
transactions of the
american mathematical society
Volume 273, Number 1, September 1982

EXACT DYNAMICAL SYSTEMS AND THE

FROBENIUS-PERRON OPERATOR

BY

A. LASOTA AND JAMES A. YORKE1

Abstract. Conditions are investigated which guarantee exactness for measurable

maps on measure spaces. The main application is to certain piecewise continuous

maps T on [0,1] for which 7"(0) > 1. We assume [0,1] can be broken into intervals

on which T is continuous and convex and at the left end of these intervals T = 0 and

dt/dx > 0. Such maps have an invariant absolutely continuous density which is

exact.

1. Introduction. Exact dynamical systems describe irreversible deterministic

processes with strong pseudo-stochastic behavior. It is natural, therefore, to study

these processes from a statistical point of view as transformations of probability

densities. This leads immediately to the idea of considering the properties of the

corresponding Frobenius-Perron operators. We shall show that this idea is in fact

fruitful and allows us to establish some simple, easily used, sufficient conditions for

exactness.

The notion of exactness was introduced by V. A. Rochlin [8] who proved many

interesting properties of exact dynamical systems, for example that any such system

is mixing of all degrees and is a factor of a A system. Rochlin has also presented

some natural examples of exact systems. In particular he proved that the dynamical

system corresponding to the r-adic transformation (r > 1)

T(x) = rx    (modi),       x G [0,1],

with the unique absolutely continuous (constructed by A. Rényi [7]) invariant

measure is exact.

§2 contains some preliminary notation. In particular we recall a necessary and suf-

ficient condition for exactness of dynamical systems with a given invariant measure due

to M. Lin [5]. This condition is stated in terms of the convergence of the iterates of the

Frobenius-Perron operator. In §3 we weaken the assumption of convergence and show

that using this operator it is actually possible, in some cases, to construct an absolutely

continuous invariant measure such that the corresponding dynamical system is exact.

This motivates the paper as we strive for a condition that is more easily applied. In the

last section we give a construction of such a measure for piecewise convex mappings of

the unit interval. This construction generalizes the results of Rényi and Rochlin concern-

ing r-adic transformations.
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2. Preliminaries. Let (X, 2, p) he a measure space with a normalized measure p

(p(X) = 1) and let T: X -> X he a given transformation. In what follows we shall

assume that Fis doubly measurable which means that T(A) G 2 and T'X(A) G 2 for

A E 2. In this section we shall also assume that T is measure preserving, i.e.

p(T~x(A)) = p(A) for /(El (One of the objectives of the next section is to

eliminate this assumption.) An important role in our considerations is played by the

a-algebra

00

2,0=  P|2„  where2„= {T~"(A):A G 2}.
n=l

The dynamical system ( X, 2, u; F) is called exaci if 2^ is trivial (it contains only

the sets of measure zero and their compliments).

For a given T we define the Frobenius-Perron operator P corresponding to T by

(1) fpfdp=f       fdp   for A G2and/=L'.
JA JT-\A)

This formula has a simple probabilistic interpretation. Namely if x is a random

variable with the probability density function/, then T(x) has probability density

function Pf. Observe that, according to the Radon-Nikodym Theorem, formula (1)

defines the operator F in a unique manner and may be used as a definition of P. In

fact (1) is equivalent to

Pf=—r-v   where v( A)
du

and d/dfi denotes the Radon-Nikodym derivative. From (1) it can be seen that P is

linear and preserves the integral and is contractive in Lx (that is, II Pf \\L> < \\f\\ L\)

even without the assumption that p is invariant.

Exactness may be described in terms of the convergence of the iterates of the

Frobenius-Perron operator. This fact was discovered by M. Lin who proved the

following (M. Lin [5]) result. Let (/, 1) denote the integral of/.

Theorem 1. Let T: X -» X be a doubly measurable measure preserving transforma-

tion defined on a normalized measure space (X, 2, jti). Then the following conditions

are equivalent.

(a) The dynamical system (X, 2, u; T) is exact;

(b) lim„ P"f = ( f, 1 ) 1 for each f E Lx(X, 2, p) and the convergence is strong in Lx.

From the probabilistic interpretation of the operator P it follows that the set

D(X,-Z,p)= {fELx(X,Z,p):\\f\\L. = l,f>0}

plays a special role in the study of the properties of P. (The elements of D will be

called densities.) For example from Theorem 1 we immediately have

Corollary 1. The system (A, 2, p; T) is exact if and only if

(d) lim„ P"f = 1 strongly in Lx for every f E D( X, 2, u).

