,, Z) and C(t)z

is strongly continuously differentiable for z E D(C) if (HO) is valid.

In order to get a resolvent operator it will be necessary to establish the relation-

ship between the systems

(VE),

and

(DE),

x'(t) = A(t)x(t) + flB(t, u)x(u)du + f{t),
'r

x(r) = x0,        0<r<t<T,

z'(t) = C(t)z(t),        z(r) = z0 0 T.

Theorem 3.3. Suppose (H1)-(H3) are valid and f E D(DS). If x(t) is a solution of

(VE), then z(t) = (x(t), y(t))* is a solution of (DE), with zQ = (x0, /,)* where

y(t) = T(t — r)fr + // T(t — u)B(u)x(u) du. Here T(t) is the translation semigroup

generated by Ds andfr — T(r)f.

Conversely, if (HI) is valid and z(t) is a solution of (DE), with z(r) = (x0, /,)*,

z(t) = (x(t), y(t))*, r =£ t < T, then x(t) is a solution of (VE),.
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Proof. Suppose x(t) is a solution of (VE),. Then B(t)x(t) is continuous on [r, T]

into ff by (HI). Also, as (H2) and (H3) are valid, DsB(t)x(t) is continuous and so

the equationy'(t) = Dsy(t) + B(t)x(t),y(r) =/,, has the solution

y(t) = T(t - r)fr + f'T(t - u)B(u)x(u) du.
•V

At t » 0,

y(t)(t) = T(t - r)fr(r) + ¡lT(t - u)B(u + t, u)x(u) du
•v

= f(t + t) + flB(t + T,u)x(u)du.

Hence, S0y(t) = f(t) + //B(t, u)x(u)du and z(t) - (x(t), y(t))* is a solution of

(DE), on [r, T] with the prescribed initial conditions.

Now if z(t) is a solution of (DE), on [r, T] with z(r) = (x0, /,)*, for r < / < T we

have, withz(i) = (x(t), y(t))*,

x'(t) = A(t)x(t) + S0y(t),       y'(t) = AAt) + B(t)x(t).

As   z E C([r, T], Zx) n Cx([r, T], Z)   it   follows   that   x E C([r, T], Y) n

Cx([r, T], X). From (HI), B(t)x(t) is a continuous function on [r, T] into ff and so

y(t) can be written

v(f) = T(t - r)fr + f'T(t - u)B(u)x(u) du
J r

for r < t ^ T. As before, fi0.y(0 = /(/) + fr'B(t, u)x(u) du so that x(t) is a solution

of(VE),.

It will also be important to relate (VE), to the equation

(G), z'(t) = C(t)z(t) + G(t),       z(r) = z0,    r < t < T,

where G(t) = (f(t),0)*.

Theorem 3.4. Suppose (H1)-(H3) are valid and f is continuous on [r, T] into X. If

x(t) is a solution of (VE), then z(t) — (x(t), y(t))* is a solution of (G), with

z(r) = (x0,0)* where y(t) — /,' T(t — u)B(u)x(u) du. Conversely, suppose (HI) is

valid and f(t) is continuous on [r,T] into X. If z(t) is a solution of (G), with

z(r) = (x0,0)* and z(t) = (x(t), y(t))*, r =£ t « T, then x(t) is a solution of (VE),.

As the proof of this result is identical to that of the preceding result, it is omitted.

It is now necessary to state exactly what is meant by the term evolution operator

in this paper. Other definitions are possible, cf. e.g. [21] and the references therein.

Definition 3.5. An evolution operator for (DE) is a bounded operator valued

function U(t, s) E %(Z) with 0 < 5 < / < T which satisfies the following proper-

ties:

(a) U(t, s) is strongly continuous in s and t, U(s, s) = /, and \\U(t, s)\\ «fi Meßu~s)

for some constants M and ß.

(h) U(t, s) = U(t, r)U(r, s), 0 =£ s « r < t < T.

(c) U(t, s)Zx E Zx, U(t, s) is strongly continuous in s and / on Z,.
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(d) For each z E Z,, U(t, s)z is strongly continuously differentiable in t and s

with

(a/dt)U(t,s)z = C(t)U(t,s)z,

(d/ds)U(t, s)z = -U(t, s)C(s)z.

