
transactions of the
american mathematical society
Volume 273, Number 1, September 1982

ON THE OSCILLATION THEORY OF/" + Af = 0
WHERE A IS ENTIRE

BY

STEVEN B. BANK AND ILPO LAINE1

Abstract. In this paper, we investigate the distribution of zeros of solutions of

/" + A(z)f= 0. More specifically, results are obtained concerning the exponent of

convergence of the zero-sequence of a solution in both the case where A(z) is a

polynomial, and the case where A(z) is transcendental.

1. Introduction and main results. For a differential equation of the form

(i) r + A(z)f=o,

where A(z) is an entire function, it follows from the elementary theory of differential

equations that all solutions of (1) are entire functions, and that the zeros of any

solution/(z) s 0 are simple. We first consider the case where A(z) is a polynomial

of degree n. If n — 0, it is an elementary fact that (1) possesses two linearly

independent solutions each of which has no zeros. In the case where n > 1, it follows

from the Wiman-Valiron theory (see [15, p. 281]) that the order of growth of any

solution f(z) s 0 of (1) is (n + 2)/2. Hence, when n is an odd integer, it follows

from the Hadamard factorization theorem (e.g. [5]) that the exponent of convergence

of the zero-sequence of any solution/(z) z 0 must be (n + 2)/2. However, when n

is an even integer, it is possible for equation (1) to possess a solution having no

zeros. We now state our first main result which summarizes the above facts and also

treats the case where n is even.

Theorem 1. Let A(z) be a nonconstant polynomial of degree n, and let f(z) sOfea

solution of the equation f" + A(z)f= 0. Then:

(a) The order of growth of fis (n + 2)/2.

(b) If n is odd, the exponent of convergence of the zero-sequence of fis (n + 2)/2.

(c) If n is even, and if'/, andf2 are two linearly independent solutions off" + Af = 0,

then at least one of fx,f2 has the property that the exponent of convergence of its

zero-sequence is (n + 2)/2. // a solution f has the property that the exponent of

convergence of its zero-sequence is less than (n + 2)/2, then f has only finitely many

zeros.
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(d) In the case where n is even, there are examples of equations f" + Af= 0 where

some solution has no zeros, and there are examples of equations f" + Af = 0 where

every solution /(z)2 0 has the property that its zero-sequence has exponent of

convegence equal to (n + 2)/2.

We remark here that R. Nevanlinna [10, p. 350] proved the existence of special

solutions with the property that the exponent of convergence of their zero-sequences

is(n + 2)/2.

In §5(a), we show that if A(z) is a rational function which tends to oo as z -» oo,

then similar results on the zeros do not hold because such equations can possess two

linearly independent meromorphic solutions on the plane neither of which has

infinitely many zeros.

We next turn to the case where ^l(z) is a transcendental entire function. (In this

case, any solution/(z) s 0 of (1) is of infinite order (e.g. see §2)). In §5(b), we give a

general construction of equations (1) which possess two linearly independent solu-

tions each having no zeros. In this case, the order of the function A(z) constructed,

is either a positive integer or oo, and part (A) of our second theorem shows that

these are the only possible orders for such a function A(z).

We then focus our attention on the case where A(z) is an entire function whose

order of growth a is either a positive integer or oo. We observe first that if A(z) has

only finitely many zeros, then from the Tumura-Clunie theorem [8, p. 67] it follows

that every solution/(z) of equation (1) must have infinitely many zeros. (To see this,

we note that if f(z) has only finitely many zeros, then from (1) the same is true for

f"(z). Hence by the Tumura-Clunie theorem,/(z) must be of the form Q(z)eR(z),

where Q and R are polynomials, and it easily follows that A = -/"// would not be

transcendental.) In part (B) of our second theorem, we consider the more general

situation where the exponent of convergence of the zero-sequence of A(z) is smaller

than the order of growth a of A(z). We now state our second theorem.

Theorem 2. Let A(z) be an entire transcendental function of order a.

(A) Suppose that o is finite but not a positive integer. Let /, and f2 be two linearly

independent solutions of (I). Then, if a > {, at least one of /,, f2 has the property that

the exponent of convergence of its zero-sequence is at least o. If a < {, then at least one

of fx,f2 has the property that the exponent of convergence of its zero-sequence is oo.