JT-'(A)
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3. A sufficient condition for exactness. In this section we shall assume that

( X, 2, «) is a a-fini te measure space and that T: X -> X is doubly measurable and

nonsingular. The last condition means that \í(T~x(A)) = 0 whenever fi(A) = 0. For

any density/we shall denote by pf the measure

pf(A) = f fdp   for A E 2.
•'A

Our goal now is to find conditions substantially weaker than (b) which still ensure

the existence of a density g for which the corresponding dynamical system

(X, 2, pg',T) is exact. As in the previous section we define the operator P:

LX(X, 2, p.) -» LX(X, 2, fi) by formula (1). Our starting point is the following (cf.

l4J)-

Proposition 1. Assume that a density g has the property that

(2) limF"/=g   forallfED(X,~2,,n)
n

and the limit is strong in LX(X, 2, ju). Then the measure pg is invariant and the system

(X, 2, n; T) is exact.

Proof. The function g is evidently a fixed point of P and from (1) it follows that

ju is invariant. Now consider a new measure space (X, 2, ¡ug) and denote by P0 the

Frobenius-Perron operator corresponding to this space. We have

(P0"fdpg=(        fdp.   or    f(P0"f)gdp=f       fgdp.
•'A JT~"(A) JA JT-n(A)

This implies, according to the definition of P, the equality gP^f — P"(fg). Now let

f E D(X, 2, ¡ig) be a bounded function. We have

¡\ P0"f -l\dpg = ¡\ gP0"f -g\dlx=\\P"(fg)-g\\0.

Since fg E D(X, 2, p), the last term converges to zero. Thus the condition P¿'f-> 1

is satisfied for all bounded functions /. By virtue of Corollary 1 this finishes the

proof.    D

In the following theorem (z)+ denotes max{0, z).

Theorem 2. Let (A, 2, p) be a a-finite measure space and let T: X -* X be doubly

measurable and nonsingular. Assume that there exists h G L'(A, 2, p), h s* 0, \\h\\ L\

> 0 such that

(3) lim||(/i-F"/)+||L,=0   /o/-/GF>(A,2,ju).
n

Then there is a unique density g such that the measure ¡i is invariant. Moreover

condition (2) holds true and the system (X, 2, ¡xg; T) is exact.

Before passing to the proof we shall introduce the following notion. A nonnega-

tive function h G LX(X, 2, jti) satisfying (3) will be called a lower function for P.

Theorem 2 says that the existence of a nontrivial (different from zero) lower function

for P implies the existence of an invariant measure and the exactness of the
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corresponding dynamical system. Clearly 1 > \\h\\L\ and in application it is easiest

to find an h of quite small norm. Condition (3) is weaker than (2) because the

invariant density in (2) is an example of a lower function.

Proof of Theorem 2. By virtue of Proposition 1 it is sufficient to prove the

existence of a function g E LX(X, 2, ¡ti) for which (2) holds. (The uniqueness of the

invariant measure ¡xg follows from (2) immediately.) This will be done in two steps.

First we shall construct an increasing sequence A<A,<A2<*"of lower functions

converging to an invariant (under P) lower function h*. Then we shall construct an

increasing sequence h* < A* < A* < ■•■ of invariant lower functions converging to an

invariant density.

Step I. It is easy to see that the maximum of two arbitrary lower functions h and h

is a lower function. In fact setting h = max(h, h) we have

\\(h-P"f)+ || tí < \\(h- Pnf)+ II £, + ll(/7- P"fY \[0.

It is also obvious that for any lower function h, the function Ph is a lower function

too. In fact from the equality

P(h - Pn~xf) = P(h - P"-Xf)+ -P(P"-xf- h) +

follows

and

[P(h - P"~xf)]+ < P(h - P"~xf) +

\\(Ph - P"f)+ \\L, ̂  \\P(h - Pn~Xf)+ \\Ls =  \\(h - P"-Xf)\\L>.

Therefore, setting A0 = h and hn+1 = max(A„, Phn) we define an increasing se-

quence of lower functions. Since II hn II L< *& 1, we have the strong (in Lx ) limit

h* = limA„
n

exists. The function h* is also a lower function. In fact we have

IK** - pj)+ n¿ ^ u* - hjL, + \\(hm - pj)+ ii l}.