The next result follows from Theorem 3.3 of [3] where a broader class of function

spaces ff was considered. As mentioned earlier, the operator C(t) in [3] was

C(t) =

0    A(t)     0

0    A(t)     80

0    B(t)     Ds

defined on X X D(A) X D(DS) C X X X X ff. The only reason for the larger space

and different operator was so that a version of Theorem 3.3 could be proven for a

larger class of function spaces. Restricting ourselves to spaces ff C BU([0,oo), X), as

we have, the arguments in [3] are easily seen to be valid in our setting and we shall

feel free to use the results from [3].

Theorem 3.6. Suppose (H0)-(H3) are valid. Then (DE) has an evolution operator.

Proof. We need only show that there is a constant y > 0 so that for 0 < t < T,

(3.1) \\B(t)x\\<y(\\x\\+ \\A(t)x\\)

for all x E D(A) and the result is immediate from Theorem 3.3 of [3].

From (HI) it follows that there exists a constant Yi > 0 so that

||¿(0jcIÍ<Ti(IÍxÍ| + M(0)*ll).
Now if A(0)(A(t) — yl)~x is uniformly bounded on [0, T], for some À > ß,

\\B(t)x\\ < Y,(||;t|| + \\A(0)(A(t) - A/)"'|| \\(A(t) - Xl)x\\)

so that (3.1) is immediate. From the identity

(A(t) - XI) = {I+ (A(t) - A(s))(A(s) - Xiy]}(A(s) - XI)

we see that as A(t) is continuous on [0, T] into %(Y, X), if (t — s) is small, we may

use the Neumann series expansion for {/ + (A(t) — A(s))(A(s) — Xl)'x} to get

00

(A(t) - Xiy' = (A(s) - Xiy1 2 (-1)"{(^(0 - A(s))(A(s) - A/)"'}".
n = 0

We thus obtain the continuity of (A(t) - XI)~X from [0, T] into <&(X, Y). It now

follows that^4(0)(^4(r) — A/)"1 is uniformly bounded on [0, T].

The next theorem is the main result of this paper.

Theorem 3.7. Suppose (H0)-(H3) are valid. Then (VE) has a resolvent operator.

Proof. Let U(t, s) he the evolution operator for (DE) guaranteed by the previous

theorem. Writing U(t, s) as [U,j(t, s)], i, j — 1,2, it will be shown that Uxx(t, s) is a

resolvent operator for (VE). First note that Un(t, s) E %(X, X), 0 < 5 « t < T, and

as U(s, s) = I,, Uxx(s, s) = Ix. As U(t, s) is strongly continuous in t and s, Uxx(t, s)

is also. Further,  \\Uxx(t, s)\\ =£ \\U(t, s)\\ < Meß('~s).  If x E Y, (x,0)* E Z,  and
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U(t, s)(x,0)* E Zx which implies Uxx(t, s)x E Y. As U(t, s) is strongly continuous

in s and / on Zx, the same is true of Uxx(t, s) on Y. We see now that Uxx(t, s)

satisfies (a) and (b) of Definition 2.2. We must now show that Ux x also satisfies (c).

If x0 E Y, then (x0,0)* E Z, and U(t, s)(jco,0)* is a solution of (DE), and so

Uxx(t,s)x0 is a solution of

x'(t) = A(t)x(t) + ¡'ß(t, r)x(r) dr,        x(s) = x0,
Js

by Theorem 3.3. That is,

(d/dt)Uxx(t,s)xo = A(t)Uxx(t,s)x0+f'B(t,r)Uxx(r,s)xodr
s

for x0 E Y.

Now(3/3í)(7(í, s)(x0,0)* = -U(t, s)C(s)(x0,0)* and so

(a/ds)Uxx(t, s)x0 = -Uxx(t, s)A(s)x0 - UX2(t, s)B(s)x0.

We must determine UX2(t, s). If (0, /)* E Z, then (0, fs)* E Z and U(t, s)(0, /,)* is

a solution of (DE)S and so by Theorem 3.3, UX2(t, s)fs is a solution of (VE)V.