(B) Suppose that the exponent of convergence of the zero-sequence of A(z) is less

than a. (Of course, then a is a positive integer or oo.) Then the exponent of convergence

of the zero-sequence of any solution f z 0 of (I) is at least a.

(C) Suppose that a is arbitrary, and that the exponent of convergence of the sequence

of distinct zeros ofA(z) is less than a. Let /, andf2 be two linearly independent solutions

of the equation (I). Then, at least one of the solutions /,, f2 has the property that the

exponent of convergence of its zero-sequence is at least a.

We remark that in the situation of part (C), it is not known if the strong

conclusion of part (B) holds. In §8 we show that the case where (1) possesses a

solution having no zeros can occur for any order of A(z).
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Our third theorem concerns an earlier result of W. Hayman [9, Theorem 8]. We

prove

Theorem 3. Let f(z) be an entire, transcendental function of order a, where

0 «£ a =£ oo. Let a be a nonzero constant, and set tp = /' — af2. Then,

(a) the order of y is equal to a.

(h) If a > 0, the exponent of convergence of the zero-sequence of<p is equal to a. If

a = 0, then tp has infinitely many zeros.

Hayman had proved that <p always has infinitely many zeros.

Finally, in §10, we consider the Mathieu equation,

(2) f" + (a + bCos(2z))f=0,

where a and b are constants with b nonzero.

Here the function A(z) is an entire function of order 1 having only simple zeros.

Since the exponent of convergence of its zero-sequence is also equal to 1, our earlier

results do not apply in this case. In §10, we show that the exponent of convergence

of the zero-sequence of any solution/(z) s 0 of (2) is equal to oo.

The authors would like to thank their colleagues, Robert Kaufman and Gunter

Frank for valuable conversations, and the referee for suggesting improvements in the

paper.

2. Preliminaries. For a meromorphic function/(z) on the plane, we will use the

standard notation of the Nevanlinna theory (see [8 or 11]), including the notation

N(r, f) for the counting function for the distinct poles of /. In addition, for a

meromorphic function/(z) on the plane, we will denote the order of growth of /by

a(f), and the exponent of convergence of the zero-sequence of/by A(/).

Following Hayman [9], we use the abbreviation "n.e." (nearly everywhere) to

mean "everywhere in (0, oo) except in a set of finite measure."

We will require the following two facts: (A) If F(r) and G(r) are monotone

nondecreasing functions on (0, oo) such that n.e. F(r) =£ G(r), then for any constant

a > 1, there exists r0 > 0 such that F(r) =£ G(ar) for all r > r0; (B) if A(z) is an

entire, transcendental function, then any solution /(z) £ 0 of f" + Af — 0 is of

infinite order of growth. (Fact (A) is proved in [2, p. 68]. To prove fact (B), it follows

from the relation A = -f"/f, and the Nevanlinna theory (e.g. [11, pp. 63,104]) that

(3) m(r, A) — 0(log T(r, f) + log r)    n.e. as^^oo.

Hence, if /were of finite order, then A(z) would have to be a polynomial.)

3. Lemma A. Let A(z) be a nonconstant polynomial of degree n, and let /, and f2 be

linearly independent solutions of f" + Af = 0. Set E = fxf2. Then, E(z) is an entire

function of order (n + 2)/2, and the exponent of convergence of the zero-sequence of

E(z)is(n + 2)/2.

Proof. We observe first that by Abel's identity, the Wronskian of /, and f2 is a

nonzero constant c, so that the derivative of f2/fx is c/f2. It follows that

(4) Ui/h)-(fi/h)^c/E.
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But since (f2/f2) + (f[/f\) — E'/E, it then follows that

(5) (2fí/h) = (c/E) + (E'/E).

Differentiating the relation (5) and using the fact that -A = f2/f2, it easily follows

that

(6) -AA = (c/E)2- (E'/E)2 + 2(E"/E),

and so E satisfies the relation

(7) E2 = c2/((E'/E)2-2(E"/E)-4A).

From the Nevanlinna theory it follows from (7) that n.e. as r -> oo,

(8) T(r, E) = 0(N(r, \/E) + T(r, A) + logr).

Now in our case, A(z) is a nonconstant polynomial and hence tends to oo as z -> oo.