The first term in the right-hand side is small for large m (by the definition of h*) and

the second is small for large n and fixed m since hm is a lower function). It is also

obvious from the inequality Phn < hn+, that Ph* < h*. Moreover we have || A*|| L\ =

II FA*|| L\ (P preserves the integral) and consequently FA* = A*.

Step II. We are going to show that if A* is an invariant lower function, then

h* — (2 — a0)h*    where a0 = || A*II L¡

has the same property. When a0 — 1, this fact is trivial. When a0< I, for a given

/ G D( X, 2, p.) consider the sequence

q„ = (1 - aoylP"(f- A*) = (1 - «oHF"/- A*).

Since A* is a lower function, we have

lim||(-^)+||L, = 0   and    lim || q„ || L, = 1.
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Therefore, for any given e > 0 there exists an integer m > 0 and a function

r E LX(X, 2,/t) such that

1m + r^0,        ll?m + HI£i = F,        ||rH£.<e/2.

Since qm + r G D( X, 2, ¡i) and A* is a lower function, we may conclude that

\\(h*-P"(qm + r))+\\Li<e/2

for sufficiently large n, say n> n0. Multiplication by (1 — a0) < 1 gives

||((1 - a0)h* - P"+mf-h* + (1 - a0)Pnr)+ || *£ e/2.

Now from the inequality II P"r || ti..«£ ||r IIL. « e/2 it follows that

||((2-a0)A*-F" + m/)+||Ll<e    for«>«0

and finishes the proof that A* = (2 — a0)h* is a lower function. Of course

IIA*||¿, = «0(2 - a0).

Let a! = a0(2 — a0). Repeating the above argument we may prove that h*2 =

(2 — ax)h* is also a lower function. This way we can construct a sequence of

invariant lower functions

K = h*,        A*+1 = (2 - an)h*

where a0 = ||A*|| G (0,1) and an+x = an(2 — an). An elementary calculation shows

that lim„ an = 1 and consequently

lim || A* || Li = liman = 1.
n n

The function g = limw A* (the convergence is monotonie and strong in Lx) is again

an invariant lower function and II g II ¿i = 1. Consequently

HP"/- glli.' = W(P"f-g)+ H zJ + H(g - P"f)+ If} = 2ll(g - F"/)+ ||£, -» 0

which finishes the proof.    D

It is interesting that the assumption on the existence of lower function in Theorem

2 may be replaced by an assumption of the existence of an upper function defined

below. Thus we have the following

Theorem 3. Let (X, 2, p) be a a-finite measure space and let T: X -> X be doubly

measurable and nonsingular. Assume that there exists A G Lx( X, 2, /x), A > 0, Il A || L\

< 2 such that

(4) Um||(F7-A)+||z., =0   forfED(X,2,p).
n

Then there is a unique density g such that the measure ¡ug is invariant. Moreover

condition (2) holds true and the system (A, 2, pg, T) is exact.

Proof. By virtue of Theorem 2, it is enough to prove the existence of a lower

function for P. To do this we again introduce an auxiliary notion. Every function

A G L'(A, 2, p) for which condition (4) holds true will be called an upper function.

As in the proof of Theorem 2, starting with a given upper function A we define

sequence

A0 = A,       A, = inf(A0, Ph0),...,hn = inf(A„„,, FA„_,),...
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of upper functions. The sequence {A„} is decreasing and bounded (0 < A„ < A) and

therefore convergent to a function A G 1). Once again it is easy to verify that h is an

upper function and that it is invariant, i.e. Ph — h. Setting a = ||A||Li we have

a "6 l|A||Li < 2. On the other hand from (4) it follows easily that a > 1. Now we

may consider two cases: (i) a — 1 and (ii) 1 < a < 2.

In case (i) the condition 11 All L\ — 1 implies that

||(F7-A)+||L, = ||(A-F7)+||L,    forfED(X,L,p.)

and therefore, the function A is simultaneously an upper function and a lower

function. In this case the proof is finished.

In case (ii) we are going to show that (2 — a)h is a lower function. For a given

/ G D( X, 2, u) consider the sequence

,„ = («-irlF"(A-/) = («-l)-,(A-F7).

Since h is an upper function we have

limll(-?„)+ll¿.' = 0   and    lim||<7„l| L, = 1.
M

Thus for any given e > 0 there exists an integer m > 0 and a function r G Lx( X, 2, ¡u)

such that

&,+/><>,    lli„, + r||L, = 1,    \\r\\L^e/2.