However, by Theorem 3.4, the inhomogeneous equation (G), has a solution with

initial condition (0,0)* which must be js'U(t, u)(f(u), 0)* du as U is an evolution

operator for (DE). Thus, x(t) = // Uxx(t, u)f(u) du. We thus have for/ E D(DS)

Vxl(t,s)f,= f'uxx(t,u)f(u)du,
Js

or

UX2(t,s)f = fuxx(t,u)f(u-s)du.
s

As D(DS) is dense in ff we may extend this formula to all of ff.

We now see that

(d/ds)Uxx(t, s)x0 = -Uxx(t, s)A(s)x0 - ('Uxx(t, r)B(r,s)x0 dr
Js

by recalling that B(s)x0 as a function of r is given by (B(s)xQ)(r) = B(r + s, s)xQ.

We have now shown that Uxx satisfies (c) and so R(t, s) = Vxx(t, s) is a resolvent

operator for (VE).

Corollary 3.8. Suppose (H0)-(H3) are valid. lfxQ E D(A) andf E C'([0, T], X)

then (VE) has a solution given by

x(t) = R(t,0)x0+ f'R(t,s)f(s)ds.

Proof. The existence of the solution has been established in other ways. It

follows, however, from Theorem 3.6 and the proof of Theorem 3.2 of [3] that {C(t)}

is a stable family of generators with common domain such that C(t)z is strongly

differentiable for z E Zx. The hypotheses of Theorem 4.5.3 of [21] are thus satisfied

with G(t) = (f(t),0)* and so (DE) has a solution

z(t)= U(t,0)(xo,0)* + (!U(t,s)(f(s),0)*ds.
Jn
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We see then that x(t ) must satisfy

x(t)^ Uxx(t,0)xo+ f'uxx(t,s)f(s)ds.

4. Asymptotic behaviour and perturbations. To determine the asymptotic behaviour

of the solutions of (VE) it is extremely useful to have some knowledge of the

structure of the resolvent operator. In the finite dimensional case this has been

discussed in Grossman and Miller [8] and also in Grimmer and Seifert [7] among

others. The main technique is to use known properties of the resolvent along with

the variation of parameters formula,

(VP) x(t) = R(t,0)xo + f'R(t, s)f(s) ds.

In the infinite dimensional case (VP) yields weak solutions in addition to regular

solutions and, hence, the asymptotic behaviour of all weak solutions will be

obtained, avoiding the separate question of whether (VP) represents a solution in the

usual sense or a weak solution. Clearly, if the asymptotic behaviour of all weak

solutions is obtained the same behaviour is valid for all solutions.

Let us consider the convolution integral equation

(4.1) x'(t)=Ax(t)+('B(t-s)x(s)ds+f(t),       x(0) = x0.

If A generates a semigroup Tx(t) with 117,(011 < Me"' we shall say A E G(M, «). In

particular, if A E G(M,-a), a > 0, then A~x exists as a bounded operator and

B(t) = B(t)A~xA. We thus may write B(t) = F(t)A where F(t) is a bounded

operator. Also, it will be convenient to consider function spaces other than the space

of bounded uniformly continuous functions defined on [0, oo) into X, BU([0, oo), X).

More specifically, define the space ffaû, a > 0 , by

ffaa= [f E BU: ea'f(t) EBU)

with norm \\ f \\ = sup{\\aea'f(t)\\: t > 0}. Note that on ffa", if T(t) is the translation

semigroup generated by Ds,

1171»/II =suo{\\aeasf(t + s)\\:s>0} <eT<"U/l|.

Theorem 4.1. Suppose A E G(M, -a), a > 0, B(t) = F(t)A with F(t)x E D(DS)

E ffßü for some ß > 0 for each x E X. Further, assume \\aeß'F(t)\\ «£ 1,

\\a2eß'DsF(t)\\ *£ 1 and M/a < min{a, ß] = y. Then R(t) decays exponentially.

Specifically, \\R(t)\\<. Mexp(-y + M/a)t.