From relation (6), it now follows that E cannot be a polynomial, and so we can

apply the Wiman-Valiron theory (see [13, Chapter 4; 14, Chapters 9 and 10 or

16, Chapter 1]) to equation (6) to determine the order of growth of E(z). Since A(z)

is a polynomial of degree n, it easily follows that E(z) is of order (n + 2)/2. But if

the exponent of convergence of the zero-sequence of E(z) were less than (n + 2)/2,

then it would follow from (8), and §2(A), that the order of E would be less than

( n + 2)/2 which is a contradiction. This proves Lemma A.

Remarks, (a) When the Wiman-Valiron theory is applied to equation (6), we

actually get the stronger result that the logarithm of the maximum modulus of E(z)

satisfies the estimate

(9) logM(r,E) = cxr(n + 2)/2(l +o(l))    asr^oo,

for some constant c, > 0. Similarly, when the Wiman-Valiron theory is applied to

equation (1) in the case when A(z) is a polynomial of degree n, we obtain an

estimate of the form

(10) log M(r,f) = c2r(n+2)/2(l + o(l))    as r -» oo

(where c2 is a positive constant), for any solution/(z) z 0 of equation (1).

(b) From results of Gackstatter and Laine [7, Theorems 10 and 13], we can infer

that if A(z) is a nonconstant polynomial, then E(z) admits no finite deficient values.

4. Proof of Theorem 1. As mentioned in §1, it suffices to prove parts (c) and (d).

The first statement in part (c) follows immediately from Lemma A. Now assume that

/z 0 is a solution of (1) with X(f)<(n + 2)/2. Then we can write/ = Heg where

H is a canonical product with o(H) = X(f), and g is a polynomial of degree

( n + 2)/2. Then H satisfies the equation

(11) H" + 2g'H'+{(g')2 + g"+A)H = 0.

Computing the degrees of the coefficients, and observing that o(H) < (n + 2)/2, it

follows from a theorem of K. Pöschl (see [16, p. 70]) that either H is a polynomial or

it has only finitely many zeros. (However, the latter condition also implies that H is

a polynomial since it is a canonical product.) This proves the second conclusion in

part (c), so it remains to prove part (d).
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Let « be a positive even integer, and set k = (n + 2)/2. It is easy to see that

/,(z) = exp(zk/k) satisfies the equation

(12) /"-(z" + («/2)z("-2)/2)/=0,

and, of course, /, has no zeros.

Now, again let « be a positive, even integer, and set k = (n + 2)/2. We will prove

that every solution/(z) z 0 of the equation

(13) /"-z"/=0,

has the property that its zero-sequence has exponent of convergence k. To prove

this, we assume the contrary, and let f(z) z 0 be a solution of (13) with X(f)¥=k.

Since a( f ) — k by part (a), we have

(14) Hf)<k.

In view of part (c), it follows that / can have only finitely many zeros, and so we can

write/= QeR, where Q is a polynomial, and R is a polynomial of degree k. From

(13), we obtain

(15) Q" + 2Q'R' + QU=0,

where

(16) U=R" + (R')2-z2k~2.

Let m denote the degree of the polynomial Q. From (16), we have

(17) U=(R'- zk~x)(R'+ zk-]) +R".

Subcase (a). R' = zk~x or R' = -zk~l. In this subcase, equation (15) takes the

form

(18) Q"±2zk-xQ'±(k- l)z/t-2o = 0.

But then, if cmzm is the leading term of Q, it follows from (18) that 2m + (k - 1) = 0,

which is impossible since m > 0 and k > 2.

Subcase (b). R' s zk~x and R' h -z* '. In this subcase, since R' is of degree

k — 1, it easily follows that at least one of the polynomials, R' — z*-1 or R' + zk~x,

is of degree k — 1 (and the other is not identically zero). Hence from (17), the degree

of U is at least k — 1, so that the degree of QU is at least k + m — 1. But then,

equation (15) is impossible since the degrees of Q" and Q'R' are both less than

k + m — 1. This contradiction shows that (14) cannot hold, and thus establishes our

assertion and part (d).

5. Remarks, (a) We consider here the case of an equation of the form ( 1 ), where

A(z) is a rational function which tends to oo as z -» oo. Let A(z) have a pole of

order « at oo, and let f(z) z 0 be a meromorphic solution in the plane of equation

(1). From the Wiman-Valiron theory (and the fact that/can have only finitely many

poles), it follows that the conclusion of parts (a) and (b) in Theorem 1 hold.