Again, since qm + r E D( X, 2, u) and A is an upper function

\\(P"(qm + r)-h)+\\l}^e/2

for sufficiently large n, say n> n0. Multiplication by a — 1 < 1 gives, according to

the definition of qm,

\\(h- (a- l)h- P" + mf+ (a- l)F"r)+||t, < e/2.

Now from the inequality || P"r || L> < || r || L¡ «£ e/2 it follows that

||((2 - a)h - P" + -/)+ || ti < e    for « > «„.

Thus (2 — a)h is in fact a lower function.    D

Remark 1. Since the operators P" are equicontinuous (|| P"f || ¡> < II / II ¿0 for the

validity of Theorems 2 and 3 it is enough to assume that the convergence in (3) and

(4), respectively, holds only for all / belonging to an arbitrary set D0 dense in

F>(A, 2, ft).

Remark 2. The requirement that IIAII ¿i < 2 in Theorem 3 is the best possible in

the sense that for ||A|| L\ = 2 the theorem is not valid. The simplest counterexample

is given by the identity of mapping T on the space X = {x0, x,} with the measure p.

defined by p({x0}) = p({xx}) = {.

Remark 3. In the proofs of Theorems 2 and 3 the only properties of the operator

P which were used are:

(1) F maps Lx( X, 2, jti) into itself and is linear;

(2)F/>0for/>0,/G/J;

(3) IIF/II,i = ll/llLi for/> 0,/G LxTherefore these theorems are valid for any
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operator P satisfying (1), (2), and (3). (There exists a unique g such that Pg = g and

conditions (2) holds true.)

4. Piecewise convex transformations. The problem of the existence and uniqueness

of an absolutely continuous measure p(r) for r-adic transformation

Tr(x)=rx    (modi),       r>l,

was solved by A. Rényi [7], A. O. Gelfond [2] and W. Parry [6]. In the special case,

when r is an integer, the ergodic properties of Tr were studied by É. Borel [1]. The

exactness of the dynamical system ([0,1], p(r), Tr) was proved by V. A. Rochlin [8].

These results were extended to some piecewise convex transformations in [3] and [4].

We shall show that using Theorem 2 it is possible to prove simultaneously the

existence and uniqueness of absolutely continuous invariant measures and the

exactness of corresponding dynamical systems for a fairly large class of piecewise

convex transformations containing all previous cases. For a discussion of a special

case of this result, see [6].

We say that a real valued function F defined on an interval A is convex if

F(ax + (1 - a)y) < aF(x) + (1 - a)F(y)

for all x, v G A and 0 < a < 1.

Let F be a given transformation of the unit interval [0,1] into itself. We shall

assume that it satisfies the following conditions:

(i) there is a partition 0 = a0 < ■ ■ • < aN = 1 such that for each integer k

(k — l,...,N) the restriction of T to the interval [ak^x, ak) is continuous and

convex,

(ii) T(ak_x) = 0, T'(ak^x) > 0, k = l,...,N, and

(iii) T'(0) > 1.

Theorem 4. Assume T: [0,1] -> [0,1] satisfies conditions (i)-(iii). Then there exists

the unique normalized absolutely continuous measure ¡ig that is invariant under T. The

system ([0,1], p.g; T) is exact and the density g = d¡ig/dx is bounded and decreasing.

Moreover

limP"f=g   forfED([0,l],¡i)
n

where p is the standard Borel measure on [0, 1] and P is the Frobenius-Perron operator

corresponding to T.

Proof. From formula (1) it follows that on the real line

d

'([0,*])ax JT-I,m   vl)

For the transformation F satisfying conditions (i)-(iii) the right-hand side of (4) can

be easily calculated and we obtain

(5) Pf(x) = 2 «W/fetö)
k-\
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where

,,. .  ,   v      \Tk\x)     forxET([ak_x,ak)),

\ak forxG [0, l]\T([ak_x,ak))

and Tk denotes the restriction of T to the interval [ak_x,ak). The functions \pk are

increasing, continuous and differentiable except on a set of at most a countable

number of points. At these points \f/'k can be defined as the right-hand side

derivatives. The functions \j/'k are decreasing and bounded (since T'(ak) > 0).

Now we are going to construct a nontrivial lower function for P. This will be done

in three steps.