Proof. On Z = X X ff^a, with norm ||(jc, y)\\ = maxfJUII, \\y\\}, it is clear that

G(M,-y).C,
A      0
0    A

Now, let P = ['FI] and define a new norm on Z by |||z||| = ||P~'z||. Then if S(t) is

generatedby C„|||P5(0P"1z||| = \\S(t)P-xz\\ ^ Me^'mZ\\\. As

r

K-   ° SA       D,F    0
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is a bounded operator, PCXP~X + K E G(M, -y + M\\\K\\\). However, |||A:||| =

||i,-'Ä'||<max{||6||,||Z),F||,||F8||}. As Ô: <g£ -* X has norm l/a, we see that

III AT m < l/a. If 5,(0 is the semigroup generated by PC,P~x + K, we have II 5(011 <

1115,(0111- In particular, \\\Sx(t)(x0,0)*\\\ = max{\\R(t)xJ, \\S2X(t)xQ- FR(t)x0\\}

where 52,(0 is n25(0n, where n, is the projection from Z to X and n2 is the

projection of Z to ff/. The result now follows immediately.

To determine the asymptotic behaviour of the weak solutions of (VE) we note that

if the hypotheses of the previous theorem are satisfied then R(0*0 ^ 0 as / -> oo for

each x0 E X. Also, if p is the operator defined by

p(f)(t)= f'R(t-u)f(u)du,

p maps each of the following spaces into itself:

5C0= [fEBU:f(t) -^Oast - oo},

BC,= {f EBU:  lim /(/) = /exists),

Au= {fEBU:f = p + k,p(t + u)=p(t),kEBC0}.

Also, Lp,p> I, and Lp fl BC0. See [8 and 16] for details.

As an application, let us consider the equation

C0"(x, t) + ß(0)0'(x, t) = a(0)M(x, t) - [' ß'(t - u)0'(x, u) du

+ J    a'(t - u)A0(x, u) du + r'(x, t)

where ' = (d/dt). This equation arises in the study of heat conduction in materials

with memory, cf. [9,15,18]. Let us assume that £2 is a bounded open connected

subset of R3 with C°° boundary. Also, assume C is a positive constant and that a and

ß are in C2([0, oo), R) with a(0) and ß(0) positive. If we suppress the dependence on

x E £2 and assume that 0(x,t) is known for t < 0 we may pose the problem as

C0"(t) + ß(0)0'(t) = a(0)A8(t) - f'ß'(t - u)O'(u) du
»0

+ f'a'(t - u)t\6(u)du + f{t).

A is the Laplacian on £2 with boundary condition 0 |r = 0 and we have the initial

conditions

e(x,o) = e0(x) e H2(ti) n hxq(ü),     e\x,o) = %(x) e hx(si).

We rewrite this as

cr o, /
a,(0)A,     -¿8,(0)7 I U

+ /0 ( a\(t -u)A,     -ß[(t -u)l)\ $(„) ) * + \f(t)

K0)\ = (Bo

HO) J      \ e¿
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where a, = a/C, ¿8, = ß/C. Letting w = (8, $)* this can be written as

u'(t) =Au(t) + ¡'f(i - u)Au>(u)du + G(t),       w(0) E D(A) EH.

Here H is the space //d(ß) © /7°(ß) with inner product

<(0,, $,), (02, <ï>2)> = /(grad 0, grad 62 + *,*2) <fe,

and /I has domain £>(/!) = (//2(ß) n //<J(ß)) © //0'(ß). It follows from Chen [1]

that A generates a semigroup {T(t)} on H with ||F(0ll S Me"1' where y > 0. In

fact, letting ß0 = ßx(0) and y0 the largest eigenvalue of a(0)A in //(J(ß), it follows

from Pritchard and Zabczyk [20] that

-J < ~2ß0\y0\ {4\y0\ +ß0{ß0 + \ß2 + 4\y0\\x/2)}-\

F(t) is given by F(t) = (F^t)), Fxx(t) = Fx2(t) = 0, F22(t) = (a\(t)/ax(0))I,

Fii(t) = -ß\(t)I + ¿S,(0)F22(O- Assume that a'x(t)e~",a'x'(t)eyl, ß'x(t)e-", and ¿3;'(0^y'

are bounded and uniformly continuous.