However, the conclusion of part (c) need not hold as evidenced from the following

example: The functions

/,(z) = (z - l)-'exp(-z2/4)    and   f2(z) = (z - 2)(z - l)-'exp(z2/4)
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are both solutions off" + Af = 0, where

(19) ^(z) = |-2(z-l)-2-z(z-ir,-(z2/4).

(b) In the case when A(z) is transcendental, the situation concerning the zeros of

solutions of (1) can be far different than in the polynomial case. It is possible for (1)

to possess two linearly independent solutions each having no zeros. To prove this, let

<p(z) he any nonconstant entire function, and let h denote a primitive of ev. Set

g = -(<¡p + h)/2. Then /, = eg and f2 = eg+h are linearly independent solutions of

(1) where A = -((h')2 + (<r/)2 ~ 2<p")/4. By observing that as r -> oo, T(r, <p) =

o(T(r, h')) (see [8, p. 54]), it follows that

(20) T(r,A) = 2T(r,h') + o(T(r,h'))    n.e. asr^oo.

Since h' = e9, it easily follows that the order of A(z) is either a positive integer or

oo. The choice <p(z) = z gives rise to the two solutions, exp(-(ez + z)/2) and

exp((ez - z)/2), of the equation/" - ((e2z + l)/4)/ = 0.

The construction shows that it is possible to construct equations /" + Af = 0,

where A has arbitrarily rapid growth, with the property that the equation possesses

two linearly independent solutions each having no zeros. To see this, let \p(r) be any

increasing function on (0, oo), and set >Pi(r) — e^(Ar). By a result of Poincaré (e.g.

[12, p. 324]), there exists an entire function <p(z) such that M(r, tp) > 4>x(r) for all

r > 0. It easily follows that for all sufficiently large r, T(r, <¡p) > ip(2r), and hence

T(r, h') > i>(2r) where h' = e*. In view of relation (20), we see that T(r, A) > ¡p(2r)

n.e. on (0, oo), and thus T(2r, A) > ^(2r) for all sufficiently large r. Hence, for any

preassigned increasing function \p(r) on (0, oo), it is possible to construct the entire

function A(z) such that T(r, A) > 4>(r) for all sufficiently large r.

6. Lemma B. Let A(z) be an entire, transcendental function of order a, where

0 < a < oo. Let /, andf2 be two linearly independent solutions of f" + Af= 0, and set

E = /,/,. Assume that for some real number a, with 0 < a < a, we have

(21) Ñ(r,l/E) = o(ra)    n.e.asr^oo.

Then

(22) T(r,E)^Ñ(r,l/A) + ra   n.e.asr^oo.

Proof. We observe first that E(z) satisfies the relation (6), and so E(z) must be

transcendental since A(z) is transcendental. In view of (6), we can write A = g + F,

where

(23) g = -\(c/E)     for some constant c ¥= 0,

and

(24) F=\(E'/E)2-{(E"/E).

By the lemma on the logarithmic derivative, we conclude that

(25) m(r, F) = o(T(r, E))    n.e.asr->oo.
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Now, if F has a pole at a point z0, then E must have a zero at z0 since E is entire. In

view of (24), the pole z0 of F is of multiplicity at most 2, and thus,

(26) N(r, F) *s 2Ñ(r, l/E).

In view of (21), (25), and (26), we can conclude that

(27) T(r,F) = o(T(r,E) + ra)    n.e. asr^oo.

We now choose a constant K ^ 0 such that F(z) z -A, and we define a, = 0,

a2 = -l/K, a3 = -1/(F + A"), and/= l/(g - K). (We observe that g z A since

g is transcendental by (23).) Clearly ax z a2> an^ ai z a3- To show a2 z a3, it

obviously suffices to prove that fzO. However, this follows easily from (24), for if

we assume that F = 0, and define u = E'/E, then we obtain u' = -{u2. It follows

that u(z) is a rational function of the form 2/(z + 2b) where b is a constant, and so

E(z) is a polynomial which is impossible. Hence a2 z a3 and so the a. are distinct.

In view of (27), it is obvious that fory = 1,2,3, we have

(28) T(r,Oj) = o(T(r,E) + ra)    n.e. asr^oo.