Step I. We start with the proof that the set

00

S =  U T-"({a0,...,aN})
n = 0

is dense in [0,1]. Suppose not. Then there exists an interval [x0, y0] C (0,1) such

that

^"([^O' Jol) n ia0'---aA'} is empty for all n = 0,1,_

This means that for each n the points x„ = T"(x0) and yn = T"(yQ) belong to the

same interval (ak_x, ak). If xn, v„ G (a0, ax), we have by the convexity of F,

ti\ Jn+i _ T\(yn) ^ yn

Xn+\ 1\\X„) Xn

I1 xn>yn e (ak-i> ak) w'tn ^ > 1 we have a more precise inequality,

y„+\ _ Tkiyn) >yn~a\ >yn [ i -atx„/y„\

x„ + x      Tk(x„) x„-ax      x„\      1-a,      /

and consequently

(8)                             ^±!^A whereg=1~y°/jfa>l.
x„+1        xn 1     a,

Since F,'(x) > F,'(0) > 1, the points x„, v„ cannot belong to (a0, ax) for almost all n.

For infinitely many «'s we have xn, y„>ax and, according to (7) and (8),

limn(yn/xn) — oo. Since limsupn xn > ax, this in turn implies limsupy^ = oo which

is impossible. The density of the set S in [0,1] is proved.

Step II. Let 1A be the characteristic function of an interval A = [d0, dx] with the

endpoints belonging to the set 5. We claim that for n sufficiently large F"1A is a

decreasing function. Observe first that P is the Frobenius-Perron operator corre-

sponding to T". The function T" satisfies conditions analogous to (i)-(iii); in

particular it is piecewise convex. Denote by

(9) 0 = a(0n) < ■ ■ ■ < <„> = 1

the partition corresponding to T" (i.e. T" is convex on each interval [ak"lx, a[n)) and

T"(aknlx) = 0). It is easy to see that

{a[b"\...,a^} = T-"+x{a0,...,aN}
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if we assume for simplicity that F(l) = 0. Moreover from the obvious inclusion

{a0,...,aN} ET-x({a0,...,aN})

it follows by induction that

F-"+1({a0_-,«*})cF-"({«0,...,«„})

which shows that the system of partitions (9) is decreasing (finer for larger n ). Since

d0, dx ES there is an integer n0 sufficiently large such that d, belongs to the

partition {a0n>,. ..,a^] for n>n0. The operator P" is the Frobenius-Perron

operator for T" and so it may be written in the form analogous to (5), namely

N„

P"f(x) =   2  *UXM*nA*))
k— 1

where \pnk (k = l,...,Nn) denotes the inverse function to T" restricted to the

interval [ak"lx, akn)) (and \pnk is extended using a constant to the whole interval [0,1]

as in (6)). In particular for/ = 1A and n 3= «0 we have

kß-\

p"\(x) = 2 *„'.*(*)
k = ka

where a and ß are such that akn) = d0 and akn) = dx. Since all the functions ty'nk are

decreasing, F"1A has the same property.

Step III. Let D0 he a subset of F>([0,1], ¡u) consisting of all functions of the form

n

f(x) =  2 ckl¿,t(x),       ck^0
k=\

where the endpoints of the intervals i\k belong to S. Since S is dense in [0,1], the set

D0 is dense in D([0,1], p). Now we are in a position to construct a lower function for

P. Let f E D0 be an arbitrary function. There exists n0 = n0(f) such that P"f is

decreasing for n 3= n0. It is easy to see that no decreasing density on [0,1] exceeds

1/x. In fact for any decreasing/we have

1 > ff(s) ds » ff(x) ds = xf(x).

In particular we have P"f(x) < 1/x for n > n0. Applying this estimate to the

equality

^"+'/(0) = *i(0)Pn/(0) +   2 ^(0)F7(a,-,)
k = 2

we obtain

F"+I/(0)<A,F7(0) +  2

N     K

k = 2 a*"l

where Xk = 4>'k(0) = l/T'(ak_x). From assumption (iii) we have Xx < 1 and by an

induction argument we obtain

M .        „       "     X
F"+"7(0) < (a,)"F"7(0) + where M = 2 k

1_A1 k=7°k = 2 "*-l
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Now let K = M/(I — Xx) + 1. For n sufficiently large, say n > nx, we have P"f(0)

< K. Define A = \ lro,i/(2Jt>]- ̂ 's easy to prove that

(10) P"f(x)>h(x)    for n>nx.

Suppose not. Then there is x0 G [0,1/(2A:)] such that P"f(x0) < A(x0) = \ and

consequently

1 = f°Pnfdx + jXP"fdx < x0k + ¿(1 -xo)^J^K + \= 1
0 x0

which is impossible. Inequality (10) finishes the proof.    D
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