Define Fx and F2 by

F,(/) = max{||F22(r)||,||F2,(i)||}

and

F2( 0 = max {|| F2'2( Oil, 11/^,(0 II}.

If Fx(t) < e-y'/a and F2(0 < e~y'/a2 with M/a < y it follows from Theorem 4.1

that || R(t)\\ =£ Me-"1' where tj = y - M/a.

The existence of a resolvent operator is also useful when considering perturbations

of (VE). As an example, we consider the equation

x'(t) = A(t)x(t) + f'B(t, s)x(s) ds + F(t) + g(x(t), t),

(PVE) °
jc(0) = x0 E Y,

where F and g are continuous on [0, oo) and X X [0, oo) into X respectively with

A(t) and B(t, s) as before. If (PVE) has a solution it must satisfy

x(t) = R(t,0)xo + flR(t, s)f(s) ds + (!R(t, s)g(x(s), s) ds.

If g satisfies a Lipschitz condition, the operator

■'O ■'O

can be shown to have a fixed point in C([0, T0], X) if T0 is chosen sufficiently small.

To actually obtain a solution, however, requires further hypotheses.

Kx(t) = R(t,0)xo + f'R(t, s)f(s) ds + ¡'R(t, s)g(x(s), s) ds
Jet Jn

Theorem 4.2. Suppose f E C([0, oo), Y), g: Y X [0, oo) -> Y is continuous and that

g is Lipschitzian in x E Y. Then (PVE) has a solution on [0, F0] for some T0 > 0.

Proof. Consider the operator K given above on C([0, F0], F). As

x0(t) = R(t,0)xo + frR(t,s)f(s)ds
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is in C([0, T0], Y) by Theorem 2.7, we need only consider j¿R(t, s)g(x(s), s)ds.

From Definition 2.2(b) we see that K maps C([0, T0],Y) into itself.

Also, if II ■ Il y is the norm on Y and x, y E C([0, T0], Y),

\\Kx(t) - Ky(t)\\Y< f'\\R(t,s)\\y\\g(x(s),s) - g(y(s),s)\\yds
Jo

<TeRL\\x-y\\00

if 0 < t < T0, R is a bound for R(t, s) in <&(Y, Y), 0 < s < t < T0, and L is the

Lipschitz constant of g. Also, by II - 11^ is meant the sup norm on C([0, T0], Y).

Clearly, if T0 is chosen sufficiently small, K has a fixed point x(t) in C([0, T0], Y).

Now as/(i) + g(x(t), t) E C([0, T0], Y), (PVE) has a solution which must be x(t).

Remark. The above theorem is false with g: Y X [0, oo) ~* X, for even if

g(x(t), t) = K(t)x(t) where K(t) is a bounded linear operator with K: [0, oo) ->

%(X) continuous we may not have a solution. In particular, as (VE) is a differential

equation when B = 0, consider onlXX the equation x'(t) — Ax(t), y'(t) = 0,

where A generates the C0 semigroup T(t). Let x0 E I be such that T(t)x0 & D(A)

for t > 0. Then (0, x0)* is in the domain of the operator

A,    0

.0,     0.

which generates a C0 semigroup. However, the initial value problem

x'(t) = Ax(t) + T(t)y(t),

y'(t) = 0,       x(0) = 0,       y(0) = x0,

has no solution. If it did have a solution, then y(t) = x0 and x(t) would have to

satisfy x(t) = /o 7X0*0 ds — tT(t)x0 and so 7XO*o must be differentiable for t > 0

or 7X0*0 E D(A) for t > 0.

We also note that the usual modification of the proof of Theorem 4.2 would allow

the use of a local Lipschitz condition for g.

5. Integral equations. Consider now the integral equation

i(t, s)x(s) as + j(t).
Jo

(IE) x(()=f'fl(í,lWj)(¡!T/(l).

Formally differentiating this equation we get

(5.1)     x'(t) = a(t,t)x(t)+f^(t,s)x(s)ds+f'(t),       x(0)=f(0).