Since we also have

(29) T(r,f) = 2T(r,E) + 0(1)    as r - oo

(by definition of /and (23)), it now follows from (28), that fory = 1,2,3, we have

(30) T(r, Oj) = o(T(r, f) + ra)    n.e. asr^oo.

It is also clear from (6), (29), and the hypothesis, that

(31) 0<a<a(A)^a(E)=a(f) = a(g).

We can now apply a slight variant of [8, Theorem 2.5, pp. 47-48] to conclude that

n.e. as r -» oo, we have
3     _

(32) T(r,f) <   2 N(r, 1/ (/- fl,.)) + o(T(r, f) + ra).
7-1

Clearly, / — ax has a zero at a point z0 if and only if g has a pole at z0. In view of

(23), we have

(33) Ñ(r,l/(f-ax))=Ñ(r,l/E).

Clearly,

(34) N(r,l/(f-a2))=0,

since any zero off — a2 would have to be a pole of E, and E is entire. Finally, since

A = g + f, we have

(35) f-a3=A/((g-K)(F+K)).

In view of (23) and (26), it easily follows that

(36) Ñ(r, 1/ (/- a3)) < Ñ(r, l/A) + 3Ñ(r, l/E).

Using the estimates (33), (34), and (36) in the relation (32), it now follows from our

assumption (21) that n.e. as r -> oo,

(37) T(r, f) < Ñ(r, l/A) + o(T(r, f) + ra).
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The absolute value of the term o(T(r, f) + ra) in (37) can be made less than

(T(r, f) + ra)/2 if r is sufficiently large and lies outside a set D of finite measure,

and so for such r we have

(38) T(r,f)^2Ñ(r,l/A) + r".

The conclusion (22) now follows immediately from (38) and (29) proving Lemma B.

7. Proof of Theorem 2. We are given that A(z) is an entire transcendental function

of order a.

Part (A). Here a is finite but not a positive integer. Set E — fxf2 so that (6), (7),

and (8) hold where c is a nonzero constant.

We consider first the case a > {. If we assume X(E) < a, then from (8) we see

that the order of E is at most a. However, from (6), it follows that the order of E is

also at least a, and so E is of order a. Since a is not a positive integer, we have

X(E) — a contradicting our assumption. Thus X(E) 3= a, and the first part is proved.

For the case a < {, we apply the Wiman-Valiron theory to (6). Hence there is a set

D in [1, oo) of finite logarithmic measure such that if r & D and z is a point on

| z | = r at which \E(z)\= M(r, E) (where M(r, E) is the maximum modulus of E),

then

(39) 2\A(z)\^(v(r)/rf,

where v(r) denotes the central index of E. However, since a < {-, it follows from a

theorem of P. Barry [4, p. 294] that there is a sequence {/•„} — oo such that rnED

and the minimum modulus of A(z) on | z |= rn is at least M(rn, A)e for some fixed

e > 0. In view of (39), it follows that {v(rn)/r"] -» oo as n -» oo for every a > 0,

and so E is of infinite order (see [13, p. 34]). Hence from (8), we have X(E) = oo and

Part (A) follows.

Part (B). We are given that

(40) 0<a(A)^oo    and    X{A)<a(A).

We assume that the conclusion of Part (B) fails to hold, and we let/(z) z 0 denote a

solution off" + Af = 0 with the property that

(41) X(f)<o(A).

Hence we may write / = Qeg, where g is an entire function, and Q is a canonical

product of order X(f) formed with the zeros of /. Since /" + Af = 0, we obtain the

equation

(42) Q" + 2Q'g' + Q(g')2 + Qg" = -AQ.

In view of (41), the order of the right-hand side of (42) is o(A), and thus if

a(g) < a(A) the equation (42) would be impossible. Hence, a(g)> a(A). Now we

assert that

(43) o(g) = o(A).

If a(A) — oo, this is clear. Now assume that o(A) < oo. To prove (43), it suffices

to prove that a(g) < o(A). We rewrite equation (42) in the form

(44) (g'f = -A- g" - 2(Q'/Q)g' - (Q"/Q),



THE OSCILLATION THEORY OF/" + Af — 0 359

and we apply a variant of a lemma of Clunie [3, Lemma 1 ] which shows that for any

£>0,

(45) m(r,g')*iKr°(A)+e +o(T(r,g'))    n.e. asr^oo,

for some constant K > 0. Since g' is entire, it now follows (using §2(A)) that the

order of g' is at most a(A), from which (43) follows immediately.

We now rewrite (44) in the form

(46) -A = (g'f + g" + 2(Q'/Q)g' + (Q"/Q),
and we set b — max{X(f), X(A)] so that by (40) and (41), we have b < o(A).

We now divide the proof into two cases. Suppose first that o(A) < oo. Since

Q'/Q, Q"/Q and N(r, l/A) are all of order at most b (by (40) and (41)), and

b < o(A), it now follows from (46) and a slight variant of [8, Theorem 3.9] that

(47) ~A = (g' + a)2,

where a is an entire function of order at most b. If we now set H = l/(g' + a), then

since H2 = -l/A, (46) becomes

(48) FH2 = //' - 2((Q'/Q) - a)H,

where

(49) F = (ÖVß) + «2 - «' - 2a(Q'/Q).

We assert that F z 0. If we assume the contrary, then the right-hand side of (48)

is identically zero, and hence if we let <p denote a primitive of a, then H = cQ2e'2,p

for some constant c. But from the definition of H, clearly H has no zeros, and thus

c =h 0 and Q has no zeros. But Q is the canonical product formed with the zeros off,

and so if Q has no zeros then Q must be a constant. Since F = 0, it then follows

form (49) that a2 = a'. Since a is entire, and since every solution y z 0 of y2 = y'

has a pole, we see that a = 0. Thus <p is a constant, and hence H is a constant. It

then follows from the definition of H, that g' is a constant, and thus/= Qeg is of

finite order. This contradicts fact (B) in §2, and hence F z 0.

Noting that a(H) — a(A) (by(47)), while a(Q) and a(a) are at most b, we can

apply a simple variant of [8, Lemma 3.3] to the equation obtained by dividing each

term in (48) by F, and we see that for any e > 0,

(50) m(r, H) = 0(rh+e)    asr^oo.

But since H2 = -l/A, we then see that

(51) m(r, l/A) = 0(rh+c)    as r -> oo for any e > 0.

Combining (51) with the fact that N(r, l/A) is of order at most b, we see that l/A

(and hence A itself) is of order at most b. This contradicts the fact that b < a(A),

thus proving that a(A) < oo is not possible.

We now consider the case a(A) = oo. In this case, we can again apply a simple

variant of [8, Theorem 3.9] to equation (46) to obtain

(52) -A = (g' + af,
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where a is an entire function satisfying for any e > 0,

(53) T(r,a) = 0(rb+c + logT(r,g'))    n.e. asr^oo.

(For the remainder of the proof, e will be fixed.) We again define H = l/(g' + a),

so that (48) is valid, where F is given by (49). It is proved exactly as in the previous

case that F z 0, and hence each term in (48) can be divided by F. We can then apply

a variant of [8, Lemma 3.3] to obtain

(54) m(r, H) = 0(rb+e + log T(r,H))    n.e. asr^oo.

Since l/A = -H2, and since N(r, l/A) is of order at most b, it easily follows from

(54) that T(r, l/A) — 0(rb+e) n.e. as r -» oo. In view of fact (A) in §2, the possible

exceptional set can be eliminated, and hence A is of finite order which contradicts

the assumption a(A) — oo in this subcase. Thus Part (B) is completely proved.

Part (C). We are given that A(z) is an entire function with 0 < a(A) < oo, and

that the exponent of convergence A, of the sequence of distinct zeros of A(z) is less

than a(A). We assume that the conclusion of Part (C) fails to hold, so that there

exist linearly independent solutions /, and f2 of /" + Af = 0 with the property that

X(fj) < a(A) for j — 1,2. Hence, if we set E = fxf2, then X(E) < a(A). Since also

A, < a(A), we can choose a real number a such that

(55) max(A,, X(E)} <a<a(A).

Clearly, for this choice of a, the estimate (21) holds, and hence by Lemma B, the

estimate (22) holds. But in view of (55), we clearly have

(56) Ñ(r, l/A) = o(ra)    asr^oo,

and this together with (22) implies that n.e. as r -> oo,

(57) T(r, E) = 0(ra).