If now A(t) = a(t, t) and B(t, s) = aa(t, s)/at satisfy (H0)-(H3) then there is a

resolvent operator R(t,s) associated with (5.1). We wish, however, to obtain a

resolvent operator for (IE). In the finite dimensional case the resolvent associated

with (IE) would satisfy the equations

r(t, s) — -a(t, s) + I r(t, u)a(u, s) du
's

and

r(t, s) = -a(t, s) + j a(t, u)r(u, s) du.
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Under fairly mild assumptions, the existence of an operator r(t, s) which satisfies

these relations can be shown. Also, for certain functions f(t), the variation of

parameters formula

x(t) =f(t)~ f'r(t,u)f(u)du

does yield a solution of (IE). For a discussion of this in finite dimensions see Miller

[16, Chapter IV].

For our purposes here we shall require that a(t, s) be a closed linear operator

defined for 0 =£ s =£ t < oo with dense domain Y which is independent of (t, s). We

also ask that a(t, s)x be strongly continuously differentiable in t for x E Y,

0 < 5 =s f < oo, and that (d/at)a(t, s) exists as a closed operator with domain Y for

0 «£ i < / < oo. Assume that a(t, t) generates a C0 semigroup for each t and with

A > 0 sufficiently large, define F, by F, = (XI - a(0,0))_1F. Endow F with the

graph norm of a(0,0) so that ll^ll y = Il y II + ||a(0,0)^||. Consider F, as a subspace

of F and endow F, with the graph norm of a(0,0) so that Il .y II y = ll^ll +

2||a(0,0)j|| + ||a2(0,0)v||.

In this setting we are able to obtain a resolvent operator for (IE) which mirrors the

finite dimensional case.

Theorem5.1. SupposeA(t) = a(t, t)andB(t, s) = (d/at)a(t, s)satisfy (H0)-(H3)

and that a(t, s) and B(t, s) are continuous on 0 < s < t < oo into %(YX, Y). Then

there exists an operator r(t, s) such that r(t, s)x0 is strongly continuous in t and s for

x0 E Y and which satisfies

(5.2) r(t, s)x0 = -a(t, s)x0 + I r(t, u)a(u, s)x0 du,
•'s

(5.3) r(t, s)x0 = -a(t, s)x0 + I a(t, u)r(u, s)x0du
•'s

for every x0 E Yx.

Proof. It follows from Theorem 3.7 that the equation

x'(t) = A(t)x(t) + f'B(t, s)x(s) ds

has a resolvent operator which satisfies Definition 2.2.

Define r(t, s) by r(t, s) = (a/ds)R(t, s). For x0 E Yx,

R(t, u)B(u, s)x0du.

As x0 E Yx, we may integrate by parts to get

r(t, s)x0 — -a(t, s)x0 + f r(t, u)a(u, s)x0du.
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Also, for x0 E Yx, R(t, s) satisfies

R(t, s)x0 — *o = / [o/at)R(u, s)x0du
Js

ft ct c^
= I a(u, u)R(u, s)x0du + I  j B(u, v)R(v, s)x0dv du

Thus,

J a(u, u)R(u, s)xQ du + f  I B(u, v)R(v, s)xQ dudv.

(5.5) R(t,s)x0 - x0 = J a(t, v)R(v, s)xQdv.

Now, notice that it follows from (5.4) that r(t, s) maps F, into F and that r(t, s)x0 is

strongly continuous in Y, 0 =£ s =£ t < oo, x0 E Yx. Hence, as x0 E F,, it follows

from (5.5) that

r(t, s)x0 — -a(t, s)x0 + I a(t, v)r(v, s)xc dv.

We remark that (5.5) is the resolvent equation studied by Friedman and Shinbrot

when a(t, s) = -h'(t — s)A(s) with h(t) a scalar function and {A(t)] a family of

generators of analytic semigroups, cf. [4, Equation (1.5) and Theorem 3],

It is not clear what the appropriate definition of a solution of (IE) should be. Here

we use one of the types of solutions considered by Grimmer and Miller [5,6].

Definition 5.2. By a solution of (IE) is meant a function x E C([0, T], Y) for

some T > 0 such that (IE) is satisfied by x(t) for 0 < t < T.

While this seems the best definition for our purposes here, other definitions might

be more appropriate in certain instances. In [5,6], the concept of ¿''-solution

appeared to be more natural as was the concept of Lp well-posedness.