In view of fact A in §2, the estimate (57) holds as r -> oo without exception, and so

o(E) < a. But then a(E) < a(A) by (55), which is obviously impossible since E(z)

satisfies the equation (6). This contradiction establishes Part (C), and so Theorem 2

is now completely proved.

8. Remark. In this section, we show that for any a, where 0 < a *S oo, there exists

an entire, transcendental function A(z) of order a, such that the differential equation

/" + Af = 0 admits a solution having no zeros. To prove this, let g be a transcen-

dental entire function of order a. Then f=eg satisfies the differential equation,

/" + Af = 0, where

(58) (gf = -g"-A.
We observe first that A is transcendental, for in the contrary case, the Wiman-

Valiron theory (see [16, pp. 64-65]) shows that any entire solution g of (58) must be

a polynomial.

Since a(g) = a, it follows from (58) that o(A) < a. We assert that a(A) = a, and

we divide the proof into two cases.

Assume first that a < oo. In this case, the assumption that a(A) < a would yield

(59) m(r,g') = 0(r°(A)+e)    asr^oo,
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for any e > 0, when a slight variant of [8, Lemma 3.3] is applied to (58). Hence,

a = a(g') < a(A) which is contrary to the assumption a(A) < a. Thus, if a < oo,

then a(A) — a.

Now assume a — oo. In this case, the assumption a(A) < o would yield as above,

(60) m(r,g') = 0(rolA)+x+logT(r,g'))    n.e. asr^oo.

Since g is entire, it would follow from (60) (and §2(A)) that T(r, g') = 0(r°(A)+x) as

r -> oo, which contradicts our assumption that a — oo. Hence we obtain a(A) = a in

all cases, and this proves the Remark.

9. Proof of Theorem 3. Here,/(z) is an entire, transcendental function of order a,

where 0 =s a < oo, and <p = /' — af2, where a is a nonzero constant. We first

observe that tp is transcendental, for in the contrary case, the Wiman-Valiron theory

shows that/cannot be transcendental.

Obviously, a(cp) < a. The proof that a(<p) = a is identical to the proof in §8 that

a(A) = a. This proves part (a).

Since a(rjp) = a, and since tp is transcendental, it follows from the Hadamard

factorization theorem, that if a = 0, then <p has infinitely many zeros, while if

0 < a < oo but a is not a positive integer, then A(tp) = a.

Hence, to conclude the proof of Theorem 3, we must show that if a is a positive

integer or oo, then A(<p) = a. To see this, let g be a primitive off, and set v = e'ag.

Then y is a solution of the equation

(61) y"+Ay = 0,   where A = a<p.

If we assume that A(tp) < a, then by part (a), we have A(^4) = A(tp) < a and

a = o(<p) = a(A). But then it would follow from Theorem 2(b) that for the solution

y of equation (61), we have X(y) > a(A) which is clearly impossible since y has no

zeros, and o(A) = a is either a positive integer or oo. This contradiction fully

establishes Theorem 3.

10. The Mathieu equation. We consider here Mathieu's equation (2), where a and b

are constants with b nonzero (see e.g. [1]). In this section, we show that for any

solution/ z 0 of (2), we have A(/) = oo. We divide the proof into two cases.

Assume first that/(z) and/(z + tr) are linearly dependent solutions. Then clearly

we can write/(z) = eaz<&(z), where a is a constant, and $(z) is an entire function of

period -n.

The function $(z) satisfies the equation

(62) $" + 2a$' + (a + a2 + bCos(2z))<S> = 0.

By periodicity, we can write $(z) = y(e2,z), where y(Ç) is analytic on 0 < | f | < oo.

It is not possible for y(Ç) to be a rational function, for in the contrary case, $ would

be of finite order which would contradict §2(B) (see also [6]). Hence v(f ) must have

an essential singularity at either f = 0 or f = oo.

We first consider the case where_y(f ) has an essential singularity at oo. It is easy to

see from (62) that v(f ) satisfies the equation

(63) fV + O-za^y+ F(f)>' = 0,
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where

(64) F(l) = -i((*/2)r2 '+ («'+ «2)f + (b/2)).