Theorem 5.3. Assume the hypotheses of the previous theorem are valid. Further,

assume fE C([0, T], Yx). Then

(5.6) x(t)=f(t)- f'r(t,u)f(u)du

is a solution of (IE).

Proof. Using (5.3) one obtains

r>
u(t) = / r(t, u)f(u) du

= - / a(t, u)f(u) du + j   I a(t, v)r(v, u)f(u) dv du
J0 J0 Ju

= - j a(t, u)f(u) du + I  I a(t, v)r(v, u)f(u) du dv
JQ j0 j0

and, as a is closed,

= - f'a(t, u)f(u) du + fa(t, v)oi(v) dv.
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Thus, if x(t) = f(t) — co(t), x(t) — f¿a(t, u)x(u)du + f(t). Also, as noted in the

proof of the previous theorem r(t, s) maps F, into F and r(t, s)x0 is strongly

continuous in Y for x0 E Yx. Hence, w and x are in C([0, T], Y).

We remark that this result does not require / to be differentiable which would be

required if we attempted to use R(t, s), the resolvent obtained from the differenti-

ated version of (IE), as in Friedman and Shinbrot [4]. Also, the existence of solutions

in Grimmer and Miller [5,6] required differentiability of/. More differentiability is

required of a(t, s) in our context, however, than in [5,6].

Theorem 5.4. Assume the hypotheses of Theorem 5.1 are valid. Suppose fE

C([0, T], Y) and x is a solution of (IE) with x E C([0, T], Yx). Then on [0, T], x(t)

satisfies (5.6).

Proof. As x E C([0, T], Yx), r(t, u)x(u) is continuous on [0, t] into Y and X.

Also, r(t, u)f(u) is continuous on [0, t] into X. Now from (IE),

r(t, u)x(u) du — I r(t, u)f(u) du — j r(t, u) f a(u, s)x(s) ds du.
Jq Jq Jq Jq

Let us now recall how r(t, u) was obtained. Let i: X -* X X ff be the injection

x -» (x,0) and n be the projection U(x, f) — x. Then r(t, s)x = (a/as)R(t, s)x =

-YlU(t, s)C(s)ix for x E Y. As II, U, and i are bounded operators, C(s) is closed,

and* E C([0, T], Yx),

I r(t, u) I a(u, s)x(s) ds du = I  I r(t,u)a(u, s)x(s) ds du
Jq J0 J0 J0

cn ,   , <    : ,\
= 1   / r(t,u)a(u, s)x(s) duds,

JaJs

and by (5.2)

= 1 r(t, s)x(s) ds + j a(t, s)x(s) ds.
Jo •'o

Thus,

- I r(t, u)f(u) du—\ a(t, s)x(s) ds
Jo Jo

and (5.6) is seen to be valid.

As an illustration of the different resolvents involved with an integral equation

such as (IE) consider the problem

x(t, s) = f'(d/ds)x(u, s)du + f(t, s).

Here we take X = BU([0, oo), R), the real valued bounded uniformly continuous

functions with the sup norm and a(t,v) = (d/ds) is constant. Clearly, the resolvent

R(t) is the translation semigroup and r(t) is -(d/ds)R(t). Iff(t, s) = f(t)g(s) with

g E D(d/ds) and/continuous, the use of r and (5.6) yields

x(t,s)=f(t)g(s)+ f'f(u)g'(s + t-u) du
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which need not be differentiable, that is x £ F. In general, we see that we need g to

be twice differentiable so that the hypotheses of Theorem 5.3 are valid, that is

/(i,.)EC([0,7],F,).
If, however,/is differentiable, the resolvent R may be used to obtain

x(t, s) =f(0)g(s + t) + ('f'(u)g(s + t-u)du

which is a solution because d(f(t)g(s))/dt E C([0, T],Y) using Theorem 2.7.

In general we see that (IE) has a solution if f E C([0, T], Yx), f(0) E Y and

fE C'([0, T], Y) or fE C2([0, T], X), these cases corresponding to Theorem 5.3,

Theorem 2.7, and Corollary 3.8, respectively.
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