Now (see [13,p. 15]), we can write v(f) = f"^(l/f)w(f), where « is an integer,

t|/(l/f) is analytic and nonvanishing at oo, and u(Ç) is an entire transcendental

function. Applying the Wiman-Valiron theory to equation (63), it follows from

[13,p. 109] that «(f) must be of order \. Hence the exponent of convergence of the

zero-sequence of w(f ) is {, and it easily follows that the exponent of convergence of

the zero-sequence of $(z) = y(e2,z) is oo.

Now consider the case where y(Ç) has an essential singularity at f = 0. Then

v(t) — y(l/t) has an essential singularity at t = oo, and satisfies the equation

(65) t3v" + (1 + ia)t2v' + F(t)v = 0,

where F is given by (64). Writing v(t) = tm^l(l/t)w(t) as before, where w(t) is an

entire, transcendental function, it follows from the Wiman-Valiron theory that w(t)

is of order }. Hence X(w) = {, and so A(i>) = oo.

Hence in this case, X(f)= oo.

Now assume that f(z) and f(z + it) are linearly independent, and set E(z) =

f(z)f(z + tr). Then E satisfies (6) and (8), where c is a nonzero constant, and

A(z) = a + bCos(2z). Since T(r, A) = O(r) as r -» oo, it follows from (8) that

(66) T(r,E) = 0(N(r,l/E) + r)    n.e. asr^oo.

If we assume that X(f)< oo (and thus A(£) < oo), then from (66) we see that

E(z) is of finite order. We now assert that f(z) and f(z + 2ir) must be linearly

dependent. If not, then setting Ex(z) = f(z)f(z + 2m), we see that Ex(z) satisfies (6)

and (8) for some nonzero constant c. Hence as above, it would follow that Ex(z) is of

finite order. Thus, Ex(z)E(z)/E(z + it) would be of finite order. Since this function

is just f(z)2, we would obtain a contradiction of §2(B). Hence for some constant

K t*= 0, we have f(z + 2w) = Kf(z). It then follows that E(z + it) = KE(z). Thus

E'/E and E"/E are both periodic of period w. From (6), it then follows that

F(z) — E(z)2 is periodic of period tr, and so we may write F(z) = ^(e2'z), where

^(f) is analytic for 0 <| f |< oo. In view of (6), it follows that ^(f) satisfies the

equation

(67) (-4a - 2/3(f + T'))*2 = c2* - 4ÇW - 4f2**" + 3f2(*')2.

If ^(f) has an essential singularity at f = oo, then as before, we can write

^(f ) — f"<Kl/DM(f X where n is an integer, ^(1/f) is analytic and nonvanishing at

oo, and u(f ) is entire. Applying the Wiman-Valiron theory to (67), the order of «(f)

would be {, and so the zero-sequence of u($) would have exponent of convergence

{-. But then the zero-sequence of F(z) would have exponent of convergence equal to

oo which contradicts the fact that a(F) = a(£)<oo. Hence ^(f) has at most a

pole at oo. A similar argument applied to ^(1/i) at t = oo shows that ^(O has at

most a pole at f = 0 also, and thus ^(f ) must be rational.

Since the only possible finite pole of ^(0 is at f = 0, we can write

(68) nn = kr + c„-,r-' + • • • +ca)/rfe,
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where n and k are nonnegative integers, the Cj are constants, and cn ^ 0. Clearly, as

I — oo, the functions f*'/* and 12<^"/<f' both tend to finite limits. It then follows

from equation (67) that 2/3f + (c2/^) also tends to a finite limit as f -» oo, and thus

from (68), we must have n — k = -I. Thus

(69) *(?) = cj-1 + c„_xr2 + ■■■ +c0r("+,).

Hence *(f ) has a pole at f = 0. Thus c2/^, f ¥'/¥, and £ 2<tr"/y are all analytic at

? = 0. However, this is in direct contradiction to equation (67), since the left side of

(67) when divided by ^2 has a pole at f = 0. This contradiction establishes the

relation X(f)= oo in the case where/(z) and/(z + tr) are linearly independent.

Notes added in proof. (1) Concerning the open question posed after the

statement of Theorem 2, this has essentially been answered in the affirmative in a

forthcoming paper by the authors and G. Frank. (2) A direct proof of Theorem 3

can be given using the techniques developed by Hayman in [9]. One need only apply

[9, Theorem 1] to -l/af. The authors realized this after the paper was written.
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